The SPARC Architecture Manual

Version 9

SPARC International, Inc.

San Jose, California

David L. Weaver and Tom Germond
Editors

SA-V09-R147-Jul2003

The SPARC Architecture Manual

Version 9

SPARC International, Inc.

San Jose, California

David L. Weaver / Tom Germond
Editors

SA-V09-R147-Jul2003

PTR Prentice Hall, Englewood Cliffs, New Jersey 07632

SPARCP is a registered trademark of SPARC International, Inc.
The SPARC logo is a registered trademark of SPARC International, Inc.

UNIX® is a registered trademark of UNIX System Laboratories, Inc.

Copyright © 1994 SPARC International, Inc.

Published by PTR Prentice Hall
Prentice-Hall, Inc.

A Paramount Communications Company
Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered in bulk quantities. For
more information, contact:

Corporate Sales Department
PTR Prentice Hall

113 Sylvan Avenue
Englewood Cliffs, NJ 07632

Phone: (201) 592-2863
Fax: (201) 592-2249

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or other-
wise, without the prior permission of the copyright owners.

Restricted rights legend: use, duplication, or disclosure by the U. S. Government is subject
to restrictions set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and
Computer Software clause@RFARS 52.227-7013 and in similar clauses in BFAR and

NASA FAR Supplement.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-825001-4

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London
PRENTICEHALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICEHALL CANADA INC., Toronto

PRENTICEHALL HISPANOAMERICANA, S.A.,Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

SIMON & SCHUSTERASIA PTE. LTD., Singapore

EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

Contents

oo [T 1o o PP R P PP
0.1 SPARC ..ttt aaaaaaaaaaan
0.2 Processor Needs for the 90s and Beyondcoooovviviiiiiiiiiiiiiieeeeeee,
0.3 SPARC-V9: A Robust RISC for the Next Centurycccccvvvvvvnnnnnn.

0.3.1 64-bit Data and AJAreSSESccccuvvriiiiiiiiiiiiieeieee e
0.3.2 Improved System Performancecccccceeeeeiiiiiiniiiiiiiiiinne,
0.3.3 Advanced Optimizing Compilerscccccevrrrriiiriiviiiiiieee e,
0.3.4 Advanced Superscalar ProCESSOISuuuiiiiiiieieeeeeeieieeeeeeerinnnnns
0.3.5 Advanced Operating SYStemSccccovvviiiiiiieieeiiie e
0.3.6 = LU]| o =] = U L= R
0.3.7 Fast Traps and Context SWItChingccooevevviiiiiiicieiiiienee,
0.3.8 Big- and Little-Endian Byte Ordersccccccceeeeeeeiiiieeeeeiiininnns
0.4 SUMIMABIY .ottt ettt e e e e e et e e e e e e e tb e e e e e eeebaa e e eaeeennnnns

[0 S N 0] =P PPPPPPPRRR
ACKNOWIEAGMENTSeiiiiiiiie e e et e e e e e e e e ea it e e e eeeeaaes
=T £ST0 o F= LI N [] (P

1 Overview

1.1 Notes About thiS BOOKcuuiiiiiiiiiiiiiee e
0 It R AN ¥ o [=Y o [o PSPPI
1.1.2 WHEIE 10 STAIt ...vviiiiiiieiee e
1.1.3 (O] 01 (=]] K=
1.1.4 Editorial ConveNtioNSuoviiiiiiiiieieeeeee e
1.2 The SPARC-V9 ArchiteCtureoooeeuiiiiiiee e,
1.2.1 FRALUIES .oniieii e e e e ea e
1.2.2 ALHDULES ..o e
1.2.3 System COMPONENTS ...covvniiiiiieeiiie e
1.2.4 Binary Compatibilityoooovmiiiiiiiii
1.2.5 Architectural Definitioncccccovviiiiiiiiiiiie e,
1.2.6 SPARC-VO ComplianCecccccoiiiimiiiiiiiiiiieeeee e
A B 1= {11 (o
3 ArChiteCtural OVEIVIEWccooviiiiiieeeieie et e e e e e e e eeaes
3.1 SPARC-VO PrOCESSOI ...ttt e e e e e e
3.1.1 Integer Unit (IU) ..oeeeiiiiiieieceeeeeeeeeee e

Contents
3.1.2 Floating-Point Unit (FPU)oouiiiiiiiiiiiiii
3.2 1S3 11T 1T
3.21 MEMOIY ACCESScieeiiii et ee s
3.2.2 Arithmetic/Logical/Shift INStructionscccccccceeeviiiiiiiiiiinnns
3.2.3 Control TranSfercoiiiei e
3.24 State REQISIEr ACCESSoviiiiiiiiiiieeieee e
3.2.5 Floating-Point OPerateceeeviiiiiiiiiiiiiiiiieeeiieeeeee
3.2.6 Conditional MOVEccooiiiiiiieiiieeeeeee e
3.2.7 Register Window Managementcccoeeeeiiieeeeeeiiiieeeeeeiiiiienes
3.3 L= 0L TSP PPTUPPPTRPPI
Data FOIMMALS ... e e e et e e e e e e e e e e e eennanns
4.1 Signed INteger BYLEcoooeiiiiiiiciee e
4.2 Signed Integer Halfwordooooiiiiiiiiiii e
4.3 Signed INteger WOrdccooiiiiiieieiecceeeeeeere s
4.4 Signed Integer DOUDIEooovimiiiiiiiiiee e
4.5 Signed EXtended INTEQENuiiiiiieii e
4.6 Unsigned INteger BYLEuiiiiiiiiiieiccieee e
4.7 Unsigned Integer Halfword ...,
4.8 Unsigned INteger WOrdoooiiiiiiiiiiiiiiiee e
4.9 Unsigned Integer DOUDBIEccoooiiiiiiiiiiiieeen e
4.10 Unsigned Extended INtEQENccooeeiiieeeiieeeeeeeeeee e
o I R I Vo [=T IRV o o [P
4.12 Floating-Point Single PreCiSionccccoiiiiiiiiec e
4.13 Floating-Point Double PreciSioncccceeeiiiiiiieeeeeeeeeeeeeee e
4.14 Floating-Point Quad PreciSionccoovviiiiiiiiiiiiiiesee e
REGISTEIS. ..ttt e et a e e
5.1 Nonprivileged REQISTEIScccoiiiiiiiiiiiieie e
5.1.1 General PUrPOSEREGISIENScoooeiiiiiiiiiiiiiieeee e
5.1.2 Special REQJISIEISoiiiiiiiiiiiiiieeeeee e
5.1.3 U Control/Status RegISTErScccccccumririiiiiiiiiiiiieeeeeeee e
5.1.4 Floating-Point REJISIErScoooiiiiiiiiiiiiiee e
5.1.5 Condition Codes Register (CCR)ccceeviiiiiiiiiiiiiiiiiieeeeee
5.1.6 Floating-Point Registers State (FPRS) Register
5.1.7 Floating-Point State Register (FSR) ...,
5.1.8 Address Space ldentifier Register (ASI)cooevvviviieiiiiiinnnenn.
5.1.9 TICK Register (TICK)coiiiiiiieieiiiiiieeeeeeiiiiii e
5.2 Privileged ReQISTEISccouiiiiiiiiiiie e

5.2.1
5.2.2
5.2.3
5.24

Processor State Register (PSTATE)
Trap Level Register (TL)
Processor Interrupt Level (PIL)
Trap Program Counter (TPC)

23
23
24
24
24
24
24
24
25
25
25
25
25
26
26

Contents

6 Instructions

6.1
6.2

6.3

6.4

7 Traps
7.1
7.2

7.3

7.4

5.2.5 Trap Next Program Counter (TNPC)ccccoiiiiiiiiiiiiiiiiiieeeenn 56
526 Trap State (TSTATE) oottt 57
527 Trap Type Register (TT) ..o 57
5.2.8 Trap Base AdAress (TBA) ..oooooooiiiiiiiiiiiiiiiieeeeeeeee e 58
5.2.9 Version Register (VER) ... 58
5.2.10 Register-Window State RegISterscccccceeveiriiiiiiiiiiiiiiiiinne, 59
5.2.11 Ancillary State Registers (ASRS)cooviiiiiiiiiiiiiiiiiiieeeeeeeeeenn 61
5.2.12 Floating-Point Deferred-Trap Queue (FQ)cccccvvrrrrreeeerenrnn. 62
5.2.13 1U Deferred-Trap QUEUEceeeiiiiiiiiiiiiieeeaeeee e 62
.. 63
INSErUCLION EXECULIONuiiiiiiiiiiee e 63
INSLrUCLION FOIMALScoiiiiiiiiee e 63
6.2.1 INStruction FieldSoeviiiiii e 66
Ja Iy U Ted (o] g @1 (=To o] [T RSP 68
6.3.1 Memory ACCesS INSLIUCLIONScooeviviiiiiiieiiiiie e 69
6.3.2 Memory Synchronization INStructionscccevvieeeeeeennnnnn. 75
6.3.3 Integer Arithmetic INStrucCtionscccooeviiiiiiii e, 75
6.3.4 Control-Transfer Instructions (CTIS)cccceeeviieeiieeiiiieieeeeiiiinns 76
6.3.5 Conditional Move INStrUCLIONScccevviviiiiiiiiiiiiiieee e 79
6.3.6 Register Window Management Instructionsccceeeeenn... 81
6.3.7 State RegiStEr ACCESScovvvviiiiiiiiiiiiii et 83
6.3.8 Privileged RegiSter ACCESSccvvvvevriveriiiiiiiieeeeeeeeeeeeeeeeeenennens 83
6.3.9 Floating-Point Operate (FPop) INStructionsccccceveeeeeeennn. 83
6.3.10 Implementation-Dependent INStructionscccceeeveeeeeeeeeennn. 84
6.3.11 Reserved Opcodes and Instruction Fieldsccccceeeiieennnn. 84
Register Window Managementccceeiiiiieeeieeiieeeeeeeeiern e e e e e e 85
6.4.1 Register Window State Definitionccccceeeeeviiiiiieeeeiiiiinnnnns 85
6.4.2 Register WINAOW Trapsceeeeeeiiiiiiieeieiaeiieeiesiiiivenveeeeeeeee 86
.. 89
OVEBIVIBW ..ottt e st b e s 89
Processor States, Normal and Special Trapscccceevveevviiiiiiieeeeiiiieeen, 90
7.2.1 RED_SEAE ..evviiiiiiiiiiiiiiieee et a e 90
7.2.2 EITOr_STAte ..ovvniii e 94
I =T O OF= 1= To [0] 1= PP 94
7.3.1 PreCiSE TrapS ..oiieeiiii i 95
7.3.2 Deferred Traps ...ooceuviii e 95
7.3.3 DISIUPLING TraPS oveeeeiiieeeeeiii e e eaaaaa 96
7.3.4 RESEE TTaPS ievviiiiii et 97
7.3.5 Uses of the Trap Categoriescccccvvveviiiiieiieiiiiiieee e 97
B = 1o TN @] o o | PP SOUP 99
T.A.L PIL CONOL ittt 99

Vi Contents
7.4.2 TEMCONOl oo e 100
7.5 Trap-Table ENtry ADAreSSESccccccuiiiiiiiiiiiiiiiieieieee e 100
7.5.1 Trap Table Organizationccccccceiiiiiiiiiiinii 101
7.5.2 Trap TYPE (TT) oottt 101
7.5.3 Trap PriONTIES ...ttt 104
7.6 Trap PrOCESSING ..ooeiiiiiiiieeieiiie ettt e e e e e e 105
7.6.1 Normal Trap ProCeSSINGceeeeiiiiiiiiiiiieaaiaaeiieeiieiiieneeee 106
7.6.2 Special Trap ProCeSSINGoooviiiiiiiiiiiiiiiiiiiiiee e e e e e e e 108
7.7 Exception and Interrupt DeSCHPONSccccuvviiiiiiiiiiiiiiieeieeeee e 113
8 MeEMOrY MOUEIS ... ——————————— 119
8.1 INEFOAUCTION L.t e e 119
8.2 Memory, Real Memory, and I/O LoCationscccccceeeeeeeeiiiiiieeeiiiiiinnnns 120
8.3 Addressing and Alternate AJdress SPacCESeveeiiiieeeieeeeeeeeereeeeeninnnns 121
8.4 The SPARC-V9 Memory MOdelcccceciiiiiiiiiieeeeeceeeeee e 123
8.4.1 The SPARC-V9 Program Execution Modelccccceeeeeenn.n. 123
8.4.2 The Processor/Memory Interface Modelcccoevvviniinnn, 125
8.4.3 The MEMBAR INSIUCLIONcccuviiiiiiiiiiiiiiiiiieeeee e 126
8.4.4 MemOry MOEISovvviuiiiiiii e 128
8.4.5 MOUE CONMIOI ...uuuiiiiiiiiiiiiiiiiieee e 129
8.4.6 Hardware Primitives for Mutual Exclusionccccvvveeeee. 130
8.4.7 Synchronizing Instruction and Data Memoryccceeeeeen.. 131
A Instruction Definitions (NOIMAtIVE)oeeiiiiiiiiiiiiiiiiii e 133
N N O VT YT SRS 133
N Vo [0 PR PR 137
A.3 Branch on Integer Register with Prediction (BPr)ccccoiiiiiiiiiiiiinnn. 138
A.4 Branch on Floating-Point Condition Codes (FBfcC)cccccoeeevviiinnnnnen. 140
A.5 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) ... 143
A.6 Branch on Integer Condition Codes (BICC)ccovvvvviiiiieiiiiiiiiieeceiiii, 146
A.7 Branch on Integer Condition Codes with Prediction (BPccC)................... 148
A8 Call BN LINK ..eiiiiiiiiiiieeeeee ettt 151
A9 ComMPAre anNd SWAPuuuuiiiiieeiieeeeeei e ———————— 152
A.10 Divide (64-bit / 32-Dit) ...coooeiiiii 154
A.11 DONE and RETRY ..ottt 157
A.12 Floating-Point Add and Subtractcccevvvviiiiiiiiiicie e, 158
A.13 Floating-Point COMPAIEccoeeeieiiieiieeeeer st 159
A.14 Convert Floating-Point to INtegerooovvviviiiiiiiiiiie e 161
A.15 Convert Between Floating-Point FOrmatsccccoevveiieeeeiiiiveeeeeiiiiinnnnns 162
A.16 Convert Integer to Floating-Pointoooeviiiiiiiiiiiie e 163
A.17 Floating-Point Move, Negate, and Absolute Value ... 164
A.18 Floating-Point Multiply and DiVideccccoiiiiiiiiiiiiiiieeee 165
A.19 Floating-Point Square ROOt ... 166

