
577CS 538 Spring 2008©

C#
C# is Microsoft’s answer to Java.
In most ways it is very similar to
Java, with some C++ concepts
reintroduced and some useful
new features.
Similarities to Java include:
• C# is object-based, with all

objected descended from class
Object.

• Objects are created from classes
using new. All objects are heap-
allocated and garbage collection is
provided.

• All code is placed within methods
which must be defined within
classes.

• Almost all Java reserved words
have C# equivalents (many are
identical).

578CS 538 Spring 2008©

• Classes have single inheritance.

• C# generates code for a virtual
machine to support cross-platform
execution.

• Interfaces are provided to capture
functionality common to many
classes.

• Exceptions are very similar in form
to Java’s.

• Instance and static data within an
object must be initialized at point
of creation.

579CS 538 Spring 2008©

C# Improves Upon Some Java
Features

• Operators as well as methods can
be overloaded:
class Point {

 int x, y;
 static Point operator + (
 Point p1, Point p2) {
 return new Point(p1.x+p2.x,

p1.y+p2.y);
 }
 }

• Switch statements may be indexed
by string literals.

• In a switch, fall-throughs to the
next case are disallowed (if non-
empty).

• Goto’s are allowed.

• Virtual methods must be marked.

580CS 538 Spring 2008©

• Persistent objects (that may be
stored across executions) are
available.

581CS 538 Spring 2008©

C# Adds Useful Features
• Events and delegates are included

to handle asynchronous actions
(like keyboard or mouse actions).

• Properties allow user-defined read
and write actions for fields. You can
add get and set methods to the
definition of a field. For example,
class Customer {

 private string name;

 public string Name {

 get { return name; }}

}

Customer c; ...

string s = c.Name;

582CS 538 Spring 2008©

• Indexers allow objects other than
arrays to be indexed. The []
operator is overloadable. This
allows you to define the meaning
of
obj[123] or obj["abc"]
within any class definition.

• Collection classes may be directly
enumerated:
foreach (int i in array) ...

• Fields, methods and constructors
may be defined within a struct as
well as a class. Structs are allocated
within the stack instead of the
heap, and are passed by value. For
example:

struct Point {

 int x,y;

 void reset () {

 x=0; y=0; }

 }

583CS 538 Spring 2008©

• When an object is needed, a
primitive (int, char, etc.) or a
struct will be automatically boxed
or unboxed without explicit use of
a wrapper class (like Integer or
Character). Thus if method
List.add expects an object, you
may write
List.add(123);

and 123 will be boxed into an
Integer object automatically.

• Enumerations are provided:
enum Color {Red, Blue, Green};

• Rectangular arrays are provided:
int [,] multi = new int[5,5];

• Reference, out and variable-length
parameter lists are allowed.

• Pointers may be used in methods
marked unsafe.

584CS 538 Spring 2008©

Version 3.0 of C# Adds
Additional Features

• Implicitly Typed Local Variables
(Old form):
int n = 5;

string s = "CS 538 rules!";

int[] nums =
new int[] {1, 2, 3};

(New form):
var n = 5;

var s = "CS 538 rules!";

var nums =
new int[] {1, 2, 3};

585CS 538 Spring 2008©

• Lambda Expressions
string[] arr =
{ "asdf", "pop", "crazy", "mine" };

 var sorted =
arr.OrderBy(e => e[e.Length-1]);

//sorted by last char in the string

• Object Initializers
(Old form):
Contact contact =
new Contact();

contact.LastName = "Magennis";
contact.DateOfBirth =
new DateTime(1973,12,09);

(New form):
Contact contact =
new Contact {
 LastName = "Magennis",
 DateOfBirth =

new DateTime(1973,12,09)
};;

586CS 538 Spring 2008©

• Collection Initializers
List<int> digits =
new List<int> { 0, 1, 2,
3, 4, 5, 6, 7, 8, 9 };

List<Contact> contacts =
 new List<Contact> {
 new Contact {

 LastName = "Doherty",
DOB =
 newDateTime(1989,1,1)},

 new Contact {
LastName = "Wilcox",
DOB =
new DateTime(1987,3,3)}

};

• Anonymous Types
var anonType =
 new {X = 1, Y = 2};

587CS 538 Spring 2008©

• Implicitly Typed Arrays
Old:
int[] a =
 new int[] { 1, 10, 100, 1000 };
double[] b =
 new double[] { 1, 1.5, 2, 2.5 };
string[] c =
 new string[] { "hello",null,"world"};

New:
var a = new[] { 1, 10, 100, 1000 };
var b = new[] { 1, 1.5, 2, 2.5 };
var c = new[] {"hello", null,"world"};

• Automatic Properties
Old:
private string _name;
public string Name
{
 get { return _name; }
 set { _name = value; }
}

New:
public string Name { get; set; }

588CS 538 Spring 2008©

Pizza
Pizza is an extension to Java
developed in the late 90s by
Odersky and Wadler.
Pizza shows that many of the best
ideas of functional languages can
be incorporated into a
“mainstream” language, giving it
added power and expressability.
Pizza adds to Java:

1. Parametric Polymorphism
Classes can be parameterized
with types, allowing the
creation of “custom” data types
with full compile-time type
checking.

