
CS 538

Project #1

Programming in Scheme

Due: Friday, March 28, 2008

(Not accepted after Friday, April 4, 2008)

Handin Instructions. Place the Scheme code you write to solve this assignment in ~cs538-
1/public/handin/proj1/login where login is your login name. Create files 1a, 1b, 
2a, 2b, 2c, 2d, 3, 4a, 4b, 5a, 5b and 5c in your handin directory. 

1. (a) The subsets function we defined in class used functions extend and distrib to 
compute all possible subsets of a list of distinct values. However, the implementa-
tion we used does not order the subsets in any particular way. 
Rewrite subsets, extend and distrib so that subsets are generated in order of 
increasing size. That is, the empty subset must come first, followed by all subsets of 
size one, then all subsets of size two, etc. Any ordering among subsets of the same 
size is OK, but a smaller subset must always precede a larger one. 
For example (subsets '(1 2)) may produce (() (1) (2) (1 2)) or (() (2) 
(1) (1 2)) but not (() (1 2) (2) (1)). 

(b)    The subsets function is sometimes used to enumerate all the possible selections 
from a list of distinct values. Since the number of subsets possible can be very large, 
a predicate is often used to filter out unwanted subsets. If the predicate is true, the 
subset is kept; if it is false the subset is discarded. For example, a filter predicate 
might be used to discard subsets that are too large or too expensive.  
 
If we use a filter predicate after all subsets are generated, we may waste a great deal 
of time and space generating subsets we don’t really want. An alternative is to filter 
subsets as they are generated. Assume we limit our attention to filter predicates that 
are monotone. This means that if fp is false for set S, it will also be false for any 
larger set that contains S. Filter functions that limit a set to a given size or cost are 
monotone. 
 
Write a Scheme function (filtered-subsets L fp) that generates all subsets of 
list L for which fp is true. This function should filter subsets as they are generated 
to avoid generation of large numbers of unwanted subsets. Test your solution on 
(filtered-subsets  
   '(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20) 
   (lambda(S) (<= (reduce + S 0) 8))) 
This call produces all subsets of the first 20 integers that sum to 8 or less (there are 
25 such subsets, including the empty subset). This function should execute in just a 
few seconds, even though there are 220 subsets that might be considered.



2. (a) In Scheme a labeled binary tree can be represented as a list. An empty tree is (). A 
non-empty binary tree, T, is represented by a triple (left lab right). lab is T’s 
label (this can be any type). left is T’s left subtree, represented as a list. Similarly, 
right is T’s right subtree, again represented as a list. For example,

A

B C

D E

 this tree 

is represented as ( (() B () ) A (( () D () ) C ( () E () ))) 
Not all lists represent a valid labeled binary tree; only null lists and lists containing 
a label value between two valid labeled subtree lists are valid. 
 
Write a Scheme function (valid-bintree? T) that tests whether tree T is valid. 
For example 
 
(valid-bintree?  ())  ⇒    #t 
(valid-bintree?  '(() 1 ()) )  ⇒    #t 
(valid bintree?  '(1 () () ))  ⇒    #f

    (b) Two labeled binary trees are equal if their root nodes have the same label and their 
corresponding left and right subtrees are equal. Write a Scheme function declared 
as (equal-bintrees? T1 T2) that tests whether trees T1 and T2 (represented 
as lists) are equal. If either T1 or T2 is invalid, return #f (as an error indication). For 
example 
 
(equal-bintrees?  ()  ())  ⇒    #t 
(equal-bintrees?  '(() 1 ())  '(() 1 ()) )  ⇒    #t 
(equal-bintrees?  '((() 2 ()) 1 ())  '(() 1 ( () 2 ()) ))  ⇒    #f 
(equal-bintrees?  '(1 1)  '(1 1))  ⇒    #f 

   (c) There are many ways to visit the nodes of a binary tree. One of the most useful visit 
orders is inorder, which visits the left subtree, then the root, then the right subtree. 
In the tree shown in part (a), an inorder traversal visits B, then A, then D, C and E. 
 
