
1CS 538 Spring 2008©

CS 538

Introduction to the Theory and
Design of Programming

Languages

Charles N. Fischer

Spring 2008

 http://www.cs.wisc.edu/~fischer/cs538.html

2CS 538 Spring 2008©

Class Meets
Mondays, Wednesdays &
Fridays,
9:55 — 10:45
1325 Computer Sciences

Instructor
Charles N. Fischer
6367 Computer Sciences
Telephone: 608.262.6635
E-mail: fischer@cs.wisc.edu
Office Hours:

10:30 - Noon, Tuesdays &
Thursdays, or by
appointment

3CS 538 Spring 2008©

Teaching Assistant
Jongwon Yoon
3361 Computer Sciences
Telephone: 608.354.3613
E-mail: yoonj@cs.wisc.edu
Office Hours:

2:00 - 3:00, Mondays,
Wednesdays and Fridays,
or by appointment

4CS 538 Spring 2008©

Key Dates
• Feb 25: Homework #1 (tentative)
• March 24: Programming Assignment #1 -

 Scheme (tentative)
• April 2: Midterm Exam (tentative)
• April 16: Programming Assignment #2 -

 Standard ML (tentative)
• May 2: Programming Assignment #3 -

 Prolog (tentative)
• May 9: Programming Assignment #4 -

Java, C#, Pizza and Python
• May 15: Final Exam 2:45pm-4:45pm

5CS 538 Spring 2008©

Class Text
• Required text:

“Modern Programming
Languages,” Adam Webber,
Franklin, Beedle & Associates,
2003.

• Handouts and Web-based reading will
also be used.

Reading Assignment
• Webber: Chapters 1, 10, 18

 (as background)

6CS 538 Spring 2008©

Class Notes
• Each lecture will be made available

prior to that lecture on the class Web
page (under the “Lecture Nodes” link).

Instructional Computers
Departmental Linux Machines
(king01- king12, emperor01-
emperor40) have been
assigned to CS 538. All
necessary compiler,
interpreters and tools will be
loaded onto these machines.

7CS 538 Spring 2008©

You may also use your own PC
or laptop. It will be your
responsibility to load needed
software (instructions on where
to find needed software are
included on the class web
page).

The Systems Lab teaches brief
tutorials on Linux if you are
unfamiliar with that OS.

8CS 538 Spring 2008©

Academic Misconduct Policy
• You must do your own assignments —

no copying or sharing of solutions.

• You may discuss general concepts and
Ideas.

• All cases of misconduct must be
reported to the Dean’s office.

• Penalties may be severe.

9CS 538 Spring 2008©

Program & Homework Late
Policy
• An assignment may be handed in up

to 7 days late, but no later.

• Each day late will be debited 4%, up to
a maximum of 28%.

• All students are given 10 “free” late
days. That is, the first 40% in late
debits will be automatically forgiven.

• Your 10 free late days my be used at
any time, and in any combination.

10CS 538 Spring 2008©

Approximate Grade Weights
Homework 1 10%
Program 1 - Scheme 16%
Program 2 - ML 16%
Program 3 - Prolog 12%
Program 4 - Java, C#,
 Pizza and Python
 (optional extra credit) 10%
Midterm Exam 23%
Final Exam
 (non-cumulative) 23%

11CS 538 Spring 2008©

Programming Languages to be
Considered in Detail
1. Scheme

A modern variant of Lisp.
A Functional Language:
Functions are “first class” data
values.
Dynamically Typed:
A variable’s type may change
during execution; no type
declarations are needed.
All memory allocation and
deallocation is automatic.
Primary data structures, lists
and numbers, are unlimited in
size and may grow without
bound.

12CS 538 Spring 2008©

Continuations provide a novel
way to suspend and “re-
execute” computations.

2. ML (“Meta Language”)
Strong, compile-time type
checking.
Types are determined by
inference rather than
declaration.
Naturally polymorphic (one
function declaration can be
used with many different
types).
Pattern-directed programming
(you define patterns that are
automatically matched during a
call).

13CS 538 Spring 2008©

Typed exceptions are provided.
Abstract data types, with
constructors, are included.

3. Prolog (Programming in Logic)
Programs are Facts and Rules.
Programmers are concerned
with definition, not execution.
Execution order is
automatically determined.

14CS 538 Spring 2008©

4. Pizza
Extends a popular Object-
oriented language, Java, to
include
• Parametric polymorphism (similar

to C++’s templates).

• First-class functional objects.

• Algebraic data types, including
patterns.

5. C#
Microsoft’s answer to Java. In
most ways it is very similar to
Java, with some C++ concepts
reintroduced and some useful
additions.

15CS 538 Spring 2008©

• Events and delegates are included
to handle asynchronous actions
(like keyboard or mouse actions).

• Properties allow user-defined read
and write actions for fields.

• Indexers allow objects other than
arrays to be indexed.

• Collection classes may be directly
enumerated:
foreach (int i in array) ...

• Structs and classes co-exist and
may be inter-converted (boxed and
unboxed).

• Enumerations, operator
overloading and rectangular arrays
are provided.

• Reference, out and variable-length
parameter lists are allowed.

16CS 538 Spring 2008©

6. Java 1.5 (Tiger Java, Java 5.0)
Extends current definition of
Java to include:
• Parametric polymorphism

(collection types may be
parameterized).

• Enhanced loop iterators.

• Automatic boxing and unboxing of
wrapper classes.

• Typesafe enumerations.

• Static imports (out.println rather
than System.out.println).

• Variable argument methods.

• Formatted output using printf:
out.printf("Ans = %3d",a+b);

17CS 538 Spring 2008©

7. Python
A simple, efficient scripting
language that quickly builds
new programs out of existing
applications and libraries.
It cleanly includes objects.
It scales nicely into larger
applications.

18CS 538 Spring 2008©

Evolution of Programming
Languages

In the beginning, ...
programs were written in
absolute machine code—a
sequence of bits that encode
machine instructions.
Example:

34020005
0000000c
3c011001
ac220000

This form of programming is
• Very detailed

• Very tedious

• Very error-prone

• Very machine specific

19CS 538 Spring 2008©

Symbolic Assemblers
Allow use of symbols for
operation codes and labels.
Example:

li $v0,5
syscall
sw $v0,a

Far more readable, but still very
detailed, tedious and machine-
specific.
Types are machine types.
Control structures are
conditional branches.
Subprograms are blocks of
code called via a “subroutine
branch” instruction.
All labels are global.

20CS 538 Spring 2008©

Fortran (Formula Translator)
Example:

 do 10 i=1,100

10 a(i)=0

Developed in the mid-50s.
A major step forward:
• Programming became more

“problem oriented” and less
“machine oriented.”

• Notions of control structures (ifs
and do loops) were introduced.

• Subprograms, calls, and
parameters were made available.

• Notions of machine independence
were introduced.

• Has evolved into many new
variants, including Fortran 77,
Fortran 90 and HPF (High
Performance Fortran).

21CS 538 Spring 2008©

Cobol (Common Business
Oriented Language)

Example:
multiply i by 3 giving j.
move j to k.
write line1 after advancing
1 lines.

Developed in the early 60s.
The first widely-standardized
programming language.
Once dominant in the business
world; still important.
Wordy in structure; designed
for non-scientific users.
Raised the issue of who should
program and how important
readability and maintainability
are.

22CS 538 Spring 2008©

Algol 60 (Algorithmic Language)
Example:

real procedure cheb(x,n);
value x,n;
real x; integer n;
cheb :=

if n = 0 then 1
 else if n = 1 then x
 else 2 × x ×
 cheb(x,n-1)-cheb(x,n-2);

Developed about 1960.
A direct precursor of Pascal, C,
C++ and Java.
Introduced many ideas now in
wide use:
• Blocks with local declarations and

scopes.

• Nested declarations and control
structures.

23CS 538 Spring 2008©

• Parameter passing

• Automatic recursion.

But,
• I/O wasn’t standardized.

• IBM promoted Fortran and PL/I.

24CS 538 Spring 2008©

Lisp (List Processing Language)
Example:

((lambda (x) (* x x)) 10)

Developed in the early 60s.
A radical departure from earlier
programming languages.
Programs and data are
represented in a uniform list
format.
Types are a property of data
values, not variables or
parameters.
A program can build and run
new functions as it executes.
Data values were not fixed in
size.

25CS 538 Spring 2008©

Memory management was
automatic.
A formal semantics was
developed to define precisely
what a program means.

26CS 538 Spring 2008©

Simula 67 (Simulation Algol)
Example:

Class Rectangle (Width, Height);
Real Width, Height;
Boolean Procedure IsSquare;
 IsSquare := Width=Height;
End of Rectangle;

Developed about 1967.
Introduced the notion of a class
(for simulation purposes).
Included objects, a garbage
collector, and notions of
extending a class.
C++ was originally C with
classes (as Simula was Algol
with classes).

27CS 538 Spring 2008©

C and C++
C was developed in the early
70’s; C++ in the mid-80s.
These languages have a
concise, expressive syntax;
they generate high quality code
sufficient for performance-
critical applications.
C, along with Unix, proved the
viability of platform-
independent languages and
applications.
C and C++ allow programmers
a great deal of freedom in
bending and breaking rules.
Raises the issue of whether one
language can span both novice
and expert programmers.

28CS 538 Spring 2008©

Interesting issue—if most
statements and expressions are
meaningful, can errors be
readily detected?

if (a=b)

 a=0;

else a = 1;

29CS 538 Spring 2008©

Java
Developed in the late 90s.
Cleaner object-oriented
language than C++.
Introduced notions of dynamic
loading of class definitions
across the Web.
Much stronger emphasis on
secure execution and detection
of run-time errors.
Extended notions of platform
independence to system
independence.

30CS 538 Spring 2008©

What Drives Research into
New Programming Languages?
Why isn’t C or C++ or C+++
enough?
1. Curiosity

What other forms can a
programming language take?
What other notions of
programming are possible?

2. Productivity
Procedural languages,
including C, C++ and Java, are
very detailed.
Many source lines imply
significant development and
maintenance expenses.

31CS 538 Spring 2008©

3. Reliability
Too much low-level detail in
programs greatly enhances the
chance of minor errors. Minor
errors can raise significant
problems in applications.

4. Security
Computers are entrusted with
great responsibilities. How can
we know that a program is safe
and reliable enough to trust?

5. Execution speed
Procedural languages are
closely tied to the standard
sequential model of instruction
execution. We may need
radically different programming
models to fully exploit parallel
and distributed computers.

32CS 538 Spring 2008©

Desirable Qualities in a
Programming Language

Theoretically, all programming
languages are equivalent (Why?)
If that is so, what properties are
desirable in a programming
language?

• It should be easy to use.
Programs should be easy to read and
understand.
Programs should be simple to write,
without subtle pitfalls.
It should be orthogonal, providing
only one way to do each step or
computation.
Its notation should be natural for the
application being programed.

33CS 538 Spring 2008©

• The language should support
abstraction.

You can’t anticipate all needed data
structures and operations, so adding
new definitions easily and efficiently
should be allowed.

• The language should support
testing, debugging and
verification.

• The language should have a good
development environment.

Integrated editors, compilers,
debuggers, and version control are a
big plus.

• The language should be portable,
spanning many platforms and
operating systems.

34CS 538 Spring 2008©

• The language should be
inexpensive to use:

Execution should be fast.
Memory needs should be modest.
Translation should be fast and
modular.
Program creation and testing should
be easy and cheap.
Maintenance should not be unduly
cumbersome.
Components should be reusable.

35CS 538 Spring 2008©

Programming Paradigms
Programming languages
naturally fall into a number of
fundamental styles or
paradigms.

Procedural Languages
Most of the widely-known and
widely-used programming
languages (C, Fortran, Pascal,
Ada, etc.) are procedural.
Programs execute statement by
statement, reading and
modifying a shared memory.
This programming style closely
models conventional sequential
processors linked to a random
access memory (RAM).

36CS 538 Spring 2008©

Question:
Given
a = a + 1;

 if (a > 10)
 b = 10;
 else b = 15;
 a = a * b;

Why can’t 5 processors each
execute one line to make the
program run 5 times faster?

37CS 538 Spring 2008©

Functional Languages
Lisp, Scheme and ML are
functional in nature.
Programs are expressions to be
evaluated.
Language design aims to
minimize side-effects, including
assignment.
Alternative evaluation
mechanisms are possible,
including
Lazy (Demand Driven)

Eager (Data Driven or
Speculative)

38CS 538 Spring 2008©

Object-Oriented Languages
C++, Java, Smalltalk, Pizza and
Python are object-oriented.
Data and functions are
encapsulated into Objects.
Objects are active, have
persistent state, and uniform
interfaces (messages or
methods).
Notions of inheritance and
common interfaces are central.
All objects that provide the
same interface are treated
uniformly. In Java you can print
any object that provides the
toString method. Iteration
through the elements of any
object that implements the
Enumeration interface is possible.

39CS 538 Spring 2008©

Subclassing allows to you
extend or redefine part of an
object’s behavior without
reprogramming all of the
object’s definition. Thus in Java,
you can take a Hashtable class
(which is fairly elaborate) and
create a subclass in which an
existing method (like toString)
is redefined, or new operations
are added.

40CS 538 Spring 2008©

Logic Programming
Languages

Prolog notes that most
programming languages
address both the logic of a
program (what is to be done)
and its control flow (how you
do what you want).
A logic programming language,
like Prolog, lets programmers
focus on a program’s logic
without concern for control
issue.
These languages have no real
control structures, and little
notion of “flow of control.”
What results are programs that
are unusually succinct and
focused.

41CS 538 Spring 2008©

Example:
inOrder([]).
inOrder([_]).
inOrder([a,b|c]) :- (a<b),

 inOrder([b|c]).

This is a complete, executable
function that determines if a
list is in order. It is naturally
polymorphic, and is not
cluttered with declarations,
variables or explicit loops.

42CS 538 Spring 2008©

Review of Concepts from
Procedural Programming
Languages

Declarations/Scope/Lifetime/
Binding
Static/Dynamic

• Identifiers are declared, either
explicitly or implicitly (from context of
first use).

• Declarations bind type and kind
information to an identifier. Kind
specifies the grouping of an identifier
(variable, label, function, type name,
etc.)

• Each identifier has a scope (or range)
in a program—that part of the
program in which the identifier is
visible (i.e., may be used).

43CS 538 Spring 2008©

• Data objects have a lifetime—the span
of time, during program execution,
during which the object exists and
may be used.

• Lifetimes of data objects are often tied
to the scope of the identifier that
denotes them. The objects are created
when its identifier’s scope is entered,
and they may be deleted when the
identifier’s scope is exited. For
example, memory for local variables
within a function is usually allocated
when the function is called (activated)
and released when the call terminates.
In Java, a method may be loaded into
memory when the object it is a
member of is first accessed.

44CS 538 Spring 2008©

Properties of an identifier (and the
object it represents) may be set at
• Compile-time

These are static properties as
they do not change during
execution. Examples include
the type of a variable, the value
of a constant, the initial value
of a variable, or the body of a
function.

• Run-time

These are dynamic properties.
Examples include the value of a
variable, the lifetime of a heap
object, the value of a function’s
parameter, the number of times
a while loop iterates, etc.

45CS 538 Spring 2008©

Example:
In Fortran
• The scope of an identifier is the whole

program or subprogram.

• Each identifier may be declared only
once.

• Variable declarations may be implicit.
(Using an identifier implicitly declares
it as a variable.)

• The lifetime of data objects is the
whole program.

46CS 538 Spring 2008©

Block Structured Languages
• Include Algol 60, Pascal, C and Java.

• Identifiers may have a non-global
scope. Declarations may be local to a
class, subprogram or block.

• Scopes may nest, with declarations
propagating to inner (contained)
scopes.

• The lexically nearest declaration of an
identifier is bound to uses of that
identifier.

47CS 538 Spring 2008©

Binding of an identifier to its
corresponding declaration is
usually static (also called
lexical), though dynamic
binding is also possible.
Static binding is done prior to
execution—at compile-time.
Example (drawn from C):

int x,z;
void A() {
float x,y;

 print(x,y,z);

}
void B() {
 print (x,y,z)

}

float
float

int

int

int
undeclared

48CS 538 Spring 2008©

Block Structure Concepts
• Nested Visibility

No access to identifiers outside
their scope.

• Nearest Declaration Applies

Static name scoping.
• Automatic Allocation and Deallocation

of Locals

Lifetime of data objects is
bound to the scope of the
Identifiers that denote them.

49CS 538 Spring 2008©

Variations in these rules of
name scoping are possible.
For example, in Java, the
lifetime of all class objects is
from the time of their creation
(via new) to the last visible
reference to them.
Thus
 ... Object O;...
creates an object reference but
does not allocate any memory
space for O.
You need
 ... Object O = new Object(); ...
to actually create memory
space for O.

50CS 538 Spring 2008©

Dynamic Scoping
An alternative to static scoping
is dynamic scoping, which was
used in early Lisp dialects (but
not in Scheme, which is
statically scoped).
Under dynamic scoping,
identifiers are bound to the
dynamically closest declaration
of the identifier. Thus if an
identifier is not locally
declared, the call chain
(sequence of callers) is
examined to find a matching
declaration.

51CS 538 Spring 2008©

Example:
 int x;

 void print() {

 write(x); }

 main () {

 bool x;

 print();

 }

Under static scoping the x
written in print is the lexically
closest declaration of x, which
is as an int.
Under dynamic scoping, since
print has no local declaration
of x, print’s caller is examined.
Since main calls print, and it
has a declaration of x as a bool,
that declaration is used.

52CS 538 Spring 2008©

Dynamic scoping makes type
checking and variable access
harder and more costly than
static scoping. (Why?)
However, dynamic scoping
does allow a notion of an
“extended scope” in which
declarations extend to
subprograms called within that
scope.
Though dynamic scoping may
seen a bit bizarre, it is closely
related to virtual functions
used in C++ and Java.

53CS 538 Spring 2008©

Virtual Functions
A function declared in a class,
C, may be redeclared in a class
derived from C. Moreover, for
uniformity of redeclaration, it is
important that all calls,
including those in methods
within C, use the new
declaration.
Example:

class C {

 void DoIt()(PrintIt();}
 void PrintIt()
 {println(“C rules!”);}
 }
 class D extends C {
 void PrintIt()
 {println(“D rules!”);}
 void TestIt() {DoIt();}
 }
 D dvar = new D();
 dvar.TestIt();

D rules! is printed.

54CS 538 Spring 2008©

Scope vs. Lifetime
It is usually required that the
lifetime of a run-time object at
least cover the scope of the
identifier. That is, whenever
you can access an identifier, the
run-time object it denotes
better exist.
But,
it is possible to have a run-time
object’s lifetime exceed the
scope of its identifier. An
example of this is static or own
variables.

55CS 538 Spring 2008©

In C:
void p() {

 static int i = 0;
 print(i++);
 }

Each call to p prints a different
value of i (0, 1, ...) Variable i
retains its value across calls.
Some languages allow an
explicit binding of an identifier
for a fixed scope:

A declaration may appear
wherever a statement or
expression is allowed. Limited
scopes enhance readability.

Let
id = val

in
 statements
end;

{
 type id = val;
 statements
}

56CS 538 Spring 2008©

Structs vs. Blocks
Many programming languages,
including C, C++, C#, Pascal
and Ada, have a notion of
grouping data together into
structs or records.
For example:
struct complex { float re, im; }

There is also the notion of
grouping statements and
declarations into blocks:
{ float re, im;

 re = 0.0; im = 1.0;

 }

57CS 538 Spring 2008©

Blocks and structs look similar,
but there are significant
differences:
Structs are data,
• As originally designed, structs

contain only data (no functions or
methods).

• Structs can be dynamically created,
in any number, and included in
other data structures (e.g., in an
array of structs).

• All fields in a struct are visible
outside the struct.

58CS 538 Spring 2008©

Blocks are code,
• They can contain both code and

data.

• Blocks can’t be dynamically created
during execution; they are “built
into” a program.

• Locals in a block aren’t visible
outside the block.

By adding functions and
initialization code to structs,
we get classes—a nice blend of
structs and blocks.
For example:
class complex{

 float re, im;

complex (float v1, float v2){

 re = v1; im = v2; }

 }

59CS 538 Spring 2008©

Classes
• Class objects can be created as

needed, in any number, and included
in other data structure.

• They include both data (fields) and
functions (methods).

• They include mechanisms to initialize
themselves (constructors) and to
finalize themselves (destructors).

• They allow controlled access to
members (private and public
declarations).

60CS 538 Spring 2008©

Type Equivalence in Classes
In C, C++ and Java, instances of
the same struct or class are
type-equivalent, and mutually
assignable.
For example:
class MyClass { ... }
MyClass v1, v2;
v1 = v2; // Assignment is OK

We expect to be able to assign
values of the same type,
including class objects.
However, sometimes a class
models a data object whose
size or shape is set upon
creation (in a constructor).

61CS 538 Spring 2008©

Then we may not want
assignment to be allowed.

class Point {
 int dimensions;
 float coordinates[];
 Point () {
 dimensions = 2;
 coordinates = new float[2];
 }
 Point (int d) {
 dimensions = d;
 coordinates = new float[d];
 }
 }
 Point plane = new Point();
 Point solid = new Point(3);
 plane = solid; //OK in Java

This assignment is allowed,
even though the two objects
represent points in different
dimensions.

62CS 538 Spring 2008©

Subtypes
In C++, C# and Java we can
create subclasses—new classes
derived from an existing class.
We can use subclasses to create
new data objects that are
similar (since they are based on
a common parent), but still
type-inequivalent.
Example:
class Point2 extends Point {

 Point2() {super(2); }
 }
 class Point3 extends Point {
 Point3() {super(3); }
 }
 Point2 plane = new Point2();
 Point3 solid = new Point3();

plane = solid; //Illegal in Java

63CS 538 Spring 2008©

Parametric Polymorphism
We can create distinct
subclasses based on the values
passed to constructors. But
sometimes we want to create
subclasses based on distinct
types, and types can’t be
passed as parameters. (Types
are not values, but rather a
property of values.)
We see this problem in Java,
which tries to create general
purpose data structures by
basing them on the class
Object. Since any object can be
assigned to Object (all classes
must be a subclass of Object),
this works—at least partially.

64CS 538 Spring 2008©

class LinkedList {
 Object value;
 LinkedList next;
 Object head() {return value;}
LinkedList tail(){return next;}

 LinkedList(Object O) {
 value = O; next = null;}
 LinkedList(Object O,
 LinkedList L){
 value = O; next = L;}
}

Using this class, we can create
a linked list of any subtype of
Object.
But,
• We can’t guarantee that linked lists

are type homogeneous (contain
only a single type).

• We must cast Object types back
into their “real” types when we
extract list values.

65CS 538 Spring 2008©

• We must use wrapper classes like
Integer rather than int (because
primitive types like int aren’t
objects, and aren’t subclass of
Object).

For example, to use LinkedList
to build a linked list of ints we
do the following:
LinkedList l =

 new LinkedList(new Integer(123));

 int i =
 ((Integer) l.head()).intValue();

This is pretty clumsy code.
We’d prefer a mechanism that
allows us to create a “custom
version” of LinkedList, based
on the type we want the list to
contain.

66CS 538 Spring 2008©

We can’t just call something like
LinkedList(int) or
LinkedList(Integer) because

types can’t be passed as
parameters.
Parametric polymorphism is
the solution. Using this
mechanism, we can use type
parameters to build a “custom
version” of a class from a
general purpose class.
C++ allows this using its
template mechanism. Tiger Java
also allows type parameters.
In both languages, type
parameters are enclosed in
“angle brackets” (e.g.,
LinkedList<T> passes T, a type,
to the LinkedList class).

67CS 538 Spring 2008©

Thus we have
class LinkedList<T> {
 T value; LinkedList<T> next;
 T head() {return value;}
 LinkedList<T> tail() {
 return next;}
 LinkedList(T O) {
 value = O; next = null;}
 LinkedList(T O,LinkedList<T> L)
 {value = O; next = L;}
}
LinkedList<int> l =
 new LinkedList(123);

int i = l.head();

68CS 538 Spring 2008©

Overloading and Ad-hoc
Polymorphism

Classes usually allow
overloading of method names,
if only to support multiple
constructors.
That is, more than one method
definition with the same name
is allowed within a class, as
long as the method definitions
differ in the number and/or
types of the parameters they
take.
For example,
class MyClass {
 int f(int i) { ... }
 int f(float g) { ... }
 int f(int i, int j) { ... }
}

69CS 538 Spring 2008©

Overloading is sometimes
called “ad hoc” polymorphism,
because, to the programmer, it
appears that one method can
take a variety of different
parameter types. This isn’t true
polymorphism because the
methods have different bodies;
there is no sharing of one
definition among different
parameter types. There is no
guarantee that the different
definitions do the same thing,
even though they share a
common name.

70CS 538 Spring 2008©

Issues in Overloading
Though many languages allow
overloading, few allow
overloaded methods to differ
only on their result types.
(Neither C++ nor Java allow this
kind of overloading, though
Ada does). For example,
class MyClass {
 int f() { ... }
 float f() { ... }
}

is illegal. This is unfortunate;
methods with the same name
and parameters, but different
result types, could be used to
automatically convert result
values to the type demanded
by the context of call.

71CS 538 Spring 2008©

Why is this form of overloading
usually disallowed?
It’s because overload resolution
(deciding which definition to
use) becomes much harder.
Consider
class MyClass {
 int f(int i, int j) { ... }
 float f(float i, float j) { ... }
 float f(int i, int j) { ... }
}

in
int a = f(f(1,2), f(3,4));

which definitions of f do we
use in each of the three calls?
Getting the correctly answer
can be tricky, though solution
algorithms do exist.

72CS 538 Spring 2008©

Operator Overloading
Some languages, like C++ and
C#, allow operators to be
overloaded. You may add new
definitions to existing
operators, and use them on
your own types. For example,
 class MyClass {

 int i;
 public:
 int operator+(int j) {
 return i+j; }
 }
 MyClass c;
 int i = c+10;
 int j = c.operator+(10);
 int k = 10+c; // Illegal!

73CS 538 Spring 2008©

The expression 10+c is illegal
because there is no definition
of + for the types int and
MyClass&. We can create one by
using C++’s friend mechanism
to insert a definition into
MyClass that will have access to
MyClass’s private data:

class MyClass {

 int i;
 public:
 int operator+(int j) {
 return i+j; }
 friend int operator+
 (int j, MyClass& v){

return j+v.i; }
 }
 MyClass c;
 int k = 10+c; // Now OK!

74CS 538 Spring 2008©

C++ limits operator overloading
to existing predefined operators.
A few languages, like Algol 68 (a
successor to Algol 60, developed
in 1968), allow programmers to
define brand new operators.
In addition to defining the
operator itself, it is also necessary
to specify the operator’s
precedence (which operator is to
be applied first) and its
associativity (does the operator
associate from left to right, or
right to left, or not at all). Given
this extra detail, it is possible to
specify something like
op +++ prec = 8;

 int op +++(int& i, int& j) {
 return (i++)+(j++); }

(Why is int& used as the
parameter type rather than int?)

75CS 538 Spring 2008©

Parameter Binding
Almost all programming
languages have some notion of
binding an actual parameter
(provided at the point of call) to a
formal parameter (used in the
body of a subprogram).
There are many different, and
inequivalent, methods of
parameter binding. Exactly which
is used depends upon the
programming language in
question.
Parameter Binding Modes include:
• Value: The formal parameter

represents a local variable
initialized to the value of the
corresponding actual parameter.

76CS 538 Spring 2008©

• Result: The formal parameter
represents a local variable. Its final
value, at the point of return, is
copied into the corresponding
actual parameter.

• Value/Result: A combination of the
value and results modes. The
formal parameter is a local variable
initialized to the value of the
corresponding actual parameter.
The formal’s final value, at the
point of return, is copied into the
corresponding actual parameter.

• Reference: The formal parameter is
a pointer to the corresponding
actual parameter. All references to
the formal parameter indirectly
access the corresponding actual
parameter through the pointer.

77CS 538 Spring 2008©

• Name: The formal parameter
represents a block of code
(sometimes called a thunk) that is
evaluated to obtain the value or
address of the corresponding
actual parameter. Each reference to
the formal parameter causes the
thunk to be reevaluated.

• Readonly (sometimes called Const):
Only reads of the formal parameter
are allowed. Either a copy of the
actual parameter’s value, or its
address, may be used.

78CS 538 Spring 2008©

What Parameter Modes do
Programming Languages Use?
• C: Value mode except for arrays which

pass a pointer to the start of the array.

• C++: Allows reference as well as value
modes. E.g.,

int f(int a, int& b)

• C#: Allows result (out) as well as
reference and value modes. E.g.,

int g(int a, out int b)

• Java: Scalar types (int, float, char,
etc.) are passed by value; objects are
passed by reference (references to
objects are passed by value).

• Fortran: Reference (even for
constants!)

• Ada: Value/result, reference, and
readonly are used.

79CS 538 Spring 2008©

Example
void p(value int a,
 reference int b,
 name int c) {
 a=1; b=2; print(c)
}
int i=3, j=3, k[10][10];
p(i,j,k[i][j]);

What element of k is printed?
• The assignment to a does not

affect i, since a is a value
parameter.

• The assignment to b does affect j,
since b is a reference parameter.

• c is a name parameter, so it is
evaluated whenever it is used. In
the print statement k[i][j] is
printed. At that point i=3 and j=2,
so k[3][2] is printed.

80CS 538 Spring 2008©

Why are there so Many
Different Parameter Modes?

Parameter modes reflect
different views on how
parameters are to be accessed,
as well as different degrees of
efficiency in accessing and
using parameters.
• Call by value protects the actual

parameter value. No matter what
the subprogram does, the
parameter can’t be changed.

• Call by reference allows immediate
updates to the actual parameter.

• Call by readonly protects the actual
parameter and emphasizes the
“constant” nature of the formal
parameter.

81CS 538 Spring 2008©

• Call by value/result allows actual
parameters to change, but treats a
call as a single step (assign
parameter values, execute the
subprogram’s body, update
parameter values).

• Call by name delays evaluation of
an actual parameter until it is
actually needed (which may be
never).

82CS 538 Spring 2008©

Call by Name
Call by name is a special kind
of parameter passing mode. It
allows some calls to complete
that otherwise would fail.
Consider
f(i,j/0)

Normally, when j/0 is
evaluated, a divide fault
terminates execution. If j/0 is
passed by name, the division is
delayed until the parameter is
needed, which may be never.
Call by name also allows
programmers to create some
interesting solutions to hard
programming problems.

83CS 538 Spring 2008©

Consider the conditional
expression found in C, C++,
and Java:
(cond ? value1 : value2)

What if we want to implement
this as a function call:
condExpr(cond,value1,value2) {

 if (cond)
 return value1;
 else return value2;
 }

With most parameter passing
modes this implementation
won’t work! (Why?)
But if value1 and value2 are
passed by name, the
implementation is correct.