Contents Vil
A.20 Flush INStruction MEmMOIYcoooiiiiiiiiiiiiiiiie et 167
A.21 Flush Register WIiNAOWSuuuuiiiiiiiiiie e e e e e 169
A.22 lllegal INSrUCHION TraPcccooiiiiiiiiiie e 170
A.23 Implementation-Dependent INStrUCLIONScccovveeeeiiiiiiiiiieie e, 171
A.24 Jump and LiNK ..o 172
A.25 Load FIoating-POiNtuuiiiiiiiiiiiiiiiieeee e 173
A.26 Load Floating-Point from Alternate Spacecccceeeviiieeeeeeiiieeeeeiniinnn, 176
N A W o = o I [01 (= = SRR 178
A.28 Load Integer from Alternate SPacecceeevveiiiiiiiiiiiiiiiieiieeee 180
A.29 Load-Store UnSigned BYLEcovviiiiiiiiiiii e 182
A.30 Load-Store Unsigned Byte to Alternate Spaceccccccceeeeeeiiiiiiiiinnnnns 183
F N 3 o To [[oF= L @ =] - i [0 1 184
A.32 MEMOIY BAITIEE ..uniiiiiieiiie e e e e e e earaans 186
A.33 Move Floating-Point Register on Condition (FMOVCC)coeenee 188
A.34 Move F-P Register on Integer Register Condition (FMOVT) 192
A.35 Move Integer Register on Condition (MOVCC)ccovvvviiiiiiiiiiiiiiieeeeenin, 194
A.36 Move Integer Register on Register Condition (MOVR)cccccvvvvnnnnee. 198
A.37 Multiply and Divide (64-Dit)uuvriiiiiiiiiiieeeeeee e 199
A.38 MUItplY (32-DIt) ooveeeeeeieeeeeeee e 200
A.39 MUIIPIY SEEP iiiiii et e e e e e e e e e e e e e e aanarnn 202
F N L I N o T @ T o T=] =Y [o PSPPI 204
A.4L POPUIALION COUNT ...uiiiiiiiiiiiiiiiieee e e e e e e e e 205
A42 PrefetCh DAtaccccciiiiiiiiiiiiiiiceeeee e 206
A.42.1 Prefetch Variants ... 207
A.42.2 General COMMENTSuiiiiie e e e e e e e e e e 209
A.43 Read Privileged REQISIENiiiiiii i 212
A.44 Read State REGISIEIuuiiiiiiiiiiiiiiieei it 215
A4S RETURN ..ottt e e e e e e e e e e e s 217
A.46 SAVE and RESTOREoooiiiiiiii ettt 218
A.47 SAVED and RESTOREDccooiiiiiiiiiiiccciiee et a e 220
AL SETHI oo 221
AL St e e e e e e e e e e e e e 222
A.50 Software-Initiated RESELuuuuiiiiiiiii e 224
ABL SEOME BAITIET .oveiiiiiiiiei ettt e e e e e e e e ee e 225
A.52 Store Floating-Point ... 226
A.53 Store Floating-Point into Alternate Spacecccccceevvieviveeeviiiiicieeeenn. 228
YNV Y (o] (=N [=T o [PP 230
A.55 Store Integer into Alternate SPaceccccciiiiiiiiiiiiiiie s 232
ADB SUDIIACT ...ttt 234
A.57 Swap Register With MemOrycccooviiiiiii e, 235
A.58 Swap Register with Alternate Space MEemOrycccccvvvviieieeiiiiieeeeeenenn. 236
A.59 Tagged Add ... ————————————————— 238

viii Contents
A.60 Tagged SUDIIACToooiiiiiii e 239
A.61 Trap on Integer Condition Codes (TCC) ..uvuveeeiiiiiiiiiieeeeiiiie e 241
A.62 Write Privileged REQISIENccvvvviiiiiiiiiie e 243
A.63 Write State REQISIEr e 245
B IEEE Std 754-1985 Requirements for SPARC-V9 (Normative)................. 247
B.1 Traps INNIDIt RESUILSoooiii e 247
B.2 NaN Operand and Result Definitionscccceeeieieiiiieieiiiiieeeee, 248
B.2.1 Untrapped Result in Different Format from Operands 248
B.2.2 Untrapped Result in Same Format as Operands 248
B.3 Trapped Underflow Definition (UFM = 1)ccoooviriiiiiiiiiiiiiiineeeeeeeeeee 249
B.4 Untrapped Underflow Definition (UFM =0)coooiiiiiiiiiiiiiiieeeeeeeeeen 249
B.5 Integer Overflow Definitioncccoooiiiiiiiiiiiiiei e 250
B.6 Floating-Point Nonstandard MOdeccccceeiiiiiiieieiiiiiieeeeee 251
C SPARC-V9 Implementation Dependencies (Normative).............ccccccevvvvnnne 253
C.1 Definition of an Implementation Dependencycccooeviiiiiiiivivinnnnne. 253
C.2 Hardware CharacCteriStiCScccoiiiiiiiiiiiiiiiiiiiiiiiieeee e e e e e e eeeeeeaaeee 253
C.3 Implementation Dependency Categoriesccccvvvvvvvvriiiiiiiieeeeeeeeeeeen, 254
C.4 List of Implementation DependencCiesccoooviiiiiiiniiiiiiiieiiieeeeeee e 254
D Formal Specification of the Memory Models (Normative)..............ccccouveee. 263
D.1 Processors and MEMOIYcoooooiiiiiiiiiiiiiiiiiiiiei et e 263
D.2 An Overview of the Memory Model Specificationccccceeeeeviennnnnn. 264
D.3 Memory TranSaACLONScccuvuuuriiiiiiiiiieeeeeeeeeeeeeeeeeaeeaeira e e e e eeeeeeeeeees 265
D.3.1 Memory TranSaCtiONSccceuuuuuuiummmiiiianaeeeeeeeeeeeeeeeeeerennnnnnnne 265
D.3.2 Program OFUEIuuvuuuiiiiiiseeeeeeeeeeeeeeeeeetess s s e e e e e e e e e e eeeeeeaennes 265
D.3.3 Dependence OrUEIcccccuuriiiiiiiiiiiiiiiiaaee e ee e 266
D.3.4 MemOory OFAErouuiiiiiiiiiiii e 267
D.4 Specification of Relaxed Memory Order (RMO)ccoeeeeeeeiiiiiiieiiiiiinn, 267
D.4.1 Value AtOMICILY ...vvvreeeiiiiiiiiiieeeeee e 267
D.4.2 StOre AtOMICILY ...iieiiieiiiiie e e e et eeeeeae 268
D.4.3 Atomic Memory TranSactionsScccccceeeeeeeeeeeeiieeeeeeiiiiiinn 268
D.4.4 Memory Order CONSLrAINLSeuueiiiiiieieeeeeieeeeeeeeeeiiiiina e 268
D.4.5 Value of Memory TransSactionscccccceeevveeiieeviiinnniiiineenn. 268
D.4.6 Termination of Memory TranSactionsccccccccveeeeeeenennnnnnn, 269
D.4.7 Flush Memory TranSactioncccoeeevviiiiiieeeeeeiiiie e 269
D.5 Specification of Partial Store Order (PSO)ccceeeeiiiiiiiieeeeeeeeeeeeeiiiies 269
D.6 Specification of Total Store Order (TSO)coovviiiiiiiiiiiiieeeee e 269
D.7 Examples Of Program EXE@CULIONSciiiiiiiiiiiiiiiiiiiiiiis et 269
D.7.1 Observation of Store AtOMICILYccoeeeeieeeeeeeeirieeieeiiin 269
D.7.2 Dekker's AlgOrithmccooiiiiiiiiiiiiie e 271

D.7.3 Indirection Through ProCeSSOrIScuvvvuviiiiiiiiiieeeeeeeeeeeieennnnns 271

Contents iX

D.7.4 PSSO BENAVIONcovviiiiiiiiiiee e 272
D.7.5 Application to COMPIIEIScccoeviiiiieeiiiiieeeeeeere e 273
D.7.6 Verifying Memory ModelS ... 274
E Opcode Maps (NOIMMALIVE)........ccuuuuuuiiniiiiiae e e e e ee e eeeeeeeetieiiiss e e e e e e e e eeeees 275
O YT V= PRSP 275
E.2 TaADIES e 275
F SPARC-V9 MMU Requirements (Informative)cccccceeeeeeeiiiiiiiiiiiiiinnnnn, 283
O R [01 0o [Tt 1 o PO 283
et Ot R I T] 11 1] £ 283
I O 1Y o= PP PPPPPRP 283
F.3 The Processor-MMU INterface ... 284
F.3.1 Information the MMU Expects from the Processor 285
F.3.2 Attributes the MMU Associates with Each Mapping 286
F.3.3 Information the MMU Sends to the Processorcc.c........ 286
F.4 Components of the SPARC-V9 MMU Architecturecccccceeeeeeneeeee. 287
F.4.1 Virtual-to-Physical Address Translationcccccccceeeinnnnnnnnn, 287
F.4.2 Memory ProteCtiONcceeeieiiiiei e 288
F.4.3 Prefetch and Non-Faulting Load Violationccccccn.... 288
F.A. A CONEXES ettt eeeaa e e e eees 288
F.4.5 Fault Status and Fault ADdresscccccceeeiiiiiiiniiiiiiiiiiieee 289
F.4.6 Referenced and Modified StatiStiCScoevveiiiiciviiinnnnnnn. 290
F.5 RED_State PrOCESSING ...cevviiiiiiiiieieiiiiiieiieiii it e e e e e e e e 290
F.6 Virtual Address AlIaSIiNGccooeiviiiiiiieiiiiiies e e 290
F.7 MMU Demap OPErationccouuuuuiuiiiiiiiieieeeeeeeeeeeeeeeearrsne e e e e e e e 290
F.8 SPARC-V9 Systems without an MMUcccoiiiiiiiiiiiiiis 291
G Suggested Assembly Language Syntax (Informative).............cccccevvviiinnne 293
(70 R T = 11 0] o L0 £~ o [293
G.1.1 RegiSter NAMESccooiiiiiiieeeccs e 293
G.1.2 Special Symbol NamesSceeuiiiiiiiiiiiiiiiiiie 294
G.L.3 ValUBS et 296
G.1i4 LADEIS ettt 297
G.1.5 Other Operand SYNAXccuveeiiiieiiiiiiiiiiiiiie e 297
G.1.6 COMMENLS ..ottt e e e e et 298
G.2 SYNAX DESIGN ..ot a e e e 298
G.3 SYNthetiC INSIUCTIONSuiiiiiiiiiiiiiiiiie e 299
H Software Considerations (INformative)ccceeeiiiieiiiieiiiiieeeeeeeein 303
H.1 Nonprivileged SOftWArecooooiiiiiiiiiiiii e 303
[O O O o L= To £ (= £ TS 303

H.1.2 Leaf-Procedure Optimizationcccccoeiiiiiiiiiiiiiiiiiiiiieeee e 306

X Contents
H.1.3 Example Code for a Procedure Call ..., 308
H.1.4 Register Allocation within @ Windowcccceeevviiiiiieeenennnn, 309
H.1.5 Other Register-Window-Usage Modelsccccccvvvvvvvciinnnnn. 310
H.1.6 Self-Modifying COOEooiiiiiiiiiiiiieeeeeeeeeee e 310
H.1.7 Thread Managementcccoiiiiiiiiiiiiiiii et eeaeans 311
H.1.8 Minimizing Branch LAteNCyuuvviiiiiiiiiieeeeeeeeeeeeeeiiisiinnns 311
H.1.9 PrefetCh ..o 312
H.1.10 Nonfaulting Loadccccooiiiiiiiiiiiie e 315
H.2 SUPEIVISOr SOMWAIEccoviiiiiiiiiiiii ettt 317
H.2.1 Trap Handlingoooeeiiiiiiiiiii e 317
H.2.2 Example Code for Spill Handlerccccvvviiiiiiiiiiiieeeeeeeeee 318
H.2.3 Client-Server Modelccooovieeiiiiiiiieceeee e 318
H.2.4 User Trap Handlers ... 319
| Extending the SPARC-V9 Architecture (Informative)cccccvvvvvinnnne. 323
1.1 Addition of SPARC-V9 EXIENSIONSccoeeviviiiiiiiiiiiiiiiieeeeeeeee e 323
1.1.1 Read/Write Ancillary State Registers (ASRS)ccvvvviiveennnn. 323
1.1.2 Implementation-Dependent and Reserved Opcodes 323
J Programming With the Memory Models (Informative)cccccccceeiiiiinnnnns 325
J.1 MemMOry OPEIratiONScccuvuiiieeiiiiiii et e e e e e e e e e e et e e e e eeaans 325
J.2 Memory Model SeIeCHiONcoooeiiiiiiieeer e 326
J.3 Processors and PrOCESSEScoooiiiiiiiiiiiiiiiiii ittt 326
J.4 Higher-Level Programming Languages and Memory Models 327
J.5 Portability And Recommended Programming Styleccccceeveiviieeeennnn. 327
J.6 SPIN LOCKS ..ot 329
J.7 Producer-Consumer Relationshipiiiiiiiiiieeeeen 329
J.8 Process SWItCh SEQUENCEoeiiiiiiiiiii e 331
J.9 Dekker's AlQOritNmcoooiiiii e 332
B 10 O B @ To [T = (o 11 o P 332
J. 11 Fetch_and _Add ... 335
J.12 Barrier SYNChronizationccoociiiiiiiiiiieiiiiis e 335
J.13 Linked List Insertion and Deletionccccuiiiiiiiiiiiiiiiiiiieeeeeees 337
J.14 Communicating With 1/0O DEVICEScccuuuiiiiiiiiiiiiiieeieeee e 337
J.14.1 /O Registers With Side EffeCtsccceeieiiiiiiiiiiiiieeein, 339
J.14.2 The Control and Status Register (CSR)ccccceeviiiiienniiiiiinnns 339
J.14.3 The DEeSCHPION ...ciiiiiiii e e 340
J.14.4 Lock-Controlled Access to a Device Registercccceeeennn. 340
K Changes From SPARC-V8 to SPARC-V9 (Informative)cceeevevvvvnnnnnn. 341
S A I = o N 1 o o =] R 341
K.2 Data FOIMALSoiiiiiiii et e e e e 342
K.3 Little-ENdian SUPPOIovvieeiiiiiii i e e e e e e e e e e e e e eeeeaanaees 342

Contents Xi
K4 REQISTEIS ..ottt a e 342
K.5 AREIrNate SPACE ACCESS ..ooiiieieiiiiiieeeeeeeiiir e 343
K.6 Little-Endian Byte Ordercooviiiiiiiiiiiiiciee e 343
O 01511 0 ot 1 o] o 0= 343
K.8 MemMOry MOEI ... 346

BIDIOGIapNY ... ——————— 347
General REfEIENCEScooiiiiiiiiiie e e 347
Memory Model REFEIENCESuvuviiiii e 348
PrefetChiNg ... 349

Xii Contents

Introduction

Welcome to SPARC-V9, the most significant change to the SPARC architecture since it
was announced in 1987. SPARC-V9 extends the addresses of SPARC to 64 bits and adds a
number of new instructions and other enhancements to the architecture.

SPARC-V9, like its predecessor SPARC-V8, is a microprocessor specification created by
the SPARC Architecture Committee of SPARC International. SPARC-V9 is not a specific
chip; it is an architectural specification that can be implemented as a microprocessor by
anyone securing a license from SPARC International.

SPARC International is a consortium of computer makers, with membership open to any

company in the world. Executive member companies each designate one voting member
to participate on the SPARC Architecture Committee. Over the past several years, the
architecture committee has been hard at work designing the next generation of the SPARC
architecture.

Typically, microprocessors are designed and implemented in secret by a single company.
Then the company spends succeeding years defending its proprietary rights in court
against its competitors. With SPARC, it is our intention to make it easy for anyone to
design and implement to this architectural specification. Several SPARC-V9 implementa-
tions are already underway, and we expect many more companies to design systems
around this microprocessor standard in the coming years.

0.1 SPARC

SPARC stands for &calableProcessolARChitecture. SPARC has been implemented in
processors used in a range of computers from laptops to supercomputers. SPARC Interna-
tional member companies have implemented over a dozen different compatible micropro-
cessors since SPARC was first announced—more than any other microprocessor family
with this level of binary compatibility. As a result, SPARC today boasts over 8000 com-
patible software application programs. SPARC-V9 maintains upwards binary compatibil-
ity for application software, which is a very important feature.

Throughout the past six years, the SPARC architecture has served our needs well. But at
the same time, VLSI technology, compiler techniques and users’ needs have changed. The
time is right to upgrade SPARC for the coming decade.

1. For a complete list of changes between SPARC-V8 and SPARC-V9, see Appendix K.

Xiii

Xiv Introduction

0.2 Processor Needs for the 90s and Beyond

The design of Reduced Instruction Set Processors (RISC) began in earnest in the early
1980s. Early RISC processors typically were characterized by a load-store architecture,
single instruction-per-cycle execution, and 32-bit addressing. The instruction set architec-
ture of these early RISC chips was well matched to the level of computer optimization
available in the early 1980s, and provided a minimal interface for the UNIX™ operating
system.

The computer industry has grown significantly in the last decade. Computer users need
more for the 1990s than these early RISCs provided; they demand more powerful systems
today, and yet they continue to want their systems to have good performance growth and
compatibility into the future.The applications of the future—nhighly interactive and distrib-
uted across multiple platforms—uwill require larger address spaces and more sophisticated
operating system interfaces. Tomorrow’s architectures must provide better support for
multiprocessors, lightweight threads, and object oriented programming. Modern computer
systems must also perform more reliably than in the past.