Write a Scheme function (tree-map f T) that visits the nodes of binary tree T in 
inorder. At each node function f is applied to the node’s value. A list of results is 
returned. Thus if an inorder traversal of T visits nodes X, Y and Z, then a list contain-
ing ((f X) (f Y) (f Z)) is returned by tree-map. 
If tree T is invalid, return #f (as an error indication). 

 (d)  A labeled binary tree T is ordered with respect to an ordering relation le if  
(i) T’s left and right subtrees are themselves ordered. 
(ii) All labels in T’s left subtree are le T’s label. 
(iii) T’s label is le all labels in T’s right subtree. 
You are to write a Scheme function (ordered? T le) that tests whether the labeled 
binary tree represented by T is ordered using predicate le as the ordering relation. 
If T is an invalid labeled binary tree, #f should be returned 
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For example, 
 
(ordered?  () <= )  ⇒    #t 
(ordered?  '((() 1 ()) 2 ()) <= )  ⇒    #t 
(ordered?  '(() 2 (() 3 ())) <= )  ⇒    #t 
(ordered?  '((() 1 ()) 2 (() 3 ()) ) <= )  ⇒    #t 
(ordered?  '((() 1 ()) 0 (() 3 ()) ) <= )  ⇒    #f 
(ordered?  '(1 2 3) <= )  ⇒    #f

3.      Labeled binary trees may also be represented by Scheme functions rather than a 
list. An empty tree is represented as #f and a non-empty tree is represented as a 
function that accepts various tree commands (as described below). 
 
The call (build-tree lab left right) returns a tree function. lab is the 
tree’s label (this can be any type). left and right are the tree’s left and right sub-
trees; these must be tree functions or #f.  
 
If t is a tree function, it must accept the following calls:

      (t label) 
 The label assigned to tree t is returned. 

      (t left) 
 The left subtree of tree t is returned.  This is either a tree function or #f.   

  (t right) 
 The right subtree of tree t is returned.  This is either a tree function or #f.  

 (t equal? u) 
Tree t is compared with tree u for equality, using the definition of question 2 (b). u
must be a tree function or #f.   

(t map f) 
Tree t is traversed in inorder. Function f is applied to the label of each node visited, 
and a list of result values is returned. (This is exactly the same operation as that 
defined in question 2 (c)). 
 
(t ordered? le) 
Tree t is examined to see if it is ordered, using the ordering relation le. (This is 
exactly the same test as that defined in question 2 (d)). 
 
The following calls illustrate how tree functions are expected to behave: 
(define (leaf lab) (build-tree lab #f #f))   
(define my-tree (build-tree 2 (leaf 1) (leaf 3))) 
(my-tree 'label)  ⇒    2 
((my-tree 'left) 'label) ⇒    1 
((my-tree 'right) 'label) ⇒    3 
(my-tree 'equal? my-tree)  ⇒    #t 
(my-tree 'equal? (my-tree 'left))  ⇒    #f 
(my-tree 'map (lambda (x) x))  ⇒    (1 2 3) 
(my-tree 'ordered? <=)  ⇒    #t 
(my-tree 'ordered? >=)  ⇒    #f
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4. (a) Write a pair of Scheme functions, (gen-list start stop step) and (pair-
sum? list val). The function gen-list will generate a list of integers, from 
start to stop, with consecutive values incremented by step. (If start > stop
then the empty list is generated). For example (gen-list 1 9 2) ⇒ (1 3 5 7 9). 
 
The predicate pair-sum? tests whether any two adjacent values in list have a 
sum equal to val. For example, (pair-sum? '(1 2 3) 5) ⇒ #t since 2+3=5. 
Similarly, (pair-sum? (gen-list 1 100 1) 10) ⇒ #f since no two adjacent 
integers in the range 1 to 100 have a sum of 10. 

   (b)  A problem with a function like pair-sum? is the fact that its list parameter must 
be fully computed in advance, even if all the values on the list are not needed. For 
example, (pair-sum? (gen-list 1 100000 1) 3)will spend a lot of time and 
space building up a list of 100000 values, even though only the first two are needed! 
 