84CS 538 Spring 2008©

Call by Name and Lazy
Evaluation

Call by name has much of the
flavor of lazy evaluation. With
lazy evaluation, you don’t
compute a value but rather a
suspension—a function that will
provide a value when called.
This can be useful when we need
to control how much of a
computation is actually
performed.
Consider an infinite list of
integers. Mathematically it is
represented as
 1, 2, 3, ...
How do we compute a data
structure that represents an
infinite list?

85CS 538 Spring 2008©

The obvious computation
infList(int start) {

 return list(start,
 infList(start+1));
 }

doesn’t work. (Why?)
A less obvious implementation,
using suspensions, does work:
infList(int start) {

 return list(start,
 function() {
 return infList(start+1);
 });
}

Now, whenever we are given an
infinite list, we get two things: the
first integer in the list and a
suspension function. When called,
this function will give you the rest
of the infinite list (again, one
more value and another
suspension function).

86CS 538 Spring 2008©

The whole list is there, but only as
much as you care to access is
actually computed.

87CS 538 Spring 2008©

Eager Parameter Evaluation
Sometimes we want parameters
evaluated eagerly—as soon as
they are known.
Consider a sorting routine that
breaks an array in half, sorts
each half, and then merges
together the two sorted halves
(this is a merge sort).
In outline form it is:
sort(inputArray) {
 ...
merge(sort(leftHalf(inputArray)),
 sort(rightHalf(inputArray)));}

This definition lends itself
nicely to parallel evaluation:
The two halves of an input
array can be sorted in parallel.
Each of these two halves can

88CS 538 Spring 2008©

again be split in two, allowing
parallel sorting of four quarter-
sized arrays, then leading to 8
sorts of 1/8 sized arrays, etc.
But,
to make this all work, the two
parameters to merge must be
evaluated eagerly, rather than
in sequence.

89CS 538 Spring 2008©

Type Equivalence
Programming languages use
types to describe the values a
data object may hold and the
operations that may be
performed.
By checking the types of values,
potential errors in expressions,
assignments and calls may be
automatically detected. For
example, type checking tells us
that
123 + "123"

is illegal because addition is not
defined for an integer, string
combination.
Type checking is usually done at
compile-time; this is static typing.

90CS 538 Spring 2008©

Type-checking may also be done
at run-time; this is dynamic
typing.
A program is type-safe if it is
impossible to apply an operation
to a value of the wrong type. In a
type-safe language, plus is never
told to add an integer to a string,
because its definition does not
allow that combination of
operands. In type-safe programs
an operator can still see an illegal
value (e.g., a division by zero),
but it can’t see operands of the
wrong type.
A strongly-typed programming
language forbids the execution of
type-unsafe programs.
Weakly-typed programming
languages allow the execution of
potentially type-unsafe programs.

91CS 538 Spring 2008©

The question reduces to whether
the programming language allows
programmers to “break” the type
rules, either knowingly or
unknowingly.
Java is strongly typed; type errors
preclude execution. C and C++
are weakly typed; you can break
the rules if you wish. For
example:
 int i; int* p;

 p = (int *) i * i;

Now p may be used as an integer
pointer though multiplication
need not produce valid integer
pointers.
If we are going to do type
checking in a program, we must
decide whether two types, T1 and
T2 are equivalent; that is, whether
they be used interchangeably.

92CS 538 Spring 2008©

There are two major approaches
to type equivalence:
Name Equivalence:
Two types are equivalent if and
only if they refer to exactly the
same type declaration.
For example,
type PackerSalaries = int[100];

 type AssemblySizes = int[100];
 PackerSalaries salary;
 AssemblySizes size;

Is
sal = size;

allowed?
Using name equivalence, no. That
is, salary /≡N size since these
two variables have different type
declarations (that happen to be
identical in structure).

93CS 538 Spring 2008©

Formally, we define ≡N (name type
equivalence) as:
(a) T ≡N T

(b) Given the declaration
Type T1 = T2;

 T1 ≡N T2

We treat anonymous types (types
not given a name) as an
abbreviation for an implicit
declaration of a new and unique
type name.
Thus
 int A[10];

is an abbreviation for
 Type Tnew = int[10];

 Tnew A;

94CS 538 Spring 2008©

Structural Equivalence
An alternative notion of type
equivalence is structural
equivalence (denoted ≡S).
Roughly, two types are
structurally equivalent if the two
types have the same definition,
independent of where the
definitions are located. That is,
the two types have the same
definitional structure.
Formally,
 (a) T ≡S T

 (b) Given the declaration
 Type T = Q;

 T ≡S Q

 (c) If T and Q are defined using
the same type constructor and
corresponding parameters in the

95CS 538 Spring 2008©

two definitions are equal or
structurally equivalent
then T ≡S Q

Returning to our previous
example,
 type PackerSalaries = int[100];

 type AssemblySizes = int[100];
 PackerSalaries salary;
 AssemblySizes size;

salary ≡S size since both are
arrays and 100=100 and int ≡S
int.

96CS 538 Spring 2008©

Which notion of Equivalence do
Programming Languages Use?

C and C++ use structural
equivalence except for structs
and classes (where name
equivalence is used). For arrays,
size is ignored.
Java uses structural equivalence
for scalars. For arrays, it requires
name equivalence for the
component type, ignoring size.
For classes it uses name
equivalence except that a subtype
may be used where a parent type
is expected. Thus given
 void subr(Object O) { ... };

the call
subr(new Integer(100));

is OK since Integer is a subclass of
Object.

97CS 538 Spring 2008©

Automatic Type Conversions
C, C++ and Java also allow various
kinds of automatic type
conversions.
In C, C++ and Java, a float will
be automatically created from an
int:
 float f = 10; // No type error

Also, an integer type (char,
short, int, long) will be
widened:
 int i = 'x';

In C and C++ (but not Java), an
integer value can also be
narrowed, possibly with the loss
of significant bits:
 char c = 1000000;

98CS 538 Spring 2008©

Reading Assignment
• An Introduction to Scheme for C

Programmers
 (linked from class web page)

• The Scheme Language Definition
 (linked from class web page)

99CS 538 Spring 2008©

Lisp & Scheme
Lisp (List Processing Language)
is one of the oldest
programming languages still in
wide use.
It was developed in the late 50s
and early 60s by John
McCarthy.
Its innovations include:
• Support of symbolic computations.

• A functional programming style
without emphasis on assignments
and side-effects.

• A naturally recursive programming
style.

• Dynamic (run-time) type checking.

100CS 538 Spring 2008©

• Dynamic data structures (lists,
binary trees) that grow without
limit.

• Automatic garbage collection to
manage memory.

• Functions are treated as “first class”
values; they may be passed as
arguments, returned as result
values, stored in data structures,
and created during execution.

• A formal semantics (written in Lisp)
that defines the meaning of all
valid programs.

• An Integrated Programming
Environment to create, edit and
test Lisp programs.

101CS 538 Spring 2008©

Scheme
Scheme is a recent dialect of
Lisp.
It uses lexical (static) scoping.
It supports true first-class
functions.
It provides program-level
access to control flow via
continuation functions.

102CS 538 Spring 2008©

Atomic (Primitive) Data Types
Symbols:
Essentially the same form as
identifiers. Similar to enumeration
values in C and C++.
Very flexible in structure;
essentially any sequence of
printable characters is allowed;
anything that starts a valid
number (except + or -) may not
start a symbol.
Valid symbols include:

abc hello-world + <=!

Integers:
Any sequence of digits, optionally
prefixed with a + or -. Usually
unlimited in length.

103CS 538 Spring 2008©

Reals:
A floating point number in a
decimal format (123.456) or in
exponential format (1.23e45). A
leading sign and a signed
exponent are allowed
(-12.3, 10.0e-20).
Rationals:
Rational numbers of the form
integer/integer (e.g., 1/3 or 9/7)
with an optional leading sign (-1/
2, +7/8).
Complex:
Complex numbers of the form
num+num i or num-num i, where
num is an integer or real number.
Example include 1+3i, -1.5-
2.5i, 0+1i).

104CS 538 Spring 2008©

String:
A sequence of characters
delimited by double quotes.
Double quotes and backslashes
must be escaped using a
backslash. For example
"Hello World" "\"Wow!\""

Character:
A single character prefixed by #\.
For example, #\a, #\0, #\\, #\#.
Two special characters are
#\space and #\newline.

Boolean:
True is represented as #t and
false is represented as #f.

105CS 538 Spring 2008©

Binary Trees
Binary trees are also called
S-Expressions in Lisp and Scheme.
They are of the form
 (item . item)
where item is any atomic value or
any S-Expression. For example:

 (A . B)
 (1.2 . "xyz")
 ((A . B) . C)
 (A . (B . C))

S-Expressions are linearizations of
binary trees:

A B 1.2 "xyz"

106CS 538 Spring 2008©

S-Expressions are built and
accessed using the predefined
functions cons, car and cdr.
cons builds a new S-Expression
from two S-Expressions that
represent the left and right
children.
cons(E1,E2) = (E1 . E2)
car returns are left subtree of an
S-Expression.
car (E1 . E2) = E1
cdr returns are right subtree of an
S-Expression.
cdr (E1 . E2) = E2

C A

A B B C

107CS 538 Spring 2008©

Lists
In Lisp and Scheme lists are a
special, widely-used form of S-
Expressions.
() represents the empty or null list
(A) is the list containing A.
By definition, (A) ≡ (A . ())

(A B) represents the list
containing A and B. By definition,
(A B) ≡ (A . (B . ()))

In general, (A B C ... Z) ≡
(A . (B . (C (Z . ()) ...)))

(A B C)≡

A

B

C ()

108CS 538 Spring 2008©

Function Calls
In List and Scheme, function calls
are represented as lists.
(A B C) means:
Evaluate A (to a function)
Evaluate B and C (as parameters)
Call A with B and C as its
parameters
Use the value returned by the call
as the “meaning” of (A B C).
cons, car and cdr are predefined
symbols bound to built-in
functions that build and access
lists and S-Expressions.
Literals (of type integer, real,
rational, complex, string,
character and boolean) evaluate
to themselves.

109CS 538 Spring 2008©

For example (⇒ means “evaluates
to”)
(cons 1 2) ⇒ (1 . 2)

(cons 1 ()) ⇒ (1)

(car (cons 1 2)) ⇒ 1

(cdr (cons 1 ())) ⇒ ()

But,
(car (1 2)) fails during

execution!
Why?
The expression (1 2) looks like a
call, but 1 isn’t a function! We
need some way to “quote”
symbols and lists we don’t want
evaluated.
(quote arg)

is a special function that returns
its argument unevaluated.

110CS 538 Spring 2008©

Thus (quote (1 2)) doesn’t try
to evaluate the list (1 2); it just
returns it.
Since quotation is so often used,
it may be abbreviated using a
single quote. That is
(quote arg) ≡ 'arg

Thus
(car '(a b c)) ⇒ a

(cdr '((A) (B) (C))) ⇒
((B) (C))

(cons 'a '1) ⇒ (a . 1)

But,
('cdr '(A B)) fails!

Why?

111CS 538 Spring 2008©

User-defined Functions
The list
(lambda (args) (body))

evaluates to a function with
(args) as its argument list and
(body) as the function body.
No quotes are needed for
(args) or (body).
Thus
(lambda (x) (+ x 1)) evaluates
to the increment function.
Similarly,
((lambda (x) (+ x 1)) 10) ⇒
11

112CS 538 Spring 2008©

We can bind values and
functions to global symbols
using the define function.
The general form is
(define id object)

id is not evaluated but object
is. id is bound to the value
object evaluates to.
For example,
(define pi 3.1415926535)

(define plus1
 (lambda (x) (+ x 1)))

(define pi*2 (* pi 2))

Once a symbol is defined, it
evaluates to the value it is
bound to:
(plus1 12) ⇒ 13

113CS 538 Spring 2008©

Since functions are frequently
defined, we may abbreviate
(define id
 (lambda (args) (body)))

as
(define (id args) (body))

Thus
(define (plus1 x) (+ x 1))

114CS 538 Spring 2008©

Conditional Expressions in
Scheme

A predicate is a function that
returns a boolean value. By
convention, in Scheme, predicate
names end with “?”
For example,
 number? symbol? equal?
 null? list?

In conditionals, #f is false, and
everything else, including #t, is
true.
The if expression is
(if pred E1 E2)

First pred is evaluated.
Depending on its value (#f or
not), either E1 or E2 is evaluated
(but not both) and returned as the
value of the if expression.

115CS 538 Spring 2008©

For example,
(if (= 1 (+ 0 1))

 'Yes
 'No
)

(define
 (fact n)
 (if (= n 0)
 1
 (* n (fact (- n 1)))
)
)

116CS 538 Spring 2008©

Generalized Conditional
This is similar to a switch or case:
(cond
 (p1 e1)
 (p2 e2)
 ...
 (else en)
)

Each of the predicates (p1, p2, ...)
is evaluated until one is true (≠
#f). Then the corresponding
expression (e1, e2, ...) is
evaluated and returned as the
value of the cond. else acts like a
predicate that is always true.
Example:

(cond

 ((= a 1) 2)
 ((= a 2) 3)
 (else 4)
)

117CS 538 Spring 2008©

Recursion in Scheme
Recursion is widely used in
Scheme and most other functional
programming languages.
Rather than using a loop to step
through the elements of a list or
array, recursion breaks a problem
on a large data structure into a
simpler problem on a smaller data
structure.
A good example of this approach
is the append function, which
joins (or appends) two lists into
one larger list containing all the
elements of the two input lists (in
the correct order).
Note that cons is not append.
cons adds one element to the
head of an existing list.

118CS 538 Spring 2008©

Thus
(cons '(a b) '(c d)) ⇒
 ((a b) c d)
(append '(a b) '(c d)) ⇒
 (a b c d)

The append function is predefined
in Scheme, as are many other
useful list-manipulating functions
(consult the Scheme definition for
what’s available).
It is instructive to define append
directly to see its recursive
approach:
(define
 (append L1 L2)
 (if (null? L1)
 L2
 (cons (car L1)
 (append (cdr L1) L2))
)
)

119CS 538 Spring 2008©

Let’s trace (append '(a b) '(c d))

Our definition is
(define
 (append L1 L2)
 (if (null? L1)
 L2
 (cons (car L1)
 (append (cdr L1) L2))
)
)

Now L1 = (a b) and L2 = (c d).
(null? L1) is false, so we
evaluate
(cons (car L1) (append (cdr L1) L2))
= (cons (car '(a b))

(append (cdr '(a b)) '(c d)))
= (cons 'a (append '(b) '(c d))

We need to evaluate
 (append '(b) '(c d))

In this call, L1 = (b) and L2 = (c d).
L1 is not null, so we evaluate

120CS 538 Spring 2008©

(cons (car L1) (append (cdr L1) L2))
= (cons (car '(b))
 (append (cdr '(b)) '(c d)))

= (cons 'b (append '() '(c d))

We need to evaluate
 (append '() '(c d))

In this call, L1 = () and L2 = (c d).
L1 is null, so we return (c d).
Therefore
(cons 'b (append '() '(c d)) =
(cons 'b '(c d)) = (b c d) =
(append '(b) '(c d))

Finally,
(append '(a b) '(c d)) =
(cons 'a (append '(b) '(c d)) =

(cons 'a '(b c d)) = (a b c d)

Note:
Source files for append, and other
Scheme examples, are in
~cs538-1/public/scheme/example1.scm,
~cs538-1/public/scheme/example2.scm,
etc.

121CS 538 Spring 2008©

Reversing a List
Another useful list-manipulation
function is rev, which reverses
the members of a list. That is, the
last element becomes the first
element, the next-to-last element
becomes the second element, etc.
For example,
(rev '(1 2 3)) ⇒ (3 2 1)

The definition of rev is
straightforward:
(define (rev L)
 (if (null? L)
 L
 (append (rev (cdr L))

(list (car L))
)
)
)

122CS 538 Spring 2008©

As an example, consider
(rev '(1 2))

Here L = (1 2). L is not null so we
evaluate
(append (rev (cdr L))
 (list (car L))) =
(append (rev (cdr '(1 2)))
 (list (car '(1 2)))) =

(append (rev '(2)) (list 1)) =
(append (rev '(2)) '(1))

We must evaluate (rev '(2))

Here L = (2). L is not null so we
evaluate
(append (rev (cdr L))
 (list (car L))) =

(append (rev (cdr '(2)))
 (list (car '(2)))) =
(append (rev ())(list 2)) =
(append (rev ())'(2))

We must evaluate (rev '())

Here L = (). L is null so
 (rev '())= ()

123CS 538 Spring 2008©

Thus (append (rev ())'(2)) =
(append () '(2)) = (2) = (rev '(2))

Finally, recall (rev '(1 2)) =
(append (rev '(2)) '(1)) =
(append '(2) '(1)) = (2 1)

As constructed, rev only reverses
the “top level” elements of a list.
That is, members of a list that
themselves are lists aren’t
reversed.
For example,
 (rev '((1 2) (3 4))) =
 ((3 4) (1 2))

We can generalize rev to also
reverse list members that happen
to be lists.
To do this, it will be convenient to
use Scheme’s let construct.

124CS 538 Spring 2008©

The Let Construct
Scheme allows us to create local
names, bound to values, for use
in an expression.
The structure is
(let ((id1 val1) (id2 val2) ...)
 expr)

In this construct, val1 is
evaluated and bound to id1,
which will exist only within this
let expression. If id1 is already
defined (as a global or parameter
name) the existing definition is
hidden and the local definition,
bound to val1, is used. Then
val2 is evaluated and bound to
id2, Finally, expr is evaluated
in a scope that includes id1, id2,
...

125CS 538 Spring 2008©

For example,
(let ((a 10) (b 20))

 (+ a b)) ⇒ 30

Using a let, the definition of
revall, a version of rev that
reverses all levels of a list, is easy:

(define (revall L)

 (if (null? L)
 L
 (let ((E (if (list? (car L))
 (revall (car L))
 (car L))))
 (append (revall (cdr L))

(list E))
)
)
)

(revall '((1 2) (3 4))) ⇒
 ((4 3) (2 1))

126CS 538 Spring 2008©

Subsets
Another good example of
Scheme’s recursive style of
programming is subset
computation.
Given a list of distinct atoms, we
want to compute a list of all
subsets of the list values.
For example,
(subsets '(1 2 3)) ⇒
 (() (1) (2) (3) (1 2) (1 3)
 (2 3) (1 2 3))

The order of atoms and sublists is
unimportant, but all possible
subsets of the list values must be
included.
Given Scheme’s recursive style of
programming, we need a
recursive definition of subsets.

127CS 538 Spring 2008©

That is, if we have a list of all
subsets of n atoms, how do we
extend this list to one containing
all subsets of n+1 values?
First, we note that the number of
subsets of n+1 values is exactly
twice the number of subsets of n
values.
For example,
(subsets '(1 2)) ⇒
(() (1) (2) (1 2)), which

contains 4 subsets.
(subsets '(1 2 3)) contains 8
subsets (as we saw earlier).
Moreover, the extended list (of
subsets for n+1 values) is simply
the list of subsets for n values
plus the result of “distributing”
the new value into each of the
original subsets.

128CS 538 Spring 2008©

Thus (subsets '(1 2 3)) ⇒
(() (1) (2) (3) (1 2) (1 3)
 (2 3) (1 2 3)) =
(() (1) (2) (1 2)) plus

((3) (1 3) (2 3) (1 2 3))

This insight leads to a concise
program for subsets.
We will let (distrib L E) be a
function that “distributes” E into
each list in L.
For example,
(distrib '(() (1) (2) (1 2)) 3) =

((3) (3 1) (3 2) (3 1 2))

(define (distrib L E)
 (if (null? L)
 ()
 (cons (cons E (car L))
 (distrib (cdr L) E))
)
)

129CS 538 Spring 2008©

We will let (extend L E) extend a
list L by distributing element E
through L and then appending
this result to L.
For example,
(extend '(() (a)) 'b) ⇒
 (() (a) (b) (b a))

(define (extend L E)
 (append L (distrib L E))
)

Now subsets is easy:

(define (subsets L)

 (if (null? L)
 (list ())
 (extend (subsets (cdr L))

(car L))
)
)

130CS 538 Spring 2008©

Data Structures in Scheme
In Scheme, lists and S-expressions
are basic. Arrays can be simulated
using lists, but access to elements
“deep” in the list can be slow
(since a list is a linked structure).
To access an element deep within
a list we can use:
• (list-tail L k)

This returns list L after removing
the first k elements. For example,
(list-tail '(1 2 3 4 5) 2) ⇒
(3 4 5)

• (list-ref L k)
This returns the k-th element in L
(counting from 0). For example,
(list-ref '(1 2 3 4 5) 2) ⇒ 3

131CS 538 Spring 2008©

Vectors in Scheme
Scheme provides a vector type
that directly implements one
dimensional arrays.
Literals are of the form #(...)
For example, #(1 2 3) or
#(1 2.0 "three")

The function (vector? val)
tests whether val is a vector or
not.
(vector? 'abc) ⇒ #f

(vector? '(a b c)) ⇒ #f

(vector? #(a b c)) ⇒ #t

The function (vector v1 v2
...) evaluates v1, v2, ... and puts
them into a vector.
(vector 1 2 3) ⇒ #(1 2 3)

132CS 538 Spring 2008©

The function (make-vector k val)

creates a vector composed of k
copies of val. Thus
(make-vector 4 (/ 1 2)) ⇒
 #(1/2 1/2 1/2 1/2)

The function (vector-ref vect k)
returns the k-th element of vect,
starting at position 0. It is
essentially the same as vect[k]
in C or Java. For example,
(vector-ref #(2 4 6 8 10) 3) ⇒ 8

The function
(vector-set! vect k val) sets
the k-th element of vect, starting
at position 0, to be val. It is
essentially the same as
vect[k]=val in C or Java. The
value returned by the function is
unspecified. The suffix “!” in set!
indicates that the function has a
side-effect.

133CS 538 Spring 2008©

For example,
(define v #(1 2 3 4 5))
(vector-set! v 2 0)
v ⇒ #(1 2 0 4 5)

Vectors aren’t lists (and lists
aren’t vectors).
Thus (car #(1 2 3)) doesn’t
work.
There are conversion routines:
• (vector->list V) converts

vector V to a list containing the
same values as V. For example,
(vector->list #(1 2 3)) ⇒
 (1 2 3)

• (list->vector L) converts list L
to a vector containing the same
values as L. For example,
(list->vector '(1 2 3)) ⇒
#(1 2 3)

134CS 538 Spring 2008©

• In general Scheme names a
conversion function from type T to
type Q as T->Q. For example,
string->list converts a string
into a list containing the
characters in the string.

135CS 538 Spring 2008©

Records and Structs
In Scheme we can represent a
record, struct, or class object as
an association list of the form
((obj1 val1) (obj2 val2) ...)

In the association list, which is a
list of (object value) sublists,
object serves as a “key” to locate
the desired sublist.
For example, the association list
((A 10) (B 20) (C 30))

serves the same role as
struct

 { int a = 10;
 int b = 20;
 int c = 30;}

136CS 538 Spring 2008©

The predefined Scheme function
(assoc obj alist)

checks alist (an association list)
to see if it contains a sublist with
obj as its head. If it does, the list
starting with obj is returned;
otherwise #f (indicating failure) is
returned.
For example,
(define L
 '((a 10) (b 20) (c 30)))

(assoc 'a L) ⇒ (a 10)

(assoc 'b L) ⇒ (b 20)

(assoc 'x L) ⇒ #f

137CS 538 Spring 2008©

We can use non-atomic objects as
keys too!
(define price-list

 '(((bmw m5) 71095)

 ((bmw z4) 40495)

 ((jag xj8) 56975)

 ((mb sl500) 86655)

)

)

(assoc '(bmw z4) price-list)
⇒ ((bmw z4) 40495)

138CS 538 Spring 2008©

Using assoc, we can easily define
a structure function:
(structure key alist) will
return the value associated with
key in alist; in C or Java
notation, it returns alist.key.
(define
 (structure key alist)
 (if (assoc key alist)

(car (cdr (assoc key alist)))
 #f
)
)

We can improve this function in
two ways:
• The same call to assoc is made

twice; we can save the value
computed by using a let
expression.

• Often combinations of car and cdr
are needed to extract a value.

139CS 538 Spring 2008©

Scheme has a number of
predefined functions that combine
several calls to car and cdr into
one function. For example,
(caar x) ≡ (car (car x))
(cadr x) ≡ (car (cdr x))
(cdar x) ≡ (cdr (car x))
(cddr x) ≡ (cdr (cdr x))

Using these two insights we can
now define a better version of
structure

(define
 (structure key alist)
 (let ((p (assoc key alist)))
 (if p
 (cadr p)
 #f
)
)
)

140CS 538 Spring 2008©

What does assoc do if more than
one sublist with the same key
exists?
It returns the first sublist with a
matching key. In fact, this
property can be used to make a
simple and fast function that
updates association lists:
(define
 (set-structure key alist val)
 (cons (list key val) alist)
)

141CS 538 Spring 2008©

If we want to be more space-
efficient, we can create a version
that updates the internal structure
of an association list, using
set-cdr! which changes the cdr
value of a list:
(define
 (set-structure! key alist val)
 (let ((p (assoc key alist)))
 (if p
 (begin
 (set-cdr! p (list val))
 alist
)
 (cons (list key val) alist)
)
)
)

142CS 538 Spring 2008©

Functions are First-class
Objects

Functions may be passed as
parameters, returned as the value
of a function call, stored in data
objects, etc.
This is a consequence of the fact
that
(lambda (args) (body))

evaluates to a function just as
(+ 1 1)

evaluates to an integer.

143CS 538 Spring 2008©

Scoping
In Scheme scoping is static
(lexical). This means that non-
local identifiers are bound to
containing lambda parameters, or
let values, or globally defined
values. For example,
(define (f x)
 (lambda (y) (+ x y)))

Function f takes one parameter,
x. It returns a function (of y), with
x in the returned function bound
to the value of x used when f was
called.
Thus
(f 10) ≡ (lambda (y) (+ 10 y))

 ((f 10) 12) ⇒ 22

144CS 538 Spring 2008©

Unbound symbols are assumed to
be globals; there is a run-time
error if an unbound global is
referenced. For example,
(define (p y) (+ x y))

(p 20) ; error -- x is unbound

(define x 10)

(p 20) ⇒ 30

We can use let bindings to create
private local variables for
functions:
(define F
 (let ((X 1))
 (lambda () X)
)
)

F is a function (of no arguments).
(F) calls F.
(define X 22)

(F) ⇒ 1;X used in F is private

145CS 538 Spring 2008©

We can encapsulate internal state
with a function by using private,
let-bound variables:
(define cnt
 (let ((I 0))
 (lambda ()

 (set! I (+ I 1)) I)
)
)

Now,
 (cnt) ⇒ 1

 (cnt) ⇒ 2

 (cnt) ⇒ 3

 etc.

146CS 538 Spring 2008©

Let Bindings can be Subtle
You must check to see if the let-
bound value is created when the
function is created or when it is
called.
Compare
(define cnt

 (let ((I 0))
 (lambda ()

(set! I (+ I 1)) I)
)
)
vs.
 (define reset
 (lambda ()
 (let ((I 0))

 (set! I (+ I 1)) I)
)
)
(reset) ⇒ 1, (reset) ⇒ 1, etc.

147CS 538 Spring 2008©

Simulating Class Objects
Using association lists and private
bound values, we can encapsulate
data and functions. This gives us
the effect of class objects.
(define (point x y)
 (list
 (list 'rect
 (lambda () (list x y)))
 (list 'polar
 (lambda ()
 (list
 (sqrt (+ (* x x) (* y y)))
 (atan (/ x y))
)
)
)
)
)

A call (point 1 1) creates an
association list of the form
((rect funct) (polar funct))

148CS 538 Spring 2008©

We can use structure to access
components:
(define p (point 1 1))

((structure 'rect p)) ⇒ (1 1)

((structure 'polar p)) ⇒

 ()2 π
4---

149CS 538 Spring 2008©

We can add new functionality by
just adding new (id function)
pairs to the association list.
(define (point x y)
 (list
 (list 'rect
 (lambda () (list x y)))
 (list 'polar
 (lambda ()
 (list
 (sqrt (+ (* x x) (* y y)))
 (atan (/ x y))
)))
 (list 'set-rect!
 (lambda (newx newy)
 (set! x newx)
 (set! y newy)
 (list x y)
))
 (list 'set-polar!
 (lambda (r theta)
 (set! x (* r (sin theta)))
 (set! y (* r (cos theta)))
 (list r theta)
))
))

150CS 538 Spring 2008©

Now we have
(define p (point 1 1))

((structure 'rect p)) ⇒ (1 1)

((structure 'polar p)) ⇒

 ()

((structure 'set-polar! p) 1 π/4)
⇒ (1 π/4)

 ((structure 'rect p)) ⇒

 ()

2 π
4---

1
2

------- 1
2

151CS 538 Spring 2008©

Limiting Access to Internal
Structure

We can improve upon our
association list approach by
returning a single function
(similar to a C++ or Java object)
rather than an explicit list of (id
function) pairs.
The function will take the name of
the desired operation as one of its
arguments.

152CS 538 Spring 2008©

First, let’s differentiate between
(define def1
 (let ((I 0))
 (lambda () (set! I (+ I 1)) I)
)
)

and
(define (def2)
 (let ((I 0))
 (lambda () (set! I (+ I 1)) I)
)
)

def1 is a zero argument function
that increments a local variable
and returns its updated value.
def2 is a a zero argument
function that generates a function
of zero arguments (that
increments a local variable and
returns its updated value). Each
call to def2 creates a different
function.

153CS 538 Spring 2008©

Stack Implemented as a
Function

(define (stack)
 (let ((s ()))
 (lambda (op . args) ; var # args
 (cond
 ((equal? op 'push!)

(set! s (cons (car args) s))
 (car s))
 ((equal? op 'pop!)
 (if (null? s)
 #f
 (let ((top (car s)))
 (set! s (cdr s))
 top)))
 ((equal? op 'empty?)
 (null? s))
 (else #f)
)
)
)
)

154CS 538 Spring 2008©

(define stk (stack));new empty stack

(stk 'push! 1) ⇒ 1 ;s = (1)

(stk 'push! 3) ⇒ 3 ;s = (3 1)

(stk 'push! 'x) ⇒ x ;s = (x 3 1)

(stk 'pop!) ⇒ x ;s = (3 1)

(stk 'empty?) ⇒ #f ;s = (3 1)

(stk 'dump) ⇒ #f ;s = (3 1)

155CS 538 Spring 2008©

Higher-Order Functions
A higher-order function is a
function that takes a function as a
parameter or one that returns a
function as its result.
A very important (and useful)
higher-order function is map,
which applies a function to a list
of values and produces a list or
results:
(define (map f L)
 (if (null? L)
 ()
 (cons (f (car L))
 (map f (cdr L)))
)
)

Note: In Scheme’s built-in
implementation of map, the order
of function application is
unspecified.