589CS 538 Spring 2008©

2. First-class Functions
Functions can be passed,
returned and stored just like
other types.

3. Patterns and Value Constructors
Classes can be subdivided into
a number of value
constructors, and patterns can
be used to structure the
definition of methods.

590CS 538 Spring 2008©

Parametric Polymorphism
Java allows a form of
polymorphism by defining
container classes (lists, stacks,
queues, etc.) in terms of values of
type Object.
For example, to implement a
linked list we might use:

class LinkedList {
 Object value;
 LinkedList next;
 Object head() {return value;}
LinkedList tail(){return next;}

 LinkedList(Object O) {
 value = O; next = null;}
 LinkedList(Object O,
 LinkedList L){
 value = O; next = L;}
}

591CS 538 Spring 2008©

We use class Object because any
object can be assigned to Object
(all classes must be a subclass of
Object).
Using this class, we can create a
linked list of any subtype of
Object.
But,
• We can’t guarantee that linked lists

are type homogeneous (contain
only a single type).

• We must unbox Object types back
into their “real” types when we
extract list values.

• We must use wrapper classes like
Integer rather than int (because
primitive types like int aren’t
objects, and aren’t subclass of
Object).

592CS 538 Spring 2008©

For example, to use LinkedList
to build a linked list of ints we
do the following:
LinkedList L =

 new LinkedList(new Integer(123));

 int i =
 ((Integer) L.head()).intValue();

This is pretty clumsy code. We’d
prefer a mechanism that allows us
to create a “custom version” of
LinkedList, based on the type
we want the list to contain.
We can’t just call something like
LinkedList(int) or
LinkedList(Integer) because

types can’t be passed as
parameters.
Parametric polymorphism is the
solution. Using this mechanism,
we can use type parameters to

593CS 538 Spring 2008©

build a “custom version” of a class
from a general purpose class.
C++ allows this using its template
mechanism. Pizza also allows
type parameters.
In both languages, type
parameters are enclosed in “angle
brackets” (e.g., LinkedList<T>
passes T, a type, to the
LinkedList class).
In Pizza we have
class LinkedList<T> {
 T value; LinkedList<T> next;
 T head() {return value;}
 LinkedList<T> tail() {
 return next;}
 LinkedList(T O) {
 value = O; next = null;}
 LinkedList(T O,LinkedList<T> L)
 {value = O; next = L;}
}

594CS 538 Spring 2008©

When linked list objects are
created (using new) no type
qualifiers are needed—the type of
the constructor’s parameters are
used. We can create
LinkedList<int> L1 =
 new LinkedList(123);

int i = L1.head();

LinkedList<String> L2 =
 new LinkedList("abc");

String s = L2.head();

LinkedList<LinkedList<int> > L3 =
 new LinkedList(L1);

int j = L3.head().head();

595CS 538 Spring 2008©

Bounded Polymorphism
In Pizza we can use interfaces to
bound the type parameters a
class will accept.
Recall our Compare interface:
interface Compare {

 boolean lessThan(Object o1,
 Object o2);

}

We can specify that a
parameterized class will only
takes types that implement
Compare:
class LinkedList<T implements

Compare> { ... }

596CS 538 Spring 2008©

In fact, we can improve upon how
interfaces are defined and used.
Recall that in method lessThan
we had to use parameters
declared as type Object to be
general enough to match (and
accept) any object type. This
leads to clumsy casting (with run-
time correctness checks) when
lessThan is implemented for a
particular type:
class IntCompare implements Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return ((Integer)i1).intValue() <
 ((Integer)i2).intValue();}
}

597CS 538 Spring 2008©

Pizza allows us to parameterize
class definitions with type
parameters, so why not do the
same for interfaces?
In fact, this is just what Pizza
does. We now define Compare as
interface Compare<T> {
 boolean lessThan(T o1, T o2);
}