An alternative to completely building a complex data structure is lazy evaluation. 
That is, part of the structure is built along with a suspension—a function that will 
supply a few more values upon request. The following two Scheme functions pro-
duce a sequence of integers in a lazy manner.

 
(define (return-one-val start stop step)

      (if (> (+ start step) stop)
          (cons start #f)
          (cons start
                (lambda () (return-one-val (+ start step) stop step)))
      )
  )

(define (int-seq start stop step)
        (if (> start stop)
            (cons #f #f)
            (return-one-val start stop step)

 )
)

When called, int-seq returns a pair of values. The car is the first integer in the 
sequence, or #f if the sequence is empty. The cdr is a function that, when called, 
will return another pair. That pair consists of the next integer in the sequence plus 
another suspension function. When the end of the sequence is reached, the cdr of 
the pair is #f (rather than a function), indicating that no more values can be pro-
duced. 
 
Create a new version of pair-sum? called pair-sum-seq? that takes a lazy inte-
ger sequence (as defined by int-seq) rather than a list as a parameter. You can use 
the Scheme function (time (f args)) to time the evaluation of (f args). Com-
pare the execution times of (pair-sum? (gen-list 1 100000 1) 101) and 
(pair-sum-seq? (int-seq 1 100000 1) 101). Which is faster? Why?  
Now compare the execution times of (pair-sum? (gen-list 1 100000 1) 100)
and (pair-sum-seq? (int-seq 1 100000 1) 100). Again, which is faster, and 
why?
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5. (a) Assume we have a list L of integers. Define a function (make-sublists L) that 
places each integer in L into its own sublist (of size one). That is, if L has n integers 
in it, make-sublists produces a list of n sublists, each containing a single integer 
from L. For example, 
 
(make-sublists ()) ⇒ () 
(make-sublists '(1 2 3 4)) ⇒ ((1) (2) (3) (4))

(b) Each of the sublists produced by make-sublists is trivially sorted. If we merge 
the first two sublists together into sorted order, we have a sorted sublist of size 2. If 
we then merge the third and fourth sublists, then the fifth and sixth sublists, etc., we 
end up with n/2 sorted sublists of size 2, rather than n sublists of size 1 (the final 
sublist may be of size 1 if it has no partner to pair with). If we iterate this merging 
process, we next get n/4 sorted sublists of size 4, then n/8 sorted sublists of size 8, 
etc. Finally, we produce a single sorted sublist of size n. This sorting logic is the 
basis of a merge sort. Write a Scheme function (merge-sort L) that first divides 
L into unit sublists using make-sublists, and then repeatedly merges adjacent 
sublists until a single sorted list is produced. You may create and use any addi-
tional functions you find useful or necessary.

(c) Once a list is sorted, it easy to test for duplicates—we just compare adjacent values. 
However, testing for duplicates after the sort is finished is somewhat inefficient. If a 
duplicate appears in L it can readily be detected when values from sublists are 
merged. 
 
Create a function (merge-sort-cc L) (and whatever auxiliary functions you 
require) that makes duplicate checking integral to the merge component of the sort. 
As soon as a duplicate is seen, #f should be immediately returned (as an error indi-
cation), without any further processing of L. If no duplicates are found, the sorted 
values of L are returned. You should use call-with-current-continuation
to implement the exception mechanism you will need to return when you see a 
duplicate value.
-5-


	CS 538
	Project #1
	Programming in Scheme
	1. (a) The subsets function we defined in class used functions extend and distrib to compute all possible subsets of a list of d...
	2. (a) In Scheme a labeled binary tree can be represented as a list. An empty tree is (). A non-empty binary tree, T, is represe...
	3. Labeled binary trees may also be represented by Scheme functions rather than a list. An empty tree is represented as #f and a...
	4. (a) Write a pair of Scheme functions, (gen-list start stop step) and (pair- sum? list val). The function gen-list will genera...
	5. (a) Assume we have a list L of integers. Define a function (make-sublists L) that places each integer in L into its own subli...