156CS 538 Spring 2008©

(map sqrt '(1 2 3 4 5)) ⇒
 (1 1.414 1.732 2 2.236)

(map (lambda(x) (* x x))
 '(1 2 3 4 5)) ⇒
 (1 4 9 16 25)

Map may also be used with
multiple argument functions by
supplying more than one list of
arguments:
(map + '(1 2 3) '(4 5 6)) ⇒
 (5 7 9)

157CS 538 Spring 2008©

The Reduce Function
Another useful higher-order
function is reduce, which reduces
a list of values to a single value by
repeatedly applying a binary
function to the list values.
This function takes a binary
function, a list of data values, and
an identity value for the binary
function:
(define
 (reduce f L id)
 (if (null? L)
 id
 (f (car L)
 (reduce f (cdr L) id))
)
)

(reduce + '(1 2 3 4 5) 0) ⇒ 15
(reduce * '(1 2 4 6 8 10) 1) ⇒
3840

158CS 538 Spring 2008©

(reduce append
 '((1 2 3) (4 5 6) (7 8)) ())
⇒ (1 2 3 4 5 6 7 8)

(reduce expt '(2 2 2 2) 1) ⇒

= 65536

(reduce expt '(2 2 2 2 2) 1)
⇒ 265536

(string-length
 (number->string
(reduce expt '(2 2 2 2 2) 1)))

⇒ 19729 ; digits in 265536

22
22

159CS 538 Spring 2008©

Sharing vs. Copying
In languages without side-effects
an object can be copied by
copying a pointer (reference) to
the object; a complete new copy
of the object isn’t needed.
Hence in Scheme (define A B)
normally means

A B

160CS 538 Spring 2008©

But, if side-effects are possible we
may need to force a physical copy
of an object or structure:
(define (copy obj)

 (if (pair? obj)

 (cons (copy (car obj))
(copy (cdr obj)))

 obj

)
)

161CS 538 Spring 2008©

For example,
(define A '(1 2))

(define B (cons A A))

B = ((1 2) 1 2)

A B

1

2 ()

162CS 538 Spring 2008©

(set-car! (car B) 10)

B = ((10 2) 10 2)

(define C (cons (copy A) (copy A)))

A B

10

2 ()

C

10

2 ()

10

2 ()

163CS 538 Spring 2008©

(set-car! (car C) 20)

C = ((20 2) 10 2)

Similar concerns apply to
strings and vectors, because
their internal structure can be
changed.

C

20

2 ()

10

2 ()

164CS 538 Spring 2008©

Shallow & Deep Copying
A copy operation that copies a
pointer (or reference) rather than
the object itself is a shallow copy.
For example, In Java,
Object O1 = new Object();

Object O2 = new Object();

O1 = O2; // shallow copy

If the structure within an object is
physically copied, the operation is
a deep copy.
In Java, for objects that support
the clone operation,
O1 = O2.clone(); // deep copy

Even in Java’s deep copy (via the
clone() operation), objects
referenced from within an object
are shallow copied. Thus given

165CS 538 Spring 2008©

class List {

 int value;

 List next;

}

List L,M;

M = L.clone();

L.value and M.value are
independent, but L.next and
M.next refer to the same List
object.
A complete deep copy, that copies
all objects linked directly or
indirectly, is expensive and tricky
to implement.
(Consider a complete copy of a
circular linked list).

166CS 538 Spring 2008©

Equality Checking in Scheme
In Scheme = is used to test for
numeric equality (including
comparison of different numeric
types). Non-numeric arguments
cause a run-time error. Thus
(= 1 1) ⇒ #t

(= 1 1.0) ⇒ #t

(= 1 2/2) ⇒ #t

(= 1 1+0.0i) ⇒ #t

167CS 538 Spring 2008©

To compare non-numeric values,
we can use either:
pointer equivalence (do the two
operands point to the same
address in memory)
structural equivalence (do the two
operands point to structures with
the same size, shape and
components, even if they are in
different memory locations)
In general pointer equivalence is
faster but less accurate.

Scheme implements both kinds of
equivalence tests.
(eqv? obj1 obj2)

This tests if obj1 and obj2 are
the exact same object. This works
for atoms and pointers to the
same structure.

168CS 538 Spring 2008©

(equal? obj1 obj2)

This tests if obj1 and obj2 are
the same, component by
component. This works for
atoms, lists, vectors and strings.
(eqv? 1 1) ⇒ #t

(eqv? 1 (+ 0 1)) ⇒ #t

(eqv? 1/2 (- 1 1/2)) ⇒ #t

(eqv? (cons 1 2) (cons 1 2)) ⇒
#f

(eqv? "abc" "abc") ⇒ #f

(equal? 1 1) ⇒ #t

(equal? 1 (+ 0 1)) ⇒ #t

(equal? 1/2 (- 1 1/2)) ⇒ #t

(equal? (cons 1 2) (cons 1 2)) ⇒
#t

(equal? "abc" "abc") ⇒ #t

In general it is wise to use equal?
unless speed is a critical factor.

169CS 538 Spring 2008©

I/O in Scheme
Scheme has simple read and write
functions, directed to the“standard
in” and “standard out” files.
(read)

Reads a single Scheme object (an
atom, string, vector or list) from
the standard in file. No quoting is
needed.
(write obj)

Writes a single object, obj, to the
standard out file.
(display obj)

Writes obj to the standard out file
in a more readable format.
(Strings aren’t quoted, and
characters aren’t escaped.)
(newline)

Forces a new line on standard out
file.

170CS 538 Spring 2008©

 Ports
Ports are Scheme objects that
interface with systems files. I/O to
files is normally done through a
port object bound to a system
file.
(open-input-file "path to file")

This returns an input port
associated with the "path to
file" string (which is system
dependent). A run-time error is
signalled if "path to file"
specifies an illegal or inaccessible
file.
(read port)

Reads a single Scheme object (an
atom, string, vector or list) from
port, which must be an input
port object.

171CS 538 Spring 2008©

(eof-object? obj)

When the end of an input file is
reached, a special eof-object is
returned. eof-object? tests
whether an object is this special
end-of-file marker.
(open-output-file "path to file")

This returns an output port
associated with the "path to
file" string (which is system
dependent). A run-time error is
signalled if "path to file"
specifies an illegal or inaccessible
file.
(write obj port)

Writes a single object, obj, to the
output port specified by port.

172CS 538 Spring 2008©

(display obj port)

Writes obj to the output port
specified by port. display uses a
more readable format than write
does. (Strings aren’t quoted, and
characters aren’t escaped.)
(close-input-port port)

This closes the input port
specified by port.
(close-output-port port)

This closes the output port
specified by port.

173CS 538 Spring 2008©

Example—Reading & Echoing a
File

We will iterate through a file,
reading and echoing its contents.
We need a good way to do
iteration; recursion is neither
natural nor efficient here.
Scheme provides a nice
generalization of the let
expression that is similar to C’s
for loop.
(let X ((id1 val1) (id2 val2) ...)
 ...
 (X v1 v2 ...)
)

A name for the let (X in the
example) is provided. As usual,
val1 is evaluated and bound to
id1, val2 is evaluated and bound
to id2, etc. In the body of the let,
the let may be “called” (using its

174CS 538 Spring 2008©

name) with a fresh set of values
for the let variables. Thus (X v1
v2 ...) starts the next iteration
of the let with id1 bound to v1,
id2, bound to v2, etc.
The calls look like recursion, but
they are implemented as loop
iterations.
For example, in
(let loop ((x 1) (sum 0))
 (if (<= x 10)
 (loop (+ x 1) (+ sum x))

sum
)
)

we sum the values of x from 1 to
10.
Compare it to
for (x=1,sum=0; x <= 10;
 sum+=x,x+=1)

 {}

175CS 538 Spring 2008©

Now a function to read and echo a
file is straightforward:
(define (echo filename)
 (let (

(p (open-input-file filename)))
 (let loop ((obj (read p)))
 (if (eof-object? obj)
 #t ;normal termination
 (begin
 (write obj)
 (newline)
 (loop (read p))
)
)
)
)
)

176CS 538 Spring 2008©

We can create an alternative to
echo that uses
(call-with-input-file
 filename function)

This function opens filename,
creates an input port from it, and
then calls function with that
port as an argument:
(define (echo2 filename)
 (call-with-input-file filename
 (lambda(port)

(let loop ((obj (read port)))
 (if (eof-object? obj)
 #t
 (begin
 (write obj)
 (newline)
 (loop (read port))
)
)
)
)
))

177CS 538 Spring 2008©

Control Flow in Scheme
Normally, Scheme’s control flow is
simple and recursive:
• The first argument is evaluated to

get a function.

• Remaining arguments are
evaluated to get actual parameters.

• Actual parameters are bound to the
function’s formal parameters.

• The functions’ body is evaluated to
obtain the value of the function
call.

This approach routinely leads to
deeply nested expression
evaluation.

178CS 538 Spring 2008©

As an example, consider a simple
function that multiplies a list of
integers:
(define (*list L)
 (if (null? L)
 1
 (* (car L)(*list (cdr L)))
)
)

The call (*list '(1 2 3 4 5))
expands to
(* 1 (* 2 (* 3 (* 4 (* 5 1)))))

But,
what if we get clever and decide
to improve this function by noting
that if 0 appears anywhere in list
L, the product must be 0?

179CS 538 Spring 2008©

Let’s try
(define (*list0 L)
 (cond
 ((null? L) 1)
 ((= 0 (car L)) 0)
 (else (* (car L)
 (*list0 (cdr L))))
)
)

This helps a bit—we never go
past a zero in L, but we still
unnecessarily do a sequence of
pending multiplies, all of which
must yield zero!
Can we escape from a sequence
of nested calls once we know
they’re unnecessary?

180CS 538 Spring 2008©

Exceptions
In languages like Java, a
statement may throw an
exception that’s caught by an
enclosing exception handler.
Code between the statement that
throws the exception and the
handler that catches it is
abandoned.
Let’s solve the problem of
avoiding multiplication of zero in
Java, using its exception
mechanism:
class Node {

 int val;

 Node next;

}

class Zero extends Throwable
{};

181CS 538 Spring 2008©

int mult (Node L) {

 try {

 return multNode(L);

 } catch (Zero z) {

 return 0;

 }

}

int multNode(Node L)

 throws Zero {

 if (L == null)

 return 1;

 else if (L.val == 0)

 throw new Zero();

 else return
 L.val * multNode(L.next);

}

In this implementation, no
multiplies by zero are ever done.

182CS 538 Spring 2008©

Continuations
In our Scheme implementation of
*list, we’d like a way to delay
doing any multiplies until we
know no zeros appear in the list.
One approach is to build a
continuation—a function that
represents the context in which a
function’s return value will be
used:
(define (*listC L con)

 (cond
 ((null? L) (con 1))
 ((= 0 (car L)) 0)
 (else
 (*listC (cdr L)
 (lambda (n)
 (* n (con (car L)))))
)
)
)

183CS 538 Spring 2008©

The top-level call is
(*listC L (lambda (x) x))

For ordinary lists *listC expands
to a series of multiplies, just like
*list did.
(define (id x) x)

(*listC '(1 2 3) id) ⇒
(*listC '(2 3)
 (lambda (n) (* n (id 1)))) ≡
(*listC '(2 3)
 (lambda (n) (* n 1))) ⇒
(*listC '(3)
 (lambda (n) (* n (* 2 1)))) ≡
(*listC '(3)
 (lambda (n) (* n 2))) ⇒
(*listC ()
 (lambda (n) (* n (* 3 2)))) ≡
(*listC () (lambda (n) (* n 6)))

⇒ (* 1 6) ⇒ 6

184CS 538 Spring 2008©

But for a list with a zero in it, we
get a different execution path:
(*listC '(1 0 3) id) ⇒
(*listC '(0 3)
(lambda (n) (* n (id 1)))) ⇒ 0

No multiplies are done!

185CS 538 Spring 2008©

Another Example of
Continuations

Let’s redo our list multiply
example so that if a zero is seen
in the list we return a function
that computes the product of all
the non-zero values and a
parameter that is the
“replacement value” for the
unwanted zero value. The
function gives the caller a chance
to correct a probable error in the
input data.
We create
(*list2 L) ≡
Product of all integers in L if
no zero appears

else
(lambda (n) (* n product-of-all-
nonzeros-in-L)

186CS 538 Spring 2008©

(define (*list2 L) (*listE L id))

(define (*listE L con)
 (cond
 ((null? L) (con 1))
 ((= 0 (car L))
 (lambda(n)
 (* (con n)
 (*listE (cdr L) id))))
 (else
 (*listE (cdr L)
 (lambda(m)
 (* m (con (car L))))))
)
)

187CS 538 Spring 2008©

In the following, we check to see
if *list2 returns a number or a
function. If a function is returned,
we call it with 1, effectively
removing 0 from the list
(let ((V (*list2 L)))

 (if (number? V)

 V

 (V 1)

)

)

188CS 538 Spring 2008©

For ordinary lists *list2 expands
to a series of multiplies, just like
*list did.
(*listE '(1 2 3) id) ⇒
(*listE '(2 3)
 (lambda (m) (* m (id 1)))) ≡
(*listE '(2 3)
 (lambda (m) (* m 1))) ⇒
(*listE '(3)
 (lambda (m) (* m (* 2 1)))) ≡
(*listE '(3)
 (lambda (m) (* m 2))) ⇒
(*listE ()
 (lambda (m) (* m (* 3 2)))) ≡
(*listE () (lambda (n) (* n 6)))

⇒ (* 1 6) ⇒ 6

189CS 538 Spring 2008©

But for a list with a zero in it, we
get a different execution path:
(*listE '(1 0 3) id) ⇒
(*listE '(0 3)
 (lambda (m) (* m (id 1)))) ⇒
(lambda (n) (* (con n)
 (* listE '(3) id))) ≡
(lambda (n) (* (* n 1)

(* listE '(3) id))) ≡
(lambda (n) (* (* n 1) 3))

This function multiplies n, the
replacement value for 0, by 1 and
3, the non-zero values in the input
list.

190CS 538 Spring 2008©

But note that only one zero value
in the list is handled correctly!
Why?
(define (*listE L con)
 (cond
 ((null? L) (con 1))
 ((= 0 (car L))
 (lambda(n)
 (* (con n)

(*listE (cdr L) id))))
 (else
 (*listE (cdr L)
 (lambda(m)
 (* m (con (car L))))))
)
)

191CS 538 Spring 2008©

Continuations in Scheme
Scheme provides a built-in
mechanism for creating
continuations. It has a long name:
call-with-current-continuation

This name is often abbreviated as
call/cc

(perhaps using define).
call/cc takes a single function as
its argument. That function also
takes a single argument. That is,
we use call/cc as

(call/cc funct) where
funct ≡ (lambda (con) (body))
call/cc calls the function that it
is given with the “current
continuation” as the function’s
argument.

192CS 538 Spring 2008©

Current Continuations
What is the current continuation?
It is itself a function of one
argument. The current
continuation function represents
the execution context within
which the call/cc appears. The
argument to the continuation is a
value to be substituted as the
return value of call/cc in that
execution context.
For example, given
(+ (fct n) 3)

the current continuation for
(fct n) is (lambda (x) (+ x 3)

Given (* 2 (+ (fct z) 10))

the current continuation for
 (fct z) is
(lambda (m) (* 2 (+ m 10))

193CS 538 Spring 2008©

To use call/cc to grab a
continuation in (say) (+ (fct n) 3)
we make (fct n) the body of a
function of one argument. Call that
argument return. We therefore build
(lambda (return) (fct n))

Then
(call/cc
 (lambda (return) (fct n)))

binds the current continuation to
return and executes (fct n).
We can ignore the current
continuation bound to return
and do a normal return
or
we can use return to force a
return to the calling context of the
call/cc.
The call (return value) forces
value to be returned as the value
of call/cc in its context of call.

194CS 538 Spring 2008©

Example:

(define (g con) (con 5))

Now during evaluation no divide
by zero error occurs. Rather, when
(g return) is called, 5 is passed
to con, which is bound to return.
Therefore 5 is used as the value of
the call to call/cc, and 50 is
computed.

(* (call/cc (lambda(return)
 (/ (g return) 0))) 10)

return

195CS 538 Spring 2008©

Continuations are Just
Functions

Continuations may be saved in
variables or data structures and
called in the future to “reactive” a
completed or suspended
computation.
(define CC ())
(define (F)
 (let (
 (v (call/cc
 (lambda(here)
 (set! CC here)
 1))))

(display "The ans is: ")
 (display v)
(newline)

))

This displays The ans is: 1

At any time in the future, (CC 10)
will display The ans is: 10

196CS 538 Spring 2008©

List Multiplication Revisited
We can use call/cc to
reimplement the original *list to
force an immediate return of 0
(much like a throw in Java):
(define (*listc L return)
 (cond
 ((null? L) 1)
 ((= 0 (car L)) (return 0))
 (else (* (car L)

(*listc (cdr L) return)))
))

(define (*list L)
 (call/cc
 (lambda (return)
 (*listc L return)
)))

A 0 in L forces a call of (return
0) which makes 0 the value of
call/cc.

197CS 538 Spring 2008©

Interactive Replacement of
Error Values

Using continuations, we can also
redo *listE so that zeroes can
be replaced interactively! Multiple
zeroes (in both original and
replacement values) are correctly
handled.
(define (*list L)
 (let (
 (V (call/cc
 (lambda (here)
 (*liste L here)))))
 (if (number? V)
 V
 (begin
 (display
 "Enter new value for 0")
 (newline) (newline)
 (V (read))
)
)
)
)

198CS 538 Spring 2008©

(define (*liste L return)
 (if (null? L)
 1
 (let loop ((value (car L)))
 (if (= 0 value)
 (loop
 (call/cc
 (lambda (x) (return x))))
 (* value
 (*liste (cdr L) return))
)
)
)
)

If a zero is seen, *liste passes
back to the caller (via return) a
continuation that will set the next
value of value. This value is
checked, so if it is itself zero, a
substitute is requested. Each
occurrence of zero forces a return
to the caller for a substitute value.

199CS 538 Spring 2008©

Implementing Coroutines with
call/cc

Coroutines are a very handy
generalization of subroutines. A
coroutine may suspend its
execution and later resume from
the point of suspension. Unlike
subroutines, coroutines do no
have to complete their execution
before they return.
Coroutines are useful for
computation of long or infinite
streams of data, where we wish to
compute some data, use it,
compute additional data, use it,
etc.
Subroutines aren’t always able to
handle this, as we may need to
save a lot of internal state to
resume with the correct next
value.

200CS 538 Spring 2008©

Producer/Consumer using
Coroutines

The example we will use is one of
a consumer of a potentially
infinite stream of data. The next
integer in the stream (represented
as an unbounded list) is read. Call
this value n. Then the next n
integers are read and summed
together. The answer is printed,
and the user is asked whether
another sum is required. Since we
don’t know in advance how many
integers will be needed, we’ll use
a coroutine to produce the data
list in segments, requesting
another segment as necessary.

201CS 538 Spring 2008©

(define (consumer)

 (next 0); reset next function
 (let loop ((data (moredata)))
 (let (
 (sum+restoflist
 (sum-n-elems (car data)
 (cons 0 (cdr data)))))
 (display (car sum+restoflist))
 (newline)
 (display "more? ")
 (if (equal? (read) ’y)
 (if (= 1

(length sum+restoflist))
 (loop (moredata))

(loop (cdr sum+restoflist))
)

 #t ; Normal completion
)
)
)
)

202CS 538 Spring 2008©

Next, we’ll consider sum-n-
elems, which adds the first
element of list (a running sum) to
the next n elements on the list.
We’ll use moredata to extend the
data list as needed.
(define (sum-n-elems n list)
 (cond
 ((= 0 n) list)
 ((null? (cdr list))
 (sum-n-elems n

(cons (car list)(moredata))))
 (else
 (sum-n-elems (- n 1)
 (cons (+ (car list)
 (cadr list))
 (cddr list))))

)
)

203CS 538 Spring 2008©

The function moredata is called
whenever we need more data.
Initially a producer function is
called to get the initial segment of
data. producer actually returns
the next data segment plus a
continuation (stored in
producer-cc) used to resume
execution of producer when the
next data segment is required.

204CS 538 Spring 2008©

(define moredata
 (let ((producer-cc ()))
 (lambda ()
 (let (
 (data+cont
 (if (null? producer-cc)
 (call/cc (lambda (here)

(producer here)))
 (call/cc (lambda (here)
 (producer-cc here)))
)
))
 (set! producer-cc
 (cdr data+cont))
 (car data+cont)
)
)
)
)

205CS 538 Spring 2008©

Function (next z) returns the
next z integers in an infinite
sequence that starts at 1. A value
z=0 is a special flag indicating
that the sequence should be reset
to start at 1.
(define next
 (let ((i 1))
 (lambda (z)
 (if (= 0 z)
 (set! i 1)
 (let loop

((cnt z) (val i) (ints ()))
 (if (> cnt 0)
 (loop (- cnt 1)
 (+ val 1)
 (append ints
 (list val)))
 (begin
 (set! i val)
 ints
)
)
)
))))

206CS 538 Spring 2008©

The function producer generates
an infinite sequence of integers
(1,2,3,...). It suspends every 5/
10/15/25 elements and returns
control to moredata.
(define (producer initial-return)
 (let loop
 ((return initial-return))
 (set! return
 (call/cc (lambda (here)

(return (cons (next 5)
 here)))))
 (set! return
 (call/cc (lambda (here)

(return (cons (next 10)
 here)))))
 (set! return
 (call/cc (lambda (here)
 (return (cons (next 15)
 here)))))
 (loop
 (call/cc (lambda (here)

(return (cons (next 25)
 here)))))
))

207CS 538 Spring 2008©

Reading Assignment
• MULTILISP: a language for concurrent

symbolic computation,
by Robert H. Halstead
(linked from class web page)

208CS 538 Spring 2008©

Lazy Evaluation
Lazy evaluation is sometimes
called “call by need.” We do an
evaluation when a value is used;
not when it is defined.
Scheme provides for lazy
evaluation:
(delay expression)

Evaluation of expression is
delayed. The call returns a
“promise” that is essentially a
lambda expression.
(force promise)

A promise, created by a call to
delay, is evaluated. If the promise
has already been evaluated, the
value computed by the first call to
force is reused.

209CS 538 Spring 2008©

Example:
Though and is predefined, writing
a correct implementation for it is
a bit tricky.
The obvious program
(define (and A B)

 (if A

 B

 #f

)

)

is incorrect since B is always
evaluated whether it is needed or
not. In a call like
(and (not (= i 0)) (> (/ j i) 10))

unnecessary evaluation might be
fatal.

210CS 538 Spring 2008©

An argument to a function is strict
if it is always used. Non-strict
arguments may cause failure if
evaluated unnecessarily.
With lazy evaluation, we can
define a more robust and
function:
(define (and A B)

 (if A

 (force B)

 #f

)

)

This is called as:
(and (not (= i 0))
 (delay (> (/ j i) 10)))

Note that making the programmer
remember to add a call to delay
is unappealing.

211CS 538 Spring 2008©

Delayed evaluation also allows us
a neat implementation of
suspensions.
The following definition of an
infinite list of integers clearly
fails:
(define (inflist i)

 (cons i (inflist (+ i 1))))

But with use of delays we get the
desired effect in finite time:
(define (inflist i)
 (cons i
 (delay (inflist (+ i 1)))))

Now a call like (inflist 1)
creates

1 promise for
(inflist 2)

212CS 538 Spring 2008©

We need to slightly modify how
we explore suspended infinite
lists. We can’t redefine car and
cdr as these are far too
fundamental to tamper with.
Instead we’ll define head and
tail to do much the same job:
(define head car)

(define (tail L)

 (force (cdr L)))

head looks at car values which
are fully evaluated.
tail forces one level of
evaluation of a delayed cdr and
saves the evaluated value in place
of the suspension (promise).

213CS 538 Spring 2008©

Given
(define IL (inflist 1))

(head (tail IL)) returns 2 and
expands IL into

2 promise for
(inflist 3)

1

214CS 538 Spring 2008©

Exploiting Parallelism
Conventional procedural
programming languages are
difficult to compile for
multiprocessors.
Frequent assignments make it
difficult to find independent
computations.
Consider (in Fortran):

 do 10 I = 1,1000
 X(I) = 0
 A(I) = A(I+1)+1
 B(I) = B(I-1)-1
 C(I) = (C(I-2) + C(I+2))/2
10 continue

This loop defines 1000 values for
arrays X, A, B and C.

215CS 538 Spring 2008©

Which computations can be done
in parallel, partitioning parts of an
array to several processors, each
operating independently?
• X(I) = 0

Assignments to X can be readily
parallelized.

• A(I) = A(I+1)+1
Each update of A(I) uses an A(I+1)
value that is not yet changed. Thus
a whole array of new A values can
be computed from an array of “old”
A values in parallel.

• B(I) = B(I-1)-1
This is less obvious. Each B(I)
uses B(I-1) which is defined in
terms of B(I-2), etc. Ultimately all
new B values depend only on B(0)
and I. That is, B(I) = B(0) - I. So
this computation can be
parallelized, but it takes a fair
amount of insight to realize it.

216CS 538 Spring 2008©

• C(I) = (C(I-2) + C(I+2))/2
It is clear that even and odd
elements of C don’t interact. Hence
two processors could compute
even and odd elements of C in
parallel. Beyond this, since both
earlier and later C values are used
in each computation of an element,
no further means of parallel
evaluation is evident. Serial
evaluation will probably be needed
for even or odd values.

217CS 538 Spring 2008©

Exploiting Parallelism in
Scheme

Assume we have a shared-
memory multiprocessor. We might
be able to assign different
processors to evaluate various
independent subexpressions.
For example, consider
(map (lambda(x) (* 2 x))
 '(1 2 3 4 5))
We might assign a processor to
each list element and compute
the lambda function on each
concurrently:

1 2 3 4 5

2 4 6 8 10

Processor 1 Processor 5...

218CS 538 Spring 2008©

How is Parallelism Found?
There are two approaches:
• We can use a “smart” compiler that is

able to find parallelism in existing
programs written in standard serial
programming languages.

• We can add features to an existing
programming language that allows a
programmer to show where parallel
evaluation is desired.

219CS 538 Spring 2008©

Concurrentization
Concurrentization (often called
parallelization) is process of
automatically finding potential
concurrent execution in a serial
program.
Automatically finding current
execution is complicated by a
number of factors:
• Data Dependence

Not all expressions are
independent. We may need to
delay evaluation of an operator or
subprogram until its operands are
available.
Thus in
(+ (* x y) (* y z))

we can’t start the addition until
both multiplications are done.

220CS 538 Spring 2008©

• Control Dependence
Not all expressions need be (or
should be) evaluated.
In
(if (= a 0)

 0

 (/ b a))

we don’t want to do the division
until we know a ≠ 0.

• Side Effects
If one expression can write a
value that another expression
might read, we probably will need
to serialize their execution.
Consider
(define rand!
 (let ((seed 99))

(lambda ()
 (set! seed
 (mod (* seed 1001) 101101))
 seed
)))

221CS 538 Spring 2008©

Now in
(+ (f (rand!)) (g (rand!)))

we can’t evaluate (f (rand!))
and (g (rand!)) in parallel,
because of the side effect of set!
in rand!. In fact if we did, f and g
might see exactly the same
“random” number! (Why?)

• Granularity
Evaluating an expression
concurrently has an overhead (to
setup a concurrent computation).
Evaluating very simple
expressions (like (car x) or
(+ x 1)) in parallel isn’t worth
the overhead cost.
Estimating where the “break
even” threshold is may be tricky.

222CS 538 Spring 2008©

Utility of Concurrentization
Concurrentization has been most
successful in engineering and
scientific programs that are very
regular in structure, evaluating
large multidimensional arrays in
simple nested loops. Many very
complex simulations (weather,
fluid dynamics, astrophysics) are
run on multiprocessors after
extensive concurrentization.
Concurrentization has been far
less successful on non-scientific
programs that don’t use large
arrays manipulated in nested for
loops. A compiler, for example, is
difficult to run (in parallel) on a
multiprocessor.

223CS 538 Spring 2008©

Concurrentization within
Processors

Concurrentization is used
extensively within many modern
uniprocessors. Pentium and
PowerPC processors routinely
execute several instructions in
parallel if they are independent
(e.g., read and write distinct
registers). This are superscalar
processors.
These processors also routinely
speculate on execution paths,
“guessing” that a branch will (or
won’t) be taken even before the
branch is executed! This allows
for more concurrent execution
than if strictly “in order” execution
is done. These processors are
called “out of order” processors.

224CS 538 Spring 2008©

Adding Parallel Features to
Programming Languages.

It is common to take an existing
serial programming language and
add features that support
concurrent or parallel execution.
For example versions for Fortran
(like HPF—High Performance
Fortran) add a parallel do loop
that executes individual iterations
in parallel.
Java supports threads, which may
be executed in parallel.
Synchronization and mutual
exclusion are provided to avoid
unintended interactions.

225CS 538 Spring 2008©

Multilisp
Multilisp is a version of Scheme
augmented with three parallel
evaluation mechanisms:
• Pcall

Arguments to a call are evaluated
in parallel.

• Future
Evaluation of an expression starts
immediately. Rather than waiting
for completion of the computation,
a “future” is returned. This future
will eventually transform itself into
the result value (when the
computation completes)

• Delay
Evaluation is delayed until the
result value is really needed.

226CS 538 Spring 2008©

The Pcall Mechanism
Pcall is an extension to Scheme’s
function call mechanism that
causes the function and its
arguments to be all computed in
parallel.
Thus
(pcall F X Y Z)

causes F, X, Y and Z to all be
evaluated in parallel. When all
evaluations are done, F is called
with X, Y and Z as its parameters
(just as in ordinary Scheme).
Compare
(+ (* X Y) (* Y Z))

with
(pcall + (* X Y) (* Y Z))

227CS 538 Spring 2008©

It may not look like pcall can
give you that much parallel
execution, but in the context of
recursive definitions, the effect
can be dramatic.
Consider treemap, a version of
map that operates on binary trees
(S-expressions).

(define (treemap fct tree)

 (if (pair? tree)

 (pcall cons

 (treemap fct (car tree))

 (treemap fct (cdr tree))

)

 (fct tree)

))

228CS 538 Spring 2008©

Look at the execution of treemap
on the tree
 (((1 . 2) . (3 . 4)) .

 ((5 . 6) . (7 . 8)))

We start with one call that uses
the whole tree. This splits into
two parallel calls, one operating
on
((1 . 2) . (3 . 4))

and the other operating on
((5 . 6) . (7 . 8))

Each of these calls splits into 2
calls, and finally we have 8
independent calls, each operating
on the values 1 to 8.