Now class LinkedList is
class LinkedList<T implements

Compare<T> > { ... }

Given this form of interface
definition, no casting (from type
Object) is needed in classes that
implement Compare:
class IntCompare implements

Compare<Integer> {
 public boolean lessThan(Integer i1,

Integer i2){
 return i1.intValue() <
 i2.intValue();}
}

598CS 538 Spring 2008©

First-class Functions in Pizza
In Java, functions are treated as
constants that may appear only in
classes.
To pass a function as a parameter,
you must pass a class that
contains that function as a
member. For example,
class Fct {
 int f(int i) { return i+1; }
}
class Test {
static int call(Fct g, int arg)

 { return g.f(arg); }
}

599CS 538 Spring 2008©

Changing the value of a function
is even nastier. Since you can’t
assign to a member function, you
have to use subclassing to
override an existing definition:
class Fct2 extends Fct {
 int f(int i) { return i+111; }
}

Computing new functions during
executions is nastier still, as Java
doesn’t have any notion of a
lambda-term (that builds a new
function).

600CS 538 Spring 2008©

Pizza makes functions first-class,
as in ML. You can have function
parameters, variables and return
values. You can also define new
functions within a method.
The notation used to define the
type of a function value is
(T1,T2, ...)->T0

This says the function will take
the list (T1,T2, ...) as it
arguments and will return T0 as
its result.
Thus
(int)->int

represents the type of a method
like
int plus1(int i) {return i+1;}

601CS 538 Spring 2008©

The notation used by Java for
fixed functions still works. Thus
static int f(int i){return 2*i;};

denotes a function constant, f.
The definition
 static (int)->int g = f;

defines a field of type (int)->int
named g that is initialized to the
value of f.
The definition
static int call((int)->int f,
 int i)
 {return f(i);};

defines a constant function that
takes as parameters a function
value of type (int)->int and an
int value. It calls the function
parameter with the int parameter
and returns the value the function
computes.

602CS 538 Spring 2008©

Pizza also has a notation for
anonymous functions (function
literals), similar to fn in ML and
lambda in Scheme. The notation
fun (T1 a1, T2 a2, ...) -> T0
 {Body}

defines a nameless function with
arguments declared as
(T1 a1, T2 a2, ...) and a result
type of T0. The function’s body is
computed by executing the block
{Body}.
For example,
static (int)->int compose(
 (int)->int f, (int)->int g){
 return fun (int i) -> int
 {return f(g(i));};

}

603CS 538 Spring 2008©

defines a method named
compose. It takes as parameters
two functions, f and g, each of
type (int)->int.
The function returns a function as
its result. The type of the result is
(int)->int and its value is the
composition of functions f and g:
 return f(g(i));

Thus we can now have a call like
compose(f1,f2)(100)

which computes f1(f2(100)).

604CS 538 Spring 2008©

With function parameters, some
familiar functions can be readily
programmed:
class Map {
 static int[] map((int)->int f,
 int[] a){
 int [] ans =
 new int[a.length];
 for (int i=0;i<a.length;i++)
 ans[i]=f(a[i]);
 return ans;
 };
}

605CS 538 Spring 2008©

And we can make such operations
polymorphic by using parametric
polymorphism:
class Map<T> {
 private static T dummy;
 Map(T val) {dummy=val;};
 static T[] map((T)->T f,

T[] a){
 T [] ans = (T[]) a.clone();

for (int i=0;i<a.length;i++)
 ans[i]=f(a[i]);
 return ans;
 };
}

606CS 538 Spring 2008©

Algebraic Data Types
Pizza also provides “algebraic
data types” which allow a type to
be defined as a number of cases.
This is essentially the pattern-
oriented approach we saw in ML.
A list is a good example of the
utility of algebraic data types.
Lists come in two forms, null and
non-null, and we must constantly
ask which form of list we
currently have. With patterns, the
need to consider both forms is
enforced, leading to a more
reliable programming style.
In Pizza, patterns are modeled as
“cases” and grafted onto the
existing switch statement (this
formulation is a bit clumsy):

607CS 538 Spring 2008©

class List {
 case Nil;
 case Cons(char head,
 List tail);
 int length(){
 switch(this){
 case Nil: return 0;
 case Cons(char x, List t):
 return 1 + t.length();
 }
 }
}

608CS 538 Spring 2008©

And guess what! We can use
parametric polymorphism along
with algebraic data types:
class List<T> {
 case Nil;
 case Cons(T head,
 List<T> tail);
 int length(){
 switch(this){
 case Nil: return 0;
 case Cons(T x, List<T> t):
 return 1 + t.length();
 }
 }
}

