
CS 538

Project #2

Programming in Standard ML
Due: Wednesday, April 23, 2008

(Not accepted after Wednesday, April 30, 2008)

1. A widely-used data structure is the priority queue. A priority queue is an ordinary
queue extended with an integer priority. When data values are added to a queue, the
priority controls where the value is added. A value added with priority p is placed
behind all entries with a priority ≤ p and in front of all entries with a priority > p. Note
that if all entries in a priority queue are given the same priority, then a priority queue
acts like an ordinary queue in that new entries are placed behind current entries.

You are to write an SML abstract data type (an abstype) that implements a polymor-
phic priority queue, defined as 'a PriorityQ. You may implement your priority
queue using any reasonable SML data structure (a list of tuples might be a reasonable
choice). The following values, functions, and exceptions should be implemented:

• exception emptyQueue
This exception is raised when front or remove is applied to an empty queue.

• nullQueue
This value represent the null priority queue, which contains no entries.

• enter(pri,v,pQueue)
This function adds an entry with value v and priority pri to pQueue. The
updated priority queue is returned. As noted above, the entry is placed behind
all entries with a priority ≤ pri and in front of all entries with a priority > pri.

• front(pQueue)
This function returns the front value in pQueue, which is the value with the
lowest priority. If more than one entry has the lowest priority, the oldest entry is
chosen. If pQueue is empty, the emptyQueue exception is raised.

• remove(pQueue)
This function removes the front value from pQueue, which is the value with the
lowest priority. If more than one entry has the lowest priority, the oldest entry is
removed. The updated priority queue is returned. If pQueue is empty, the emp-
tyQueue exception is raised.

• contents(pQueue)
This function returns the contents of pQueue in list form. Each member of the
list is itself a list comprising all queue members sharing the same priority. Sub-
lists are ordered by priority, with lowest priority first. Within a sublist, queue
members are ordered by order of entry, with oldest first. The front of pQueue is
the leftmost element of the first sublist, and the rear of pQueue is the rightmost
member of the last sublist.

2. (a) Assume we have a list L of integers. Define a function unitLists(L) that places
each integer in L into its own sublist (of size one). That is, if L has n integers in it,
unitLists produces a list of n sublists, each containing a single integer from L.
For example,

unitLists([]) ⇒ []
unitLists([1,2,3,4]) ⇒ [[1],[2],[3],[4]]

(b) Each of the sublists produced by unit-lists is trivially sorted. If we merge the
first two sublists together into sorted order, we have a sorted sublist of size 2. If we
then merge the third and fourth sublists, then the fifth and sixth sublists, etc., we
end up with n/2 sorted sublists of size 2, rather than n sublists of size 1 (the final
sublist may be of size 1 if it has no partner to pair with). If we iterate this merging
process, we next get n/4 sorted sublists of size 4, then n/8 sorted sublists of size 8,
etc. Finally, we produce a single sorted sublist of size n. This sorting logic is the
basis of a merge sort. Write an SML function mergeSort(L) that first divides L
into unit sublists using unitLists, and then repeatedly merges adjacent sublists
until a single sorted list is produced. You may create and use any additional func-
tions you find useful or necessary.

(c) Once a list is sorted, it easy to test for duplicates—just compare adjacent values. But
testing for duplicates after the sort is finished is somewhat inefficient. If a duplicate
appears in L it can readily be detected when values from sublists are merged.

Create a function mergeSort2(L) that makes duplicate checking integral to the
merge component of the sort. The type of mergeSort2 should be int list
option. When a duplicate is seen, NONE should be immediately returned (as an
error indication), without any further processing of L. If no duplicates are found,
the sorted values of L are to be returned (using the SOME constructor). Use SML’s
exception mechanism to force a return when you see a duplicate value.

3. (a) Write an SML function that computes the following recursive function:
f(0) = 1
f(-1) = 0
f(-2) = 0
f(-3) = 0
f(m) = f(m-1) + f(m-2) + f(m-3) - f(m-4) for m ≥1

(Be sure to remember that in SML ~ is unary minus and - is binary minus.)

What are the values of f(27), f(28), f(29), and f(30)? How long does it take to com-
pute each of these values?