229CS 538 Spring 2008©

Futures
Evaluation of an expression as a
future is the most interesting
feature of Multilisp.
The call
(future expr)

begins the evaluation of expr.
But rather than waiting for expr’s
evaluation to complete, the call to
future returns immediately with
a new kind of data object—a
future. This future is actually an
“IOU.” When you try to use the
value of the future, the
computation of expr may or may
not be completed. If it is, you see
the value computed instead of the
future—it automatically
transforms itself. Thus evaluation
of expr appears instantaneous.

230CS 538 Spring 2008©

If the computation of expr is not
yet completed, you are forced to
wait until computation is
completed. Then you may use the
value and resume execution.
But this is exactly what ordinary
evaluation does anyway—you
begin evaluation of expr and wait
until evaluation completes and
returns a value to you!

To see the usefulness of futures,
consider the usual definition of
Scheme’s map function:

(define (map f L)
 (if (null? L)
 ()
 (cons (f (car L))
 (map f (cdr L)))
)
)

231CS 538 Spring 2008©

If we have a call
(map slow-function long-list)

where slow-function executes
slowly and long-list is a large
data structure, we can expect to
wait quite a while for
computation of the result list to
complete.

Now consider fastmap, a version
of map that uses futures:
(define (fastmap f L)
 (if (null? L)
 ()
 (cons
 (future (f (car L)))
 (fastmap f (cdr L))
)
)
)

Now look at the call
(fastmap slow-function long-list)

232CS 538 Spring 2008©

We will exploit a useful aspect of
futures—they can be cons’ed
together without delay, even if the
computation isn’t completed yet.
Why? Well a cons just stores a pair
of pointers, and it really doesn’t
matter what the pointers
reference (a future or an actual
result value).
The call to fastmap can actually
return before any of the call to
slow-function have completed:

future1

future2

future3 ...

233CS 538 Spring 2008©

Eventually all the futures
automatically transform
themselves into data values:

Note that pcall can be
implemented using futures.

answer1

answer2

answer3 ...

234CS 538 Spring 2008©

That is, instead of
(pcall F X Y Z)

we can use
((future F)

(future X) (future Y) (future Z))

In fact the latter version is
actually more parallel—execution
of F can begin even if all the
parameters aren’t completely
evaluated.

235CS 538 Spring 2008©

Another Example of Futures
The following function,
partition, will take a list and a
data value (called pivot).
partition will partition the list
into two sublists:
(a) Those elements ≤ pivot

(b) Those elements > pivot
(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

236CS 538 Spring 2008©

We want to add futures to
partition, but where?
It makes sense to use a future
when a computation may be
lengthy and we may not need to
use the value computed
immediately.
What computation fits that
pattern?
The computation of tail-part.
We’ll mark it in a blue box to show
we plan to evaluate it using a
future:

237CS 538 Spring 2008©

(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

But this one change isn’t enough!
We soon access the car and cdr
of tail-part, which forces us to
wait for its computation to
complete. To avoid this delay, we
can place the four references to
car or cdr of tail-part into
futures too:

238CS 538 Spring 2008©

(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

239CS 538 Spring 2008©

Now we can build the initial part
of the partitioned list (that
involving pivot and (car L)
independently of the recursive call
of partition, which completes
the rest of the list.
For example,
(partition 17 '(5 3 8 ...))

creates a future (call it future1)
to compute
(partition 17 '(3 8 ...))

It also creates future2 to
compute (car tail-part) and
future3 to compute (cdr tail-
part). The call builds

5 future2

future3

240CS 538 Spring 2008©

Reading Assignment
• Introduction to Standard ML

 (linked from class web page)

• Webber: Chapters 5, 7, 9, 11

241CS 538 Spring 2008©

ML—Meta Language
SML is Standard ML, a popular ML
variant.
ML is a functional language that is
designed to be efficient and type-
safe. It demonstrates that a
functional language need not use
Scheme’s odd syntax and need
not bear the overhead of dynamic
typing.
SML’s features and innovations
include:
1. Strong, compile-time typing.
2. Automatic type inference
rather than user-supplied type
declarations.
3. Polymorphism, including “type
variables.”

242CS 538 Spring 2008©

4. Pattern-directed Programming
fun len([]) = 0
 | len(a::b) = 1+len(b);

5. Exceptions
6. First-class functions
7. Abstract Data Types

coin of int |
bill of int |
check of string*real;
val dime = coin(10);

A good ML reference is
“Elements of ML Programming,”
by Jeffrey Ullman
(Prentice Hall, 1998)

243CS 538 Spring 2008©

SML is Interactive
You enter a definition or
expression, and SML returns a
result with an inferred type.
The command
 use "file name";

loads a set of ML definitions from
a file.
For example (SML responses are
in blue):
21;
val it = 21 : int

(2 div 3);
val it = 0 : int

true;
val it = true : bool

"xyz";
val it = "xyz" : string

244CS 538 Spring 2008©

Basic SML Predefined Types
• Unit

Its only value is (). Type unit is
similar to void in C; it is used
where a type is needed, but no
“real” type is appropriate. For
example, a call to a write function
may return unit as its result.

• Integer
Constants are sequences of digits.
Negative values are prefixed with
a ~ rather than a - (- is a binary
subtraction operator). For
example, ~123 is negative 123.
Standard operators include
+ - * div mod
< > <= >= = <>

245CS 538 Spring 2008©

• Real
Both fractional (123.456) and
exponent forms (10e7) are
allowed. Negative signs and
exponents use ~ rather than -
(~10.0e~12).
Standard operators include
+ - * /
< > <= >=

Note that = and <> aren’t allowed!
(Why?)
Conversion routines include
real(int) to convert an int to a
real,
floor(real) to take the floor of
a real,
ceil(real) to take the ceiling of
a real.
round(real) to round a real,
trunc(real) to truncate a real.

246CS 538 Spring 2008©

For example, real(3) returns
3.0, floor(3.1) returns 3,
ceiling(3.3) returns 4,
round(~3.6) returns ~4,
trunc(3.9) returns 3.
Mixed mode expressions, like
1 + 2.5 aren’t allowed; you must
do explicit conversion, like
real(1) + 2.5

• Strings
Strings are delimited by double
quotes. Newlines are \n, tabs are
\t, and \" and \\ escape double
quotes and backslashes. E.g. "Bye
now\n" The ^ operator is
concatenation.
"abc" ^ "def" = "abcdef"

The usual relational operators are
provided: < > <= >= = <>

247CS 538 Spring 2008©

• Characters
Single characters are delimited by
double quotes and prefixed by a
#. For example, #"a" or #"\t". A
character is not a string of length
one. The str function may be
used to convert a character into a
string. Thus str(#"a") = "a"

• Boolean
Constants are true and false.
Operators include andalso (short-
circuit and), orelse (short-circuit
or), not, = and <>.
A conditional expression,
(if boolval v1 else v2) is
available.

248CS 538 Spring 2008©

Tuples
A tuple type, composed of two or
more values of any type is
available.
Tuples are delimited by
parentheses, and values are
separated by commas.
Examples include:
(1,2);
val it = (1,2) : int * int

("xyz",1=2);
val it = ("xyz",false) :
 string * bool

(1,3.0,false);
val it = (1,3.0,false) :
 int * real * bool

(1,2,(3,4));
val it = (1,2,(3,4)) :
int * int * (int * int)

249CS 538 Spring 2008©

Equality is checked
componentwise:
(1,2) = (0+1,1+1);
val it = true : bool

(1,2,3) = (1,2) causes a
compile-time type error (tuples
must be of the same length and
have corresponding types to be
compared).
#i selects the i-th component of
a tuple (counting from 1). Hence
#2(1,2,3);
val it = 2 : int

250CS 538 Spring 2008©

Lists
Lists are required to have a single
element type for all their
elements; their length is
unbounded.
Lists are delimited by [and] and
elements are separated by
commas.
Thus [1,2,3] is an integer list.
The empty (or null) list is [] or
nil.
The cons operator is ::
Hence [1,2,3] ≡ 1::2::3::[]

Lists are automatically typed by
ML:
[1,2];
val it = [1,2] : int list

251CS 538 Spring 2008©

Cons
Cons is an infix operator
represented as ::
The left operand of :: is any
value of type T.
The right operand of :: is any list
of type T list.
The result of :: is a list of type
T list.

Hence :: is polymorphic.
[] is the empty list. It has a type
'a list. The symbol 'a, read as
“alpha” or “tic a” is a type variable.
Thus [] is a polymorphic
constant.

252CS 538 Spring 2008©

List Equality
Two lists may be compared for
equality if they are of the same
type. Lists L1 and L2 are
considered equal if:
(1) They have the same number of
 elements
(2) Corresponding members of

 the two lists are equal.

List Operators
hd ≡ head of list operator ≈ car

tl ≡ tail of list operator ≈ cdr

null ≡ null list predicate ≈ null?

@ ≡ infix list append operator ≈
append

253CS 538 Spring 2008©

Records
Their general form is
{name1=val1, name2=val2, ... }

Field selector names are local to a
record.
For example:
{a=1,b=2};

val it = {a=1,b=2} :
 {a:int, b:int}

{a=1,b="xyz"};
val it = {a=1,b="xyz"} :
 {a:int, b:string}

{a=1.0,b={c=[1,2]}};
val it = {a=1.0,b={c=[1,2]}} :
{a:real, b:{c:int list}}

254CS 538 Spring 2008©

The order of fields is irrelevant;
equality is tested using field
names.
{a=1,b=2}={b=2,a=2-1};
val it = true : bool

#id extracts the field named id
from a record.
#b {a=1,b=2} ;

val it = 2 : int

255CS 538 Spring 2008©

Identifiers
There are two forms:
• Alphanumeric (excluding reserved

words)

Any sequence of letters, digits,
single quotes and underscores;
must begin with a letter or single
quote.
Case is significant. Identifiers that
begin with a single quote are type
variables.
Examples include:
abc a10 'polar sum_of_20

• Symbolic

Any sequence (except predefined
operators) of
! % & + - / : < = > ? @ \ ~ ^ | #
Usually used for user-defined
operators.
Examples include: ++ <=> !=

256CS 538 Spring 2008©

Comments
Of form
(* text *)

May cross line boundaries.

Declaration of Values
The basic form is
val id = expression;

This defines id to be bound to
expression; ML answers with the
name and value defined and the
inferred type.
For example
val x = 10*10;
val x = 100 : int

257CS 538 Spring 2008©

Redefinition of an identifier is OK,
but this is redefinition not
assignment;
Thus
val x = 100;

val x = (x=100);

is fine; there is no type error even
though the first x is an integer
and then it is a boolean.
val x = 100 : int

val x = true : bool

258CS 538 Spring 2008©

Examples
val x = 1;
val x = 1 : int

val z = (x,x,x);
val z = (1,1,1) : int * int * int

val L = [z,z];
val L = [(1,1,1),(1,1,1)] :
 (int * int * int) list

val r = {a=L};
val r = {a=[(1,1,1),(1,1,1)]} :
{a:(int * int * int) list}

After rebinding, the “nearest”
(most recent) binding is used.
The and symbol (not boolean and)
is used for simultaneous binding:
val x = 10;
val x = 10 : int

val x = true and y = x;
val x = true : bool

val y = 10 : int

259CS 538 Spring 2008©

Local definitions are temporary
value definitions:
local

 val x = 10

 in

 val u = x*x;

 end;
val u = 100 : int

Let bindings are used in
expressions:
let

 val x = 10

in
 5*x

end;
val it = 50 : int

260CS 538 Spring 2008©

Patterns
 Scheme (and most other
languages) use access or
decomposition functions to access
the components of a structured
object.
Thus we might write
(let ((h (car L) (t (cdr L)))

 body)

Here car and cdr are used as
access functions to locate the
parts of L we want to access.
In ML we can access components
of lists (or tuples, or records)
directly by using patterns. The
context in which the identifier
appears tells us the part of the
structure it references.

261CS 538 Spring 2008©

val x = (1,2);
val x = (1,2) : int * int

val (h,t) = x;
val h = 1 : int

val t = 2 : int

val L = [1,2,3];
val L = [1,2,3] : int list

val [v1,v2,v3] = L;
val v1 = 1 : int

val v2 = 2 : int

val v3 = 3 : int

val [1,x,3] = L;
val x = 2 : int

val [1,rest] = L;
(* This is illegal. Why? *)

val yy::rest = L;
val yy = 1 : int

val rest = [2,3] : int list

262CS 538 Spring 2008©

Wildcards
An underscore (_) may be used as
a “wildcard” or “don’t care”
symbol. It matches part of a
structure without defining an new
binding.
val zz::_ = L;
val zz = 1 : int

Pattern matching works in records
too.
val r = {a=1,b=2};
val r = {a=1,b=2} :
 {a:int, b:int}

val {a=va,b=vb} = r;
val va = 1 : int

val vb = 2 : int

val {a=wa,b=_}=r;
val wa = 1 : int

val {a=za, ...}=r;
val za = 1 : int

263CS 538 Spring 2008©

Patterns can be nested too.
val x = ((1,3.0),5);
val x = ((1,3.0),5) :
 (int * real) * int

val ((1,y),_)=x;
val y = 3.0 : real

264CS 538 Spring 2008©

Functions
Functions take a single argument
(which can be a tuple).
Function calls are of the form
function_name argument;

For example
size "xyz";

cos 3.14159;

The more conventional form
size("xyz"); or cos(3.14159);

is OK (the parentheses around the
argument are allowed, but
unnecessary).
The form (size "xyz") or
(cos 3.14159)

is OK too.

265CS 538 Spring 2008©

Note that the call
plus(1,2);

passes one argument, the tuple
(1,2)

to plus.
The call dummy();
passes one argument, the unit
value, to dummy.
All parameters are passed by
value.

266CS 538 Spring 2008©

Function Types
The type of a function in ML is
denoted as T1->T2. This says that
a parameter of type T1 is mapped
to a result of type T2.
The symbol fn denotes a value
that is a function.
Thus
size;
val it = fn : string -> int

not;
val it = fn : bool -> bool

Math.cos;
val it = fn : real -> real

(Math is an ML structure—an
external library member that
contains separately compiled
definitions).

267CS 538 Spring 2008©

User-Defined Functions
The general form is
fun name arg = expression;

ML answers back with the name
defined, the fact that it is a
function (the fn symbol) and its
inferred type.
For example,
fun twice x = 2*x;
val twice = fn : int -> int

fun twotimes(x) = 2*x;
val twotimes = fn : int -> int

fun fact n =

 if n=0

 then 1

 else n*fact(n-1);
val fact = fn : int -> int

268CS 538 Spring 2008©

fun plus(x,y):int = x+y;
val plus = fn : int * int -> int

The :int suffix is a type
constraint.
It is needed to help ML decide that
+ is integer plus rather than real
plus.

269CS 538 Spring 2008©

Patterns In Function
Definitions

The following defines a predicate
that tests whether a list, L is null
(the predefined null function
already does this).
fun isNull L =
 if L=[] then true else
false;
val isNull = fn : 'a list -> bool

However, we can decompose the
definition using patterns to get a
simpler and more elegant
definition:
 fun isNull [] = true

 | isNull(_::_) = false;
val isNull = fn : 'a list -> bool

270CS 538 Spring 2008©

The “|” divides the function
definition into different argument
patterns; no explicit conditional
logic is needed. The definition
that matches a particular actual
parameter is automatically
selected.
fun fact(1) = 1

 | fact(n) = n*fact(n-1);
val fact = fn : int -> int

If patterns that cover all possible
arguments aren’t specified, you
may get a run-time Match
exception.
If patterns overlap you may get a
warning from the compiler.

271CS 538 Spring 2008©

fun append([],L) = L

 | append(hd::tl,L) =
hd::append(tl,L);

val append = fn :
 'a list * 'a list -> 'a list

If we add the pattern
append(L,[]) = L

we get a redundant pattern
warning (Why?)
fun append ([],L) = L

 | append(hd::tl,L) =
hd::append(tl,L)

 | append(L,[]) = L;
stdIn:151.1-153.20 Error: match
redundant

 (nil,L) => ...

 (hd :: tl,L) => ...

 --> (L,nil) => ...

272CS 538 Spring 2008©

But a more precise decomposition
is fine:
fun append ([],L) = L

| append(hd::tl,hd2::tl2) =
 hd::append(tl,hd2::tl2)

 | append(hd::tl,[]) =
 hd::tl;
val append = fn :
 'a list * 'a list -> 'a list

273CS 538 Spring 2008©

Function Types Can be
Polytypes

Recall that 'a, 'b, ... represent
type variables. That is, any valid
type may be substituted for them
when checking type correctness.
ML said the type of append is
val append = fn :
 'a list * 'a list -> 'a list

Why does 'a appear three times?
We can define eitherNull, a
predicate that determines
whether either of two lists is null
as
fun eitherNull(L1,L2) =
 null(L1) orelse null(L2);
val eitherNull =
 fn : ’a list * ’b list -> bool

Why are both 'a and 'b used in
eitherNull’s type?

274CS 538 Spring 2008©

Currying
ML chooses the most general
(least-restrictive) type possible for
user-defined functions.
Functions are first-class objects,
as in Scheme.
The function definition
fun f x y = expression;

defines a function f (of x) that
returns a function (of y).
Reducing multiple argument
functions to a sequence of one
argument functions is called
currying (after Haskell Curry, a
mathematician who popularized
the approach).

275CS 538 Spring 2008©

Thus
fun f x y = x :: [y];
val f = fn : 'a -> 'a -> 'a list

says that f takes a parameter x,
of type 'a, and returns a function
(of y, whose type is 'a) that
returns a list of 'a.
Contrast this with the more
conventional
fun g(x,y) = x :: [y];
val g = fn : 'a * 'a -> 'a list

Here g takes a pair of arguments
(each of type 'a) and returns a
value of type 'a list.
The advantage of currying is that
we can bind one argument and
leave the remaining argument(s)
free.

276CS 538 Spring 2008©

For example
f(1);

is a legal call. It returns a function
of type
fn : int -> int list

The function returned is
equivalent to
fun h b = 1 :: [b];
val h = fn : int -> int list

277CS 538 Spring 2008©

Map Revisited
ML supports the map function,
which can be defined as
fun map(f,[]) = []
 | map(f,x::y) =
 (f x) :: map(f,y);
val map =
fn : ('a -> 'b) * 'a list -> 'b list

This type says that map takes a
pair of arguments. One is a
function from type 'a to type 'b.
The second argument is a list of
type 'a. The result is a list of type
'b.
In curried form map is defined as
fun map f [] = []
 | map f (x::y) =
 (f x) :: map f y;
val map =
 fn : ('a -> 'b) ->
 'a list -> 'b list

278CS 538 Spring 2008©

This type says that map takes one
argument that is a function from
type 'a to type 'b. It returns a
function that takes an argument
that is a list of type 'a and returns
a list of type 'b.
The advantage of the curried form
of map is that we can now use map
to create “specialized” functions
in which the function that is
mapped is fixed.
For example,
val neg = map not;
val neg =
 fn : bool list -> bool list

neg [true,false,true];
val it = [false,true,false] :
 bool list

279CS 538 Spring 2008©

Power Sets Revisited
Let’s compute power sets in ML.
We want a function pow that takes
a list of values, viewed as a set,
and which returns a list of lists.
Each sublist will be one of the
possible subsets of the original
argument.
For example,
pow [1,2] = [[1,2],[1],[2],[]]

We first define a version of cons
in curried form:
fun cons h t = h::t;
val cons = fn :
 'a -> 'a list -> 'a list

280CS 538 Spring 2008©

Now we define pow. We define the
powerset of the empty list, [], to
be [[]]. That is, the power set of
the empty set is set that contains
only the empty set.
For a non-empty list, consisting of
h::t, we compute the power set
of t, which we call pset. Then the
power set for h::t is just h
distributed through pset
appended to pset.
We distribute h through pset very
elegantly: we just map the
function (cons h) to pset. (cons
h) adds h to the head of any list it
is given. Thus mapping (cons h)
to pset adds h to all lists in pset.

281CS 538 Spring 2008©

The complete definition is simply
fun pow [] = [[]]
 | pow (h::t) =

 let

 val pset = pow t

 in

 (map (cons h) pset) @ pset

 end;
val pow =
 fn : 'a list -> 'a list list

Let’s trace the computation of
pow [1,2].
Here h = 1 and t = [2]. We need
to compute pow [2].
Now h = 2 and t = [].
We know pow [] = [[]],
so pow [2] =
(map (cons 2) [[]])@[[]] =
([[2]])@[[]] = [[2],[]]

282CS 538 Spring 2008©

Therefore pow [1,2] =

(map (cons 1) [[2],[]])
@[[2],[]] =

[[1,2],[1]]@[[2],[]] =
[[1,2],[1],[2],[]]

283CS 538 Spring 2008©

Composing Functions
We can define a composition
function that composes two
functions into one:
fun comp (f,g)(x) = f(g(x));
val comp = fn :
('a -> 'b) * ('c -> 'a) ->
 'c -> 'b

In curried form we have
fun comp f g x = f(g(x));

val comp = fn :
('a -> 'b) ->
('c -> 'a) -> 'c -> 'b

For example,
fun sqr x:int = x*x;

val sqr = fn : int -> int

comp sqr sqr;

val it = fn : int -> int

comp sqr sqr 3;

val it = 81 : int

284CS 538 Spring 2008©

In SML o (lower-case O) is the infix
composition operator.
Hence
sqr o sqr ≡ comp sqr sqr

285CS 538 Spring 2008©

Lambda Terms
ML needs a notation to write
down unnamed (anonymous)
functions, similar to the lambda
expressions Scheme uses.
That notation is
fn arg => body;

For example,
val sqr = fn x:int => x*x;
val sqr = fn : int -> int

In fact the notation used to define
functions,
fun name arg = body;

is actually just an abbreviation for
the more verbose
val name = fn arg => body;

286CS 538 Spring 2008©

An anonymous function can be
used wherever a function value is
needed.
For example,
map (fn x => [x]) [1,2,3];
val it =
[[1],[2],[3]] : int list list

We can use patterns too:
(fn [] => []
 |(h::t) => h::h::t);
val it = fn : 'a list -> 'a list

(What does this function do?)

287CS 538 Spring 2008©

Polymorphism vs. Overloading
ML supports polymorphism.
A function may accept a polytype
(a set of types) rather than a
single fixed type.
In all cases, the same function
definition is used. Details of the
supplied type are irrelevant and
may be ignored.
For example,
fun id x = x;
val id = fn : 'a -> 'a

fun toList x = [x];
val toList = fn : 'a -> 'a list

288CS 538 Spring 2008©

Overloading, as in C++ and Java,
allows alternative definitions of
the same method or operator,
with selection based on type.
Thus in Java + may represent
integer addition, floating point
addition or string concatenation,
even though these are really
rather different operations.
In ML +, -, * and = are
overloaded.
When = is used (to test equality),
ML deduces that an equality type
is required. (Most,but not all, types
can be compared for equality).
When ML decides an equality type
is needed, it uses a type variable
that begins with two tics rather
than one.
fun eq(x,y) = (x=y);
val eq = fn : ''a * ''a -> bool

289CS 538 Spring 2008©

Defining New Types in ML
We can create new names for
existing types (type
abbreviations) using
type id = def;

For example,
type triple = int*real*string;
type triple = int * real * string

type rec1=
 {a:int,b:real,c:string};
type rec1 =
 {a:int, b:real, c:string}

type 'a triple3 = 'a*'a*'a;
type 'a triple3 = 'a * 'a * 'a

type intTriple = int triple3;
type intTriple = int triple3

These type definitions are
essentiality macro-like name
substitutions.

290CS 538 Spring 2008©

The Datatype Mechanism
The datatype mechanism
specifies new data types using
value constructors.
For example,
datatype color = red|blue|green;

datatype color = blue | green |
red

Pattern matching works too using
the type’s constructors:
fun translate red = "rot"
 | translate blue = "blau"
 | translate green = "gruen";
val translate =
 fn : color -> string
fun jumble red = blue
 | jumble blue = green
 | jumble green = red;

val jumble = fn : color -> color

translate (jumble green);

val it = "rot" : string

291CS 538 Spring 2008©

SML Examples
Source code for most of the SML
examples presented here may be
found in
~cs538-1/public/sml/class.sml

292CS 538 Spring 2008©

Parameterized Constructors
The constructors used to define
data types may be parameterized:
datatype money =
 none
 | coin of int

 | bill of int

 | iou of real * string;
datatype money =
 bill of int | coin of int
 | iou of real * string | none

Now expressions like coin(25)
or bill(5) or
iou(10.25,"Lisa") represent
valid values of type money.

293CS 538 Spring 2008©

We can also define values and
functions of type money:
val dime = coin(10);
val dime = coin 10 : money

val deadbeat =
iou(25.00,"Homer Simpson");
val deadbeat =
 iou (25.0,"Homer Simpson") :
 money

fun amount(none) = 0.0

 | amount(coin(cents)) =
 real(cents)/100.0

 | amount(bill(dollars)) =
 real(dollars)

 | amount(iou(amt,_)) =
 0.5*amt;
 val amount = fn : money -> real

294CS 538 Spring 2008©

Polymorphic Datatypes
A user-defined data type may be
polymorphic. An excellent
example is
datatype 'a option =
 none | some of 'a;
datatype 'a option =
 none | some of 'a

val zilch = none;
val zilch = none : 'a option

val mucho =some(10e10);
val mucho =
some 100000000000.0 : real option

type studentInfo =
 {name:string,
 ssNumber:int option};
type studentInfo = {name:string,
ssNumber:int option}

295CS 538 Spring 2008©

val newStudent =
{name="Mystery Man",
 ssNumber=none}:studentInfo;
val newStudent =
{name="Mystery Man",
 ssNumber=none} : studentInfo

296CS 538 Spring 2008©

Datatypes may be Recursive
Recursive datatypes allow linked
structures without explicit
pointers.
datatype binTree =
 null
| leaf

| node of binTree * binTree;
datatype binTree =
leaf | node of binTree * binTree
 | null

fun size(null) = 0

 | size(leaf) = 1

 | size(node(t1,t2)) =
 size(t1)+size(t2) + 1
val size = fn : binTree -> int

297CS 538 Spring 2008©

Recursive Datatypes may be
Polymorphic

datatype 'a binTree =
 null
| leaf of 'a
| node of 'a binTree * 'a binTree

datatype 'a binTree =
 leaf of 'a |
 node of 'a binTree * 'a binTree
 | null

fun frontier(null) = []
 | frontier(leaf(v)) = [v]
 | frontier(node(t1,t2)) =
 frontier(t1) @ frontier(t2)

val frontier =
 fn : 'a binTree -> 'a list

298CS 538 Spring 2008©

We can model n-ary trees by using
lists of subtrees:
datatype 'a Tree =
 null
| leaf of 'a
| node of 'a Tree list;
datatype 'a Tree = leaf of 'a |
node of 'a Tree list | null

fun frontier(null) = []

 | frontier(leaf(v)) = [v]

 | frontier(node(h::t)) =
 frontier(h) @
frontier(node(t))

 | frontier(node([])) = []
val frontier = fn :
 'a Tree -> 'a list

299CS 538 Spring 2008©

Abstract Data Types
ML also provides abstract data
types in which the
implementation of the type is
hidden from users.
The general form is
abstype name = implementation

with

 val and fun definitions

end;

Users may access the name of the
abstract type and the val and fun
definitions that follow the with,
but the implementation may be
used only with the body of the
abstype definition.

300CS 538 Spring 2008©

Example
abstype 'a stack =
 stk of 'a list

with

 val Null = stk([])

 fun empty(stk([])) = true

 | empty(stk(_::_)) = false

fun top(stk(h::_)) = h
 fun pop(stk(_::t)) = stk(t)
 fun push(v,stk(L)) =
 stk(v::L)

end
type 'a stack

val Null = - : 'a stack

val empty = fn : 'a stack -> bool

val top = fn : 'a stack -> 'a

val pop =
 fn : 'a stack -> 'a stack

val push = fn :
 'a * 'a stack -> 'a stack

301CS 538 Spring 2008©

Local value and function
definitions, not to be exported to
users of the type can be created
using the local definition
mechanism described earlier:
local

 val and fun definitions

 in

 exported definitions

 end;

302CS 538 Spring 2008©

abstype 'a stack =
 stk of 'a list
with
local
 fun size(stk(L))=length(L);
 in
 val Null = stk([])
 fun empty(s) =
 (size(s) = 0)
fun top(stk(h::_)) = h

 fun pop(stk(_::t)) = stk(t)
 fun push(v,stk(L)) =
 stk(v::L)
 end
end
type 'a stack
val Null = - : 'a stack
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop = fn :
 'a stack -> 'a stack
val push = fn :
 'a * 'a stack -> 'a stack

303CS 538 Spring 2008©

Why are abstract data types
useful?
Because they hide an
implementation of a type from a
user, allowing implementation
changes without any impact on
user programs.
Consider a simple implementation
of queues:
abstype 'a queue =
 q of 'a list

with

 val Null = q([])

fun front(q(h::_)) = h
 fun rm(q(_::t)) = q(t)
 fun enter(v,q(L)) =
 q(rev(v::rev(L)))

end
type 'a queue

val Null = - : 'a queue

val front = fn : 'a queue -> 'a

304CS 538 Spring 2008©

val rm =
 fn : 'a queue -> 'a queue

val enter =
 fn : 'a * 'a queue -> 'a queue

This implementation of queues is
valid, but somewhat inefficient. In
particular to enter a new value
onto the rear end of a queue, we
do the following:
fun enter(v,q(L)) =
 q(rev(v::rev(L)))

 We reverse the list that
implements the queue, add the
new value to the head of the
reversed queue then reverse the
list a second time.

305CS 538 Spring 2008©

A more efficient (but less obvious)
implementation of a queue is to
store it as two lists. One list
represents the “front” of the
queue. It is from this list that we
extract the front value, and from
which we remove elements.
The other list represents the
“back” of the queue (in reversed
order). We add elements to the
rear of the queue by adding
elements to the front of the list.
From time to time, when the front
list becomes null, we “promote”
the rear list into the front list (by
reversing it). Now access to both
the front and the back of the
queue is fast and direct. The new
implementation is:

306CS 538 Spring 2008©

abstype 'a queue =
 q of 'a list * 'a list

with

 val Null = q([],[])

fun front(q(h::_,_)) = h
 | front(q([],L)) =
 front(q(rev(L),[]))
 fun rm(q(_::t,L)) = q(t,L)
 | rm(q([],L)) =
 rm(q(rev(L),[]))
 fun enter(v,q(L1,L2)) =
 q(L1,v::L2)

end

type 'a queue

val Null = - : 'a queue
val front = fn :
'a queue -> 'a

val rm = fn :
'a queue -> 'a queue
val enter = fn :
'a * 'a queue -> 'a queue

307CS 538 Spring 2008©

From the user’s point of view, the
two implementations are identical
(they export exactly the same set
of values and functions). Hence
the new implementation can
replace the old implementation
without any impact at all to the
user (except, of course,
performance!).