It is interesting to observe the evolution of RISC architectures. Without sufficient instruc-
tion encoding, some microprocessors have been unable to provide for either larger address
spaces or new instruction functionality. Others have provided 64-bit addressing, but still
have not changed much from the RISCs of the 1980s. Fortunately, SPARC'’s designers had
sufficient foresight to allow for all of the changes we felt were needed to keep SPARC a
viable architecture for the long term.

0.3 SPARC-V9: A Robust RISC for the Next Century

SPARC-V9 is a robust RISC architecture that will remain competitive well into the next
century. The SPARC-V9 architecture delivers on this promise by enhancing SPARC-V8 to
provide explicit support for:

— 64-bit virtual addresses and 64-bit integer data

— Improved system performance

— Advanced optimizing compilers

— Superscalar implementations

— Advanced operating systems

— Fault tolerance

— Extremely fast trap handling and context switching

— Big- and little-endian byte orders

0.3.1 64-bit Data and Addresses

SPARC-V9 directly supports 64-bit virtual addresses and integer data sizes up to 64 bits.
All SPARC-V8 integer registers have been extended from 32 to 64 bits. There are also sev-

0.3 SPARC-V9: A Robust RISC for the Next Century XV

eral new instructions that explicitly manipulate 64-bit values. For example, 64-bit integer
values can be loaded and stored directly with the LDX and STX instructions.

Despite these changes, 64-bit SPARC-V9 microprocessors will be able to execute pro-
grams compiled for 32-bit SPARC-V8 processors. The principles of two’s complement
arithmetic made upward compatibility straightforward to accomplish. Arithmetic opera-
tions, for example, specified arithmetic on registers, independent of the length of the regis-
ter. The low order 32-bits of arithmetic operations will continue to generate the same
values they did on SPARC-V8 processors. Since SPARC-V8 programs paid attention to
only the low order 32-bits, these programs will execute compatibly. Compatibility for
SPARC-V9 was accomplished by making sure that all previously existing instructions
continued to generate exactly the same result in the low order 32-bits of registers. In some
cases this meant adding new instructions to operate on 64-bit values. For example, shift
instructions now have an additional 64-bit form.

In order to take advantage of SPARC-V9’s extended addressing and advanced capabilities,
SPARC-V8 programs must be recompiled. SPARC-V9 compilers will take full advantage
of the new features of the architecture, extending the addressing range and providing
access to all of the added functionality.

0.3.2 Improved System Performance

Performance is one of the biggest concerns for both computer users and manufacturers.
We've changed some basic things in the architecture to allow SPARC-V9 systems to
achieve higher performance. The new architecture contains 16 additional double-precision
floating-point registers, bringing the total to 32. These additional registers reduce memory
traffic, allowing programs to run faster. The new floating-point registers are also address-
able as eight quad-precision registers. SPARC-V9’s support for a 128-bit quad floating-
point format is unique for microprocessors.

SPARC-V9 supports four floating-point condition code registers, where SPARC-V8 sup-

ported only one. SPARC-V9 processors can provide more parallelism for a Superscalar
machine by launching several instructions at a time. With only one condition code register,
instructions would have a serial dependence waiting for the single condition code register
to be updated. The new floating-point condition code registers allow SPARC-V9 proces-

sors to initiate up to four floating-point compares simultaneously.

We've also extended the instruction set to increase performance by adding:
— 64-bit integer multiply and divide instructions.
— Load and store floating-point quadword instructions.

— Software settable branch prediction, which gives the hardware a greater probability
of keeping the processor pipeline full.

— Branches on register value, which eliminate the need to execute a compare instruc-
tion. This provides the appearance of multiple integer condition codes, eliminating
a potential bottleneck and creating similar possibilities for parallelism in integer
calculations that we obtained from multiple floating-point condition codes.

XVi Introduction

— Conditional move instructions, which allow many branches to be eliminated.

0.3.3 Advanced Optimizing Compilers

We expect to see many new optimizing compilers in the coming decade, and we have
included features in SPARC-V9 that these compilers will be able to use to provide higher
performance. SPARC-V9 software can explicitly prefetch data and instructions, thus
reducing the memory latency, so a program need not wait as long for its code or data. If
compilers generate code to prefetch code and data far enough in advance, the data can be
available as soon as the program needs to use it, reducing cache miss penalties and pipe-
line stalls.

SPARC-V9 has support for loading data not aligned on “natural” boundaries. Because of
the way the FORTRAN language is specified, compilers often cannot determine whether
double-precision floating-point data is aligned on doubleword boundaries in memory. In
many RISC architectures, FORTRAN compilers generate two single-precision loads
instead of one double-precision load. This can be a severe performance bottleneck.
SPARC-V9 allows the compiler to always use the most efficient load and store instruc-
tions. On those rare occasions when the data is not aligned, the underlying architecture
provides for a fast trap to return the requested data, without the encumbrances of provid-
ing unaligned accesses directly in the memory system hardware. This net effect is higher
performance on many FORTRAN programs.

SPARC-V9 also supports non-faulting loads, which allow compilers to move load instruc-
tions ahead of conditional control structures that guard their use. The semantics of non-
faulting loads are the same as for other loads, except when a nonrecoverable fault such as
an address-out-of-range error occurs. These faults are ignored, and hardware and system
software cooperate to make the load appear to complete normally, returning a zero result.
This optimization is particularly useful when optimizing for superscalar processors. Con-
sider this C program fragment:

if(p!= NULL)x = *p+y;

With non-faulting loads, the load dp can be moved up by the compiler to before the
check forp = NULL , allowing overlapped execution. A normal load on many processors
would cause the program to be aborted if this optimization was performeg amais
NULL The effect is equivalent to this transformation:

temp_register = *p;
if (p!= NULL)x = temp_register +y;

Imagine a superscalar processor that could execute four instructions per cycle, but only
one of which could be a load or store. In a loop of eight instructions containing two loads,
it might turn out that without this transformation it would not be possible to schedule
either of the loads in the first group of four instructions. In this case a third or possibly
fourth clock cycle might be necessary for each loop iteration instead of the minimal two
cycles. Improving opportunities for better instruction scheduling could have made a factor
of two difference in performance for this example. Good instruction scheduling is critical.

0.3 SPARC-V9: A Robust RISC for the Next Century XVii

Alias detection is a particularly difficult problem for compilers. If a compiler cannot tell
whether two pointers might point to the same value in memory, then it is not at liberty to
move loads up past previous store instructions. This can create a difficult instruction
scheduling bottleneck. SPARC-V9 contains specific instructions to enable the hardware to
detect pointer aliases, and offers the compiler a simple solution to this difficult problem.
Two pointers can be compared and the results of this comparison stored in an integer reg-
ister. The FMOVRZ instruction, for example, will conditionally move a floating-point reg-
ister based on the result of this prior test. This instruction can be used to correct aliasing
problems and allow load instructions to be moved up past stores. As with the previous
example, this can make a significant difference in overall program performance.

Finally, we've added a TICK register, which is incremented once per machine cycle. This
register can be read by a user program to make simple and accurate measurements of pro-
gram performance.

0.3.4 Advanced Superscalar Processors

SPARC-V9 includes support for advanced Superscalar processor designs. CPU designers
are learning to execute more instructions per cycle every year with new pipelines. Two to
three instructions at a time is becoming commonplace. We eventually expect to be able to
execute eight to sixteen instructions at a time with the SPARC architecture. To accomplish
this, we've made enhancements to provide better support for Superscalar execution.

Many of these changes were driven by the experience gained from implementing Texas
Instruments’ SuperSPARC and Ross Technologies’ HyperSPARC, both Superscalar chips.
SPARC'’s simple-to-decode, fixed-length instructions, and separate integer and floating-
point units lend themselves to Superscalar technology.

In addition, SPARC-V9 provides more floating-point registers, support for non-faulting
loads, multiple condition codes, branch prediction, and branches on integer register con-
tents. All of these features allow for more parallelism within the processor. For the mem-
ory system, we've added a sophisticated memory barrier instruction, which allows system
programmers to specify the minimum synchronization needed to ensure correct operation.

0.3.5 Advanced Operating Systems

The operating system interface has been completely redesigned in SPARC-V9 to better
support operating systems of the 1990s. There are new privileged registers and a new
structure to those registers, which makes it much simpler to access important control
information in the machine. Remember, the change in the operating system interface has
no effect on application software; user-level programs do not see these changes, and thus,
are binary compatible without recompilation.

Several changes were made to support the new microkernel style of operating system
design. Nested trap levels allow more modular structuring of code, and are more efficient
as well. SPARC-V9 provides improved support for lightweight threads and faster context
switching than was possible in previous SPARC architectures. We've accomplished this
by making register windows more flexible than they were in earlier SPARC processors,
allowing the kernel to provide a separate register bank to each running process. Thus, the

Xviii Introduction

processor can perform a context switch with essentially no overhead. The new register
window implementation also provides better support for object-oriented operating systems
by speeding up interprocess communication across different domains. There is a mecha-
nism to provide efficient server access to client address spaces using user address space
identifiers. The definition of a nucleus address space allows the operating system to exist
in a different address space than that of the user program.

Earlier SPARC implementations supported multiprocessors; now we've added support for
very large-scale multiprocessors, including a memory barrier instruction and a new mem-
ory model we call relaxed memory order (RMO). These features allow SPARC-V9 CPUs

to schedule memory operations to achieve high performance, while still doing the syn-
chronization and locking operations needed for shared-memory multiprocessing.

Finally we've added architectural support that helps the operating system provide “clean”
register windows to its processes. A clean window is guaranteed to contain zeroes initially,
and only data or addresses generated by the process during its lifetime. This makes it eas-
ier to implement a secure operating system, which must provide absolute isolation
between its processes.

0.3.6 Fault Tolerance

Most existing microprocessor architectures do not provide explicit support for reliability
and fault-tolerance. You might build a reliable and fault-tolerant machine without explicit
support, but providing it saves a lot of work, and the machine will cost less in the long run.

We've incorporated a number of features in SPARC-V9 to address these shortcomings.
First, we've added a compare-and-swap instruction. This instruction has well-known fault-
tolerant features and is also an efficient way to do multiprocessor synchronization.

We've also added support for multiple levels of nested traps, which allow systems to
recover gracefully from various kinds of faults, and to contain more efficient trap handlers.
Nested traps are described in the next section.

Finally, we've added a special new processor state called RED_state, sh&¢édet,

Error andDebug state. It fully defines the expected behavior when the system is faced
with catastrophic errors, and during reset processing when it is returning to service. This
level of robustness is required to build fault-tolerant systems.

0.3.7 Fast Traps and Context Switching

We have also worked hard to provide very fast traps and context switching in SPARC-V9.
We have re-architected the trap entry mechanism to transfer control into the trap handlers
very quickly. We've also added eight new registers called “alternate globals,” so the trap
handler has a fresh register set to use immediately upon entry; the software need not store
registers before it can begin to do its work. This allows very fast instruction emulation and
very short interrupt response times.

We have also added support for multiple levels of nested traps. It is very useful for the
machine to allow a trap handler to generate a trap. SPARC-V8 trap handlers were not
allowed to cause another trap. With support for nested traps, we have seen some trap han-

0.4 Summary XiX

dlers reduced from one hundred instructions to less than twenty. Obviously, this creates a
big performance improvement, but it also allows a much simpler operating system design.

We've also found a way to reduce the number of registers saved and restored between pro-
cess executions, which provides faster context switching. The architecture provides sepa-
rate dirty bits for the original (lower) and the new (upper) floating-point registers. If a
program has not modified any register in one of the sets, there is no need to save that set
during a context switch.

0.3.8 Big- and Little-Endian Byte Orders

Finally, we have provided support for data created on little-endian processors such as the
80x86 family. The architecture allows both user and supervisor code to explicitly access
data in little-endian byte order. It is also possible to change the default byte order to little-
endian in user mode only, in supervisor mode only, or in both. This allows SPARC-V9 to
support mixed byte order systems.

0.4 Summary

As you can see, SPARC-V9 is a significant advance over its predecessors. We have pro-
vided 64-bit data and addressing, support for fault tolerance, fast context switching, sup-
port for advanced compiler optimizations, efficient design for Superscalar processors, and
a clean structure for modern operating systems. And we've done it all with 100% upwards
binary compatibility for application programs. We believe that this is a significant achieve-
ment.

In the future, we envision superior SPARC-V9 implementations providing high perfor-
mance, stellar reliability, and excellent cost efficiency—just what computer users are ask-
ing for. SPARC has been the RISC leader for the last five years. With the changes we have
made in SPARC-V9, we expect it to remain the RISC leader well into the next century.

Speaking for the Committee members, we sincerely hope that you profit from our work.

— David R. Ditzel
Chairman, SPARC Architecture Committee

XX

Introduction

Editors’ Notes

Acknowledgments

The members of SPARC International’s Architecture Committee devoted a great deal of
time over a period of three years designing the SPARC-V9 architecture. As of Summer
1993, the committee membership was: Dennis Allison, Hisashige Ando, Jack Benkual,
Joel Boney (vice-chair), David Ditzel (chair), Hisakazu Edamatsu, Kees Mage, Steve
Krueger, Craig Nelson, Chris Thomson, David Weaver, and Winfried Wilcke.

Joel Boney wrote the original “V9 Delta Documents” that supplied much of the new mate-
rial for this specification.

Others who have made significant contributions to SPARC-V9 include Greg Blanck, Jeff
Broughton (former vice-chair), David Chase, Steve Chessin, Bob Cmelik, David Dill,
Kourosh Gharachorloo, David Hough, Bill Joy, Ed Kelly, Steve Kleiman, Jaspal Kohli,
Les Kohn, Shing Kong, Paul Loewenstein, Guillermo “Matute” Maturana, Mike McCam-
mon, Bob Montoye, Chuck Narad, Andreas Nowatzyk, Seungjoon Park, David Patterson,
Mike Powell, John Platko, Steve Richardson, Robert Setzer, Pradeep Sindhu, George Tay-
lor, Marc Tremblay, Rudolf Usselmann, J. J. Whelan, Malcolm Wing, and Robert Yung.

Joel Boney, Dennis Allison, Steve Chessin, and Steve Muchnick deserve distinction as
“Ace” reviewers. They performed meticulous reviews, eliminating countless bugs in the
specification.

Our thanks to all of the above people for their support, critiques, and contributions to this
book over the last three years!

Personal Notes

Three years — that’s a long time to be in labor! It is with a great deal of pride (and frankly,
relief!) that | see this book go to print.

The SPARC Architecture Committee comprised roughly a dozen people, all top computer
architects in the industry, from diverse companies. Yet — and this was the most incredible
part of the whole process — this group was able to set aside personal egos and individual
company interests, and work not just as a committee, but as deaat. This kind of
cooperation and synergy doesn’t happen every day. Years from now, I'll look back at this
work and still be proud to have been a part of this group, and of what we createtiVay

to go, gang — we done good!”

Special kudos are due Tom Germond, whose expertise and sharp eye for detail were
instrumental in preparing this book. He fearlessly performed a complex but accurate con-
version of this specification from one document-preparation system to a wildly different
one. Tom made countless improvements to the specification’s substance and style, and

XXi

XXii Editors’ Notes

tenaciously followed numerous open technical issues through to resolution. This book
would simply not have been the same without him. Thanks for being there, Tom.

— David Weaver, Editor

Well, it's three o’clock in the morning and I'm in the middle of yet another SPARC-V9
all-nighter. | haven’t lost this much sleep since my firstborn was first born. But | must say,
it's been great fun bringing this baby to life.

My deepest gratitude to every member of our team, and a tiny extra measure of thanks to a
special few. To Joel Boney for his generous and unwavering support. To Dennis Allison
for his constant striving for excellence and clarity. To Steve Muchnick for his astonishing
mastery of the details. To Steve Chessin for always going to the heart of the issues. And to
Jane Bonnell, our editor at Prentice-Hall, for helping us turn a technical specification into
a real book.

And finally,warm thanks to Dave Weaver, a good friend and an easy person to work for.
You created the opportunity for me to join the team, and you got me through the rough
times with all those great movie-and-hot-tub parties. Until next time....

— Tom Germond, Co-editor

1 Overview

This specification defines a 64-bit architecture called SPARC-V9, which is upward-com-
patible with the existing 32-bit SPARC-V8 microprocessor architecture. This specification
includes, but is not limited to, the definition of the instruction set, register model, data
types, instruction opcodes, trap model, and memory model.