To start a “CPU timer” in SML use

 val t = Timer.startCPUTimer();

To determine how much CPU time (in seconds) has elapsed since timer t was cre-
ated use

Time.toReal(#usr(Timer.checkCPUTimer(t)));

Estimate how long f(34) will take to compute (using your timings for f(27), f(28),
f(29), and f(30)).
-2-

(b) In a functional language like SML without side-effects or assignments, the value of
a function always depends solely on its arguments. This allows us to use an optimi-
zation called memoizing. This optimization operates as follows: When a function is
called, its arguments and result value are recorded. If the function is ever called
again with the same arguments, the stored result is looked up and returned imme-
diately.

Write an SML function fastF(m) that is a solution to part (a) using memoizing.
What is the value of fastF(34)? How long does it take to compute?

4. (a) Recall that a lazy list is a useful structure for representing a long or even infinite
list. In SML a lazy list can be defined as

datatype 'a lazyList =
nullList | cons of 'a * (unit -> 'a lazyList)

This definition says that lazy lists are polymorphic, having a type of 'a. A value of a
lazy list is either nullList or a cons value consisting of the head of the list and a
function of zero arguments that, when called, will return a lazy list representing the
rest of the list.

Write the following SML functions that create and manipulate lazy lists:

• seq(first,last)
This function takes two integers and returns an integer lazy list containing the
sequence of values first, first+1, ... , last

• infSeq(first)
This function takes an integer and returns an integer lazy list containing the
infinite sequence of values first, first+1,

• firstN lazyListVal n
This function is in curried form; it takes a lazyList and an integer and returns
an ordinary SML list containing the first n values in the lazyList. If the
lazyList contains fewer than n values, then all the values in the lazyList
are returned.

• Nth lazyListVal n
This function is in curried form; it takes a lazyList and an integer and returns
an option representing the n-th value in the lazyList (counting from 1). If
the lazyList contains fewer than n values, then NONE is returned. (Recall that
'a option = SOME of 'a | NONE).

(b) Is is useful to remove unwanted values from a list using a filter. A filter, denoted as
filter(controlList,dataList), uses a boolean valued control list to select
values from a data list; true signals that the corresponding data list value is to be
kept; false signals that the corresponding data list value is to be deleted.
For example, filter([true, false, false, true], [1,2,3,4]) =
[1,4]. You are to program an SML version of filter that uses a lazy boolean list
-3-

to filter a lazy data list; the result is a lazy list containing only data list values corre-
sponding to true values in the control list.

(c) A wide variety of techniques have been devised to compute prime numbers (num-
bers evenly divisible only by themselves and one). One of the oldest techniques is
the “Sieve of Eratosthenes.” This technique is remarkably simple.

You start with the infinite list L = 2, 3, 4, 5, The head of this list (2) is a prime. If
you filter out all values that are a multiple of 2, you get the list 3, 5, 7, 9, The head
of this list (3) is a prime. Moreover, if you filter out all values that are a multiple of 3,
you get the list 5, 7, 11, 13, 17, ..., whose head (5) is prime. Iterating the process, you
repeatedly take the head of the resulting list as the next prime, and then filter from
this list all multiples of the head value.

You are to write a SML function primes() that computes a lazyList containing
all prime numbers, starting at 2, using the “Sieve of Eratosthenes.” To test your
function, evaluate (firstN primes() 10). You should get [2, 3, 5, 7, 11, 13,
 17, 19, 23, 29]. Try (Nth primes() 20). You should get SOME(71). (This com-
putation may take a few seconds, and do several garbage collections, as there is a
lot of recursion going on.)
-4-

	CS 538
	Project #2
	Programming in Standard ML
	Due: Wednesday, April 23, 2008
	(Not accepted after Wednesday, April 30, 2008)
	1. A widely-used data structure is the priority queue. A priority queue is an ordinary queue extended with an integer priority. ...
	2. (a) Assume we have a list L of integers. Define a function unitLists(L) that places each integer in L into its own sublist (o...
	3. (a) Write an SML function that computes the following recursive function:
	4. (a) Recall that a lazy list is a useful structure for representing a long or even infinite list. In SML a lazy list can be defined as