308CS 538 Spring 2008©

Exception Handling
Our definitions of stacks and
queues are incomplete.
Reconsider our definition of
stack:
abstype 'a stack =
 stk of 'a list

with

 val Null = stk([])

 fun empty(stk([])) = true

 | empty(stk(_::_)) = false

fun top(stk(h::_)) = h
 fun pop(stk(_::t)) = stk(t)
 fun push(v,stk(L)) =
 stk(v::L)

end

What happens if we evaluate
top(Null);

309CS 538 Spring 2008©

We see “match failure” since our
definition of top is incomplete!
In ML we can raise an
exception if an illegal or
unexpected operation occurs.
Asking for the top of an empty
stack ought to raise an
exception since the requested
value does not exist.
ML contains a number of
predefined exceptions,
including
Match Empty Div Overflow

(exception names usually
begin with a capital letter).
Predefined exception are raised
by illegal values or operations.
If they are not caught, the run-
time prints an error message.

310CS 538 Spring 2008©

fun f(1) = 2;
val f = fn : int -> int

f(2);
uncaught exception nonexhaustive
match failure

hd [];
uncaught exception Empty

1000000*1000000;
uncaught exception overflow

(1 div 0);
uncaught exception divide by zero

1.0/0.0;

val it = inf : real

(inf is the IEEE floating-point
standard “infinity” value)

311CS 538 Spring 2008©

User Defined Exceptions
New exceptions may be
defined as
exception name;

or
exception name of type;

For example
exception IsZero;
exception IsZero

exception NegValue of real;
exception NegValue of real

312CS 538 Spring 2008©

Exceptions May be Raised
The raise statement raises
(throws) an exception:
raise exceptionName;

or
raise exceptionName(expr);

For example
fun divide(a,0) = raise IsZero
 | divide(a,b) = a div b;
val divide =
 fn : int * int -> int

divide(10,3);
val it = 3 : int

divide(10,0);
uncaught exception IsZero

313CS 538 Spring 2008©

val sqrt = Real.Math.sqrt;
val sqrt = fn : real -> real

fun sqroot(x) =
 if x < 0.0
 then raise NegValue(x)
 else sqrt(x);
val sqroot = fn : real -> real

sqroot(2.0);
val it = 1.41421356237 : real

sqroot(~2.0);
uncaught exception NegValue

314CS 538 Spring 2008©

Exception Handlers
You may catch an exception by
defining a handler for it:
(expr) handle exception1 => val1
 || exception2 => val2
 || ... ;

For example,
(sqroot ~100.0)
 handle NegValue(v) =>
 (sqrt (~v));
val it = 10.0 : real

315CS 538 Spring 2008©

Stacks Revisited
We can add an exception,
EmptyStk, to our earlier stack
type to handle top or pop
operations on an empty stack:
abstype 'a stack = stk of 'a list
with
 val Null = stk([])
 exception EmptyStk
 fun empty(stk([])) = true
 | empty(stk(_::_)) = false
 fun top(stk(h::_)) = h
 | top(stk([])) =
 raise EmptyStk
 fun pop(stk(_::t)) = stk(t)
 | pop(stk([])) =
 raise EmptyStk
 fun push(v,stk(L)) =
 stk(v::L)
end

316CS 538 Spring 2008©

type 'a stack
val Null = - : 'a stack
exception EmptyStk
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop = fn :
 'a stack -> 'a stack
val push = fn : 'a * 'a stack ->
'a stack

pop(Null);
uncaught exception EmptyStk
top(Null) handle EmptyStk => 0;
val it = 0 : int

317CS 538 Spring 2008©

User-Defined Operators
SML allows users to define
symbolic operators composed
of non-alphanumeric
characters. This means
operator-like symbols can be
created and used. Care must be
taken to avoid predefined
operators (like +, -, ^, @, etc.).
If we wish, we can redo our
stack definition using symbols
rather than identifiers. We
might use the following
symbols:
top |=

pop <==

push ==>

null <@>

empty <?>

318CS 538 Spring 2008©

We can have expressions like
<?> <@>;
val it = true : bool

|= (==> (1,<@>));
val it = 1 : int

Binary functions, like ==> (push)
are much more readable if they
are infix. That is, we’d like to be
able to write
1 ==> 2+3 ==> <@>

which pushes 2+3, then 1 onto
an empty stack.
To make a function (either
identifier or symbolic) infix
rather than prefix we use the
definition
infix level name

or
infixr level name

319CS 538 Spring 2008©

level is an integer representing
the “precedence” level of the
infix operator. 0 is the lowest
precedence level; higher
precedence operators are
applied before lower
precedence operators (in the
absence of explicit
parentheses).
infix defines a left-associative
operator (groups from left to
right). infixr defines a right-
associative operator (groups
from right to left).
Thus
fun cat(L1,L2) = L1 @ L2;

infix 5 cat

makes cat a left associative
infix operator at the same

320CS 538 Spring 2008©

precedence level as @. We can
now write
[1,2] cat [3,4,5] cat [6,7];
val it = [1,2,3,4,5,6,7] : int list

The standard predefined
operators have the following
precedence levels:
Level Operator
3 o

4 = <> < > <= >=

5 :: @

6 + - ^

7 * / div mod

321CS 538 Spring 2008©

If we define ==> (push) as
infixr 2 ==>

then
1 ==> 2+3 ==> <@>

will work as expected,
evaluating expressions like 2+3
before doing any pushes, with
pushes done right to left.

322CS 538 Spring 2008©

abstype 'a stack =
 stk of 'a list

with

 val <@> = stk([])

 exception emptyStk

 fun <?>(stk([])) = true

 | <?>(stk(_::_)) = false

 fun |=(stk(h::_)) = h

 | |=(stk([])) =
 raise emptyStk

 fun <==(stk(_::t)) = stk(t)

 | <==(stk([])) =
 raise emptyStk

 fun ==>(v,stk(L)) =
 stk(v::L)

 infixr 2 ==>

end

323CS 538 Spring 2008©

type 'a stack

val <@> = - : 'a stack

exception emptyStk

val <?> = fn : 'a stack -> bool

val |= = fn : 'a stack -> 'a

val <== = fn :
 'a stack -> 'a stack

val ==> = fn : 'a * 'a stack ->
'a stack

infixr 2 ==>

Now we can write
val myStack =
 1 ==> 2+3 ==> <@>;
val myStack = - : int stack

|= myStack;
val it = 1 : int

|= (<== myStack);
val it = 5 : int

324CS 538 Spring 2008©

Using Infix Operators as
Values

Sometimes we simply want to
use an infix operator as a
symbol whose value is a
function.
For example, given
fun dupl f v = f(v,v);
val dupl =
fn : ('a * 'a -> 'b) -> 'a -> 'b

we might try the call
dupl ^ "abc";

This fails because SML tries to
parse dupl and "abc" as the
operands of ^.
To pass an operator as an
ordinary function value, we
prefix it with op which tells the

325CS 538 Spring 2008©

SML compiler that the following
symbol is an infix operator.

Thus
dupl op ^ "abc";
val it = "abcabc" : string

works fine.

326CS 538 Spring 2008©

The Case Expression
ML contains a case expression
patterned on switch and case
statements found in other
languages.
As in function definitions,
patterns are used to choose
among a variety of values.
The general form of the case is
case expr of

 pattern1 => expr1|

 patternn => expr2|

 ...

 patternn => exprn;

If no pattern matches, a Match
exception is thrown.

327CS 538 Spring 2008©

It is common to use _ (the
wildcard) as the last pattern in
a case.
Examples include
case c of

 red => "rot" |

 blue => "blau" |

 green => "gruen";

case pair of

 (1,_) => "win" |

 (2,_) => "place" |

 (3,_) => "show" |

 (_,_) => "loser";

case intOption of

 none => 0 |

 some(v) => v;

328CS 538 Spring 2008©

Imperative Features of ML
ML provides references to heap
locations that may be updated.
This is essentially the same as
access to heap objects via
references (Java) or pointers (C
and C++).
The expression
ref val

creates a reference to a heap
location initialized to val. For
example,
 ref 0;
 val it = ref 0 : int ref

The prefix operator ! fetches
the value contained in a heap
location (just as * dereferences
a pointer in C or C++).

329CS 538 Spring 2008©

Thus
 ! (ref 0);
 val it = 0 : int

The expression
ref := val

updates the heap location
referenced by ref to contain
val. The unit value, (), is
returned.
Hence
val x = ref 0;
val x = ref 0 : int ref

!x;
val it = 0 : int

x:=1;
val it = () : unit

!x;
val it = 1 : int

330CS 538 Spring 2008©

 Sequential Composition
Expressions or statements are
sequenced using “;”. Hence
val a = (1+2;3+4);
val a = 7 : int

(x:=1;!x);
val it = 1 : int

Iteration
while expr1 do expr2

implements iteration (and
returns unit); Thus
(while false do 10);
val it = () : unit

while !x > 0 do x:= !x-1;
val it = () : unit

!x;
val it = 0 : int

331CS 538 Spring 2008©

Simple I/O
The function
 print;

 val it = fn : string -> unit

prints a string onto standard
output.
For example,
print("Hello World\n");

 Hello World

The conversion routines
 Real.toString;
 val it = fn : real -> string

 Int.toString;
 val it = fn : int -> string

 Bool.toString;
 val it = fn : bool -> string

332CS 538 Spring 2008©

convert a value (real, int or
bool) into a string. Unlike Java,
the call must be explicit.
For example,
print(Int.toString(123));
123

Also available are
Real.fromString;
val it = fn : string -> real
option

Int.fromString;
val it = fn : string -> int
option

Bool.fromString;
val it = fn : string -> bool
option

which convert from a string to
a real or int or bool if possible.
(That’s why the option type is
used).

333CS 538 Spring 2008©

For example,
case (Int.fromString("123"))
 of

 SOME(i) => i | NONE => 0;
val it = 123 : int

case (Int.fromString(
 "One two three")) of

 SOME(i) => i | NONE => 0;
val it = 0 : int

334CS 538 Spring 2008©

Text I/O
The structure TextIO contains a
wide variety of I/O types,
values and functions. You load
these by entering:
open TextIO;

Among the values loaded are
• type instream

This is the type that represents
input text files.

• type outstream
This is the type that represents
output text files.

• type vector = string
Makes vector a synonym for
string.

• type elem = char
Makes elem a synonym for char.

335CS 538 Spring 2008©

• val stdIn : instream
val stdOut : outstream
val stdErr : outstream
Predefined input & output streams.

• val openIn :
 string -> instream
val openOut :
 string -> outstream
Open an input or output stream.
For example,
val out =
 openOut("/tmp/test1");
val out = - : outstream

• val input :
 instream -> vector
Read a line of input into a string
(vector is defined as equivalent to
string). For example (user input is
in red):
val s = input(stdIn);
Hello!
 val s = "Hello!\n" : vector

336CS 538 Spring 2008©

• val inputN :
 instream * int -> vector
Read the next N input characters
into a string. For example,
val t = inputN(stdIn,3);
abcde
val t = "abc" : vector

• val inputAll :
 instream -> vector
Read the rest of the input file into a
string (with newlines separating
lines). For example,
val u = inputAll(stdIn);
 Four score and
 seven years ago ...
 val u = "Four score and\nseven
 years ago ...\n" : vector

• val endOfStream :
 instream -> bool
Are we at the end of this input
stream?

337CS 538 Spring 2008©

• val output :
 outstream * vector -> unit
Output a string on the specified
output stream. For example,
output(stdOut,
 "That’s all folks!\n");
That’s all folks!

338CS 538 Spring 2008©

String Operations
ML provides a wide variety of
string manipulation routines.
Included are:
• The string concatenation operator,

^ "abc" ^ "def" = "abcdef"

• The standard 6 relational
operators:
 < > <= >= = <>

• The string size operator:
val size : string -> int
size ("abcd");
val it = 4 : int

• The string subscripting operator
(indexing from 0):
val sub =
 fn : string * int -> char
sub("abcde",2);
val it = #"c" : char

339CS 538 Spring 2008©

• The substring function
val substring :
string * int * int -> string
This function is called as
substring(string,start,len)
start is the starting position,
counting from 0.
len is the length of the desired
substring. For example,
substring("abcdefghij",3,4)
val it = "defg" : string

• Concatenation of a list of strings
into a single string:
concat :
 string list -> string
For example,
concat ["What’s"," up","?"];
val it = "What’s up?" : string

340CS 538 Spring 2008©

• Convert a character into a string:
str : char -> string
For example,
 str(#"x");
val it = "x" : string

• “Explode” a string into a list of
characters:
explode : string -> char list
For example,
explode("abcde");
val it =
[#"a",#"b",#"c",#"d",#"e"] :
char list

• “Implode” a list of characters into a
string.
implode : char list -> string
For example,
implode
[#"a",#"b",#"c",#"d",#"e"];
val it = "abcde" : string

341CS 538 Spring 2008©

Structures and Signatures
In C++ and Java you can group
variable and function
definitions into classes. In Java
you can also group classes into
packages.
In ML you can group value,
exception and function
definitions into structures.
You can then import selected
definitions from the structure
(using the notation
structure.name) or you can open
the structure, thereby
importing all the definitions
within the structure.
(Examples used in this section
may be found at
~cs538-1/public/sml/struct.sml)

342CS 538 Spring 2008©

The general form of a structure
definition is
structure name =
struct

 val, exception and
 fun definitions

end

For example,
structure Mapping =
struct
 exception NotFound;
 val create = [];
 fun lookup(key,[]) =
 raise NotFound
 | lookup(key,
 (key1,value1)::rest) =
 if key = key1
 then value1
 else lookup(key,rest);

343CS 538 Spring 2008©

 fun insert(key,value,[]) =
 [(key,value)]
 | insert(key,value,
 (key1,value1)::rest) =
 if key = key1
 then (key,value)::rest
 else (key1,value1)::
 insert(key,value,rest);
end;

We can access members of this
structure as Mapping.name. Thus
Mapping.insert(538,"languages",[]);

val it = [(538,"languages")] :
(int * string) list

open Mapping;
exception NotFound

val create : 'a list

val insert : ''a * 'b * (''a * 'b)
 list -> (''a * 'b) list

val lookup : ''a * (''a * 'b)
list -> 'b

344CS 538 Spring 2008©

Signatures
Each structure has a signature,
which is it type.
For example, Mapping’s
signature is
structure Mapping :

 sig

 exception NotFound

 val create : 'a list

 val insert : ''a * 'b *
 (''a * 'b) list ->
 (''a * 'b) list

 val lookup : ''a *
 (''a * 'b) list -> 'b

 end

345CS 538 Spring 2008©

You can define a signature as
signature name = sig

 type definitions for values,
 functions and exceptions

end

For example,
signature Str2IntMapping =
sig
 exception NotFound;
 val lookup:

string * (string*int) list
 -> int;

end;

346CS 538 Spring 2008©

Signatures can be used to
• Restrict the type of a value or

function in a structure.

• Hide selected definitions that
appear in a structure

For example
structure Str2IntMap :

Str2IntMapping = Mapping;

defines a new structure,
Str2IntMap, created by
restricting Mapping to the
Str2IntMapping signature. When
we do this we get

347CS 538 Spring 2008©

open Str2IntMap;
 exception NotFound

 val lookup : string *
 (string * int) list -> int

Only lookup and NotFound are
created, and lookup is limited to
keys that are strings.

348CS 538 Spring 2008©

Extending ML’s Polymorphism
In languages like C++ and Java
we must use types like void* or
Object to simulate the
polymorphism that ML
provides. In ML whenever
possible a general type (a
polytype) is used rather than a
fixed type. Thus in
fun len([]) = 0
 | len(a::b) = 1 + len(b);

we get a type of
 'a list -> int

because this is the most
general type possible that is
consistent with len’s definition.
Is this form of polymorphism
general enough to capture the

349CS 538 Spring 2008©

general idea of making
program definitions as type-
independent as possible?
It isn’t, and to see why consider
the following ML definition of a
merge sort. A merge sort
operates by first splitting a list
into two equal length sublists.
The following function does
this:
fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split(rest) in
 (a::left, b::right)
 end;

350CS 538 Spring 2008©

After the input list is split into
two halves, each half is
recursively sorted, then the
sorted halves are merged
together into a single list.
The following ML function
merges two sorted lists into
one:

fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if hd <= h
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

351CS 538 Spring 2008©

With these two subroutines, a
definition of a sort is easy:
fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),

sort(right))
 end;

352CS 538 Spring 2008©

This definition looks very
general—it should work for a
list of any type.
Unfortunately, when ML types
the functions we get a surprise:
val split = fn : 'a list ->
 'a list * 'a list
val merge = fn : int list *
 int list -> int list
val sort = fn :
 int list -> int list

split is polymorphic, but merge
and sort are limited to integer
lists!
Where did this restriction come
from?

353CS 538 Spring 2008©

The problem is that we did a
comparison in merge using the
<= operator, and ML typed this
as an integer comparison.
We can make our definition of
sort more general by adding a
comparison function, le(a,b)
as a parameter to merge and
sort. If we curry this parameter
we may be able to hide it from
end users. Our updated
definitions are:
fun merge(le,[],[]) = []
 | merge(le,[],hd::tl) = hd::tl
 | merge(le,hd::tl,[]) = hd::tl
 | merge(le,hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(le,tl,h::t)
 else h::merge(le,hd::tl,t)

354CS 538 Spring 2008©

fun sort le [] = []
 | sort le [a] = [a]
 | sort le (a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(le, sort le left,

sort le right)
 end;

Now the types of merge and
sort are:
val merge = fn :
 ('a * 'a -> bool) *
 'a list * 'a list -> 'a list
val sort = fn : ('a * 'a -> bool)
 -> 'a list -> 'a list

We can now “customize” sort
by choosing a particular
definition for the le parameter:
fun le(a,b) = a <= b;
val le = fn : int * int -> bool

355CS 538 Spring 2008©

fun intsort L = sort le L;
val intsort =
 fn : int list -> int list
intsort(
 [4,9,0,2,111,~22,8,~123]);
val it = [~123,~22,0,2,4,8,9,111]
: int list

fun strle(a:string,b) =
 a <= b;
val strle =
 fn : string * string -> bool

fun strsort L = sort strle L;
val strsort =
fn : string list -> string list
strsort(
 ["aac","aaa","ABC","123"]);
val it =
["123","ABC","aaa","aac"] :
string list

356CS 538 Spring 2008©

Making the comparison relation
an explicit parameter works,
but it is a bit ugly and
inefficient. Moreover, if we have
several functions that depend
on the comparison relation, we
need to ensure that they all use
the same relation. Thus if we
wish to define a predicate
inOrder that tests if a list is
already sorted, we can use:
fun inOrder le [] = true
 | inOrder le [a] = true
 | inOrder le (a::b::rest) =
 le(a,b) andalso
 inOrder le (b::rest);
val inOrder = fn :
 ('a * 'a -> bool) -> 'a list -> bool

Now sort and inOrder need to
use the same definition of le.
But how can we enforce this?

357CS 538 Spring 2008©

The structure mechanism we
studied earlier can help. We can
put a single definition of le in
the structure, and share it:
structure Sorting =
struct
 fun le(a,b) = a <= b;

 fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split rest in

(a::left,b::right)
 end;
 fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

358CS 538 Spring 2008©

fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),
 sort(right))
 end;
 fun inOrder [] = true
 | inOrder [a] = true
 | inOrder (a::b::rest) =
 le(a,b) andalso
 inOrder (b::rest);
end;
structure Sorting :
 sig
 val inOrder : int list -> bool
 val le : int * int -> bool
 val merge : int list *
 int list -> int list
 val sort :
 int list -> int list
 val split : 'a list ->
 'a list * 'a list
 end

359CS 538 Spring 2008©

To sort a type other than
integers, we replace the
definition of le in the structure.
But rather than actually edit
that definition, ML gives us a
powerful mechanism to
parameterize a structure. This
is the functor, which allows us
to use one or more structures
as parameters in the definition
of a structure.

360CS 538 Spring 2008©

Functors
The general form of a functor is
functor name
 (structName:signature) =
 structure definition;

This functor will create a
specific version of the structure
definition using the structure
parameter passed to it.
For our purposes this is ideal—
we pass in a structure defining
an ordering relation (the le
function). This then creates a
custom version of all the
functions defined in the
structure body, using the
specific le definition provided.

361CS 538 Spring 2008©

We first define
signature Order =

sig

 type elem

 val le : elem*elem -> bool

end;

This defines the type of a
structure that defines a le
predicate defined on a pair of
types called elem.
An example of such a structure
is
structure IntOrder:Order =

struct

 type elem = int;

 fun le(a,b) = a <= b;

end;

362CS 538 Spring 2008©

Now we just define a functor
that creates a Sorting structure
based on an Order structure:
functor MakeSorting(O:Order) =
struct
open O; (* makes le available*)

 fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split rest in
 (a::left,b::right)
 end;

 fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

363CS 538 Spring 2008©

 fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),

sort(right))
 end;

 fun inOrder [] = true
 | inOrder [a] = true
 | inOrder (a::b::rest) =
 le(a,b) andalso
 inOrder (b::rest);
end;

364CS 538 Spring 2008©

Now
structure IntSorting =
 MakeSorting(IntOrder);

creates a custom structure for
sorting integers:
 IntSorting.sort [3,0,~22,8];
val it = [~22,0,3,8] : elem list

To sort strings, we just define a
structure containing an le
defined for strings with Order
as its signature (i.e., type) and
pass it to MakeSorting:
structure StrOrder:Order =

struct

 type elem = string

 fun le(a:string,b) = a <= b;

end;

365CS 538 Spring 2008©

structure StrSorting =
 MakeSorting(StrOrder);

StrSorting.sort(
 ["cc","abc","xyz"]);
val it = ["abc","cc","xyz"] :
 StrOrder.elem list

StrSorting.inOrder(
 ["cc","abc","xyz"]);
val it = false : bool

StrSorting.inOrder(
 [3,0,~22,8]);
stdIn:593.1-593.32 Error:
operator and operand don’t agree
[literal]
operator domain: strOrder.elem

list
 operand: int list
 in expression:

StrSorting.inOrder (3 :: 0 ::
~22 :: <exp> :: <exp>)

366CS 538 Spring 2008©

The SML Basis Library
SML provides a wide variety of
useful types and functions,
grouped into structures, that
are included in the Basis
Library.
A web page fully documenting
the Basis Library is linked from
the ML page that is part of the
Programming Languages Links
page on the CS 538 home page.
Many useful types, operators
and functions are “preloaded”
when you start the SML
compiler. These are listed in the
“Top-level Environment” section
of the Basis Library
documentation.

367CS 538 Spring 2008©

Many other useful definitions
must be explicitly fetched from
the structures they are defined
in.
For example, the Math structure
contains a number of useful
mathematical values and
operations.
You may simply enter
open Math;

while will load all the
definitions in Math. Doing this
may load more definitions than
you want. What’s worse, a
definition loaded may redefine
a definition you currently want
to stay active. (Recall that ML
has virtually no overloading, so
functions with the same name

368CS 538 Spring 2008©

in different structures are
common.)
A more selective way to access
a definition is to qualify it with
the structure’s name. Hence
Math.pi;
val it = 3.14159265359 : real

gets the value of pi defined in
Math.
Should you tire of repeatedly
qualifying a name, you can (of
course) define a local value to
hold its value. Thus
val pi = Math.pi;
val pi = 3.14159265359 : real

works fine.

369CS 538 Spring 2008©

An Overview of Structures in
the Basis Library

The Basis Library contains a
wide variety of useful
structures. Here is an overview
of some of the most important
ones.
• Option

Operations for the option type.
• Bool

Operations for the bool type.
• Char

Operations for the char type.
• String

Operations for the string type.
• Byte

Operations for the byte type.

370CS 538 Spring 2008©

• Int

Operations for the int type.
• IntInf

Operations for an unbounded
precision integer type.

• Real

Operations for the real type.
• Math

Various mathematical values and
operations.

• List

Operations for the list type.
• ListPair

Operations on pairs of lists.
• Vector

A polymorphic type for
immutable (unchangeable)
sequences.

371CS 538 Spring 2008©

• IntVector, RealVector,
BoolVector, CharVector

Monomorphic types for
immutable sequences.

• Array

A polymorphic type for mutable
(changeable) sequences.

• IntArray, RealArray,
BoolArray, CharArray

Monomorphic types for mutable
sequences.

• Array2

A polymorphic 2 dimensional
mutable type.

• IntArray2, RealArray2,
BoolArray2, CharArray2

Monomorphic 2 dimensional
mutable types.

• TextIO

Character-oriented text IO.

372CS 538 Spring 2008©

• BinIO

Binary IO operations.
• OS, Unix, Date, Time, Timer

Operating systems types and
operations.

373CS 538 Spring 2008©

ML Type Inference
One of the most novel aspects of
ML is the fact that it infers types
for all user declarations.
How does this type inference
mechanism work?
Essentially, the ML compiler
creates an unknown type for each
declaration the user makes. It
then solves for these unknowns
using known types and a set of
type inference rules. That is, for a
user-defined identifier i, ML wants
to determine T(i), the type of i.

374CS 538 Spring 2008©

The type inference rules are:
1. The types of all predefined
literals, constants and functions
are known in advance. They may
be looked-up and used. For
example,
2 : int

true : bool

[] : 'a list

:: : 'a * 'a list -> 'a list

2. All occurrences of the same
symbol (using scoping rules) have
the same type.

3. In the expression
I = J

 we know T(I) = T(J).

375CS 538 Spring 2008©

4. In a conditional
(if E1 then E2 else E3)

 we know that
T(E1) = bool,
T(E2) = T(E3) = T(conditional)

5. In a function call
(f x)

 we know that if T(f) = 'a -> 'b
 then T(x) = 'a and T(f x) = 'b

6. In a function definition
fun f x = expr;

 if t(x) = 'a and T(expr) = 'b
 then T(f) = 'a -> 'b

7. In a tuple (e1,e2, ..., en)

 if we know that
 T(ei) = 'ai 1 ≤ i ≤ n

 then T(e1,e2, ..., en) =
 'a1*'a2*...*'an

376CS 538 Spring 2008©

8. In a record
 { a=e1,b=e2, ... }

 if T(ei) = 'ai 1 ≤ i ≤ n then
 the type of the record =

{a:'a1, b:'a2, ...}

9. In a list [v1,v2, ... vn]

 if we know that
 T(vi) = 'ai 1 ≤ i ≤ n

 then we know that
'a1='a2=...='an and
T([v1,v2, ... vn]) = 'a1 list

377CS 538 Spring 2008©

To Solve for Types:
1. Assign each untyped symbol its

own distinct type variable.
2.Use rules (1) to (9) to solve for and

simplify unknown types.
3. Verify that each solution “works”

(causes no type errors)
throughout the program.

Examples
Consider
fun fact(n)=
if n=1 then 1 else n*fact(n-1);

To begin, we’ll assign type
variables:
T(fact) = 'a -> 'b
(fact is a function)
T(n) = 'c

378CS 538 Spring 2008©

Now we begin to solve for the
types 'a, 'b and 'c must
represent.
We know (rule 5) that 'c = 'a
since n is the argument of fact.
We know (rule 3) that 'c = T(1)
= int since n=1 is part of the
definition.
We know (rule 4) that T(1) =
T(if expression)='b since the if
expression is the body of fact.
Thus, we have
‘a = 'b ='c = int, so
T(fact) = int -> int

T(n) = int

These types are correct for all
occurrences of fact and n in the
definition.

379CS 538 Spring 2008©

A Polymorphic Function:
fun leng(L) =

 if L = []

 then 0

 else 1+len(tl L);

To begin, we know that
T([]) = 'a list and
T(tl) = 'b list -> 'b list

We assign types to leng and L:
T(leng) = 'c -> 'd

T(L) = 'e

Since L is the argument of leng,
'e = 'c

From the expression L=[] we
know
'e = 'a list

380CS 538 Spring 2008©

From the fact that 0 is the result
of the then, we know the if
returns an int, so 'd = int.
Thus T(leng) = 'a list -> int
and
T(L) = 'a list

These solutions are type
correct throughout the
definition.

381CS 538 Spring 2008©

Type Inference for Patterns
Type inference works for
patterns too.
Consider
fun leng [] = 0

 | leng (a::b) = 1 + leng b;

We first create type variables:
T(leng) = 'a -> 'b

T(a) = 'c

T(b) = 'd

From leng [] we conclude that
'a = 'e list

From leng [] = 0 we conclude
that
'b = int

From leng (a::b) we conclude
that

382CS 538 Spring 2008©

'c ='e and 'd = 'e list

Thus we have
T(leng) = 'e list -> int

T(a) = 'e

T(b) = 'e list

This solution is type correct
throughout the definition.

383CS 538 Spring 2008©

Not Everything can be
Automatically Typed in ML

Let’s try to type
fun f x = (x x);

We assume
T(f) = 'a -> 'b

t(x) = 'c

Now (as usual) 'a = 'c since x is
the argument of f.
From the call (x x) we conclude
that 'c must be of the form 'd ->
'e (since x is being used as a
function).
Moreover, 'c = 'd since x is an
argument in (x x).
Thus 'c = 'd ->'e = 'c ->'e.
But 'c = 'c->'e has no solution,
so in ML this definition is invalid.
We can’t pass a function to itself

384CS 538 Spring 2008©

as an argument—the type system
doesn’t allow it.
In Scheme this is allowed:
(define (f x) (x x))

but a call like
(f f)

certainly doesn’t do anything
good!

385CS 538 Spring 2008©

Type Unions
Let’s try to type
fun f g = ((g 3), (g true));

Now the type of g is 'a -> 'b
since g is used as a function.
The call (g 3) says 'a = int and
the call (g true) says 'a =
boolean.
Does this mean g is polymorphic?
That is, is the type of f
f : ('a->'b)->'b*'b?
NO!
All functions have the type 'a ->
'b but not all functions can be
passed to f.
Consider not: bool->bool.
The call (not 3) is certainly
illegal.

386CS 538 Spring 2008©

What we’d like in this case is a
union type. That is, we’d like to be
able to type g as
(int|bool)->'b which ML
doesn’t allow.
Fortunately, ML does allow type
constructors, which are just what
we need.
Given
datatype T =
 I of int|B of bool;

we can redefine f as
fun f g =
 (g (I(3)), g (B(true)));
val f = fn : (T -> 'a) -> 'a * 'a

387CS 538 Spring 2008©

Finally, note that in a definition
like
let
 val f =

fn x => x (* id function*)
in (f 3,f true)
end;

type inference works fine:
val it = (3,true) : int * bool

Here we define f in advance, so
its type is known when calls to
it are seen.

