Application of Depth-First Ordering

- Retreating edges (a necessary component of loops) are easy to identify:
 \[a \rightarrow b \] is a retreating edge if and only if \(\text{dfo}(b) \leq \text{dfo}(a) \)

- A depth-first ordering in an excellent visit order for solving forward data flow problems. We want to visit nodes in essentially topological order, so that all predecessors of a node are visited (and evaluated) before the node itself is.

Dominators

A CFG node \(M \) dominates \(N \)
\((M \text{ dom } N) \) if and only if all paths from the start node to \(N \) must pass through \(M \).

A node trivially dominates itself. Thus \((N \text{ dom } N) \) is always true.

A CFG node \(M \) strictly dominates \(N \)
\((M \text{ sdom } N) \) if and only if
\((M \text{ dom } N) \) and \(M \neq N \).
A node can't strictly dominates itself. Thus \((N \text{ sdom } N) \) is never true.

A CFG node may have many dominators.

![Diagram of CFG nodes and dominators](image)

Node \(F \) is dominated by \(F, E, D \) and \(A \).

Immediate Dominators

If a CFG node has more than one dominator (which is common), there is always a unique “closest” dominator called its immediate dominator.

\((M \text{ idom } N) \) if and only if
\((M \text{ sdom } N) \) and
\((P \text{ sdom } N) \implies (P \text{ dom } M) \)

To see that an immediate dominator always exists (except for the start node) and is unique, assume that node \(N \) is strictly dominated by \(M_1, M_2, \ldots, M_p, P \geq 2 \).

By definition, \(M_1, \ldots, M_p \) must appear on all paths to \(N \), including acyclic paths.
Look at the relative ordering among M_1 to M_p on some arbitrary acyclic path from the start node to N.
Assume that M_i is “last” on that path (and hence “nearest” to N).

If, on some other acyclic path, $M_j \neq M_i$ is last, then we can shorten this second path by going directly from M_i to N without touching any more of the M_1 to M_p nodes.
But, this totally removes M_j from the path, contradicting the assumption that (M_j sdom N).

Dominator Trees

Using immediate dominators, we can create a dominator tree in which $A \rightarrow B$ in the dominator tree if and only if (A idom B).

A Dominator Tree is a compact and convenient representation of both the dom and idom relations.
A node in a Dominator Tree dominates all its descendents in the tree, and immediately dominates all its children.

Note that the Dominator Tree of a CFG and its DFST are distinct trees (though they have the same nodes).