1.1 Notes About this Book

1.1.1 Audience

Audiences for this specification include implementors of the architecture, students of com-

puter architecture, and developers of SPARC-V9 system software (simulators, compilers,

debuggers, and operating systems, for example). Software developers who need to write
SPARC-V9 software in assembly language will also find this information useful.

1.1.2 Where to Start

If you are new to the SPARC architecture, read Chapter 2 and Chapter 3 for an overview,
then look into the subsequent chapters and appendixes for more details in areas of interest
to you.

If you are already familiar with SPARC-V8, you will want to review the list of changes in
Appendix K, “Changes From SPARC-V8 to SPARC-V9.” For additional detail, review the
following chapters:

— Chapter 5, “Registers,” for a description of the register set.

— Chapter 6, “Instructions,” for a description of the new instructions.

— Chapter 7, “Traps,” for a description of the trap model.

— Chapter 8, “Memory Models,” for a description of the memory models.

— Appendix A, “Instruction Definitions,” for descriptions of new or changed instruc-
tions.

1.1.3 Contents
The manual contains these chapters:

— Chapter 1, “Overview,” describes the background, design philosophy, and high-
level features of the architecture.

— Chapter 2, “Definitions,” defines some of the terms used in the specification.

1

2 1 Overview

— Chapter 3, “Architectural Overview,” is an overview of the architecture: its organi-
zation, instruction set, and trap model.

— Chapter 4, “Data Formats,” describes the supported data types.
— Chapter 5, “Registers,” describes the register set.

— Chapter 6, “Instructions,” describes the instruction set.

— Chapter 7, “Traps,” describes the trap model.

— Chapter 8, “Memory Models,” describes the memory models.

These appendixes follow the chapters:

— Appendix A, “Instruction Definitions,” contains definitions of all SPARC-V9
instructions, including tables showing the recommended assembly language syn-
tax for each instruction.

— Appendix B, “IEEE Std 754-1985 Requirements for SPARC-V9,” contains infor-
mation about the SPARC-V9 implementation of the IEEE 754 floating-point stan-
dard.

— Appendix C, “SPARC-V9 Implementation Dependencies,” contains information
about features that may differ among conforming implementations.

— Appendix D, “Formal Specification of the Memory Models,” contains a formal
description of the memory models.

— Appendix E, “Opcode Maps,” contains tables detailing the encoding of all
opcodes.

— Appendix F, “SPARC-V9 MMU Requirements,” describes the requirements that
SPARC-V9 imposes on Memory Management Units.

— Appendix G, “Suggested Assembly Language Syntax,” defines the syntactic con-
ventions used in the appendixes for the suggested SPARC-V9 assembly language.
It also lists synthetic instructions that may be supported by SPARC-V9 assemblers
for the convenience of assembly language programmers.

— Appendix H, “Software Considerations,” contains general SPARC-V9 software
considerations.

— Appendix I, “Extending the SPARC-V9 Architecture,” contains information on
how an implementation can extend the instruction set or register set.

— Appendix J, “Programming With the Memory Models,” contains information on
programming with the SPARC-V9 memory models.

— Appendix K, “Changes From SPARC-V8 to SPARC-V9,” describes the differ-
ences between SPARC-V8 and SPARC-V9.

A bibliography and an index complete the book.

1.1 Notes About this Book 3

1.1.4 Editorial Conventions

1.1.4.1 Fonts and Notational Conventions
Fonts are used as follows:

— ltalic font is used for register names, instruction fields, and read-only register
fields. For example: “Thes1 field contains....”

— Typewriter fontis used for literals and for software examples.

— Bold font is used for emphasis and the first time a word is defined. For example:
“A precise trapis induced....”

— UPPER CASE items are acronyms, instruction names, or writable register fields.
Some common acronyms appear in the glossary in Chapter 2. Note that names of
some instructions contain both upper- and lower-case letters.

— Italic sans serif font is used for exception and trap names. For example, “The
privileged_action exception....”

— Underbar characters join words in register, register field, exception, and trap
names. Note that such words can be split across lines at the underbar without an
intervening hyphen. For example: “This is true whenever the integer_condition_
code field....”

— Reduced-size foris used in informational notes. See 1.1.4.4, “Informational Notes.”
The following notational conventions are used:

— Square brackets ‘[] indicate a numbered register in a register file. For example:
“r[0] contains....”

— Angle brackets ‘< >’ indicate a bit number or colon-separated range of bit num-
bers within a field. For example: “Bits FSR<29:28> and FSR<12> are...”

— Curly braces ‘{ } are used to indicate textual substitution. For example, the string
“ASI_PRIMARY{ LITTLE}" expands to “ASI_PRIMARY” and “ASI_
PRIMARY_LITTLE".

— The[] symbol designates concatenation of bit vectors. A conjroa the left side
of an assignment separates quantities that are concatenated for the purpose of
assignment. For example, if X, Y, and Z are 1-bit vectors, and the 2-bit vector T
equals 13, then

resultsin X=0,Y=1,and Z=1.

1.1.4.2 Implementation Dependencies

Definitions of SPARC-V9 architecture implementation dependencies are indicated by the
notation IMPL. DEP. #nn: Some descriptive text.” The humbernn is used to enumerate the
dependencies in Appendix C, “SPARC-V9 Implementation Dependencies.” References to

4 1 Overview

SPARC-V9 implementation dependencies are indicated by the notation “(impl. ai@g. #
Appendix C lists the page number on which each definition and reference occurs.

1.1.4.3 Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise indicated.
Numbers in other bases are followed by a numeric subscript indicating their base (for
example, 100] FFFF 000@;). Long binary and hex numbers within the text have spaces
inserted every four characters to improve readability. Within C or assembly language
examples, numbers may be preceded by “Ox” to indicate base-16 (hexadecimal) notation
(for examplepxffffoooo).

1.1.4.4 Informational Notes

This manual provides several different types of information in notes; the information
appears in &duced-size fontThe following are illustrations of the various note types:

Programming Note:
These contain incidental information about programming using the SPARC-V9 architecture.

Implementation Note:
These contain information that may be specific to an implementation or may differ in different
implementations.

V8 Compatibility Note:
These contain information about features of SPARC-V9 that may not be compatible with SPARC-
V8 implementations.

1.2 The SPARC-V9 Architecture

1.2.1 Features
SPARC-V9 includes the following principal features:
— A linear address space with 64-bit addressing.

— Few and simple instruction formats: All instructions are 32 bits wide, and are
aligned on 32-bit boundaries in memory. Only load and store instructions access
memory and perform 1/O.

— Few addressing modes: A memory address is given as either “register + register”
or “register + immediate.”

— Triadic register addresses: Most computational instructions operate on two register
operands or one register and a constant, and place the result in a third register.

— A large windowed register file: At any one instant, a program sees 8 global integer
registers plus a 24-register window of a larger register file. The windowed registers
can be used as a cache of procedure arguments, local values, and return addresses.

1.2 The SPARC-V9 Architecture 5

— Floating-point: The architecture provides an IEEE 754-compatible floating-point
instruction set, operating on a separate register file that provides 32 single-preci-
sion (32-bit), 32 double-precision (64-bit), 16 quad-precision (128-bit) registers, or
a mixture thereof.

— Fast trap handlers: Traps are vectored through a table.

— Multiprocessor synchronization instructions: One instruction performs an atomic
read-then-set-memory operation; another performs an atomic exchange-register-
with-memory operation; another compares the contents of a register with a value in
memory and exchanges memory with the contents of another register if the com-
parison was equal; two others are used to synchronize the order of shared memory
operations as observed by processors.

— Predicted branches: The branch with prediction instructions allow the compiler or
assembly language programmer to give the hardware a hint about whether a branch
will be taken.

— Branch elimination instructions: Several instructions can be used to eliminate
branches altogether (e.g., move on condition). Eliminating branches increases per-
formance in superscalar and superpipelined implementations.

— Hardware trap stack: A hardware trap stack is provided to allow nested traps. It
contains all of the machine state necessary to return to the previous trap level. The
trap stack makes the handling of faults and error conditions simpler, faster, and
safer.

— Relaxed memory order (RMO) model: This weak memory model allows the hard-
ware to schedule memory accesses in almost any order, as long as the program
computes the correct result.

1.2.2 Attributes

SPARC-V9 is a CPUnstruction set architecture (ISA) derived from SPARC-V8; both
architectures come from a reduced instruction set computer (RISC) lineage. As architec-
tures, SPARC-V9 and SPARC-V8 allow for a spectrum of chip and systgtementa-

tions at a variety of price/performance points for a range of applications, including
scientific/engineering, programming, real-time, and commercial.

1.2.2.1 Design Goals

SPARC-V9 is designed to be a target for optimizing compilers and high-performance
hardware implementations. SPARC-V9 implementations provide exceptionally high exe-
cution rates and short time-to-market development schedules.

1.2.2.2 Register Windows

SPARC-V9 is derived from SPARC, which was formulated at Sun Microsystems in 1985.
SPARC is based on the RISC | and Il designs engineered at the University of California at
Berkeley from 1980 through 1982. SPARC's “register window” architecture, pioneered in

6 1 Overview

the UC Berkeley designs, allows for straightforward, high-performance compilers and a
significant reduction in memory load/store instructions over other RISCs, particularly for
large application programs. For languages such as C++, where object-oriented program-
ming is dominant, register windows result in an even greater reduction in instructions exe-
cuted.

Note that supervisor software, not user programs, manages the register windows. The
supervisor can save a minimum number of registers (approximately 24) during a context
switch, thereby optimizing context-switch latency.

One major difference between SPARC-V9 and the Berkeley RISC | and Il is that SPARC-
V9 provides greater flexibility to a compiler in its assignment of registers to program vari-
ables. SPARC-V9 is more flexible because register window management is not tied to pro-
cedure call and return instructions, as it is on the Berkeley machines. Instead, separate
instructions (SAVE and RESTORE) provide register window management. The manage-
ment of register windows by privileged software is very different too, as discussed in
Appendix H, “Software Considerations.”

1.2.3 System Components

The architecture allows for a spectrum of input/output (I/O), memory-management unit
(MMU), and cache system subarchitectures. SPARC-V9 assumes that these elements are
best defined by the specific requirements of particular systems. Note that they are invisible
to nearly all user programs, and the interfaces to them can be limited to localized modules
in an associated operating system.

1.2.3.1 Reference MMU

The SPARC-V9 ISA does not mandate a single MMU design for all system implementa-
tions. Rather, designers are free to use the MMU that is most appropriate for their applica-
tion, or no MMU at all, if they wish. Appendix F, “SPARC-V9 MMU Requirements,”
discusses the boundary conditions that a SPARC-V9 MMU is expected to satisfy.

1.2.3.2 Privileged Software

SPARC-V9 does not assume that all implementations must execute identical privileged
software. Thus, certain traits of an implementation that are visible to privileged software
can be tailored to the requirements of the system. For example, SPARC-V9 allows for
implementations with different instruction concurrency and different trap hardware.

1.2.4 Binary Compatibility

The most important SPARC-V9 architectural mandate is binary compatibility of nonprivi-
leged programs across implementations. Binaries executed in nonprivileged mode should
behave identically on all SPARC-V9 systems when those systems are running an operat-
ing system known to provide a standard execution environment. One example of such a
standard environment is the SPARC-V9 Application Binary Interface (ABI).

1.2 The SPARC-V9 Architecture 7

Although different SPARC-V9 systems may execute nonprivileged programs at different
rates, they will generate the same results, as long as they are run under the same memory
model. See Chapter 8, “Memory Models,” for more information.

Additionally, SPARC-V9 is designed to be binary upward-compatible from SPARC-V8
for applications running in nonprivileged mode that conform to the SPARC-V8 ABI.

1.2.5 Architectural Definition

The SPARC Version 9 Architecture is defined by the chapters and normative appendixes
of this document. A correct implementation of the architecture interprets a program

strictly according to the rules and algorithms specified in the chapters and normative
appendixes. Only two classes of deviations are permitted:

(1) Certain elements of the architecture are defined to be implementation-dependent.
These elements include registers and operations that may vary from implementa-
tion to implementation, and are explicitly identified in this document using the
notation IMPL. DEP. #NN: Some descriptive text.” Appendix C, “SPARC-V9 Imple-
mentation Dependencies,” describes each of these references.

(2) Functional extensions are permitted, insofar as they do not change the behavior of
any defined operation or register. Such extensions are discouraged, since they limit
the portability of applications from one implementation to another. Appendix I,
“Extending the SPARC-V9 Architecture,” provides guidelines for incorporating
enhancements in an implementation.

This document defines a nonprivileged subset, designated SPARC-V9-NP. This includes
only those elements that may be executed or accessed while the processor is executing in
nonprivileged mode.

The informative appendixes provide supplementary information such as programming
tips, expected usage, and assembly language syntax. These appendixes are not binding on
an implementation or user of a SPARC-V9 system.

The Architecture Committee of SPARC International has sole responsibility for clarifica-
tion of the definitions in this document.

1.2.6 SPARC-V9 Compliance

SPARC International is responsible for certifying that implementations comply with the
SPARC-V9 Architecture. Two levels of compliance are distinguished; an implementation
may be certified at either level.

Level 1:

The implementation correctly interprets all of the nonprivileged instructions by
any method, including direct execution, simulation, or emulation. This level sup-
ports user applications and is the architecture component of the SPARC-V9 ABI.

8 1 Overview

Level 2
The implementation correctly interprets both nonprivileged and privileged instruc-
tions by any method, including direct execution, simulation, or emulation. A Level
2 implementation includes all hardware, supporting software, and firmware neces-
sary to provide a complete and correct implementation.

Note that a Level-2-compliant implementation is also Level-1-compliant.

IMPL. DEP. #1: Whether an instruction is implemented directly by hardware, simulated by soft-
ware, or emulated by firmware is implementation-dependent.

SPARC International publishes a documdntplementation Characteristics of Current
SPARC-V9-based Products, Revision fisting which instructions are simulated or emu-
lated in existing SPARC-V9 implementations.

Compliant implementations shall not add to or deviate from this standard except in aspects
described as implementation-dependent. See Appendix C, “SPARC-V9 Implementation
Dependencies.”

An implementation may be claimed to be compliant only if it has been
(1) Submitted to SPARC International for testing, and
(2) Issued a Certificate of Compliance by S. I.

A system incorporating a certified implementation may also claim compliance. A claim of
compliance must designate the level of compliance.

Prior to testing, a statement must be submitted for each implementation; this statement
must:

— Resolve the implementation dependencies listed in Appendix C
— Identify the presence (but not necessarily the function) of any extensions
— Designate any instructions that require emulation

These statements become the property of SPARC International, and may be released pub-
licly.

2 Definitions

The following subsections define some of the most important words and acronyms used in
this manual

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

address space identifierAn eight-bit value that identifies an address space. For
each instruction or data access, figer unit appends an ASI to the addreSee
alsa implicit ASI .

ASI: Abbreviation foraddress space identifier

application program: A program executed with the processornanprivileged

mode Note that statements made in this document regarding application programs
may not be applicable to programs (for example, debuggers) that have access to
privileged processor state (for example, as stored in a memory-image dump).

big-endian An addressing convention. Within a multiple-byte integer, the byte
with the smallest address is the most significant; a byte’s significance decreases as
its address increases.

byte Eight consecutive bits of data.

clean window A register window in which all of the registers contain either zero,
a valid address from the current address space, or valid data from the current
address space.

completed A memory transaction is said to be completed when an idealized
memory has executed the transaction with respect to all processors. A load is con-
sidered completed when no subsequent memory transaction can affect the value
returned by the load. A store is considered completed when no subsequent load
can return the value that was overwritten by the store.

current window: The block of 24r registersthat is currently in use. The Current
Window Pointer (CWP) register points to the current window.

dispatch Issue a fetched instruction to one or more functional units for execution.
doublet Two bytes (16 bits) of data.

doubleword An alignedoctlet. Note that the definition of this term is architec-
ture-dependent and may differ from that used in other processor architectures.

exception A condition that makes it impossible for the processor to continue exe-
cuting the current instruction stream without software intervention.