388CS 538 Spring 2008©

Reading Assignment
• Webber: Chapters 19, 20 and 22

389CS 538 Spring 2008©

Prolog
Prolog presents a view of
programming that is very
different from most other
programming languages.
A famous text book is entitled
“Algorithms + Data Structures =
Programs”
This formula represents well the
conventional approach to
programming that most
programming languages support.
In Prolog there is an alternative
rule of programming:
“Algorithms = Logic + Control”
This rule encompasses a non-
procedural view of programming.
Logic (what the program is to
compute) comes first.

390CS 538 Spring 2008©

Then control (how to implement
the logic) is considered.
In Prolog we program the logic of
a program, but the Prolog system
automatically implements the
control.
Logic is essential—control is just
efficiency.

391CS 538 Spring 2008©

Logic Programming
Prolog implements logic
programming.
In fact Prolog means
Programming in Logic.

In Prolog programs are
statements of rules and facts.
Program execution is
deduction—can an answer be
inferred from known rules and
facts.
Prolog was developed in 1972
by Kowalski and Colmerauer at
the University of Marseilles.

392CS 538 Spring 2008©

Elementary Data Objects
• In Prolog integers and atoms are the

elementary data objects.

• Integers are ordinary integer literals
and values.

• Atoms are identifiers that begin with a
lower-case letter (much like symbolic
values in Scheme).

• In Prolog data objects are called
terms.

• In Prolog we define relations among
terms (integers, atoms or other
terms).

• A predicate names a relation.
Predicates begin with lower-case
letters.

• To define a predicate, we write clauses
that define the relation.

393CS 538 Spring 2008©

• There are two kinds of program
clauses, facts and rules.

• A fact is a predicate that prefixes a
sequence of terms, and which ends
with a period (“.”).

As an example, consider the
following facts which define
“fatherOf” and “motherOf”
relations.

fatherOf(tom,dick).

fatherOf(dick,harry).

fatherOf(jane,harry).

motherOf(tom,judy).

motherOf(dick,mary).

motherOf(jane,mary).

The symbols fatherOf and motherOf
are predicates. The symbols tom,
dick, harry, judy, mary and jane are
atoms.

394CS 538 Spring 2008©

Once we have entered rules and
facts that define relations, we can
make queries (ask the Prolog
system questions).
Prolog has two interactive modes
that you can switch between.
To enter definition mode (to define
rules and facts) you enter
[user].

You then enter facts and rules,
terminating this phase with ^D
(end of file).
Alternatively, you can enter
['filename'].

to read in rules and facts stored in
the file named filename.

395CS 538 Spring 2008©

When you start Prolog, or after
you leave definitions mode, you
are in query mode.
In query mode you see a prompt
of the form
| ?- or ?- (depending on the
system you are running).
In query mode, Prolog allows you
to ask whether a relation among
terms is true or false.
Thus given our definition of
motherOf and fatherOf
relations, we can ask:
| ?- fatherOf(tom,dick).
yes

A “yes” response means that
Prolog is able to conclude from
the facts and rules it has been
given that the relation queried
does hold.

396CS 538 Spring 2008©

| ?- fatherOf(georgeW,george).
no

A “no” response to a query means
that Prolog is unable to conclude
that the relation holds from what
it has been told. The relation may
actually be true, but Prolog may
lack necessary facts or rules to
deduce this.

397CS 538 Spring 2008©

Variables in Queries
One of the attractive features of
Prolog is the fact that variables
may be included in queries. A
variable always begins with a
capital letter.
When a variable is seen, Prolog
tries to find a value (binding) for
the variable that will make the
queried relation true.
For example,
fatherOf(X,harry).

asks Prolog to find an value for X
such that X’s father is harry.
When we enter the query, Prolog
gives us a solution (if one can be
found):
 ?- fatherOf(X,harry).

 X = dick

398CS 538 Spring 2008©

If no solution can be found, it tells
us so:
| ?- fatherOf(Y,jane).
no

Since solutions to queries need
not be unique, Prolog will give us
alternate solutions if we ask for
them. We do so by entering a “;”
after a solution is printed. We get
a “no” when no more solutions
can be found:
| ?- fatherOf(X,harry).

X = dick ;
X = jane ;
no

399CS 538 Spring 2008©

Variables may be placed
anywhere in a query. Thus we
may ask
| ?- fatherOf(jane,X).

X = harry ;
no

We may use more than one
variable if we wish:
| ?- fatherOf(X,Y).
X = tom,

Y = dick ;
X = dick,

Y = harry ;
X = jane,

Y = harry ;

no
(This query displays all the
fatherOf relations).

400CS 538 Spring 2008©

Conjunction of Goals
More than one relation can be
included as the “goal” of a query.
A comma (“,”) is used as an AND
operator to indicate a conjunction
of goals—all must be satisfied by
a solution to the query.
| ?-
fatherOf(jane,X),motherOf(jane,Y).

X = harry,

Y = mary ;
no

A given variable may appear more
than once in a query. The same
value of the variable must be
used in all places in which the
variable appears (this is called
unification).

401CS 538 Spring 2008©

For example,
| ?-
fatherOf(tom,X),fatherOf(X,harry).

X = dick ;
no

402CS 538 Spring 2008©

Rules in Prolog
Rules allow us to state that a
relation will hold depending on
the truth (correctness) of other
relations.
In effect a rules says,
“If I know that certain relations
hold, then I also know that this
relation holds.”
A rule in Prolog is of the form
rel1 :- rel2, rel3, ... reln.

This says rel1 can be assumed
true if we can establish that rel2
and rel3 and all relations to reln
are true.
rel1 is called the head of the rule.

rel2 to reln form the body of the
rule.

403CS 538 Spring 2008©

Example
The following two rules define a
grandMotherOf relation using the
motherOf and fatherOf
relations:
grandMotherOf(X,GM) :-

 motherOf(X,M),
 motherOf(M,GM).

grandMotherOf(X,GM) :-

 fatherOf(X,F),
 motherOf(F,GM).

| ?- grandMotherOf(tom,GM).

GM = mary ;
no

| ?- grandMotherOf(dick,GM).
no

| ?- grandMotherOf(X,mary).

X = tom ;
no

404CS 538 Spring 2008©

As is the case for all
programming, in all languages,
you must be careful when you
define a rule that it correctly
captures the idea you have in
mind.
Consider the following rule that
defines a sibling relation
between two people:
sibling(X,Y) :-
motherOf(X,M), motherOf(Y,M),
fatherOf(X,F), fatherOf(Y,F).

This rule says that X and Y are
siblings if each has the same
mother and the same father.
But the rule is wrong!
Why?

405CS 538 Spring 2008©

Let’s give it a try:
| ?- sibling(X,Y).

X = Y = tom

Darn! That’s right, you can’t be
your own sibling. So we refine the
rule to force X and Y to be
distinct:
sibling(X,Y) :-
 motherOf(X,M), motherOf(Y,M),
 fatherOf(X,F), fatherOf(Y,F),
 not(X=Y).

(A few Prolog systems use “\+” for
not; but most include a not
relation.)
| ?- sibling(X,Y).
X = dick,

Y = jane ;
X = jane,

Y = dick ;
no

406CS 538 Spring 2008©

Note that distinct but equivalent
solutions
 (like X = dick,Y = jane vs.
X = jane,Y = dick) often appear

in Prolog solutions. You may
sometimes need to “filter out”
solutions that are effectively
redundant (perhaps by
formulating stricter or more
precise rules).

407CS 538 Spring 2008©

How Prolog Solves Queries
The unique feature of Prolog is
that it automatically chooses the
facts and rules needed to solve a
query.
But how does it make its choice?
It starts by trying to solve each
goal in a query, left to right (recall
goals are connected using “,”
which is the and operator).
For each goal it tries to match a
corresponding fact or the head of
a corresponding rule.

A fact or head of rule matches a
goal if:
• Both use the same predicate.

• Both have the same number of
terms following the predicate.

408CS 538 Spring 2008©

• Each term in the goal and fact or
rule head match (are equal),
possibly binding a free variable to
force a match.

For example, assume we wish to
match the following goal:
x(a,B)

This can match the fact
x(a,b).

or the head of the rule
x(Y,Z) :- Y = Z.

But x(a,B) can’t match
y(a,b) (wrong predicate name)
or
x(b,d) (first terms don’t match)
or
x(a,b,c) (wrong number of
terms).

409CS 538 Spring 2008©

If we succeed in matching a rule,
we have solved the goal in
question; we can go on to match
any remaining goals.
If we match the head of a rule, we
aren’t done—we add the body of
the rule to the list of goals that
must be solved.
Thus if we match the goal x(a,B)
with the rule
x(Y,Z) :- Y = Z.

then we must solve a=B which is
done by making B equal to a.

410CS 538 Spring 2008©

Backtracking
If we reach a point where a goal
can’t be matched, or the body of a
rule can’t be matched, we
backtrack to the last (most
recent) spot where a choice of
matching a particular fact or rule
was made. We then try to match a
different fact or rule. If this fails
we go back to the next previous
place where a choice was made
and try a different match there.
We try alternatives until we are
able to solve all the goals in our
query or until all possible choices
have been tried and found to fail.
If this happens, we answer “no”
the query can’t be solved.
As we try to match facts and rules
we try them in their order of
definition.

411CS 538 Spring 2008©

Example
Let’s trace how
| ?- grandMotherOf(tom,GM).

is solved.
Recall that
grandMotherOf(X,GM) :-
 motherOf(X,M),
 motherOf(M,GM).

grandMotherOf(X,GM) :-
 fatherOf(X,F),
 motherOf(F,GM).
fatherOf(tom,dick).
fatherOf(dick,harry).
fatherOf(jane,harry).
motherOf(tom,judy).
motherOf(dick,mary).
motherOf(jane,mary).

412CS 538 Spring 2008©

We try the first grandMotherOf
rule first.
This forces X = tom. We have to
solve
 motherOf(tom,M),
 motherOf(M,GM).

We now try to solve
motherOf(tom,M)

This forces M = judy.
We then try to solve
motherOf(judy,GM)

None of the motherOf rules
match this goal, so we backtrack.
No other motherOf rule can solve
motherOf(tom,M)

so we backtrack again and try the
second grandMotherOf rule:

413CS 538 Spring 2008©

grandMotherOf(X,GM) :-
 fatherOf(X,F),
 motherOf(F,GM).

This matches, forcing X = tom.
We have to solve
fatherOf(tom,F),
motherOf(F,GM).
We can match the first goal with
fatherOf(tom,dick).

This forces F = dick.
We then must solve
motherOf(dick,GM)

which can be matched by
motherOf(dick,mary).

We have matched all our goals, so
we know the query is true, with
GM = mary.

414CS 538 Spring 2008©

List Processing in Prolog
Prolog has a notation similar to
“cons cells” of Lisp and Scheme.
The “.” functor (predicate name)
acts like cons.
Hence .(a,b) in Prolog is
essentially the same as (a . b)
in Scheme.
Lists in Prolog are formed much
the same way as in Scheme and
ML:
[] is the empty list
[1,2,3] is an abbreviation for
.(1, .(2, .(3,[])))

just as
(1,2,3) in Scheme is an
abbreviation for
(cons 1 (cons 2 (cons 3 ())))

415CS 538 Spring 2008©

The notation [H|T] represents a
list with H matching the head of
the list and T matching the rest of
the list.
Thus [1,2,3] ≡ [1| [2,3]] ≡
[1,2| [3]] ≡ [1,2,3| []]

As in ML, “_” (underscore) can be
used as a wildcard or “don’t care”
symbol in matches.
Given the fact
 p([1,2,3,4]).

The query
 | ?- p([X|Y]).

answers
X = 1,

Y = [2,3,4]

416CS 538 Spring 2008©

The query
p([_,_,X|Y]).

answers
X = 3,

Y = [4]

417CS 538 Spring 2008©

List Operations in Prolog
List operations are defined using
rules and facts. The definitions
are similar to those used in
Scheme or ML, but they are non-
procedural.
That is, you don’t given an
execution order. Instead, you give
recursive rules and non-recursive
“base cases” that characterize the
operation you are defining.
Consider append:
 append([],L,L).

 append([H|T1],L2,[H|T3]) :-
 append(T1,L2,T3).

The first fact says that an empty
list (argument 1) appended to any
list L (argument 2) gives L
(argument 3) as its answer.

418CS 538 Spring 2008©

The rule in line 2 says that if you
take a list that begins with H and
has T1 as the rest of the list and
append it to a list L then the
resulting appended list will begin
with H.
Moreover, the rest of the resulting
list, T3, is the result of appending
T1 (the rest of the first list) with
L2 (the second input list).
The query
 | ?- append([1],[2,3],[1,2,3]).

answers
Yes

because with H=1, T1=[], L2
=[2,3] and T3=[2,3] it must be
the case that
append([],[2,3],[2,3]) is true
and fact (1) says that this is so.

419CS 538 Spring 2008©

Inverting Inputs and Outputs
In Prolog the division between
“inputs” and “outputs” is
intentionally vague. We can
exploit this. It is often possible to
“invert” a query and ask what
inputs would compute a given
output. Few other languages
allow this level of flexibility.
 Consider the query
append([1],X,[1,2,3]).

This asks Prolog to find a list X
such that if we append [1] to X
we will get [1,2,3].
 Prolog answers
X = [2,3]

How does it choose this answer?

420CS 538 Spring 2008©

First Prolog tries to match the
query against fact (1) or rule (2).
Fact (1) doesn’t match (the first
arguments differ) so we match
rule (2).
This gives us H=1, T1=[], L2=X
and T3 = [2,3].
We next have to solve the body of
rule (2) which is
append([],L2,[2,3]).

Fact (1) matches this, and tells us
that L2=[2,3]=X, and that’s our
answer!

421CS 538 Spring 2008©

The Member Relation
A common predicate when
manipulating lists is a
membership test—is a given
value a member of a list?
An “obvious” definition is a
recursive one similar to what we
might program in Scheme or ML:
member(X,[X|_]).
member(X,[_|Y]):- member(X,Y).

This definition states that the first
argument, X, is a member of the
second argument (a list) if X
matches the head of the list or if X
is (recursively) a member of the
rest of the list.

Note that we don’t have to “tell”
Prolog that X can’t be a member
of an empty list—if we don’t tell

422CS 538 Spring 2008©

Prolog that something is true, it
automatically assumes that it
must be false.
Thus saying nothing about
membership in an empty list is
the same as saying that
membership in an empty list is
impossible.
Since inputs and outputs in a
relation are blurred, we can use
member in an unexpected way—to
iterate through a list of values.

If we want to know if any member
of a list L satisfies a predicate p,
we can
simply write:
member(X,L),p(X).

423CS 538 Spring 2008©

There is no explicit iteration or
searching. We simply ask Prolog
to find an X such that
member(X,L) is true (X is in L)
and p(X) is true. Backtracking
will find the “right” value for X (if
any such X exists).
This is sometimes called the
“guess and verify” technique.
Thus we can query
member(X,[3,-3,0,10,-10]),
 (X > 0).

This asks for an X in the list
[3,-3,0,10,-10] which is
greater than 0.

Prolog answers
X = 3 ;
X = 10 ;

424CS 538 Spring 2008©

Note too that our “obvious”
definition of member is not the
only one possible.
An alternative definition (which is
far less obvious) is
member(X,L) :-
 append(_,[X|_],L).

This definition says X is a member
of L if I can take some list (whose
value I don’t care about) and
append it to a list that begins with
X (and which ends with values I
don’t care about) and get a list
equal to L.
Said more clearly, X is a member
of L if X is anywhere in the
“middle” of L.
Prolog solves a query involving
member by partitioning the list L
in all possible ways, and checking
to see if X ever is the head of the

425CS 538 Spring 2008©

second list. Thus for
member(X,[1,2,3]), it tries the
partition [] and [1,2,3]
(exposing 1 as a possible X), then
[1] and [2,3] (exposing 2) and
finally [1,2] and [3] (exposing
3).

426CS 538 Spring 2008©

Sorting Algorithms
Sorting algorithms are good
examples of Prolog’s definitional
capabilities. In a Prolog definition
the “logic” of a sorting algorithm
is apparent, stripped of the
cumbersome details of data
structures and control structures
that dominate algorithms in other
programming languages.
Consider the simplest possible
sort imaginable, which we’ll call
the “naive sort.”
At the simplest level a sorting of a
list L requires just two things:
• The sorting is a permutation (a

reordering) of the values in L.

• The values are “in order”
(ascending or descending).

427CS 538 Spring 2008©

We can implement this concept of
a sort directly in Prolog. We
(a) permute an input list
(b) check if it is in sorted order
(c) repeat (a) & (b) until a sorting

 is found.

428CS 538 Spring 2008©

Permutations
Let’s first look at how
permutations are defined in
Prolog. In most languages
generating permutations is non-
trivial—you need data structures
to store the permutations you are
generating and control structures
to visit all permutations in some
order.
In Prolog, permutations are
defined quite concisely, though
with a bit of subtlety:
perm(X,Y) will be true if list Y is a
permutation of list X.
Only two definitions are needed:
perm([],[]).

perm(L,[H|T]) :-
 append(V,[H|U],L),
 append(V,U,W), perm(W,T).

429CS 538 Spring 2008©

The first definition,
perm([],[]).

is trivial. An empty list may only
be permuted into another empty
list.
The second definition is rather
more complex:
perm(L,[H|T]) :-
append(V,[H|U],L),
 append(V,U,W), perm(W,T).

This rule says a list L may be
permuted in to a list that begins
with H and ends with list T if:
(1) L may be partitioned into two

lists, V and [H|U]. (That is, H is
 somewhere in the

“middle” of L).
(2) Lists V and U (all of L except H)
 may be appended into list W.
(3) List W may be permuted into T.

430CS 538 Spring 2008©

Let’s see perm in action:
| ?- perm([1,2,3],X).

X = [1,2,3] ;

X = [1,3,2] ;

X = [2,1,3] ;

X = [2,3,1] ;

X = [3,1,2] ;

X = [3,2,1] ;
no

We’ll trace how the first few
answers are computed. Note
though that all permutations are
generated, and with no apparent
data structures or control
structures.
We start with L=[1,2,3] and
X=[H|T].
We first solve
append(V,[H|U],L), which

431CS 538 Spring 2008©

simplifies to
append(V,[H|U],[1,2,3]).
One solution to this goal is
V = [], H = 1, U = [2,3]

We next solve append(V,U,W)
which simplifies to
append([],[2,3],W).
The only solution for this is
W=[2,3].
Finally, we solve perm(W,T),
which simplifies to
perm([2,3],T).
One solution to this is T=[2,3].
This gives us our first solution:
[H|T]=[1,2,3].
To get our next solution we
backtrack. Where is the most
recent place we made a choice of
how to solve a goal?

432CS 538 Spring 2008©

It was at perm([2,3],T). We
chose T=[2,3], but T=[3,2] is
another solution. Using this
solution, we get out next answer
[H|T]=[1,3,2].
Let’s try one more. We backtrack
again. No more solutions are
possible for perm([2,3],T), so
we backtrack to an earlier choice
point.
At append(V,[H|U],[1,2,3])
another solution is
V=[1], H = 2, U = [3]

Using this binding, we solve
append(V,U,W) which simplifies
to append([1],[3],W). The
solution to this must be W=[1,3].
We then solve perm(W,T) which
simplifies to perm([1,3],T). One
solution to this is T=[1,3]. This

433CS 538 Spring 2008©

makes our third solution for
[H|T] = [2,1,3].
You can check out the other
bindings that lead to the last
three solutions.

434CS 538 Spring 2008©

A Permutation Sort
Now that we know how to
generate permutations, the
definition of a permutation sort is
almost trivial.
We define an inOrder relation
that characterizes our notion of
when a list is properly sorted:
inOrder([]).

inOrder([_]).

inOrder([A,B|T]) :-
 A =< B, inOrder([B|T]).

These definitions state that a null
list, and a list with only one
element are always in sorted
order. Longer lists are in order if
the first two elements are in
proper order. (A=<B) checks this
and then the rest of the list,

435CS 538 Spring 2008©

excluding the first element, is
checked.
Now our naive permutation sort is
only one line long:
naiveSort(L1,L2) :-
 perm(L1,L2), inOrder(L2).

And the definition works too!
| ?-
naiveSort([1,2,3],[3,2,1]).
no

?- naiveSort([3,2,1],L).

L = [1,2,3] ;
no

| ?-
naiveSort([7,3,88,2,1,6,77,
 -23,5],L).
L = [-23,1,2,3,5,6,7,77,88]

436CS 538 Spring 2008©

Though this sort works, it is
hopelessly inefficient—it
repeatedly “shuffles” the input
until it happens to find an
ordering that is sorted. The
process is largely undirected. We
don’t “aim” toward a correct
ordering, but just search until we
get lucky.

437CS 538 Spring 2008©

A Bubble Sort
Perhaps the best known sorting
technique is the interchange or
“bubble” sort. The idea is simple.
We examine a list of values,
looking for a pair of adjacent
values that are “out of order.” If
we find such a pair, we swap the
two values (placing them in
correct order). Otherwise, the
whole list must be in sorted order
and we are done.
In conventional languages we
need a lot of code to search for
out-of-order pairs, and to
systematically reorder them. In
Prolog, the whole sort may be
defined in a few lines:

438CS 538 Spring 2008©

bubbleSort(L,L) :- inOrder(L).

bubbleSort(L1,L2) :-
 append(X,[A,B|Y],L1), A > B,
 append(X,[B,A|Y],T),
 bubbleSort(T,L2).

The first line says that if L is
already in sorted order, we are
done.
The second line is a bit more
complex. It defines what it means
for a list L2 to be a sorting for list
L1, using our insight that we
should swap out-of-order
neighbors. We first partition list
L1 into two lists, X and [A,B|Y].
This “exposes” two adjacent
values in L, A and B. Next we
verify that A and B are out-of-
order (A>B). Next, in
append(X,[B,A|Y],T), we
determine that list T is just our

439CS 538 Spring 2008©

input L, with A and B swapped
into B followed by A.
Finally, we verify that
bubbleSort(T,L2) holds. That
is, T may be bubble-sorted into
L2.
This approach is rather more
directed than our permutation
sort—we look for an out-of-order
pair of values, swap them, and
then sort the “improved” list.
Eventually there will be no more
out-of-order pairs, the list will be
in sorted order, and we will be
done.

440CS 538 Spring 2008©

Merge Sort
Another popular sort in the
“merge sort” that we have already
seen in Scheme and ML. The idea
here is to first split a list of length
L into two sublists of length L/2.
Each of these two lists is
recursively sorted. Finally, the two
sorted sublists are merged
together to form a complete
sorted list.
The bubble sort can take time
proportional to n2 to sort n
elements (as many as n2/2 swaps
may be needed). The merge sort
does better—it takes time
proportional to n log2 n to sort n
elements (a list of size n can only
be split in half log2 n times).

441CS 538 Spring 2008©

We first need Prolog rules on how
to split a list into two equal
halves:
split([],[],[]).
split([A],[A],[]).
split([A,B|T],[A|P1],[B|P2]) :-
 split(T,P1,P2).

The first two lines characterize
trivial splits. The third rule
distributes one of the first two
elements to each of the two
sublists, and then recursively
splits the rest of the list.

442CS 538 Spring 2008©

We also need rules that
characterize how to merge two
sorted sublists into a complete
sorted list:

merge([],L,L).
merge(L,[],L).
merge([A|T1],[B|T2],[A|L2]) :-
 A =< B, merge(T1,[B|T2],L2).
merge([A|T1],[B|T2],[B|L2]) :-
 A > B, merge([A|T1],T2,L2).

The first 2 lines handle merging
null lists. The third line handles
the case where the head of the
first sublist is ≤ the head of the
second sublist; the final rule
handles the case where the head
of the second sublist is smaller.

443CS 538 Spring 2008©

With the above definitions, a
merge sort requires only three
lines:
mergeSort([],[]).

mergeSort([A],[A]).
mergeSort(L1,L2) :-
 split(L1,P1,P2),
 mergeSort(P1,S1),
mergeSort(P2,S2),
merge(S1,S2,L2).

The first two lines handle the
trivial cases of lists of length 0 or
1. The last line contains the full
“logic” of a merge sort: split the
input list, L into two half-sized
lists P1 and P2. Then merge sort
P1 into S1 and P2 into S2. Finally,
merge S1 and S2 into a sorted list
L2. That’s it!

444CS 538 Spring 2008©

Quick Sort
The merge sort partitions its input
list rather blindly, alternating
values between the two lists.
What if we partitioned the input
list based on values rather than
positions?
The quick sort does this. It selects
a “pivot” value (the head of the
input list) and divides the input
into two sublists based on
whether the values in the list are
less than the pivot or greater than
or equal to the pivot. Next the
two sublists are recursively
sorted. But now, after sorting, no
merge phase is needed. Rather,
the two sorted sublists can simply
be appended, since we know all
values in the first list are less than
all values in the second list.

445CS 538 Spring 2008©

We need a Prolog relation that
characterizes how we will do our
partitioning. We we define
partition(E,L1,L2,L3) to be
true if L1 can be partitioned into
L2 and L3 using E as the pivot
element. The necessary rules are:

partition(E,[],[],[]).
partition(E,[A|T1],[A|T2],L3) :-
 A<E, partition(E,T1,T2,L3).
partition(E,[A|T1],L2,[A|T3]) :-
 A>=E, partition(E,T1,L2,T3)

The first line defines a trivial
partition of a null list. The second
line handles the case in which the
first element of the list to be
partitioned is less than the pivot,
while the final line handles the
case in which the list head is
greater than or equal to the pivot.

446CS 538 Spring 2008©

With our notion of partitioning
defined, the quicksort itself
requires only 2 lines:

qsort([],[]).
qsort([A|T],L) :-
partition(A,T,L1,L2),
qsort(L1,S1),qsort(L2,S2),
append(S1,[A|S2],L).

The first line defines a trivial sort
of an empty list.
The second line says to sort a list
that begins with A and ends with
list T, we partition T into sublists
L1 and L2, based on A. Then we
recursively quick sort L1 into S1
and L2 into S2. Finally we append
S1 to [A|S2]
(A must be > all values in S1 and A
must be ≤ all values in S2). The
result is L, a sorting of [A|T].

447CS 538 Spring 2008©

Arithmetic in Prolog
The = predicate can be used to
test bound variables for equality
(actually, identity).
If one or both of =’s arguments are
free variables, = forces a binding
or an equality constraint.
Thus
| ?- 1=2.
no

| ?- X=2.

X = 2

| ?- Y=X.

Y = X = _10751

| ?- X=Y, X=joe.

X = Y = joe

448CS 538 Spring 2008©

Arithmetic Terms are Symbolic
Evaluation of an arithmetic term
into a numeric value must be
forced.
That is, 1+2 is an infix
representation of the relation
+(1,2). This term is not an
integer!
Therefore
| ?- 1+2=3.
no

To force arithmetic evaluation, we
use the infix predicate is.
The right-hand side of is must be
all ground terms (literals or
variables that are already bound).
No free (unbound) variables are
allowed.

449CS 538 Spring 2008©

Hence
|?- 2 is 1+1.
yes

| ?- X is 3*4.
X = 12

| ?- Y is Z+1.
! Instantiation error in argument
2 of is/2
! goal: _10712 is _10715+1

The requirement that the right-
hand side of an is relation be
ground is essentially procedural.
It exists to avoid having to invert
complex equations. Consider,

(0 is (I**N)+(J**N)-K**N)), N>2.

450CS 538 Spring 2008©

Counting in Prolog
Rules that involve counting often
use the is predicate to evaluate a
numeric value.
Consider the relation len(L,N)
that is true if the length of list L is
N.
len([],0).

len([_|T],N) :-
 len(T,M), N is M+1.

| ?- len([1,2,3],X).

X = 3

| ?- len(Y,2).

Y = [_10903,_10905]

The symbols _10903 and _10905
are “internal variables” created as
needed when a particular value is
not forced in a solution.

451CS 538 Spring 2008©

Debugging Prolog
Care is required in developing and
testing Prolog programs because
the language is untyped;
undeclared predicates or relations
are simply treated as false.
Thus in a definition like
 adj([A,B|_]) :- A=B.

 adj([_,B|T]) :- adk([B|T]).

| ?- adj([1,2,2]).
no

(Some Prolog systems warn when
an undefined relation is
referenced, but many others
don’t).

452CS 538 Spring 2008©

Similarly, given
member(A,[A|_]).

 member(A,[_|T]) :-
 member(A,[T]).

| ?- member(2,[1,2]).

Infinite recursion! (Why?)

If you’re not sure what is going
on, Prolog’s trace feature is very
handy.
The command
trace.

turns on tracing. (notrace turns
tracing off).
Hence
| ?- trace.
yes

[trace]

| ?- member(2,[1,2]).

453CS 538 Spring 2008©

(1) 0 Call: member(2,[1,2]) ?

 (1) 1 Head [1->2]:
member(2,[1,2]) ?

 (1) 1 Head [2]:
member(2,[1,2]) ?

(2) 1 Call: member(2,[[2]]) ?

 (2) 2 Head [1->2]:
member(2,[[2]]) ?

 (2) 2 Head [2]:
member(2,[[2]]) ?

 (3) 2 Call: member(2,[[]]) ?

 (3) 3 Head [1->2]:
member(2,[[]]) ?

(3) 3 Head [2]: member(2,[[]])
?

 (4) 3 Call: member(2,[[]]) ?

 (4) 4 Head [1->2]:
member(2,[[]]) ?

(4) 4 Head [2]: member(2,[[]])
?

 (5) 4 Call: member(2,[[]]) ?

454CS 538 Spring 2008©

Termination Issues in Prolog
Searching infinite domains (like
integers) can lead to non-
termination, with Prolog trying
every value.
Consider
odd(1).

odd(N) :- odd(M), N is M+2.

| ?- odd(X).

X = 1 ;

X = 3 ;

X = 5 ;
X = 7

455CS 538 Spring 2008©

A query
 | ?- odd(X), X=2.
going into an infinite search,
generating each and every odd
integer and finding none is equal
to 2!
The obvious alternative,
odd(2) (which is equivalent to
X=2, odd(X)) also does an
infinite, but fruitless search.
We’ll soon learn that Prolog does
have a mechanism to “cut off”
fruitless searches.

456CS 538 Spring 2008©

Definition Order can Matter
Ideally, the order of definition of
facts and rules should not matter.
But,
in practice definition order can
matter. A good general guideline
is to define facts before rules. To
see why, consider a very complete
database of motherOf relations
that goes back as far as
motherOf(cain,eve).

Now we define
isMortal(X) :-
 isMortal(Y), motherOf(X,Y).

isMortal(eve).

457CS 538 Spring 2008©

These definitions state that the
first woman was mortal, and all
individuals descended from her
are also mortal.
But when we try as trivial a query
as
| ?- isMortal(eve).

we go into an infinite search!
Why?
Let’s trace what Prolog does when
it sees
| ?- isMortal(eve).
It matches with the first definition
involving isMortal, which is
isMortal(X) :-
 isMortal(Y), motherOf(X,Y).