10 2 Definitions

2.13 extended word An aligned octlet, nominally containing integer data. Note that
the definition of this term is architecture-dependent and may differ from that used
in other processor architectures.

2.14 fregister: A floating-point register. SPARC-V9 includes single- double- and quad-
precisionf registers.

2.15 fccn: One of the floating-point condition code fielfscO, fccl, fcc2, orfcc3

2.16 floating-point exception An exception that occurs during the execution of a float-
ing-point operate (FPop) instruction. The exceptions awefinished FPop,
unimplemented_FPop, sequence_error, hardware_error, invalid_fpo_register, and IEEE_

754 _exception.

2.17 floating-point IEEE-754 exception A floating-point exception, as specified by
IEEE Std 754-1985. Listed within this manualBsE 754 exception.

2.18 floating-point trap type: The specific type of floating-point exception, encoded in
the FSRitt field.

2.19 floating-point operate (FPop) instructions Instructions that perform floating-
point calculations, as defined by the FPopl and FPop2 opcodes. FPop instructions
do not include FBfcc instructions, or loads and stores between memory and the
floating-point unit.

2.20 floating-point unit: A processing unit that contains the floating-point registers and
performs floating-point operations, as defined by this specification.

2.21 FPU Abbreviation forfloating-point unit.

2.22 halfword: An aligneddoublet. Note that the definition of this term is architecture-
dependent and may differ from that used in other processor architectures.

2.23 hexlet Sixteen bytes (128 bits) of data.

2.24 implementation Hardware and/or software that conforms to all of the specifica-
tions of an ISA.

2.25 implementation-dependentAn aspect of the architecture that may legitimately
vary among implementations. In many cases, the permitted range of variation is
specified in the standard. When a range is specified, compliant implementations
shall not deviate from that range.

2.26 implicit ASI: Theaddress space identifiethat is supplied by the hardware on all
instruction accesses, and on data accesses that do not contain an explicit ASI or a
reference to the contents of the ASI register.

2.27 informative appendix An appendix containing information that is useful but not

required to create an implementation that conforms to the SPARC-V9 specifica-
tion. See alspnormative appendix

2 Definitions 11

2.28

2.29

2.30

231

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

2.41

2.42

initiated. Seeissued
instruction field: A bit field within an instruction word.

instruction set architecture (ISA} An ISA defines instructions, registers, instruc-
tion and data memory, the effect of executed instructions on the registers and mem-
ory, and an algorithm for controlling instruction execution. An ISA does not define
clock cycle times, cycles per instruction, data paths, etc. This specification defines
an ISA.

integer unit A processing unit that performs integer and control-flow operations
and contains general-purpose integer registers and processor state registers, as
defined by this specification.

interrupt request A request for service presented to the processor by an external
device.

IU: Abbreviation forinteger unit.
ISA Abbreviation forinstruction set architecture.

issued In reference to memory transaction, a load, store, or atomic load-store is
said to be issued when a processor has sent the transaction to the memory sub-
system and the completion of the request is out of the processor’s cdsyrol.

onym initiated.

leaf procedure A procedure that is a leaf in the program’s call graph; that is, one
that does not call (using CALL or JMPL) any other procedures.

little-endian: An addressing convention. Within a multiple-byte integer, the byte
with the smallest address is the least significant; a byte’s significance increases as
its address increases.

may A key word indicating flexibility of choice with no implied preference. Note:
“may” indicates that an action or operation is allowed, “can” indicates that it is
possible.

must Synonymshall.

next program counter (nPC) A register that contains the address of the instruc-
tion to be executed next, if a trap does not occur.

non-faulting load A load operation that behaves identically to a normal load
operation, except when supplied an invalid effective address by software. In that
case, a regular load triggers an exception while a non-faulting load appears to
ignore the exception and loads its destination register with a value of £&v0-

trast withspeculative load

nonprivileged An adjective that describes (1) the state of the processor when
PSTATE.PRIV = 0, that isponprivileged mode (2) processor state information

12 2 Definitions
that is accessible to software while the processor is in efheileged mode or
nonprivileged mode, for example, nonprivileged registers, nonprivileged ASRs, or,
in general, nonprivileged state; (3) an instruction that can be executed when the
processor is in either privileged mode or nonprivileged mode.

2.43 nonprivileged mode The processor mode when PSTATE.PRIV =Ske also
nonprivileged.

2.44 normative appendix An appendix containing specifications that must be met by
an implementation conforming to the SPARC-V9 specificatitee alsoinforma-
tive appendix

2.45 NWINDOWS: The number of register windows present in an implementation.

2.46 octlet Eight bytes (64 bits) of data. Not to be confused with an “octet,” which has
been commonly used to describe eight bits of data. In this document, the term
byte, rather than octet, is used to describe eight bits of data.

2.47 opcodeA bit pattern that identifies a particular instruction.

2.48 prefetchable An attribute of a memory location which indicates to an MMU that
PREFETCH operations to that location may be applied. Normal memory is
prefetchable. Nonprefetchable locations include those that, when read, change
state or cause external events to oc8ae alspside effect

2.49 privileged An adjective that describes (1) the state of the processor when
PSTATE.PRIV =1, that is privileged mode (2) processor state information that
is accessible to software only while the processor is in privileged mode, for exam-
ple, privileged registers, privileged ASRs, or, in general, privileged state; (3) an
instruction that can be executed only when the processor is in privileged mode.

2.50 privileged mode The processor mode when PSTATE.PRIV =Ske alsonon-
privileged.

2.51 processar The combination of thmteger unit and thefloating-point unit.

2.52 program counter (PC) A register that contains the address of the instruction cur-
rently being executed by the.

2.53 quadlet Four bytes (32 bits) of data.

2.54 quadword An alignedhexlet Note that the definition of this term is architecture-
dependent and may be different from that used in other processor architectures.

2.55 r register: An integer register. Also called a general purpose register or working
register.

256 RED_state Reset, Error, and Debug state. The processor state when

PSTATE.RED = 1. A restricted execution environment used to process resets and
traps that occur when TL = MAXTL — 1.

2 Definitions 13

2.57 reservedUsed to describe an instruction field, certain bit combinations within an
instruction field, or a register field that is reserved for definition by future versions
of the architecture.

Reserved instruction fieldsshall read as zero, unless the implementation supports
extended instructions within the field. The behavior of SPARC-V9-compliant pro-
cessors when they encounter non-zero values in reserved instruction fields is as
defined in section 6.3.11, “Reserved Opcodes and Instruction Fields,” on page 84.
Reserved bit combinations within instruction fieldsare defined in Appendix A;

in all cases, SPARC-V9-compliant processors shall decode and trap on these
reserved combinations.

Reserved fields within registersshould always be written by software with values

of those fields previously read from that register, or with zeroes; they should read
as zero in hardware. Software intended to run on future versions of SPARC-V9
should not assume that these fields will read as zero or any other particular value.
Throughout this manual, figures and tables illustrating registers and instruction
encodings indicate reserved fields and combinations with an em dash ‘—.

2.58 reset trap A vectored transfer of control to privileged software through a fixed-
address reset trap table. Reset traps cause entigostate

2.59 restricted An adjective used to describe andress space identifie(ASI) that
may be accessed only while the processor is operatpryvileged mode

2.60 rsl,rs2, rd The integer register operands of an instruction, wheteandrs2 are
the source registers amdlis the destination register.

2.61 shall A key word indicating a mandatory requirement. Designers shall implement
all such mandatory requirements to ensure interoperability with other SPARC-V9-
conformant productsSynonymmust.

2.62 should A key word indicating flexibility of choice with a strongly preferred
implementationSynonymit is recommended.

2.63 side effectAn operation has a side effect if it induces a secondary effect as well as
its primary effect. For example, access to an I/O location may cause a register
value in an 1/0O device to change state or initiate an I/O operation. A memory loca-
tion is deemed to have side effects if additional actions beyond the reading or writ-
ing of data may occur when a memory operation on that location is allowed to
succeedSee alspprefetchable

2.64 speculative loadA load operation that is issued by the processor speculatively,
that is, before it is known whether the load will be executed in the flow of the pro-
gram. Speculative accesses are used by hardware to speed program execution and
are transparent to code. Contrast withn-faulting load, which is an explict load
that always completes, even in the presence of fallgsning some authors con-
fuse speculative loads with non-faulting loads.

2.65 supervisor software Software that executes when the processor igrivileged
mode

14

2 Definitions

2.66

2.67

2.68

2.69

2.70

2.71

trap: The action taken by the processor when it changes the instruction flow in
response to the presence of exception a Tcc instruction, or an interrupt. The
action is a vectored transfer of controldopervisor softwarethrough a table, the
address of which is specified by the privileged Trap Base Address (TBA) register.

unassignedA value (for example, aaddress space identifiey, the semantics of
which are not architecturally mandated and may be determined independently by
each implementation within any guidelines given.

undefined An aspect of the architecture that has deliberately been left unspeci-
fied. Software should have no expectation of, nor make any assumptions about, an
undefined feature or behavior. Use of such a feature may deliver random results,
may or may not cause a trap, may vary among implementations, and may vary with
time on a given implementation. Notwithstanding any of the above, undefined
aspects of the architecture shall not cause security holes such as allowing user soft-
ware to access privileged state, put the processor into supervisor mode, or put the
processor into an unrecoverable state.

unrestricted An adjective used to describe address space identifiethat may
be used regardless of the processor mode, that is, regardless of the value of
PSTATE.PRIV.

user application program Synonymapplication program.

word An alignedquadlet. Note that the definition of this term is architecture-
dependent and may differ from that used in other processor architectures.

3 Architectural Overview

SPARC-V9 is an instruction set architecture (ISA) with 32- and 64-bit integer and 32-, 64-
and 128-bit floating-point as its principal data types. The 32- and 64- bit floating point
types conforms to IEEE Std 754-1985. The 128-bit floating-point type conforms to IEEE
Std 1596.5-1992. SPARC-V9 defines general-purpose integer, floating-point, and special
state/status register instructions, all encoded in 32-bit-wide instruction formats. The load/
store instructions address a lineéf;I®te address space.

3.1 SPARC-V9 Processor

A SPARC-V9 processor logically consists of an integer uitit)(and a floating-point unit
(FPU), each with its own registers. This organization allows for implementations with
concurrency between integer and floating-point instruction execution. Integer registers are
64 bits wide; floating-point registers are 32, 64, or 128 bits wide. Instruction operands are
single registers, register pairs, register quadruples, or immediate constants.

The processor can be in either of two modasvileged or nonprivileged. In privileged
mode, the processor can execute any instruction, including privileged instructions. In non-
privileged mode, an attempt to execute a privileged instruction causes a trap to privileged
software.

3.1.1 Integer Unit (1U)

The integer unit contains the general-purpose registers and controls the overall operation
of the processor. The IU executes the integer arithmetic instructions and computes mem-
ory addresses for loads and stores. It also maintains the program counters and controls
instruction execution for the FPU.

IMPL. DEP. #2: An implementation of the IU may contain from 64 to 528 general-purpose 64-bit r
registers. This corresponds to a grouping of the registers into 8 global r registers, 8 alternate glo-
bal rregisters, plus a circular stack of from 3 to 32 sets of 16 registers each, known as register win-
dows. Since the number of register windows present (NWINDOWS) is implementation-dependent,
the total number of registers is implementation-dependent.

At a given time, an instruction can access thgi@als (or the 8alternate globalyand a
register window into the registers. The 24-register window consists of a 16-register set
— divided into 8in and 8local registers — together with theiB registers of an adjacent
register set, addressable from the current window asuitsegisters. See figure 2 on page
32.

The current window is specified by the current window pointer (CWP) register. The pro-
cessor detects window spill and fill exceptions via the CANSAVE and CANRESTORE

15

16 3 Architectural Overview

registers, respectively, which are controlled by hardware and supervisor software. The
actual number of windows in a SPARC-V9 implementation is invisible to a user applica-
tion program.

Whenever the IU accesses an instruction or datum in memory, it appenaddagss

space identifier (ASI), to the address. All instruction accesses and most data accesses
append ammplict ASI, but some instructions allow the inclusion of an explict ASI, either

as an immediate field within the instruction, or from the ASI register. The ASI determines
the byte order of the access. All instructions are accessed in big-endian byte order; data
can be referenced in either big- or little-endian order. See 5.2.1, “Processor State Register
(PSTATE),” for information about changing the default byte order.

3.1.2 Floating-Point Unit (FPU)

The FPU has 32 32-bit (single-precision) floating-point registers, 32 64-bit (double-preci-
sion) floating-point registers, and 16 128-bit (quad-precision) floating-point registers,
some of which overlap. Double-precision values occupy an even-odd pair of single-preci-
sion registers, and quad-precision values occupy a quad-aligned group of four single-pre-
cision registers. The 32 single-precision registers, the lower half of the double-precision
registers, and the lower half of the quad-precision registers overlay each other. The upper
half of the double-precision registers and the upper half of the quad-precision registers
overlay each other, but do not overlay any of the single-precision registers. Thus, the float-
ing-point registers can hold a maximum of 32 single-precision, 32 double-precision, or 16
guad-precision values. This is described in more detail in 5.1.4, “Floating-Point Regis-
ters.”

Floating-point load/store instructions are used to move data between the FPU and mem-
ory. The memory address is calculated by the IU. Floating-Ripetate (FPop) instruc-
tions perform the floating-point arithmetic operations and comparisons.

The floating-point instruction set and 32- and 64-bit data formats conform to the IEEE
Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985. The 128-bit floating-
point data type conforms to the IEEE Standard for Shared Data Formats, IEEE Std
1596.5-1992.

If an FPU is not present or is not enabled, an attempt to execute a floating-point instruction
generates am_disabled trap. In either case, privileged-mode software must:

— Enable the FPU and reexecute the trapping instruction, or

— Emulate the trapping instruction.

3.2 Instructions
Instructions fall into the following basic categories:
— Memory access

— Integer operate

3.2 Instructions 17

— Control transfer

— State register access

— Floating-point operate

— Conditional move

— Register window management

These classes are discussed in the following subsections.

3.2.1 Memory Access

Load and store instructions and the atomic operations, CASX, SWAP, and LDSTUB, are
the only instructions that access memory. They usertwnegisters or am register and a
signed 13-bit immediate value to calculate a 64-bit, byte-aligned memory address. The IU
appends an ASI to this address.

The destination field of the load/store instruction specifies either one ar tegisters, or
one, two, or four registers, that supply the data for a store or receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and dou-
bleword (64-bit) accesses. Some versions of integer load instructions perform sign exten-
sion on 8-, 16-, and 32-bit values as they are loaded into a 64-bit destination register.
Floating-point load and store instructions support word, doubleword, and quadword mem-
ory accesses.

CAS, SWAP, and LDSTUB are special atomic memory access instructions that are used
for synchonization and memory updates by concurrent processes.

3.2.1.1 Memory Alignment Restrictions

Halfword accesses shall ladigned on 2-byte boundaries; word accesses (which include
instruction fetches) shall be aligned on 4-byte boundaries; extended-word and doubleword
accesses shall be aligned on 8-byte boundaries; and quadword quantities shall be aligned
on 16-byte boundaries. An improperly aligned address in a load, store, or load-store
instruction causes a trap to occur, with the possible exception of cases described in 6.3.1.1,
“Memory Alignment Restrictions.”

3.2.1.2 Addressing Conventions

SPARC-V9 uses big-endian byte order by default: the address of a quadword, doubleword,
word, or halfword is the address of its most significant byte. Increasing the address means
decreasing the significance of the unit being accessed. All instruction accesses are per-
formed using big-endian byte order. SPARC-V9 also can support little-endian byte order
for data accesses only: the address of a quadword, doubleword, word, or halfword is the
address of its least significant byte. Increasing the address means increasing the signifi-
cance of the unit being accessed. See 5.2.1, Processor State Register (PSTATE), for infor-
mation about changing the implicit byte order to little-endian.

18 3 Architectural Overview

Addressing conventions are illustrated in figure 35 on page 71 and figure 36 on page 72.

3.2.1.3 Load/Store Alternate

Versions of load/store instructions, thead/store alternateinstructions, can specify an
arbitrary 8-bit address space identifier for the load/store data access. Access to alternate
spaces 0Q..7F; is restricted, and access to alternate spaces.8® is unrestricted.