It sets X=eve and tries to solve
isMortal(Y), motherOf(eve,Y).

It will then expand isMortal(Y)
into

458CS 538 Spring 2008©

isMortal(Z), motherOf(Y,Z).

An infinite expansion ensues.
The solution is simple—place the
“base case” fact that terminates
recursion first.
If we use
isMortal(eve).

isMortal(X) :-
 isMortal(Y), motherOf(X,Y).
yes

| ?- isMortal(eve).

yes

But now another problem appears!
If we ask
| ?- isMortal(clarkKent).

we go into another infinite search!
Why?
The problem is that Clark Kent is
from the planet Krypton, and

459CS 538 Spring 2008©

hence won’t appear in our
motherOf database.
Let’s trace the query.
It doesn’t match
isMortal(eve).
We next try
isMortal(clarkKent) :-
 isMortal(Y),
 motherOf(clarkKent,Y).

We try Y=eve, but eve isn’t Clark’s
mother. So we recurse, getting:
isMortal(Z), motherOf(Y,Z),
motherOf(clarkKent,Y).

But eve isn’t Clark’s grandmother
either! So we keep going further
back, trying to find a chain of
descendents that leads from eve
to clarkKent. No such chain
exists, and there is no limit to
how long a chain Prolog will try.

460CS 538 Spring 2008©

There is a solution though!
We simply rewrite our recursive
definition to be
 isMortal(X) :-
 motherOf(X,Y),isMortal(Y).

This is logically the same, but
now we work from the individual
X back toward eve, rather than
from eve toward X. Since we have
no motherOf relation involving
clarkKent, we immediately stop
our search and answer no!

461CS 538 Spring 2008©

Extra-logical Aspects of
Prolog

To make a Prolog program more
efficient, or to represent negative
information, Prolog needs
features that have a procedural
flavor. These constructs are called
“extra-logical” because they go
beyond Prolog’s core of logic-
based inference.

462CS 538 Spring 2008©

The Cut
The most commonly used extra-
logical feature of Prolog is the “cut
symbol,” “!”
A ! in a goal, fact or rule “cuts off”
backtracking.
In particular, once a ! is reached
(and automatically matched), we
may not backtrack across it. The
rule we’ve selected and the
bindings we’ve already selected
are “locked in” or “frozen.”
For example, given
x(A) :- y(A,B), z(B), ! , v(B,C).

once the ! is hit we can’t
backtrack to resatisfy y(A,B) or
z(B) in some other way. We are
locked into this rule, with the
bindings of A and B already in
place.

463CS 538 Spring 2008©

We can backtrack to try various
solutions to v(B,C).
It is sometimes useful to have
several !’s in a rule. This allows us
to find a partial solution, lock it
in, find a further solution, then
lock it in, etc.
For example, in a rule
a(X) - b(X), !, c(X,Y), ! , d(Y).

we first try to satisfy b(X),
perhaps trying several facts or
rules that define the b relation.
Once we have a solution to b(X),
we lock it in, along with the
binding for X.
Then we try to satisfy c(X,Y),
using the fixed binding for X, but
perhaps trying several bindings
for Y until c(X,Y) is satisfied.
We then lock in this match using
another !.

464CS 538 Spring 2008©

Finally we check if d(Y) can be
satisfied with the binding of Y
already selected and locked in.

465CS 538 Spring 2008©

When are Cuts Needed?
A cut can be useful in improving
efficiency, by forcing Prolog to
avoid useless or redundant
searches.
Consider a query like
member(X,list1),
member(X,list2), isPrime(X).

This asks Prolog to find an X that
is in list1 and also in list2 and
also is prime.
X will be bound, in sequence, to
each value in list1. We then
check if X is also in list2, and
then check if X is prime.
Assume we find X=8 is in list1
and list2. isPrime(8) fails (of
course). We backtrack to
member(X,list2) and resatisfy it
with the same value of X.

466CS 538 Spring 2008©

But clearly there is never any
point in trying to resatisfy
member(X,list2). Once we
know a value of X is in list2, we
test it using isPrime(X). If it
fails, we want to go right back to
member(X,list1) and get a
different X.
To create a version of member
that never backtracks once it has
been satisfied we can use !.
We define
member1(X,[X|_]) :- !.
member1(X,[_|Y]) :-
 member1(X,Y).

Our query is now
member(X,list1),
 member1(X,list2), isPrime(X).

(Why isn’t member1 used in both
terms?)

467CS 538 Spring 2008©

Expressing Negative
Information

Sometimes it is useful to state
rules about what can’t be true.
This allows us to avoid long and
fruitless searches.
fail is a goal that always fails. It
can be used to represent goals or
results that can never be true.
Assume we want to optimize our
grandMotherOf rules by stating
that a male can never be anyone’s
grandmother (and hence a
complete search of all motherOf
and fatherOf relations is
useless).
A rule to do this is
grandMotherOf(X,GM) :-
 male(GM), fail.

468CS 538 Spring 2008©

This rule doesn’t do quite what
we hope it will!
Why?
The standard approach in Prolog
is to try other rules if the current
rule fails.
Hence we need some way to “cut
off” any further backtracking once
this negative rule is found to be
applicable.
This can be done using
 grandMotherOf(X,GM) :-
 male(GM),!, fail.

469CS 538 Spring 2008©

Other Extra-Logical
Operators

• assert and retract

These operators allow a Prolog
program to add new rules during
execution and (perhaps) later
remove them. This allows
programs to learn as they
execute.
•findall

Called as findall(X,goal,List)
where X is a variable in goal. All
possible solutions for X that
satisfy goal are found and placed
in List.
For example,
findall(X,
(append(_,[X|_],[-1,2,-3,4]),(X<0)), L).

L = [-1,-3]

470CS 538 Spring 2008©

• var and nonvar

var(X) tests whether X is
unbound (free).
nonvar(Y) tests whether Y is

bound (no longer free).
These two operators are useful in
tailoring rules to particular
combinations of bound and
unbound variables. For example,
grandMotherOf(X,GM) :-
 male(GM),!, fail.

might backfire if GM is not yet
bound. We could set GM to a
person for whom male(GM) is
true, then fail because we don’t
want grandmothers who are male!
To remedy this problem. we use
the rule only when GM is bound.
Our rule becomes
grandMotherOf(X,GM) :-
 nonvar(GM), male(GM),!, fail.

471CS 538 Spring 2008©

An Example of Extra-Logical
Programming

Factorial is a very common
example program. It’s well known,
and easy to code in most
languages.
In Prolog the “obvious” solution is:
fact(N,1) :- N =< 1.

fact(N,F) :- N > 1, M is N-1,
 fact(M,G), F is N*G.

This definition is certainly correct.
It mimics the usual recursive
solution.
But,
in Prolog “inputs” and “outputs”
are less distinct than in most
languages.
In fact, we can envision 4
different combinations of inputs

472CS 538 Spring 2008©

and outputs, based on what is
fixed (and thus an input) and
what is free (and hence is to be
computed):
1. N and F are both ground (fixed).

We simply must decide if F=N!
2. N is ground and F is free. This
is how fact is usually used. We
must compute an F such that F=N!
3. F is fixed and N is free. This is
an uncommon usage. We must
find an N such that F=N!, or
determine that no such N is
possible.
4. Both N and F are free. We
generate, in sequence, pairs of N
and F values such that F=N!

473CS 538 Spring 2008©

Our solution works for
combinations 1 and 2 (where N is
fixed), but not combinations 3
and 4. (The problem is that N =<
1 and N > 1 can’t be satisfied
when N is free).
We’ll need to use nonvar and ! to
form a solution that works for all
4 combinations of inputs.
We first handle the case where N
is ground:
fact(1,1).
fact(N,1) :- nonvar(N), N =< 1, ! .
fact(N,F) :- nonvar(N), N > 1, !,
M is N-1, fact(M,G), F is N*G, ! .

The first rule handles the base
case of N=1.
The second rule handles the case
of N<1.

474CS 538 Spring 2008©

The third rule handles the case of
N >1. The value of F is computed
recursively. The first ! in each of
these rules forces that rule to be
the only one used for the values
of N that match. Moreover, the
second ! in the third rule states
that after F is computed, further
backtracking is useless; there is
only one F value for any given N
value.
To handle the case where F is
bound and N is free, we use
fact(N,F) :- nonvar(F), !,
 fact(M,G), N is M+1, F2 is N*G,
 F =< F2, !, F=F2.

In this rule we generate N, F2
pairs until F2 >= F. Then we
check if F=F2. If this is so, we
have the N we want. Otherwise,
no such N can exist and we fail
(and answer no).

475CS 538 Spring 2008©

For the case where both N and F
are free we use:
fact(N,F) :- fact(M,G), N is M+1,
 F is N*G.

This systematically generates N, F
pairs, starting with N=2, F=2 and
then recursively building
successor values (N=3, F=6, then
N=4, F=24, etc.)

476CS 538 Spring 2008©

Parallelism in Prolog
One reason that Prolog is of
interest to computer scientists is
that its search mechanism lends
itself to parallel evaluation.
In fact, it supports two different
kinds of parallelism:
• AND Parallelism

• OR Parallelism

477CS 538 Spring 2008©

And Parallelism
When we have a goal that
contains subgoals connected by
the “,” (And) operator, we may be
able to utilize “and parallelism.”
Rather than solve subgoals in
sequence, we may be able to
solve them in parallel if bindings
can be properly propagated.
Thus in
a(X), b(X,Y), c(X,Z), d(Y,Z).

we may be able to first solve
a(X), binding X, then solve
b(X,Y) and c(X,Z) in parallel,
binding Y and Z, then finally solve
d(Y,Z).

478CS 538 Spring 2008©

An example of this sort of and
parallelism is
member(X,list1),
 member1(X,list2), isPrime(X).

Here we can let member(X,list1)
select an X value, then test
member1(X,list2) and
isPrime(X) in parallel. If one or
the other fails, we just select
another X from list1 and retest
member1(X,list2) and
isPrime(X) in parallel.

479CS 538 Spring 2008©

OR Parallelism
When we match a goal we almost
always have a choice of several
rules or facts that may be
applicable. Rather than try them
in sequence, we can try several
matches of different facts or rules
in parallel. This is “or parallelism.”
Thus given
 a(X) :- b(X).

 a(Y) :- c(Y).

when we try to solve
a(10).

we can simultaneously check both
b(10) and c(10).

480CS 538 Spring 2008©

Recall our definition of
member(X,L) :-
 append(P,[X|S],L).

where append is defined as
append([],L,L).

append([X|L1],L2,[X|L3]) :-
 append(L1,L2,L3).

Assume we have the query
| ? member(2,[1,2,3]).

This immediately simplifies to
append(P,[2|S],[1,2,3]).

Now there are two append
definitions we can try in parallel:
(1) match append(P,[2|S],[1,2,3])
with append([],L,L). This
requires that [2|S] = [1,2,3],
which must fail.
(2) match
append(P,[2|S],[1,2,3]) with
append([X|L1],L2,[X,L3]).

481CS 538 Spring 2008©

This requires that P=[X|L1],
[2|S]=L2, [1,2,3]=[X,L3].
Simplifying, we require that X=1,
P=[1|L1], L3=[2,3].
Moreover we must solve
append(L1,L2,L3) which
simplifies to
append(L1,[2|S],[2,3]).
We can match this call to append
in two different ways, so or
parallelism can be used again.
When we try matching
append(L1,[2|S],[2,3]) against
append([],L,L) we get
[2|S]=[2,3], which is satisfiable
if S is bound to [3]. We therefore
signal back that the query is true.

482CS 538 Spring 2008©

Speculative Parallelism
Prolog also lends itself nicely to
speculative parallelism. In this
form of parallelism, we “guess” or
speculate that some computation
may be needed in the future and
start it early. This speculative
computation can often be done in
parallel with the main (non-
speculative) computation.
Recall our example of
member(X,list1),
 member1(X,list2), isPrime(X).

After member(X,list1) has
generated a preliminary solution
for X, it is tested (perhaps in
parallel) by member1(X,list2)
and isPrime(X).
But this value of X may be
rejected by one or both of these

483CS 538 Spring 2008©

tests. If it is, we’ll ask
member(X,list1) to find a new
binding for X. If we wish, this next
binding can be generated
speculatively, while the current
value of X is being tested. In this
way if the current value of X is
rejected, we’ll have a new value
ready to try (or know that no
other binding of X is possible).
If the current value of X is
accepted, the extra speculative
work we did is ignored. It wasn’t
needed, but was useful insurance
in case further X bindings were
needed.

484CS 538 Spring 2008©

Reading Assignment
• Python Tutorial

(linked from class web page)

485CS 538 Spring 2008©

Python
A modern and innovative
scripting languages is Python,
developed by Guido van Rossum
in the mid-90s. Python is named
after the BBC “Monty Python”
television series.
Python blends the expressive
power and flexibility of earlier
scripting languages with the
power of object-oriented
programming languages.
It offers a lot to programmers:
• An interactive development mode

as well as an executable “batch”
mode for completed programs.

• Very reasonable execution speed.
Like Java, Python programs are
compiled. Also like Java, the
compiled code is in an intermediate

486CS 538 Spring 2008©

language for which an interpreter
is written. Like Java this insulates
Python from many of the vagaries
of the actual machines on which it
runs, giving it portability of an
equivalent level to that of Java.
Unlike Java, Python retains the
interactivity for which interpreters
are highly prized.

• Python programs require no
compilation or linking.
Nevertheless, the semi-compiled
Python program still runs much
faster than its traditionally
interpreted rivals such as the
shells, awk and perl.

• Python is freely available on almost
all platforms and operating
systems (Unix, Linux, Windows,
MacOs, etc.)

487CS 538 Spring 2008©

• Python is completely object
oriented. It comes with a full set of
objected oriented features.

• Python presents a first class object
model with first class functions and
multiple inheritance. Also included
are classes, modules, exceptions
and late (run-time) binding.

• Python allows a clean and open
program layout. Python code is less
cluttered with the syntactic “noise”
of declarations and scope
definitions. Scope in a Python
program is defined by the
indentation of the code in question.
Python thus breaks with current
language designs in that white
space has now once again acquired
significance.

488CS 538 Spring 2008©

• Like Java, Python offers automated
memory management through run-
time reference counting and
garbage collection of unreferenced
objects.

• Python can be embedded in other
products and programs as a control
language.

• Python’s interface is well exposed
and is reasonably small and simple.

• Python’s license is truly public.
Python programs can be used or
sold without copyright restrictions.

• Python is extendable. You can
dynamically load compiled Python,
Python source, or even dynamically
load new machine (object) code to
provide new features and new
facilities.

489CS 538 Spring 2008©

• Python allows low-level access to
its interpreter. It exposes its
internal plumbing to a significant
degree to allow programs to make
use of the way the plumbing
works.

• Python has a rich set of external
library services available. This
includes, network services, a GUI
API (based on tcl/Tk), Web support
for the generation of HTML and the
CGI interfaces, direct access to
databases, etc.

490CS 538 Spring 2008©

Using Python
Python may be used in either
interactive or batch mode.
In interactive mode you start up
the Python interpreter and enter
executable statements. Just
naming a variable (a trivial
expression) evaluates it and
echoes its value.
For example (>>> is the Python
interactive prompt):
>>> 1
1

>>> a=1

>>> a
1

>>> b=2.5

>>> b
2.5

491CS 538 Spring 2008©

>>> a+b
3.5

>>> print a+b
3.5

You can also incorporate Python
statements into a file and execute
them in batch mode. One way to
do this is to enter the command
python file.py

where file.py contains the
Python code you want executed.
Be careful though; in batch mode
you must use a print (or some
other output statement) to force
output to be printed. Thus
1

a=1

a

b=2.5

492CS 538 Spring 2008©

b

a+b

print a+b

when run in batch mode prints
only 3.5 (the output of the print
statement).
You can also run Python programs
as Unix shell scripts by adding the
line
#! /usr/bin/env python
to the head of your Python file.
(Since # begins Python comments,
you can also feed the same
augmented file directly to the
Python interpreter)

493CS 538 Spring 2008©

Python Command Format
In Python, individual primitive
commands and expressions must
appear on a single line.
This means that
 a = 1

 +b

does not assign 1+b to a! Rather, it
assigns 1 to a, then evaluates +b.
If you wish to span more than one
line, you must use \ to escape the
line:
a = 1 \

 +b

is equivalent to
a = 1 +b

494CS 538 Spring 2008©

Compound statements, like if
statements and while loops, can
span multiple lines, but individual
statements within an if or while
(if they are primitive) must appear
one a single line.

Why this restriction?
With it, ;’s are mostly
unnecessary!
A ; at the end of a statement is
legal but usually unnecessary, as
the end-of-line forces the
statement to end.
You can use a ; to squeeze more
than one statement onto a line, if
you wish:
a=1; b=2 ; c=3

495CS 538 Spring 2008©

Identifiers and Reserved Words
Identifiers look much the same as
in most programming languages.
They are composed of letters,
digits and underscores. Identifiers
must begin with a letter or
underscore. Case is significant. As
in C and C++, identifiers that
begin with an underscore often
have special meaning.

Python contains a fairly typical set
of reserved words:
and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass
def finally in print

496CS 538 Spring 2008©

Numeric Types
There are four numeric types:
1. Integers, represented as a 32

bit (or longer) quantity. Digits
sequences (possibly) signed are
integer literals:
1 -123 +456

2. Long integers, of unlimited
precision. An integer literal
followed by an l or L is a long
integer literal:
12345678900000000000000L

3. Floating point values, represented
as a 64 bit floating point number.
Literals are of fixed decimal or
exponential form:
123.456 1e10 6.0231023

497CS 538 Spring 2008©

4. Complex numbers, represented as
a pair of floating point numbers.
In complex literals j or J is used
to denote the imaginary part of
the complex value:
1.0+2.0j -22.1j 10e10J+20.0

There is no character type. A
literal like 'a' or "c" denotes a
string of length one.

There is no boolean type. A zero
numeric value (any form), or None
(the equivalent of void) or an
empty string, list, tuple or
dictionary is treated as false;
other values are treated as true.
Hence
 "abc" and "def"

is treated as true in an if, since
both strings are non-empty.

498CS 538 Spring 2008©

Arithmetic Operators
Op Description
** Exponentiation
+ Unary plus
- Unary minus
~ Bit-wise complement

 (int or long only)
* Multiplication
/ Division
% Remainder
+ Binary plus
- Binary minus
<< Bit-wise left shift

(int or long only)
>> Bit-wise right shift

 (int or long only)
& Bit-wise and (int or long only)
| Bit-wise or (int or long only)
^ Bit-wise Xor (int or long only)

499CS 538 Spring 2008©

< Less than
> Greater than
>= Greater than or equal
<= Less than or equal
== Equal
!= Not equal
and Boolean and
or Boolean or
not Boolean not

500CS 538 Spring 2008©

Operator Precedence Levels
Listed from lowest to highest:
or Boolean OR
and Boolean AND
not Boolean NOT
<, <=, >, >=, <>, !=, == Comparisons
| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
*, /, % Multiplication, division,

remainder
** Exponentiation
+, - Positive, negative (unary)
~ Bitwise not

501CS 538 Spring 2008©

Arithmetic Operator Use
Arithmetic operators may be used
with any arithmetic type, with
conversions automatically
applied. Bit-wise operations are
restricted to integers and long
integers. The result type is
determined by the “generality” of
the operands. (Long is more
general than int, float is more
general than both int and long,
complex is the most general
numeric type). Thus
>>> 1+2
3

>>> 1+111L
112L

>>> 1+1.1
2.1

>>> 1+2.0j

502CS 538 Spring 2008©

(1+2j)

Unlike almost all other
programming languages,
relational operators may be
“chained” (as in standard
mathematics).
Therefore
 a > b > c

means (a > b) and (b > c)

503CS 538 Spring 2008©

Assignment Statements
In Python assignment is a
statement not an expression.
Thus
 a+(b=2)

is illegal.
Chained assignments are allowed:
a = b = 3

Since Python is dynamically
typed, the type (and value)
associated with an identifier can
change because of an
assignment:
>>> a = 0

>>> print a
0

>>> a = a + 0L

>>> print a

504CS 538 Spring 2008©

0L

>>> a = a + 0.0

>>> print a
0.0

>>> a = a + 0.0J

>>> print a
0j

505CS 538 Spring 2008©

If and While Statements
Python contains if and while
statements that are fairly similar
to those found in C and Java.
There are some significant
differences though.
A line that contains an if, else or
while ends in a “:”. Thus we
might write:
 if a > 0:

 b = 1

Moreover the indentation of the
then part is significant! You don’t
need { and } in Python because
all statements indented at the
same level are assumed to be part
of the same block.

506CS 538 Spring 2008©

In the following Python
statements
if a>0:

 b=1

 c=2

d=3

the assignments to b and c
constitute then part; the
assignment to d follows the if
statement, and is independent of
it. In interactive mode a blank line
is needed to allow the interpreter
to determine where the if
statement ends; this blank line is
not needed in batch mode.

507CS 538 Spring 2008©

The if Statement
The full form of the if statement
is
if expression:

 statement(s)

elif expression:

 statement(s)

...

else:

 statement(s)

Note those pesky :’s at the end of
the if, elif and else lines. The
expressions following the if and
optional elif lines are evaluated
until one evaluates to true. Then
the following statement(s),
delimited by indentation, are
executed. If no expression
evaluates to true, the statements
following the else are executed.

508CS 538 Spring 2008©

Use of else and elif are
optional; a “bare” if may be used.
If any of the lists of statements is
to be null, use pass to indicate
that nothing is to be done.
For example
if a>0:

 b=1

elif a < 0:

 pass

else:

 b=0

This if sets b to 1 if a is > 0; it
sets b to 0 if a == 0, and does
nothing if a < 0.

509CS 538 Spring 2008©

While Loops
Python contains a fairly
conventional while loop:
while expression:

 body

Note the “:” that ends the header
line. Also, indentation delimits the
body of the loop; no braces are
needed. For example,
>>> a=0; b=0

>>> while a < 5:

... b = b+a**2

... a= a+1

...

>>> print a,b
5 30

510CS 538 Spring 2008©

Break, Continue and Else in
Loops

Like C, C++ and Java, Python
allows use of break within a loop
to force loop termination. For
example,
>>> a=1

>>> while a < 10:

... if a+a == a**2:

... break

... else:

... a=a+1

...

>>> print a
2

511CS 538 Spring 2008©

A continue may be used to force
the next loop iteration:
>>> a=1

>>> while a < 100:

... a=a+1

... if a%2==0:

... continue

... a=3*a

...

>>> print a
105

512CS 538 Spring 2008©

Python also allows you to add an
else clause to a while (or for)
loop.
The syntax is
while expression:

 body

else:

 statement(s)

The else statements are
executed when the termination
condition becomes false, but not
when the loop is terminated with
a break. As a result, you can
readily program “search loops”
that need to handle the special
case of search failure:

513CS 538 Spring 2008©

>>> a=1

>>> while a < 1000:

... if a**2 == 3*a-1:

... print "winner: ",a

... break

... a=a+1

... else:

... print "No match"

...

No match

514CS 538 Spring 2008©

Sequence Types
Python includes three sequence
types: strings, tuples and lists. All
sequence types may be indexed,
using a very general indexing
system.
Strings are sequences of
characters; tuples and lists may
contain any type or combination
of types (like Scheme lists).
Strings and tuples are immutable
(their components may not be
changed). Lists are mutable, and
be updated, much like arrays.
Strings may be delimited by either
a single quote (') or a double
quote (") or even a triple quote
(''' or """). A given string must
start and stop with the same
delimiter. Triply quoted strings
may span multiple lines. There is

515CS 538 Spring 2008©

no character type or value;
characters are simply strings of
length 1. Legal strings include
'abc' "xyz" '''It's OK!'''

Lists are delimited by “[“ and “]”.
Empty (or null lists) are allowed.
Valid list literals include
 [1,2,3] ["one",1]
 [['a'],['b'],['c']] []

Tuples are a sequence of values
separated by commas. A tuple
may be enclosed within
parentheses, but this isn’t
required. A empty tuple is (). A
singleton tuple ends with a
comma (to distinguish it from a
simple scalar value).
Thus (1,) or just 1, is a valid
tuple of length one.

516CS 538 Spring 2008©

Indexing Sequence Types
Python provides a very general
and powerful indexing
mechanism. An index is enclosed
in brackets, just like a subscript in
C or Java. Indexing starts at 0.
Thus we may have
>>> 'abcde'[2]
'c'

>>> [1,2,3,4,5][1]
2

>>> (1.1,2.2,3.3)[0]
1.1

Using an index that’s too big
raises an IndexError exception:
>>> 'abc'[3]
IndexError: string index out of
range

517CS 538 Spring 2008©

Unlike most languages, you can
use negative index values; these
simply index from the right:
>>> 'abc'[-1]
'c'

>>> [5,4,3,2,1][-2]
2

>>> (1,2,3,4)[-4]
1

You may also access a slice of a
sequence value by supplying a
range of index values. The
notation is
data[i:j]

which selects the values in data
that are >=i and < j. Thus
>>> 'abcde'[1:2]
'b'

>>> 'abcde'[0:3]
'abc'

518CS 538 Spring 2008©

>>> 'abcde'[2:2]
''

You may omit a lower or upper
bound on a range. A missing
lower bound defaults to 0 and a
missing upper bound defaults to
the maximum legal index. For
example,
>>> [1,2,3,4,5][2:]
[3, 4, 5]

>>> [1,2,3,4,5][:3]
[1, 2, 3]

An upper bound that’s too large in
a range is interpreted as the
maximum legal index:
>>> 'abcdef'[3:100]
'def'

You may use negative values in
ranges too—they’re interpreted as
being relative to the right end of
the sequence:

519CS 538 Spring 2008©

>>> 'abcde'[0:-2]
'abc'

>>> 'abcdefg'[-5:-2]
'cde'

>>> 'abcde'[-3:]
'cde'

>>> 'abcde'[:-1]
'abcd'

Since arrays may be assigned to,
you may assign a slice to change
several values at once:
>>> a=[1,2,3,4]

>>> a[0:2]=[-1,-2]

>>> a
[-1, -2, 3, 4]

>>> a[2:]=[33,44]

>>> a
[-1, -2, 33, 44]

520CS 538 Spring 2008©

The length of the value assigned
to a slice need not be the same
size as the slice itself, so you can
shrink or expand a list by
assigning slices:
>>> a=[1,2,3,4,5]

>>> a[2:3]=[3.1,3.2]

>>> a
[1, 2, 3.1, 3.2, 4, 5]

>>> a[4:]=[]

>>> a
[1, 2, 3.1, 3.2]

>>> a[:0]=[-3,-2,-1]

>>> a
[-3, -2, -1, 1, 2, 3.1, 3.2]

521CS 538 Spring 2008©

Other Operations on
Sequences

Besides indexing and slicing, a
number of other useful operations
are provided for sequence types
(strings, lists and tuples).
These include:

+ (catenation):
>>> [1,2,3]+[4,5,6]
[1, 2, 3, 4, 5, 6]

>>> (1,2,3)+(4,5)
(1, 2, 3, 4, 5)

>>> (1,2,3)+[4,5]
TypeError: illegal argument
type for built-in operation

>>> "abc"+"def"
'abcdef'

522CS 538 Spring 2008©

• * (Repetition):
>>> 'abc'*2
'abcabc'

>>> [3,4,5]*3
[3, 4, 5, 3, 4, 5, 3, 4, 5]

• Membership (in, not in)
>>> 3 in [1,2,3,4]
1

>>> 'c' in 'abcde'
1

• max and min:
>>> max([3,8,-9,22,4])
22

>>> min('aa','bb','abc')
'aa'

523CS 538 Spring 2008©

Operations on Lists
As well as the operations
available for all sequence types
(including lists), there are many
other useful operations available
for lists. These include:
• count (Count occurrences of an

item in a list):
>>> [1,2,3,3,21].count(3)
2

• index (Find first occurrence of an
item in a list):
>>> [1,2,3,3,21].index(3)
2

>>> [1,2,3,3,21].index(17)
ValueError: list.index(x): x
not in list

524CS 538 Spring 2008©

• remove (Find and remove an item
from a list):
>>> a=[1,2,3,4,5]
>>> a.remove(4)
>>> a
[1, 2, 3, 5]

>>> a.remove(17)
ValueError: list.remove(x): x
not in list

• pop (Fetch and remove i-th element
of a list):
>>> a=[1,2,3,4,5]
>>> a.pop(3)
4

>>> a
[1, 2, 3, 5]

>>> a.pop()
5

>>> a
[1, 2, 3]

525CS 538 Spring 2008©

• reverse a list:
>>> a=[1,2,3,4,5]
>>> a.reverse()
>>> a
[5, 4, 3, 2, 1]

• sort a list:
>>> a=[5,1,4,2,3]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]

• Create a range of values:
>>> range(1,5)
[1, 2, 3, 4]

>>> range(1,10,2)
[1, 3, 5, 7, 9]

>>> range(10,1,-2)
[10, 8, 6, 4, 2]

526CS 538 Spring 2008©

Dictionaries
Python also provides a dictionary
type (sometimes called an
associative array). In a dictionary
you can use a number (including a
float or complex), string or tuple
as an index. In fact any
immutable type can be an index
(this excludes lists and
dictionaries).
An empty dictionary is denoted
{ }.
A non-empty dictionary may be
written as
{ key1:value1, key2:value2, ... }

For example,
c={ 'bmw':650, 'lexus':'LS 460',
 'mercedes':'S 550'}

527CS 538 Spring 2008©

You can use a dictionary much
like an array, indexing it using
keys, and updating it by
assigning a new value to a key:
>>> c['bmw']
650

>>> c['bmw']='M6'

>>> c['honda']='accord'

You can delete a value using
del:
>>> del c['honda']
>>> c['honda']

KeyError: honda

528CS 538 Spring 2008©

You can also check to see if a
given key is valid, and also list
all keys, values, or key-value
pairs in use:
>>> c.has_key('edsel')
0

>>> c.keys()
['bmw', 'mercedes', 'lexus']

>>> c.values()
['M6', 'S 550', 'LS 460']

>>> c.items()
[('bmw', 'M6'), ('mercedes',
 'S 550'), ('lexus', 'LS 460')]

529CS 538 Spring 2008©

For Loops
In Python’s for loops, you don’t
explicitly control the steps of an
iteration. Instead, you provide a
sequence type (a string, list or
sequence), and Python
automatically steps through the
values.
Like a while loop, you must end
the for loop header with a “:” and
the body is delimited using
indentation. For example,
>>> for c in 'abc':

... print c

...

a

b

c

530CS 538 Spring 2008©

The range function, which
creates a list of values in a fixed
range is useful in for loops:
>>> a=[5,2,1,4]

>>> for i in range(0,len(a)):

... a[i]=2*a[i]

...