Some of the ASIs are available for implementation-dependent uses (impl. dep. #29).
Supervisor software can use the implementation-dependent ASIs to access special pro-
tected registers, such as MMU, cache control, and processor state registers, and other pro-
cessor- or system-dependent values. See 6.3.1.3, “Address Space ldentifiers (ASIs),” for
more information.

Alternate space addressing is also provided for the atomic memory access instructions,
LDSTUB, SWAP, and CASX.

3.2.1.4 Separate | and D Memories

Most of the specifications in this manual ignore the issues of memory mapping and cach-
ing. The interpretation of addresses can be unified, in which case the same translations and
caching are applied to both instructions and data, or they can be split, in which case
instruction references use one translation mechanism and cache and data references
another, although the same main memory is shared. In such split-memory systems, the
coherency mechanism may be unified and include both instructions and data, or it may be
split. For this reason, programs that modify their own code (self-modifying code) must
issue FLUSH instructions, or a system call with a similar effect, to bring the instruction
and data memories into a consistent state.

3.2.1.5 Input/Output

SPARC-V9 assumes that input/output registers are accessed via load/store alternate
instructions, normal load/store instructions, or read/write Ancillary State Register instruc-
tions (RDASR, WRASR).

IMPL. DEP. #123: The semantic effect of accessing input/output (1/0O) locations is implementation-
dependent.

IMPL. DEP. #6. Whether the 1/O registers can be accessed by nonprovileged code is implementa-
tion-dependent.

IMPL. DEP. #7: The addresses and contents of I/O registers are implementation-dependent.

3.2.1.6 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and MEM-
BAR. Their operation is explained in A.20, “Flush Instruction Memory,” and A.32,
“Memory Barrier,” respectively.

3.2 Instructions 19

3.2.2 Arithmetic/Logical/Shift Instructions

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical,
and shift operations. With one exception, these instructions compute a result that is a func-
tion of two source operands; the result is either written into a destination register or dis-
carded. The exception, SETHI, may be used in combination with another arithmetic or
logical instruction to create a 32-bit constant irr aegister.

Shift instructions are used to shift the contents oframgister left or right by a given
count. The shift distance is specified by a constant in the instruction or by the contents of
anr register.

The integer multiply instruction performs a 8464 — 64-bit operation. The integer divi-

sion instructions perform 64 64 — 64-bit operations. In addition, for compatibility with
SPARC-VS8, 32x 32 - 64-bit multiply, 64+ 32 - 32-bit divide, and multiply step
instructions are included. Division by zero causes a trap. Some versions of the 32-bit mul-
tiply and divide instructions set the condition codes.

The tagged arithmetic instructions assume that the least-significant two bits of each oper-
and are a data-type tag. The nontrapping versions of these instructions set the integer con-
dition code {cc) and extended integer condition coded) overflow bits on 32-biti¢c) or

64-bit (xco arithmetic overflow. In addition, if any of the operands’ tag bits are nonzero,
icc is set. Thexccoverflow bit is not affected by the tag bits.

3.2.3 Control Transfer

Control-transfer instructiong(TI s) include PC-relative branches and calls, register-indi-
rect jumps, and conditional traps. Most of the control-transfer instructions are delayed,;
that is, the instruction immediately following a control-transfer instruction in logical
sequence is dispatched before the control transfer to the target address is completed. Note
that the next instruction in logical sequence may not be the instruction following the con-
trol-transfer instruction in memory.

The instruction following a delayed control-transfer instruction is callellay instruc-

tion. A bit in a delayed control-transfer instruction (thenul bit) can cause the delay
instruction to be annulled (that is, to have no effect) if the branch is not taken (or in the
“branch always” case, if the branch is taken).

V8 Compatibility Note:
SPARC-V8 specified that the delay instruction was always fetched, even if annulled, and that an
annulled instruction could not cause any traps. SPARC-V9 does not require the delay instruction to
be fetched if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL)
and return (RETURN) instructions use a register-indirect target address. They compute
their target addresses as either the sum ofrtwemisters, or the sum of arregister and a
13-bit signed immediate value. The branch on condition codes without prediction instruc-
tion provides a displacement #8 Mbytes; the branch on condition codes with prediction
instruction provides a displacementf Mbyte; the branch on register contents instruc-
tion provides a displacement 8128 Kbytes, and the CALL instruction’s 30-bit word dis-

20 3 Architectural Overview

placement allows a control transfer to any address witRigigabytes £23! bytes). Note

that when 32-bit address masking is enabled (see 5.2.1.7, “PSTATE_address_mask
(AM)”), the CALL instruction may transfer control to an arbitrary 32-bit address. The
return from privileged trap instructions (DONE and RETRY) get their target address from
the appropriate TPC or TNPC register.

3.2.4 State Register Access

The read and write state register instructions read and write the contents of state registers
visible to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS). The read and
write privileged register instructions read and write the contents of state registers visible
only to privileged software (TPC, TNPC, TSTATE, TT, TICK, TBA, PSTATE, TL, PIL,
CWP, CANSAVE, CANRESTORE, CLEANWIN, OTHERWIN, WSTATE, FPQ, and
VER).

IMPL. DEP. #8. Software can use read/write ancillary state register instructions to read/write
implementation-dependent processor registers (ASRs 16..31).

IMPL. DEP. #9:. Which if any of the implementation-dependent read/write ancillary state register
instructions (for ASRS 16..31) is privileged is implementation-dependent.

3.2.5 Floating-Point Operate

Floating-point operate (FPop) instructions perform all floating-point calculations; they are
register-to-register instructions that operate on the floating-point registers. Like arithmetic/
logical/shift instructions, FPops compute a result that is a function of one or two source
operands. Specific floating-point operations are selected by a subfield of the FPopl/FPop2
instruction formats.

3.2.6 Conditional Move

Conditional move instructions conditionally copy a value from a source register to a desti-
nation register, depending on an integer or floating-point condition code or upon the con-
tents of an integer register. These instructions increase performance by reducing the
number of branches.

3.2.7 Register Window Management

These instructions are used to manage the register windows. SAVE and RESTORE are
nonprivileged and cause a register window to be pushed or popped. FLUSHW is nonprivi-
leged and causes all of the windows except the current one to be flushed to memory.
SAVED and RESTORED are used by privileged software to end a window spill or fill trap
handler.

3.3 Traps 21

3.3 Traps

A trap is a vectored transfer of control to privileged software through a trap table that may
contain the first eight instructions (thirty-two for fill/spill traps) of each trap handler. The
base address of the table is established by software in a state register (the Trap Base
Address register, TBA). The displacement within the table is encoded in the type number
of each trap and the level of the trap. One half of the table is reserved for hardware traps;
one quarter is reserved for software traps generated by trap (Tcc) instructions; the final
quarter is reserved for future expansion of the architecture.

A trap causes the current PC and nPC to be saved in the TPC and TNPC registers. It also
causes the CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE. TPC, TNPC,
and TSTATE are entries in a hardware trap stack, where the number of entries in the trap
stack is equal to the number of trap levels supported (impl. dep. #101). A trap also sets bits
in the PSTATE register, one of which can enable an alternate set of global registers for use
by the trap handler. Normally, the CWP is not changed by a trap; on a window spill or fill
trap, however, the CWP is changed to point to the register window to be saved or restored.

A trap may be caused by a Tcc instruction, an asynchronous exception, an instruction-
induced exception, or anterrupt request not directly related to a particular instruction.
Before executing each instruction, the processor behaves as though it determines if there
are any pending exceptions or interrupt requests. If any are pending, the processor selects
the highest-priority exception or interrupt request and causes a trap.

See Chapter 7, “Traps,” for a complete description of traps.

22

3 Architectural Overview

4 Data Formats

The SPARC-V9 architecture recognizes these fundamental data types:
— Signed Integer: 8, 16, 32, and 64 bits
— Unsigned Integer: 8, 16, 32, and 64 bits
— Floating Point: 32, 64, and 128 bits
The widths of the data types are:
— Byte: 8 bits
— Halfword: 16 bits
— Word: 32 bits
— Extended Word: 64 bits
— Tagged Word: 32 bits (30-bit value plus 2-bit tag)
— Doubleword: 64 bits
— Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width commen-
surate with their range. Unsigned integer values, bit strings, boolean values, strings, and
other values representable in binary form are stored as unsigned integers with a width
commensurate with their range. The floating-point formats conform to the IEEE Standard
for Binary Floating-Point Arithmetic, IEEE Std 754-1985. In tagged words, the least sig-
nificant two bits are treated as a tag; the remaining 30 bits are treated as a signed integer.

Subsections 4.1 through 4.11 illustrate the signed integer, unsigned integer, and tagged
formats. Subsections 4.12 through 4.14 illustrate the floating-point formats. In 4.4, 4.9,
4.13, and 4.14, the individual subwords of the multiword data formats are assigned names.
The arrangement of the subformats in memory and processor registers based on these
names is shown in table 1. Tables 2 through 5 define the integer and floating-point formats.

4.1 Signed Integer Byte

23

24

4 Data Formats

4.2 Signed Integer Halfword

S

1514 0

4.3 Signed Integer Word

S

3130

4.4 Signed Integer Double
SD-0

S signed_dbl_integer[62:32]

3130

SD-1

signed_dbl_integer[31:0]

31

4.5 Signed Extended Integer

SX

S signed_ext_integer

63 62

4.6 Unsigned Integer Byte

4.7 Unsigned Integer Halfword

15 0

4.8 Unsigned Integer Word

25

4.8 Unsigned Integer Word

31

4.9 Unsigned Integer Double
UD-0

unsigned_dbl_integer[63:32]

31

UD-1

unsigned_dbl_integer[31:0]

31

4.10 Unsigned Extended Integer

Ux

unsigned_ext_integer

63

4.11 Tagged Word

tag

31

4.12 Floating-Point Single Precision

10

S| exp[7:0] fraction[22:0]

3130 2322

26 4 Data Formats

4.13 Floating-Point Double Precision

FD-0 |s| exp[10:0] fraction[51:32]

3130 2019 0
FD-1 fraction[31:0]

31 0

4.14 Floating-Point Quad Precision

FO-0 S exp[14:0] fraction[111:96]

3130 1615 0
FOQO-1 fraction[95:64]

31 0
FO-2 fraction[63:32]

31 0
FQO-3 fraction[31:0]

31 0

4.14 Floating-Point Quad Precision 27

Table 1—Double- and Quadwords in Memory & Registers

SUDIOMMat | gt Field adiress | Memory | (EOEST | Register
Alignment Alignment

SD-0 signed_dbl_integer[63:32] rbod 8 n O mod 2 r
SD-1 signed_dbl_integer[31:0] Mod 8 n+4 1mod 2 r+1
SX signed_ext_integer[63:0] idod 8 n — r
UD-0 unsigned_dbl_integer[63:32] rBod 8 n Omod 2 r
UD-1 unsigned_dbl_integer[31:0] Mod 8 n+4 1mod 2 r+1
UXx unsigned_ext_integer[63:0] ibod 8 n — r
FD-0 s:exp[10:0]:fraction[51:32] @nod 41 n 0mod 2 f
FD-1 fraction[31:0] omod4T | n+4 imod2 | f+1
FQ-0 s:exp[14:0]:fraction[111:96] @nod 4 * n Omod 4 f
FQ-1 fraction[95:64] Omod4* | n+4 imod4 | f+1
FQ-2 fraction[63:32] omod4* | n+8 2mod4 | f+2
FQ-3 fraction[31:0] Omod4* | n+12 3mod4 | f+3

T Although a floating-point doubleword is only required to be word-aligned in memory, it is recom-
mended that it be doubleword-aligned (i.e., the address of its FD-0 word shouhaoole8).

¥ Although a floating-point quadword is only required to be word-aligned in memory, it is recom-
mended that it be quadword-aligned (i.e., the address of its FQ-0 word shouttbblel 8).

Table 2—Signed Integer, Unsigned Integer, and Tagged Format Ranges

Data type Width (bits) Range

Signed integer byte 8 —2t02/ -1
Signed integer halfword 16 250 2151
Signed integer word 32 -281tp 81 -1
Signed integer tagged word 32 2290 2°-1
Signed integer double 64 —283t0 31
Signed extended integer 64 —2631q P31
Unsigned integer byte 8 Oto2-1
Unsigned integer halfword 16 Oto216—-1
Unsigned integer word 32 Oto 22-1
Unsigned integer tagged word 32 Oto 20-1
Unsigned integer double 64 Oto X4-1
Unsigned extended integer 64 OtoP4-1

28

4 Data Formats

Table 3—Floating-Point Single-Precision Format Definition

s =sign (1 bit)

e = biased exponent (8 bits)
f = fraction (23 bits)

u =undefined

Normalized value (0 < e < 255)

_:()S x 29—127 x 1.f

Subnormal value (e = 0):

Q)S x 2—126 x 0.f

Zero (e =0) €1x0
Signalling NaN s =; e =255 (max); f = i0u-uu

(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =255 (max); f =udu-uu

— 00 (negative infinity)

s =1; e =255 (max); f =.000--00

+ 00 (positive infinity)

s =0; e =255 (max); f =.000--00

Table 4—Floating-Point

Double-Precision Format Definition

s =sign (1 bit)

e = biased exponent (11 bits)
f =fraction (52 bits)

u = undefined

Normalized value (0 < e < 2047):

_:K)S x 29—1023X 1.f

Subnormal value (e =0):

u)S x 2—1022x 0.f

Zero (e =0) €1°x0
Signalling NaN s u; e =2047 (max); f = 1uwr-uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =2047 (max); f =udu-uu
— 0o (negative infinity) s =1; e =2047 (max); f =.000--00
+ oo (positive infinity) s =0; e =2047 (max); f =.000--00

Table 5—Floating-Point Quad-Precision Format Definition

s =sign (1 bit)

e = biased exponent (15 bits)
f =fraction (112 bits)

u = undefined

Normalized value (0 < e < 32767)

(§l<) 28—16383>< 1.f

Subnormal value (e =0):

(_&y 2—16382>< 0.f

Zero (e =0) (-15x0
Signalling NaN s =; e =32767 (max); f =1+-uu

(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =32767 (max); f =uu-uu

— 00 (negative infinity)

s =1; e =32767 (max); f =.000--00

+ oo (positive infinity)

s =0; e =32767 (max); f =.000--00

5 Regqisters
A SPARC-V9 processor includes two types of registers: general-purpose, (or working
data) registers, and control/status registers.
Working registers include:

— Integer working registers ¢egisters)

— Floating-point working registers fegisters)
Control/status registers include:

— Program Counter register (PC)

— Next Program Counter register (nPC)

— Processor State register (PSTATE)

— Trap Base Address register (TBA)

— Y register (Y)

— Processor Interrupt Level register (PIL)

— Current Window Pointer register (CWP)

— Trap Type register (TT)

— Condition Codes Register (CCR)

— Address Space Identifier register (ASI)

— Trap Level register (TL)

— Trap Program Counter register (TPC)

— Trap Next Program Counter register (TNPC)

— Trap State register (TSTATE)

— Hardware clock-tick counter register (TICK)

— Savable windows register (CANSAVE)

— Restorable windows register (CANRESTORE)

— Other windows register (OTHERWIN)

— Clean windows register (CLEANWIN)

— Window State register (WSTATE)

29

30 5 Registers

— Version register (VER)

— Implementation-dependent Ancillary State Registers (ASRsS) (impl. dep. #8)
— Implementation-dependent IU Deferred-Trap Queue (impl. dep. #16)

— Floating-Point State Register (FSR)

— Floating-Point Registers State register (FPRS)

— Implementation-dependent Floating-Point Deferred-Trap Queue (FQ) (impl. dep.
#24)

For convenience, some registers in this chapter are illustrated as fewer than 64 bits wide.
Any bits not shown are reserved for future extensions to the architecture. Such reserved
bits read as zeroes and, when written by software, should always be written with the val-
ues of those bits previously read from that register, or with zeroes.

5.1 Nonprivileged Registers

The registers described in this subsection are visible to nonprivileged (application, or
“user-mode”) software.

5.1.1 General Purpose r Registers

At any moment, general-purpose registers appear to nonprivileged software as shown in
figure 1.

An implementation of the IU may contain from 64 to 528 general-purpose 64rbgis-

ters. They are partitioned into @obal registers, 8alternate globalregisters, plus an
implementation-dependent number of 16-register sets (impl. dep. #2). A register window
consists of the currentiB registers, 8ocal registers, and 8ut registers. See table 6.

5.1.1.1 Global r Registers

Registerg[0]..r[7] refer to a set of eight registers called the global registgds.§7). At

any time, one of two sets of eight registers is enabled and can be accessed as the global
registers. Which set of globals is currently enabled is selected by the AG (alternate global)
field in the PSTATE register. See 5.2.1, “Processor State Register (PSTATE),” for a
description of the AG field.

Global register zero (g0) always reads as zero; writes to it have no program-visible effect.

V8 Compatibility Note:

Since the PSTATE register is only writable by privileged software, existing nonprivileged SPARC-
V8 software will operate correctly on a SPARC-V9 implementation if supervisor software ensures
that nonprivileged software sees a consistent set of global registers.

5.1 Nonprivileged Registers 31

i7 r31]
i6 r{30]
i5 r29]
i4 28]
i3 r27]
i2 r[26]
il r[25]
i0 r24]
17 23]
16 n22]
15 r21]
14 r20]
13 r19]
12 18]
11 r17]
10 r[16]
o7 r[15]
06 r14]
05 13]
04 M12]
03 r11]
02 r[10]
ol 9]
00 8]
g7 7]
g6 (6]
g5 5]
g4 r4]
93 3]
g2 2]
gl 1]
g0 o]

Figure 1—General-Purpose Registers (Nonprivileged View)

Programming Note:

The alternate global registers are present to give trap handlers a set of scratch registers that are inde-
pendent of nonprivileged software’s registers. The AG bit in PSTATE allows supervisor software to
access the normal global registers if required (for example, during instruction emulation).

5.1.1.2 Windowed r Registers

At any time, an instruction can access thgl8balsand a 24-registewindow into ther
registers. A register window comprises thae&nd 8local registers of a particular register
set, together with the B registers of an adjacent register set, which are addressable from
the current window asut registers. See figure 2 and table 6.

32 5 Registers

Window (CWP —1)

31]
: ins
24]
23]
: locals
r[16] Window (CWP)
r15] r31]
. outs . ns
M 8] r[24]
23]
: locals
r[16] Window (CWP + 1)
r15] r31]
) outs . ins
8] r24]
23]
: locals
r[16]
r15]
: outs
8]
7]
: globals
M 1]
M 0] 0
63 0

Figure 2—Three Overlapping Windows and the Eight Global Registers

The number of windows or register sef8)VINDOWS, is implementation-dependent and
ranges from 3 to 32 (impl. dep. #2). The total number w@dgisters in a given implementa-
tion is 8 (for theglobal9, plus 8 (for the alternatglobalg, plus the number of sets times
16 registers/set. Thus, the minimum number odgisters is 64 (3 sets plus the d®bals

5.1 Nonprivileged Registers 33

and alternatglobalg and the maximum number is 528 (32 sets plus thglbbalsand
alternatgglobalg.

Table 6—Window Addressing

Windowed Register Address r Register Address
in[0] —in[7] r[24] —r[31]
local[0] — local[7] r[16] —r[23]
ouf0] — ouf7] r[8] —r[15]
global0] — global 7] r[O]—r[7]

The current window into theregisters is given by the current window pointer (CWP) reg-
ister. The CWP is decremented by the RESTORE instruction and incremented by the
SAVE instruction. Window overflow is detected via the CANSAVE register and window
underflow is detected via the CANRESTORE register, both of which are controlled by
privileged software. A window overflow (underflow) condition causes a window spill (fill)
trap.

5.1.1.3 Overlapping Windows

Each window shares iigs with one adjacent window and i&its with another. Theuts
of the CWP-1 (modulo NWINDOWS) window are addressable asrnbef the current
window, and theouts in the current window are thas of the CWP+1 (modulo NWIN-
DOWS) window. Thdocals are unique to each window.

An r register with address, where 8< o0 < 15, refers to exactly the same register as
(0+16) does after the CWP is incremented by 1 (modulo NWINDOWS). Likewise, a reg-
ister with address where 24& i < 31, refers to exactly the same register as addieds|
does after the CWP is decremented by 1 (modulo NWINDOWS). See figures 2 and 3.

Since CWP arithmetic is performed modulo NWINDOWS, the highest numbered imple-
mented window overlaps with window 0. Thets of window NWINDOWS-1 are thens

of window 0. Implemented windows must be numbered contiguously from 0 through
NWINDOWS-1.

Programming Note:
Since the procedure call instructions (CALL and JMPL) do not change the CWP, a procedure can
be called without changing the window. See H.1.2, “Leaf-Procedure Optimization.”

Because the windows overlap, the number of windows available to software is one less than the
number of implemented windows, or NWINDOW3. When the register file is full, theuts of the
newest window are thas of the oldest window, which still contains valid data.

The local andout registers of a register window are guaranteed to contain either zeroes or an old
value that belongs to the current context upon reentering the window through a SAVE instruction. If
a program executes a RESTORE followed by a SAVE, the resulting windoeads andouts may

not be valid after the SAVE, since a trap may have occurred between the RESTORE and the SAVE.
However, if theclean window protocol is being used, system software must guarantee that registers
in the current window after a SAVE will always contain only zeroes or valid data from that context.
See 5.2.10.6, “Clean Windows (CLEANWIN) Register.”

Subsection 6.4, “Register Window Management,” describes how the windowed integer
registers are managed.

34 5 Registers

CWP =0]
(current window pointer)

\
\
\

N
N
N
/ .
CANRESTORE

wO locals

. CANSAVE = 3
W7 ins

w6 outs

OTHERWIN =2

\
\
\
\

(Overlap)

CANSAVE + CANRESTORE + OTHERWIN = NWINDOWS - 2

The current window (window 0) and the overlap window (window 4) account for the two windows
in the right-hand side of the equation. The “overlap window” is the window that must remain
unused because its ins and outs overlap two other valid windows.

Figure 3—The Windowedr Registers for NWINDOWS = 8

5.1.2 Special r Registers
The usage of two of theregisters is fixed, in whole or in part, by the architecture:
— The value of[0] is always zero; writes to it have no program-visible effect.

— The CALL instruction writes its own address into regisfgb] (out register 7).

5.1 Nonprivileged Registers 35

5.1.2.1 Register-Pair Operands

LDD, LDDA, STD, and STDA instructions access a pair of words in adjaceagisters
and require even-odd register alignment. The least-significant bit ofregister number
in these instructions is reserved, and should be supplied as zero by software.

When ther[0] — r[1] register pair is used as a destination in LDD or LDDA, onl] is
modified. When the[0] — r[1] register pair is used as a source in STD or STDA, a zero is
written to the 32-bit word at the lowest address and the least significant 32 Iojid afe
written to the 32-bit word at the highest address (in big-endian mode).

An attempt to execute an LDD, LDDA, STD, or STDA instruction that refers to a mis-
aligned (odd) destination register number causetegan instruction trap.

5.1.2.2 Register Usage
See H.1.1, “Registers,” for information about the conventional usage oféesters.

In figure 3, NWINDOWS = 8. The §lobals are not illustrated. CWP = 0, CANSAVE = 3,
OTHERWIN = 2, and CANRESTORE = 1. If the procedure using windefvexecutes a
RESTORE, windowwn7 becomes the current window. If the procedure using winddv
executes a SAVE, window1 becomes the current window.

5.1.3 U Control/Status Registers

The nonprivileged IU control/status registers include the program counters (PC and nPC),
the 32-bit multiply/divide (Y) register (and possibly optional) implementation-dependent
Ancillary State Registers (ASRs) (impl. dep. #8).

5.1.3.1 Program Counters (PC, nPC)

The PC contains the address of the instruction currently being executed by the 1U. The
nPC holds the address of the next instruction to be executed, if a trap does not occur. The
low-order two bits of PC and nPC always contain zero.

For a delayed control transfer, the instruction that immediately follows the transfer
instruction is known as the delay instruction. This delay instruction is executed (unless the
control transfer instruction annuls it) before control is transferred to the target. During
execution of the delay instruction, the nPC points to the target of the control transfer
instruction, while the PC points to the delay instruction. See Chapter 6, “Instructions.”

The PC is used implicitly as a destination register by CALL, Bicc, BPcc, BPr, FBfcc,
FBPfcc, JMPL, and RETURN instructions. It can be read directly by an RDPC instruc-
tion.

36 5 Registers

5.1.3.2 32-Bit Multiply/Divide Register (Y)

The Y register is deprecated; it is provided only for compatibility with previous v
sions of the architecture. It should not be used in new SPARC-V9 software. Iffis
recommended that all instructions that reference the Y register (i.e., SM
SMULcc, UMUL, UMULcc, MULScc, SDIV, SDIVce, UDIV, UDIVcc, RDY, and
WRY) be avoided. See the appropriate pages in Appendix A, “Instruction Defifli-
tions,” for suitable substitute instructions.

— product<63:32> or dividend<63:32>

63 32 31 0

Figure 4—Y Register

The low-order 32 bits of the Y register, illustrated in figure 4, contain the more significant
word of the 64-bit product of an integer multiplication, as a result of either a 32-bit integer
multiply (SMUL, SMULcc, UMUL, UMULcc) instruction or an integer multiply step
(MULScc) instruction. The Y register also holds the more significant word of the 64-bit
dividend for a 32-bit integer divide (SDIV, SDIVcc, UDIV, UDIVcc) instruction.

Although Y is a 64-bit register, its high-order 32 bits are reserved and always read as 0.

The Y register is read and written with the RDY and WRY instructions, respectively.

5.1.3.3 Ancillary State Registers (ASRS)

SPARC-V9 provides for optional ancillary state registers (ASRs). Access to a particular
ASR may be privileged or nonprivileged (impl. dep. #9); see 5.2.11, “Ancillary State Reg-
isters (ASRs),” for a more complete description of ASRs.

5.1.4 Floating-Point Registers

The FPU contains:
— 32 single-precision (32-bit) floating-point registers, numb&@df[1], .. f[31].
— 32 double-precision (64-bit) floating-point registers, numb&8@df[2], .. f[62].
— 16 quad-precision (128-bit) floating-point registers, numbgMdf[4], .. f[60].

The floating-point registers are arranged so that some of them overlap, that is, are aliased.
The layout and numbering of the floating-point registers are shown in figures 5, 6, and 7.
Unlike the windowed registers, all of the floating-point registers are accessible at any
time. The floating-point registers can be read and written by FPop (FPop1/FPop2 format)
instructions, and by load/store single/double/quad floating-point instructions.

5.1 Nonprivileged Registers

37

Figure 5—Single-Precision Floating-Point Registers, with Aliasing

Operand Operand

register ID from
f31 f31<31:0>
f30 f30<31:0>
29 f29<31:0>
28 f28<31:0>
f27 f27<31:0>
26 f26<31:0>
f25 f25<31:0>
f24 f24<31:0>
23 f23<31:0>
f22 f22<31:0>
f21 f21<31:0>
f20 f20<31:0>
f19 f19<31:0>
f18 f18<31:0>
f17 f17<31:0>
f16 f16<31:0>
f15 f15<31:0>
f14 f14<31:0>
f13 f13<31:0>
f12 f12<31:0>
fl1 f11<31:0>
f10 f10<31:0>
fo f9<31:0>
8 f8<31:0>
7 f7<31:.0>
6 f6<31:0>
5 f5<31:0>
f4 f4<31:0>
3 f3<31:0>
f2 f2<31:0>
fl f1<31:0>
fo f0<31:0>

38

5 Registers

Figure 6—Double-Precision Floating-Point Registers, with Aliasing

Operand Operand From
register ID field register
62 <63:0> f62<63:0>
f60 <63:0> f60<63:0>
f58 <63:0> f58<63:0>
f56 <63:0> f56<63:0>
54 <63:0> f54<63:0>
52 <63:0> f52<63:0>
f50 <63:0> f50<63:0>
f48 <63:0> f48<63:0>
f46 <63:0> f46<63:0>
fa4 <63:0> f44<63:0>
f42 <63:0> f42<63:0>
f40 <63:0> f40<63:0>
38 <63:0> f38<63:0>
36 <63:0> f36<63:0>
f34 <63:0> f34<63:0>
32 <63:0> f32<63:0>
£30 <31:0> f31<31:0>

<63:32> f30<31:0>
f28 <31:0> f29<31:0>
<63:32> f28<31:0>
26 <31:0> f27<31:0>
<63:32> f26<31:0>
f24 <31:0> f25<31:0>
<63:32> f24<31:0>
22 <31:0> f23<31:0>
<63:32> f22<31:0>
£20 <31:0> f21<31:0>
<63:32> f20<31:0>
18 <31:0> f19<31:0>
<63:32> f18<31:0>
16 <31:0> f17<31:0>
<63:32> f16<31:0>
f14 <31:0> f15<31:0>
<63:32> f14<31:0>
f12 <31:0> f13<31:0>
<63:32> f12<31:0>
10 <31:0> f11<31:0>
<63:32> f10<31:0>
fs <31:0> f9<31:0>
<63:32> f8<31:0>
6 <31:0> f7<31:0>
<63:32> f6<31:0>
fa <31:0> f5<31:0>
<63:32> f4<31:0>
f2 <31:0> f3<31:0>
<63:32> f2<31:0>
f0 <31:0> f1<31:0>
<63:32> f0<31:0>

5.1 Nonprivileged Registers

39

Figure 7—Quad-Precision Floating-Point Registers, with Aliasing

Operand Operand From
register ID field register
60 <63:0> f62<63:0>

<127:64> | f60<63:0>
56 <63:0> f58<63:0>
<127:64> | f56<63:0>
(52 <63:0> f54<63:0>
<127:64> | f52<63:0>
w8 <63:0> f50<63:0>
<127:64> | f48<63:0>
ta4 <63:0> f46<63:0>
<127:64> | f44<63:0>
40 <63:0> f42<63:0>
<127:64> | f40<63:0>
36 <63:0> f38<63:0>
<127:64> | {36<63:0>
32 <63:0> f34<63:0>
<127:64> | {32<63:0>
<31:.0> f31<31:0>
8 <63:32> f30<31:0>
<95:64> f29<31:0>
<127:96> | f28<31:0>
<31:.0> f27<31:0>
o4 <63:32> f26<31:0>
<95:64> f25<31:0>
<127:96> | 24<31.0>
<31:.0> f23<31:0>
0 <63:32> f22<31:0>
<95:64> f21<31:0>
<127:96> | f20<31:0>
<31:.0> f19<31:0>
16 <63:32> f18<31:0>
<95:64> f17<31:0>
<127:96> | f16<31:0>
<31:.0> f15<31:0>
12 <63:32> f14<31:0>
<95:64> f13<31:0>
<127:96> | f12<31:0>
<31:0> f11<31:0>
8 <63:32> f10<31:0>
<95:64> f9<31:0>
<127:96> | f8<31:0>
<31:0> f7<31.0>
“ <63:32> f6<31:0>
<95:64> f5<31:0>
<127:96> | f4<31:0>
<31:0> f3<31:0>
0 <63:32> f2<31:0>
<95:64> f1<31:0>
<127:96> | f0<31:0>

40 5 Registers

5.1.4.1 Floating-Point Register Number Encoding

Register numbers for single, double, and quad registers are encoded differently in the 5-bit
register number field in a floating-point instruction. If the bits in a register number field are
labeled: b<4>..b<0> (where b<4> is the most-significant bit of the register number), the
encoding of floating-point register numbers into 5-bit instruction fields is as given in
table 7.

Table 7—Floating-Point Register Number Encoding

Register Encoding in a
operand 5-bit register field
type 6-bit register number in an instruction
Single fp.or | | o5 | beds>| be2s| b<ly b<O3 b<d> b<3> b<2> b<l> b<p>
32-bit integer
Douplgf.p. Ol h<5> | b<d>| b<3>| b<2> b<l> 0| b<4> b<3> b<Z> b<l> b<p>
64-bit integer

Quad f.p. b<5> b<4> b<3> b<2p 0 0 b<4> b<3> b<2> 0 b<s>

V8 Compatibility Note:
In SPARC-V8, bit 0 of double and quad register numbers encoded in instruction fields was required
to be zero. Therefore, all SPARC-V8 floating-point instructions can run unchanged on a SPARC-
V9 implementation using the encoding in table 7.