>>> print a
[10, 4, 2, 8]

531CS 538 Spring 2008©

You can use an else with for
loops too. Once the values in the
specified sequence are exhausted,
the else is executed unless the
for is exited using a break. For
example,
 for i in a:

 if i < 0:

 print 'Neg val:',i

 break

 else:

 print 'No neg vals'

532CS 538 Spring 2008©

Sets
Lists are often used to represent
sets, and Python allows a list (or
string or tuple) to be converted to
a set using the set function:
>>> set([1,2,3,1])
set([1, 2, 3])

>>> set("abac")
set([’a’, ’c’, ’b’])

>>> set((1,2,3,2,1))
set([1, 2, 3])

Sets (of course) disallow duplicate
elements. They are unordered
(and thus can’t be indexed), but
they can be iterated through
using a for:
>>> for v in set([1,1,2,2,3,4,2,1]):

... print v,

1 2 3 4

533CS 538 Spring 2008©

The usual set operators are
provided:

Union (|),
Intersection (&),
Difference (-)
and Symmetric Difference
 (^, select members in either but

not both operands)
>>> set([1,2,3]) | set([3,4,5])
set([1, 2, 3, 4, 5])
>>> set([1,2,3]) & set([3,4,5])
set([3])
>>> set([1,2,3]) - set([3,4,5])
set([1, 2])
>>> set([1,2,3]) ^ set([3,4,5])
set([1, 2, 4, 5])

534CS 538 Spring 2008©

List Comprehensions
Python provides an elegant
mechanism for building a list by
embedding a for within list
brackets. This a termed a List
Comprehension.
The general form is an
expression, followed by a for to
generate values, optionally
followed by ifs (to select or reject
values) of additional fors.
In essence this is a procedural
version of a map, without the need
to actually provide a function to
be mapped.

To begin with a simple example,
>>> [2*i for i in [1,2,3]]
[2, 4, 6]

535CS 538 Spring 2008©

This is the same as mapping the
doubling function on the list
[1,2,3], but without an explicit
function.
With an if to filter values, we
might have:
>>> [2*i for i in [3,2,1,0,-1] if i != 0]

[6, 4, 2, -2]

We can also (in effect) nest for’s:
[(x,y) for x in [1,2,3] for y in [-1,0]]

[(1, -1), (1, 0), (2, -1), (2, 0),
 (3, -1), (3, 0)]

536CS 538 Spring 2008©

Function Definitions
Function definitions are of the
form
def name(args):

 body

The symbol def tells Python that
a function is to be defined. The
function is called name and args
is a tuple defining the names of
the function’s arguments. The
body of the function is delimited
using indentation. For example,
def fact(n):

 if n<=1:

 return 1

 else:

 return n*fact(n-1)

>>> fact(5)
120

>>> fact(20L)

537CS 538 Spring 2008©

2432902008176640000L

>>> fact(2.5)
3.75

>>> fact(2+1J)
(1+3j)

Scalar parameters are passed by
value; mutable objects are
allocated in the heap and hence
are passed (in effect) by reference:
>>> def asg(ar):

... a[1]=0

... print ar

...

>>> a=[1,2,3,4.5]

>>> asg(a)
[1, 0, 3, 4.5]

538CS 538 Spring 2008©

Arguments may be given a default
value, making them optional in a
call. Optional parameters must
follow required parameters in
definitions. For example,
 >>> def expo(val,exp=2):

... return val**exp

...

>>> expo(3,3)
27

>>> expo(3)
9

>>> expo()
TypeError: not enough arguments;
expected 1, got 0

539CS 538 Spring 2008©

A variable number of arguments
is allowed; you prefix the last
formal parameter with a *; this
parameter is bound to a tuple
containing all the actual
parameters provided by the caller:
>>> def sum(*args):
... sum=0
... for i in args:
... sum=sum+i
... return sum
...

>>> sum(1,2,3)
6

>>> sum(2)
2

>>> sum()
0

540CS 538 Spring 2008©

You may also use the name of
formal parameters in a call,
making the order of parameters
less important:
>>> def cat(left="[",body="",

 right="]"):

... return left+body+right

...

>>> cat(body='xyz');
'[xyz]'

>>> cat(body='hi there!'
 ,left='--[')
'--[hi there!]'

541CS 538 Spring 2008©

Scoping Rules in Functions
Each function body has its own
local namespace during
execution. An identifier is
resolved (if possible) in the local
namespace, then (if necessary) in
the global namespace.
Thus
>>> def f():

... a=11

... return a+b

...

>>> b=2;f()
13

>>> a=22;f()
13

>>> b=33;f()
44

542CS 538 Spring 2008©

Assignments are to local
variables, even if a global exists.
To force an assignment to refer to
a global identifier, you use the
declaration
global id

which tells Python that in this
function id should be considered
global rather than local. For
example,
>>> a=1;b=2

>>> def f():

... global a

... a=111;b=222

...

>>> f();print a,b
111 2

543CS 538 Spring 2008©

Other Operations on Functions
Since Python is interpreted, you
can dynamically create and
execute Python code.
The function eval(string)
interprets string as a Python
expression (in the current
execution environment) and
returns what is computed. For
example,
>>> a=1;b=2

>>> eval('a+b')
3

544CS 538 Spring 2008©

exec(string) executes string
as arbitrary Python code (in the
current environment):
>>> a=1;b=2

>>> exec('for op in "+-*/":
print(eval("a"+op+"b"))')
3

-1

2

0

execfile(string) executes the
contents of the file whose
pathname is specified by string.
This can be useful in loading an
existing set of Python definitions.

545CS 538 Spring 2008©

The expression
lambda args: expression

creates an anonymous function
with args as its argument list and
expression as it body. For
example,
>>> (lambda a:a+1)(2)
3

And there are definitions of map,
reduce and filter to map a
function to a list of values, to
reduce a list (using a binary
function) and to select values
from a list (using a predicate):
>>> def double(a):

... return 2*a;

...

>>> map(double,[1,2,3,4])
[2, 4, 6, 8]

546CS 538 Spring 2008©

>>> def sum(a,b):

... return a+b

...

>>> reduce(sum,[1,2,3,4,5])
15

>>> def even(a):

... return not(a%2)

...

>>> filter(even,[1,2,3,4,5])
[2, 4]

547CS 538 Spring 2008©

Generators
Many languages, including Java,
C# and Python provide iterators
to index through a collection of
values. Typically, a next function
is provided to generate the next
value and hasNext is used to test
for termination.
Python provides generators, a
variety of function (in effect a co-
routine) to easily and cleanly
generate the sequence of values
required of an iterator.
In any function a yield (rather
than a return) can provide a value
and suspend execution. When the
next value is needed (by an
invisible call to next) the function
is resumed at the point of the
yield. Further yields generate
successive values. Normal

548CS 538 Spring 2008©

termination indicates that
hasNext is no longer true.
As a very simple example, the
following function generates all
the values in a list L except the
initial value:
>>> def allButFirst(L):

... for i in L[1:]:

... yield i

>>> for j in allButFirst([1,2,3,4]):

... print j,

2 3 4

The power of generators is their
ability to create non-standard
traversals of a data structure in a
clean and compact manner.

549CS 538 Spring 2008©

As an example, assume we wish
to visit the elements of a list not
in left-to-right or right-to-left
order, but in an order that visits
even positions first, then odd
positions. That is we will first see
L[0], then L[2], then L[4], ...,
then L[1], L[3], ...
We just write a generator that
takes a list and produces the
correct visit order:
>>> def even_odd(L):
... ind = range(0,len(L),2)

... ind = ind + range(1,len(L),2)

... for i in ind:

... yield L[i]

Then we can use this generator
wherever an iterator is needed:
>>> for j in even_odd([10,11,12,13,14]):

... print j,

...
10 12 14 11 13

550CS 538 Spring 2008©

Generators work in list
comprehensions too:
>>> [j for j in even_odd([11,12,13])]

[11, 13, 12]

551CS 538 Spring 2008©

I/O in Python
The easiest way to print
information in Python is the
print statement. You supply a
list of values separated by
commas. Values are converted to
strings (using the str() function)
and printed to standard out, with
a terminating new line
automatically included. For
example,
>>> print "1+1=",1+1
1+1= 2

If you don’t want the automatic
end of line, add a comma to the
end of the print list:
>>> for i in range(1,11):

... print i,

...

1 2 3 4 5 6 7 8 9 10

552CS 538 Spring 2008©

For those who love C’s printf,
Python provides a nice formatting
capability using a printf-like
notation. The expression
format % tuple

formats a tuple of values using a
format string. The detailed
formatting rules are those of C’s
printf. Thus
>>> print "%d+%d=%d" % (10,20,10+20)

10+20=30

553CS 538 Spring 2008©

File-oriented I/O
You open a file using
open(name,mode)

which returns a “file object.”
name is a string representing the
file’s path name; mode is a string
representing the desired access
mode('r' for read, 'w' for write,
etc.).
Thus
>>> f=open("/tmp/f1","w");
>>> f
<open file '/tmp/f1', mode 'w' at
decd8>

opens a temp file for writing.
The command
 f.read(n)

reads n bytes (as a string).

554CS 538 Spring 2008©

f.read() reads the whole file into
a string. At end-of-file, f.read
returns the null string:
>>> f = open("/tmp/ttt","r")

>>> f.read(3)
'aaa'

>>> f.read(5)
' bbb '

>>> f.read()
'ccc\012ddd eee fff\012g h i\012'

>>> f.read()
''

f.readline() reads a whole line
of input, and f.readlines()
reads the whole input file into a
list of strings:
>>> f = open("/tmp/ttt","r")

>>> f.readline()
'aaa bbb ccc\012'

>>> f.readline()

555CS 538 Spring 2008©

'ddd eee fff\012'

>>> f.readline()
'g h i\012'

>>> f.readline()
''

>>> f = open("/tmp/ttt","r")

>>> f.readlines()
['aaa bbb ccc\012', 'ddd eee
fff\012', 'g h i\012']

f.write(string) writes a string
to file object f; f.close() closes
a file object:
>>> f = open("/tmp/ttt","w")

>>> f.write("abcd")

>>> f.write("%d %d"%(1,-1))

>>> f.close()

>>> f = open("/tmp/ttt","r")

>>> f.readlines()
['abcd1 -1']

556CS 538 Spring 2008©

Classes in Python
Python contains a class creation
mechanism that’s fairly similar to
what’s found in C++ or Java.
There are significant differences
though:
• All class members are public.

• Instance fields aren’t declared.
Rather, you just create fields as
needed by assignment (often in
constructors).

• There are class fields (shared by all
class instances), but there are no
class methods. That is, all methods
are instance methods.

557CS 538 Spring 2008©

• All instance methods (including
constructors) must explicitly
provide an initial parameter that
represents the object instance. This
parameter is typically called self.
It’s roughly the equivalent of this
in C++ or Java.

558CS 538 Spring 2008©

Defining Classes
You define a class by executing a
class definition of the form
class name:

 statement(s)

A class definition creates a class
object from which class instances
may be created (just like in Java).
The statements within a class
definition may be data members
(to be shared among all class
instances) as well as function
definitions (prefixed by a def
command). Each function must
take (at least) an initial parameter
that represents the class instance
within which the function
(instance method) will operate.
For example,

559CS 538 Spring 2008©

class Example:
 cnt=1
 def msg(self):
 print "Bo"+"o"*Example.cnt+

"!"*self.n

>>> Example.cnt
1

>>> Example.msg
<unbound method Example.msg>

Example.msg is unbound because
we haven’t created any instances
of the Example class yet.
We create class instances by using
the class name as a function:
>>> e=Example()

>>> e.msg()
AttributeError: n

560CS 538 Spring 2008©

We get the AttributeError
message regarding n because we
haven’t defined n yet! One way to
do this is to just assign to it,
using the usual field notation:
>>> e.n=1

>>> e.msg()
Boo!

>>> e.n=2;Example.cnt=2

>>> e.msg()
Booo!!

We can also call an instance
method by making the class
object an explicit parameter:
>>> Example.msg(e)
Booo!!

It’s nice to have data members
initialized when an object is
created. This is usually done with
a constructor, and Python allows
this too.

561CS 538 Spring 2008©

A special method named
__init__ is called whenever an
object is created. This method
takes self as its first parameter;
other parameters (possibly made
optional) are allowed.
We can therefore extend our
Example class with a constructor:
class Example:
 cnt=1
 def __init__(self,nval=1):
 self.n=nval
 def msg(self):
 print "Bo"+"o"*Example.cnt+
 "!"*self.n

>>> e=Example()

>>> e.n
1

>>> f=Example(2)

>>> f.n
2

562CS 538 Spring 2008©

You can also define the equivalent
of Java’s toString method by
defining a member function
named __str__(self).
For example, if we add
def __str__(self):

 return "<%d>"%self.n

to Example,
then we can include Example
objects in print statements:
>>> e=Example(2)

>>> print e
<2>

563CS 538 Spring 2008©

Inheritance
Like any language that supports
classes, Python allows inheritance
from a parent (or base) class. In
fact, Python allows multiple
inheritance in which a class
inherits definitions from more
than one parent.
When defining a class you specify
parents classes as follows:
class name(parent classes):

 statement(s)

The subclass has access to its
own definitions as well as those
available to its parents. All
methods are virtual, so the most
recent definition of a method is
always used.

564CS 538 Spring 2008©

class C:
 def DoIt(self):
 self.PrintIt()
 def PrintIt(self):
 print "C rules!"

class D(C):
 def PrintIt(self):
 print "D rules!"
 def TestIt(self):
 self.DoIt()

 dvar = D()
 dvar.TestIt()

D rules!

565CS 538 Spring 2008©

If you specify more than one
parent for a class, lookup is
depth-first, left to right, in the list
of parents provided. For example,
given
class A(B,C): ...

we first look for a non-local
definition in B (and its parents),
then in C (and its parents).

566CS 538 Spring 2008©

Operator Overloading
You can overload definitions of all
of Python’s operators to apply to
newly defined classes. Each
operator has a corresponding
method name assigned to it. For
example, + uses __add__, - uses
__sub__, etc.

567CS 538 Spring 2008©

Given
class Triple:
 def __init__(self,A=0,B=0,C=0):
 self.a=A
 self.b=B
 self.c=C
 def __str__(self):
 return "(%d,%d,%d)"%
 (self.a,self.b,self.c)
 def __add__(self,other):

return Triple(self.a+other.a,
self.b+other.b,

 self.c+other.c)

the following code
t1=Triple(1,2,3)

t2=Triple(4,5,6)

print t1+t2

produces
(5,7,9)

568CS 538 Spring 2008©

Exceptions
Python provides an exception
mechanism that’s quite similar to
the one used by Java.
You “throw” an exception by using
a raise statement:
raise exceptionValue

There are numerous predefined
exceptions, including
OverflowError (arithmetic
overflow), EOFError (when end-
of-file is hit), NameError (when an
undeclared identifier is
referenced), etc.

569CS 538 Spring 2008©

You may define your own
exceptions as subclasses of the
predefined class Exception:
class badValue(Exception):

 def __init__(self,val):

 self.value=val

You catch exceptions in Python’s
version of a try statement:
try:

 statement(s)

except exceptionName1, id1:

 statement(s)

...

except exceptionNamen, idn:

 statement(s)

As was the case in Java, an
exception raised within the try
body is handled by an except
clause if the raised exception
matches the class named in the

570CS 538 Spring 2008©

except clause. If the raised
exception is not matched by any
except clause, the next enclosing
try is considered, or the
exception is reraised at the point
of call.
For example, using our badValue
exception class,
 def sqrt(val):
 if val < 0.0:
 raise badValue(val)
 else:
 return cmath.sqrt(val)

try:
 print "Ans =",sqrt(-123.0)
except badValue,b:
 print "Can’t take sqrt of",

b.value

When executed, we get
Ans = Can’t take sqrt of -123.0

571CS 538 Spring 2008©

Modules
Python contains a module feature
that allows you to access Python
code stored in files or libraries. If
you have a source file mydefs.py
the command
 import mydefs

will read in all the definitions
stored in the file. What’s read in
can be seen by executing
dir(mydefs)

To access an imported definition,
you qualify it with the name of
the module. For example,
mydefs.fct

accesses fct which is defined in
module mydefs.

572CS 538 Spring 2008©

To avoid explicit qualification you
can use the command
from modulename import id1, id2,
...

This makes id1, id2, ... available
without qualification. For
example,
>>> from test import sqrt

>>> sqrt(123)
(11.0905365064+0j)

You can use the command
from modulename import *

to import (without qualification)
all the definitions in modulename.

573CS 538 Spring 2008©

The Python Library
One of the great strengths of
Python is that it contains a vast
number of modules (at least
several hundred) known
collectively as the Python Library.
What makes Python really useful
is the range of prewritten
modules you can access. Included
are network access modules,
multimedia utilities, data base
access, and much more.
See
www.python.org/doc/lib

for an up-to-date listing of what’s
available.

574CS 538 Spring 2008©

Java 1.5/1.6 (Tiger Java)
Java has been extended to include
a variety of improvements, many
drawn from functional languages.
Added features include:
• Parametric polymorphism.

Classes and interfaces may be
parameterized using a type
parameter.
class List<T> {

 T head;

 List<T> tail;

}

Interfaces may also be
parameterized.

• Enhanced loop iterators.
for (v : myArray) {

// each element of myArray
 // appears as a value of v }

575CS 538 Spring 2008©

• Automatic boxing and unboxing of
wrapper classes.

Conversion from int to Integer
or Integer to int is now
automatic.

• Typesafe enumerations.
public enum Color {RED, BLUE, GREEN};

• Static imports.
 You may import all static
members of a class and use them
without qualification. Thus you
may now write out.println
rather than
System.out.println.

• Variable argument methods.

• Formatted output using printf:
out.printf("Ans = %3d",a+b);

576CS 538 Spring 2008©

Reading Assignment
• Pizza Tutorial

(linked from class web page)

577CS 538 Spring 2008©

C#
C# is Microsoft’s answer to Java.
In most ways it is very similar to
Java, with some C++ concepts
reintroduced and some useful
new features.
Similarities to Java include:
• C# is object-based, with all

objected descended from class
Object.

• Objects are created from classes
using new. All objects are heap-
allocated and garbage collection is
provided.

• All code is placed within methods
which must be defined within
classes.

• Almost all Java reserved words
have C# equivalents (many are
identical).

578CS 538 Spring 2008©

• Classes have single inheritance.

• C# generates code for a virtual
machine to support cross-platform
execution.

• Interfaces are provided to capture
functionality common to many
classes.

• Exceptions are very similar in form
to Java’s.

• Instance and static data within an
object must be initialized at point
of creation.

579CS 538 Spring 2008©

C# Improves Upon Some Java
Features

• Operators as well as methods can
be overloaded:
class Point {

 int x, y;
 static Point operator + (
 Point p1, Point p2) {
 return new Point(p1.x+p2.x,

p1.y+p2.y);
 }
 }

• Switch statements may be indexed
by string literals.

• In a switch, fall-throughs to the
next case are disallowed (if non-
empty).

• Goto’s are allowed.

• Virtual methods must be marked.

580CS 538 Spring 2008©

• Persistent objects (that may be
stored across executions) are
available.

581CS 538 Spring 2008©

C# Adds Useful Features
• Events and delegates are included

to handle asynchronous actions
(like keyboard or mouse actions).

• Properties allow user-defined read
and write actions for fields. You can
add get and set methods to the
definition of a field. For example,
class Customer {

 private string name;

 public string Name {

 get { return name; }}

}

Customer c; ...

string s = c.Name;

582CS 538 Spring 2008©

• Indexers allow objects other than
arrays to be indexed. The []
operator is overloadable. This
allows you to define the meaning
of
obj[123] or obj["abc"]
within any class definition.

• Collection classes may be directly
enumerated:
foreach (int i in array) ...

• Fields, methods and constructors
may be defined within a struct as
well as a class. Structs are allocated
within the stack instead of the
heap, and are passed by value. For
example:

struct Point {

 int x,y;

 void reset () {

 x=0; y=0; }

 }

583CS 538 Spring 2008©

• When an object is needed, a
primitive (int, char, etc.) or a
struct will be automatically boxed
or unboxed without explicit use of
a wrapper class (like Integer or
Character). Thus if method
List.add expects an object, you
may write
List.add(123);

and 123 will be boxed into an
Integer object automatically.

• Enumerations are provided:
enum Color {Red, Blue, Green};

• Rectangular arrays are provided:
int [,] multi = new int[5,5];

• Reference, out and variable-length
parameter lists are allowed.

• Pointers may be used in methods
marked unsafe.

584CS 538 Spring 2008©

Version 3.0 of C# Adds
Additional Features

• Implicitly Typed Local Variables
(Old form):
int n = 5;

string s = "CS 538 rules!";

int[] nums =
new int[] {1, 2, 3};

(New form):
var n = 5;

var s = "CS 538 rules!";

var nums =
new int[] {1, 2, 3};

585CS 538 Spring 2008©

• Lambda Expressions
string[] arr =
{ "asdf", "pop", "crazy", "mine" };

 var sorted =
arr.OrderBy(e => e[e.Length-1]);

//sorted by last char in the string

• Object Initializers
(Old form):
Contact contact =

new Contact();
contact.LastName = "Magennis";
contact.DateOfBirth =
new DateTime(1973,12,09);

(New form):
Contact contact =
new Contact {
 LastName = "Magennis",
 DateOfBirth =

new DateTime(1973,12,09)
};;

586CS 538 Spring 2008©

• Collection Initializers
List<int> digits =

new List<int> { 0, 1, 2,
3, 4, 5, 6, 7, 8, 9 };

List<Contact> contacts =
 new List<Contact> {
 new Contact {

 LastName = "Doherty",
DOB =
 newDateTime(1989,1,1)},

 new Contact {
LastName = "Wilcox",
DOB =
new DateTime(1987,3,3)}

};

• Anonymous Types
var anonType =
 new {X = 1, Y = 2};

587CS 538 Spring 2008©

• Implicitly Typed Arrays
Old:
int[] a =
 new int[] { 1, 10, 100, 1000 };
double[] b =
 new double[] { 1, 1.5, 2, 2.5 };
string[] c =
 new string[] { "hello",null,"world"};

New:
var a = new[] { 1, 10, 100, 1000 };
var b = new[] { 1, 1.5, 2, 2.5 };
var c = new[] {"hello", null,"world"};

• Automatic Properties
Old:
private string _name;
public string Name
{
 get { return _name; }
 set { _name = value; }
}

New:
public string Name { get; set; }

588CS 538 Spring 2008©

Pizza
Pizza is an extension to Java
developed in the late 90s by
Odersky and Wadler.
Pizza shows that many of the best
ideas of functional languages can
be incorporated into a
“mainstream” language, giving it
added power and expressability.
Pizza adds to Java:

1. Parametric Polymorphism
Classes can be parameterized
with types, allowing the
creation of “custom” data types
with full compile-time type
checking.

589CS 538 Spring 2008©

2. First-class Functions
Functions can be passed,
returned and stored just like
other types.

3. Patterns and Value Constructors
Classes can be subdivided into
a number of value
constructors, and patterns can
be used to structure the
definition of methods.

590CS 538 Spring 2008©

Parametric Polymorphism
Java allows a form of
polymorphism by defining
container classes (lists, stacks,
queues, etc.) in terms of values of
type Object.
For example, to implement a
linked list we might use:

class LinkedList {
 Object value;
 LinkedList next;
 Object head() {return value;}
LinkedList tail(){return next;}

 LinkedList(Object O) {
 value = O; next = null;}
 LinkedList(Object O,
 LinkedList L){
 value = O; next = L;}
}

591CS 538 Spring 2008©

We use class Object because any
object can be assigned to Object
(all classes must be a subclass of
Object).
Using this class, we can create a
linked list of any subtype of
Object.
But,
• We can’t guarantee that linked lists

are type homogeneous (contain
only a single type).

• We must unbox Object types back
into their “real” types when we
extract list values.

• We must use wrapper classes like
Integer rather than int (because
primitive types like int aren’t
objects, and aren’t subclass of
Object).

592CS 538 Spring 2008©

For example, to use LinkedList
to build a linked list of ints we
do the following:
LinkedList L =

 new LinkedList(new Integer(123));

 int i =
 ((Integer) L.head()).intValue();

This is pretty clumsy code. We’d
prefer a mechanism that allows us
to create a “custom version” of
LinkedList, based on the type
we want the list to contain.
We can’t just call something like
LinkedList(int) or
LinkedList(Integer) because

types can’t be passed as
parameters.
Parametric polymorphism is the
solution. Using this mechanism,
we can use type parameters to

593CS 538 Spring 2008©

build a “custom version” of a class
from a general purpose class.
C++ allows this using its template
mechanism. Pizza also allows
type parameters.
In both languages, type
parameters are enclosed in “angle
brackets” (e.g., LinkedList<T>
passes T, a type, to the
LinkedList class).
In Pizza we have
class LinkedList<T> {
 T value; LinkedList<T> next;
 T head() {return value;}
 LinkedList<T> tail() {
 return next;}
 LinkedList(T O) {
 value = O; next = null;}
 LinkedList(T O,LinkedList<T> L)
 {value = O; next = L;}
}

594CS 538 Spring 2008©

When linked list objects are
created (using new) no type
qualifiers are needed—the type of
the constructor’s parameters are
used. We can create
LinkedList<int> L1 =
 new LinkedList(123);

int i = L1.head();

LinkedList<String> L2 =
 new LinkedList("abc");

String s = L2.head();

LinkedList<LinkedList<int> > L3 =
 new LinkedList(L1);

int j = L3.head().head();

595CS 538 Spring 2008©

Bounded Polymorphism
In Pizza we can use interfaces to
bound the type parameters a
class will accept.
Recall our Compare interface:
interface Compare {

 boolean lessThan(Object o1,
 Object o2);

}

We can specify that a
parameterized class will only
takes types that implement
Compare:
class LinkedList<T implements

Compare> { ... }

596CS 538 Spring 2008©

In fact, we can improve upon how
interfaces are defined and used.
Recall that in method lessThan
we had to use parameters
declared as type Object to be
general enough to match (and
accept) any object type. This
leads to clumsy casting (with run-
time correctness checks) when
lessThan is implemented for a
particular type:
class IntCompare implements Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return ((Integer)i1).intValue() <
 ((Integer)i2).intValue();}
}

597CS 538 Spring 2008©

Pizza allows us to parameterize
class definitions with type
parameters, so why not do the
same for interfaces?
In fact, this is just what Pizza
does. We now define Compare as
interface Compare<T> {
 boolean lessThan(T o1, T o2);
}

Now class LinkedList is
class LinkedList<T implements

Compare<T> > { ... }

Given this form of interface
definition, no casting (from type
Object) is needed in classes that
implement Compare:
class IntCompare implements

Compare<Integer> {
 public boolean lessThan(Integer i1,

Integer i2){
 return i1.intValue() <
 i2.intValue();}
}

598CS 538 Spring 2008©

First-class Functions in Pizza
In Java, functions are treated as
constants that may appear only in
classes.
To pass a function as a parameter,
you must pass a class that
contains that function as a
member. For example,
class Fct {
 int f(int i) { return i+1; }
}
class Test {
static int call(Fct g, int arg)

 { return g.f(arg); }
}

599CS 538 Spring 2008©

Changing the value of a function
is even nastier. Since you can’t
assign to a member function, you
have to use subclassing to
override an existing definition:
class Fct2 extends Fct {
 int f(int i) { return i+111; }
}

Computing new functions during
executions is nastier still, as Java
doesn’t have any notion of a
lambda-term (that builds a new
function).

600CS 538 Spring 2008©

Pizza makes functions first-class,
as in ML. You can have function
parameters, variables and return
values. You can also define new
functions within a method.
The notation used to define the
type of a function value is
(T1,T2, ...)->T0

This says the function will take
the list (T1,T2, ...) as it
arguments and will return T0 as
its result.
Thus
(int)->int

represents the type of a method
like
int plus1(int i) {return i+1;}

601CS 538 Spring 2008©

The notation used by Java for
fixed functions still works. Thus
static int f(int i){return 2*i;};

denotes a function constant, f.
The definition
 static (int)->int g = f;

defines a field of type (int)->int
named g that is initialized to the
value of f.
The definition
static int call((int)->int f,
 int i)
 {return f(i);};

defines a constant function that
takes as parameters a function
value of type (int)->int and an
int value. It calls the function
parameter with the int parameter
and returns the value the function
computes.

602CS 538 Spring 2008©

Pizza also has a notation for
anonymous functions (function
literals), similar to fn in ML and
lambda in Scheme. The notation
fun (T1 a1, T2 a2, ...) -> T0
 {Body}

defines a nameless function with
arguments declared as
(T1 a1, T2 a2, ...) and a result
type of T0. The function’s body is
computed by executing the block
{Body}.
For example,
static (int)->int compose(
 (int)->int f, (int)->int g){
 return fun (int i) -> int
 {return f(g(i));};

}

603CS 538 Spring 2008©

defines a method named
compose. It takes as parameters
two functions, f and g, each of
type (int)->int.
The function returns a function as
its result. The type of the result is
(int)->int and its value is the
composition of functions f and g:
 return f(g(i));

Thus we can now have a call like
compose(f1,f2)(100)

which computes f1(f2(100)).

604CS 538 Spring 2008©

With function parameters, some
familiar functions can be readily
programmed:
class Map {
 static int[] map((int)->int f,
 int[] a){
 int [] ans =
 new int[a.length];
 for (int i=0;i<a.length;i++)
 ans[i]=f(a[i]);
 return ans;
 };
}

605CS 538 Spring 2008©

And we can make such operations
polymorphic by using parametric
polymorphism:
class Map<T> {
 private static T dummy;
 Map(T val) {dummy=val;};
 static T[] map((T)->T f,

T[] a){
 T [] ans = (T[]) a.clone();

for (int i=0;i<a.length;i++)
 ans[i]=f(a[i]);
 return ans;
 };
}

606CS 538 Spring 2008©

Algebraic Data Types
Pizza also provides “algebraic
data types” which allow a type to
be defined as a number of cases.
This is essentially the pattern-
oriented approach we saw in ML.
A list is a good example of the
utility of algebraic data types.
Lists come in two forms, null and
non-null, and we must constantly
ask which form of list we
currently have. With patterns, the
need to consider both forms is
enforced, leading to a more
reliable programming style.
In Pizza, patterns are modeled as
“cases” and grafted onto the
existing switch statement (this
formulation is a bit clumsy):

607CS 538 Spring 2008©

class List {
 case Nil;
 case Cons(char head,
 List tail);
 int length(){
 switch(this){
 case Nil: return 0;
 case Cons(char x, List t):
 return 1 + t.length();
 }
 }
}

608CS 538 Spring 2008©

And guess what! We can use
parametric polymorphism along
with algebraic data types:
class List<T> {
 case Nil;
 case Cons(T head,
 List<T> tail);
 int length(){
 switch(this){
 case Nil: return 0;
 case Cons(T x, List<T> t):
 return 1 + t.length();
 }
 }
}