5.1.4.2 Double and Quad Floating-Point Operands

A single f register can hold one single-precision operand, a double-precision operand
requires an aligned pair dfregisters, and a quad-precision operand requires an aligned
qguadruple of registers. At a given time, the floating-point registers can hold a maximum
of 32 single-precision, 16 double-precision, or 8 quad-precision values in the lower half of
the floating-point register file, plus an additional 16 double-precision or 8 quad-precision
values in the upper half, or mixtures of the three sizes.

Programming Note:
The upper 16 double-precision (upper 8 quad-precision) floating-point registers cannot be directly
loaded by 32-bit load instructions. Therefore, double- or quad-precision data that is only word-
aligned in memory cannot be directly loaded into the upper registers using LDF(A) instructions.
The following guidelines are recommended:

(1) Whenever possible, align floating-point data in memory on proper address boundaries. If
access to a datum is required to be atomic, the datum _must_ be properly aligned.

(2) When a double- or quad-precision datum is not properly aligned in memory, is still aligned on a
4-byte boundary, and access to the datum in memory is not required to be atomic, software should
attempt to allocate a register for it in the lower half of the floating-point register file so that the
datum can be loaded using multiple LDF(A) instructions.

(3) If the only available registers for such a datum are located in the upper half of the floating-point
register file and access to the datum in memory is not required to be atomic, the word-aligned
datum can be loaded into them by one of two methods:

(a) load the datum into an upper register by using multiple LDF(A) instructions to first load it
into a double[quad]-precision register in the lower half of the floating-point register file,
then copy that register to the desired destination register in the upper half, or

5.1 Nonprivileged Registers 41

(b) use a LDDF(A)[LDQF(A)] instruction to perform the load directly into the upper floating-
point register, understanding that use of these instructions on poorly-aligned data can
cause a trap (LDDF[LDQF]_mem_not_aligned) on some implementations which may sig-
nificantly slow down program execution.

An attempt to execute an instruction that refers to a misaligned floating-point register
operand (that is, a quad-precision operand in a register whose 6-bit register number is not
0 mod 4) shall cause afp_exception_other trap, with FSRtt = 6 (invalid_fp_register).

Programming Note:
Given the encoding in table 7, it is impossible to specify a misaligned double-precision register.

5.1.5 Condition Codes Register (CCR)

CCR xcc icc

7 4 3 0

Figure 8—Condition Codes Register

The Condition Codes Register (CCR) holds the integer condition codes.

5.1.5.1 CCR Condition Code Fields (xcc and icc)

All instructions that set integer condition codes set bothxbeandicc fields. Thexcc
condition codes indicate the result of an operation when viewed as a 64-bit operation. The
icc condition codes indicate the result of an operation when viewed as a 32-bit operation.
For example, if an operation results in the 64-bit value 0000 0000 FFFF ERR€ 32-bit

result is negativei¢c.N is set to 1) but the 64-bit result is nonnegatkee N is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown in
figure 9.

Xcc:
icc: 3 2 1 0

Figure 9—Integer Condition Codes (CCR_icc and CCR_xcc)

The n bits indicate whether the 2’s-complement ALU result was negative for the last
instruction that modified the integer condition codes. 1 = negative, 0 = not negative.

The z bits indicate whether the ALU result was zero for the last instruction that modified
the integer condition codes. 1 = zero, 0 = nonzero.

Thev bits indicate whether the ALU result was within the range of (was representable in)
64-bit (xco or 32-bit (cc) 2's complement notation for the last instruction that modified
the integer condition codes. 1 = overflow, 0 = no overflow.

The c bits indicate whether a 2’'s complement carry (or borrow) occurred during the last
instruction that modified the integer condition codes. Carry is set on addition if there is a

42 5 Registers

carry out of bit 63 xcg or bit 31 (cc). Carry is set on subtraction if there is a borrow into
bit 63 (xcg or bit 31 {cc). 1 = carry, 0 = no carry.

5.1.5.1.1 CCR_extended_integer_cond_codes (xcc)

Bits 7 through 4 are the U condition codes that indicate the results of an integer operation
with both of the operands considered to be 64 bits long. These bits are modified by the
arithmetic and logical instructions the names of which end with the letters “cc” (e.g.,
ANDcc) and by the WRCCR instruction. They can be modified by a DONE or RETRY
instruction, which replaces these bits with the CCR field of the TSTATE register. The
BPcc and Tcc instructions may cause a transfer of control based on the values of these
bits. The MOVcc instruction can conditionally move the contents of an integer register
based on the state of these bits. The FMOVcc instruction can conditionally move the con-
tents of a floating-point register based on the state of these bits.

5.1.5.1.2 CCR_integer_cond_codes (icc)

Bits 3 through 0 are the U condition codes, which indicate the results of an integer opera-
tion with both of the operands considered to be 32 bits. These bits are modified by the
arithmetic and logical instructions the names of which end with the letters “cc” (e.g.,
ANDcc) and by the WRCCR instruction. They can be modified by a DONE or RETRY
instruction, which replaces these bits with the CCR field of the TSTATE register. The
BPcc, Bicc, and Tcc instructions may cause a transfer of control based on the values of
these bits. The MOVcc instruction can conditionally move the contents of an integer regis-
ter based on the state of these bits. The FMOVcc instruction can conditionally move the
contents of a floating-point register based on the state of these bits.

5.1.6 Floating-Point Registers State (FPRS) Register

FPRS FEF|DU | DL

2 1 o0

Figure 10—Floating-Point Registers State Register

The Floating-Point Registers State (FPRS) register holds control information for the float-
ing-point register file; this information is readable and writable by nonprivileged software.

5.1.6.1 FPRS_enable_fp (FEF)

Bit 2, FEF, determines whether the FPU is enabled. If it is disabled, executing a floating-
point instruction causes an disabled trap. If this bit is set but the PSTATE.PEF bit is not
set, then executing a floating-point instruction causespatsabled trap; that is, both
FPRS.FEF and PSTATE.PEF must be set to enable floating-point operations.

5.1 Nonprivileged Registers 43

5.1.6.2 FPRS_dirty_upper (DU)

Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that is, f32..f62. It

is set whenever any of the upper floating-point registers is modified. Its setting may be
pessimistic; that is, it may be set in some cases even though no register was actually mod-
ified. It is cleared only by software.

5.1.6.3 FPRS_dirty_lower (DL)

Bit O is the “dirty” bit for the lower 32 floating-point registers; that is, f0..f31. It is set
whenever any of the lower floating-point registers is modified. Its setting may be pessimis-
tic; that is, it may be set in some cases even though no register was actually modified. It is
cleared only by software.

Implementation Note:
The pessimistic setting of FPRS.DL and FPRS.DU allows hardware to set these bits even though
the modification of a floating-point register might be cancelled before data is written.

5.1.7 Floating-Point State Register (FSR)

The FSR register fields, illustrated in figure 11, contain FPU mode and status information.
The lower 32 bits of the FSR are read and written by the STFSR and LDFSR instructions;
all 64 bits of the FSR are read and written by the STXFSR and LDXFSR instructions,

respectively. Theer, ftt, andreservedields are not modified by LDFSR or LDXFSR.

— fce3| fee2 | fecl
63 38 37 36 35 34 33 32
RD| — TEM NS| — ver ftt |qne|—| fccO aexc cexc
31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 5 4 0

Figure 11—FSR Fields

Bits 63..38, 29..28, 21..20, and 12 are reserved. When read by an STXFSR instruction,
these bits shall read as zero. Software should only issue LDXFSR instructions with zero

values in these bits, unless the values of these bits are exactly those derived from a previ-
ous STFSR.

Subsections 5.1.7.1 through 5.1.7.10.5 describe the remaining fields in the FSR.

5.1.7.1 FSR_fp_condition_codes (fcc0, fccl, fec2, fcc3)

There are four sets of floating-point condition code fields, lab&e@ fccl, fcc2 and
fcc3

V8 Compatibility Note:
SPARC-V9'sfccOis the same as SPARC-V8&.

ThefccOfield consists of bits 11 and 10 of the FSB¢1 consists of bits 33 and 3&;c2
consists of bits 35 and 34ndfcc3consists of bits 37 and 36. Execution of a floating-point

44 5 Registers

compare instruction (FCMP or FCMPE) updates one offtom fields in the FSR, as
selected by the instruction. THecnfields are read and written by STXFSR and LDXFSR
instructions, respectively. ThiecO field may also be read and written by STFSR and
LDFSR, respectively. FBfcc and FBPfcc instructions base their control transfers on these
fields. The MOVcc and FMOVcc instructions can conditionally copy a register based on
the state of these fields.

In table 8 f,5; andf,g, correspond to the single, double, or quad values in the floating-point
registers specified by a floating-point compare instructiosisandrs2 fields. The ques-
tion mark (‘?’) indicates an unordered relation, which is true if eifhgror f,5, is a signal-

ling NaN or quiet NaN. If FCMP or FCMPE generatesfarexception_ieee_754 exception,
thenfccnis unchanged.

Table 8—Floating-Point Condition Codes fccn) Fields of FSR

Co?éigt of Indicated relation
0 frs1 =frs2
1 frsl < frsZ
2 frsl > frsz
3 fis1 ?frso (Unordered

5.1.7.2 FSR_rounding_direction (RD)

Bits 31 and 30 select the rounding direction for floating-point results according to IEEE
Std 754-1985. Table 9 shows the encodings.

Table 9—Rounding Direction (RD) Field of FSR

RD Round toward
0 Nearest (even if tie)
1 0
2 + 00
3 — 00

5.1.7.3 FSR_trap_enable_mask (TEM)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions
that can be indicated in the current_exception fiekek(. See figure 12 on page 50. If a
floating-point operate instruction generates one or more exceptions and the TEM bit corre-
sponding to any of the exceptions is 1, anexception_ieee_754 trap is caused. A TEM bit
value of 0 prevents the corresponding exception type from generating a trap.

5.1.7.4 FSR_nonstandard_fp (NS)

IMPL. DEP. #18:. When set to 1, bit 22 causes the FPU to produce implementation-defined results
that may not correspond to IEEE Std 754-1985.

5.1 Nonprivileged Registers 45

For instance, to obtain higher performance, implementations may convert a subnormal
floating-point operand or result to zero when FSR.NS is set. SPARC-V9 implementations
are permitted but not encouraged to deviate from IEEE 754 requirements when the non-
standard mode bit of the FSR is 1. For implementations in which no nonstandard floating-
point mode exists, the NS bit of the FSR should always read as 0, and writes to it should
be ignored.

Seelmplementation Characteristics of Current SPARC-V9-based Products, Revisian 9.x
document available from SPARC International, for a description of how this field is used
in existing implementations.

5.1.7.5 FSR_version (ver)

IMPL. DEP. #19: Bits 19 through 17 identify one or more particular implementations of the FPU
architecture.

For each SPARC-V9 IU implementation (as identified by its VIER) field), there may

be one or more FPU implementations, or none. This field identifies the particular FPU
implementation present. Version number 7 is reserved to indicate that no hardware float-
ing-point controller is present. Sémplementation Characteristics of Current SPARC-V9-
based Products, Revision 9.& document available from SPARC International, for a
description of the values of this field in existing implementations.

Theverfield is read-only; it cannot be modified by the LDFSR and LDXFSR instructions.

5.1.7.6 FSR_floating-point_trap_type (ftt)

Several conditions can cause a floating-point exception trap. When a floating-point excep-
tion trap occursftt (bits 16 through 14 of the FSR) identifies the cause of the exception,
the “floating-point trap type.” After a floating-point exception occurs,fthéeld encodes

the type of the floating-point exception until an STFSR, STXFSR, or FPop is executed.

The ftt field can be read by the STFSR and STXFSR instructions. The LDFSR and
LDXFSR instructions do not affetit.

Privileged software that handles floating-point traps must execute an STFSR (or STXFSR)
to determine the floating-point trap type. STFSR and STXFSR shallfitexfter the store
completes without error. If the store generates an error and does not confiplska|l
remain unchanged.

Programming Note:

Neither LDFSR nor LDXFSR can be used for this purpose, since both feéawechanged. How-
ever, executing a nontrapping FPop such fasovs 9%f0,%f0 " prior to returning to nonprivi-
leged mode will zerdtt. Theftt remains valid until the next FPop instruction completes execution.

46 5 Registers

Theftt field encodes the floating-point trap type according to table 10. Note that the value
“7” is reserved for future expansion.

Table 10—Floating-Point Trap Type (tt) Field of FSR

—
—

Trap type
None
IEEE 754 exception
unfinished_FPop
unimplemented_FPop
sequence_error
hardware_error
invalid_fp_register

N oo~ WNPEFL| O

The sequence_error andhardware_error trap types are unlikely to arise in the normal course

of computation. They are essentially unrecoverable from the point of view of user applica-
tions. In contrast,/EEE 754 exception, unfinished_FPop, and unimplemented_FPop Will

likely arise occasionally in the normal course of computation and must be recoverable by
system software.

When a floating-point trap occurs, the following results are observed by user software:
(1) The value oaexcis unchanged.

(2) The value ottexcis unchanged, except that for &EE_754_exception a bit corre-
sponding to the trapping exception is set. Tdgnished_FPop, unimplemented_
FPop, sequence_error, andinvalid_fp_register floating-point trap types do not affect
cexc

(3) The source registers are unchanged (usually implemented by leaving the destina-
tion registers unchanged).

(4) The value ofccnis unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is sig-
nalled, either immediately from ameEe 754 exception or after recovery from an
unfinished_FPop Or unimplemented_FPop. In either casegcexcas seen by the trap handler
reflects the exception causing the trap.

In the cases ounfinished_FPop and unimplemented FPop exceptions that do not subse-
guently generate IEEE traps, the recovery software should defiteeaexg and the desti-
nation registers dccs, as appropriate.

5.1.7.6.1 ftt = IEEE_754_exception

The IEEE_754_exception floating-point trap type indicates that a floating-point exception
conforming to IEEE Std 754-1985 has occurred. The exception type is encodectexthe
field. Note thataexg thefccs, and the destinatiohregister are not affected by aBeE
754_exception trap.

5.1 Nonprivileged Registers 47

5.1.7.6.2 ftt = unfinished_FPop

The unfinished_FPop floating-point trap type indicates that an implementation’s FPU was
unable to generate correct results, or that exceptions as defined by IEEE Std 754-1985
have occurred. In the latter case, ¢tb&cfield is unchanged.

5.1.7.6.3 ftt = unimplemented_FPop

The unimplemented_FPop floating-point trap type indicates that an implementation’s FPU
decoded an FPop that it does not implement. In this casegitbield is unchanged.

Programming Note:
For theunfinished_FPop andunimplemented _FPop floating-point traps, software should emulate or
reexecute the exception-causing instruction and update the FSR, desfinagister(s), anftcs.

5.1.7.6.4 ftt = sequence_error

The sequence_error floating-point trap type indicates one of three abnormal error condi-
tions in the FPU, all caused by erroneous supervisor software:

— An attempt was made to read the floating-point deferred-trap queue (FQ) on an
implementation without an FQ.

Implementation Note:
IMPL. DEP #25: On implementations without a floating-point queue, an attempt to read
the fg with an RDPR instruction shall cause either an illegal_instruction exception or an
fp_exception_other exception with FSR.ftt set to 4 (sequence_error).

— An attempt was made to execute a floating-point instruction when the FPU was
unable to accept one. This typesalyuence_error arises from a logic error in super-
visor software that has caused a previous floating-point trap to be incompletely ser-
viced (for example, the floating-point queue was not emptied after a previous
floating-point exception).

— An attempt was made to read the floating-point deferred-trap queue (FQ) with a
RDPR instruction when the FQ was empty; that is, when E8&= 0. Note that
generation okequence_error is recommended but not required in this case.

Programming Note:
If a sequence_error floating-point exception occurs while executing user code due to any of the
above conditions, it may not be possible to recover sufficient state to continue execution of the user
application.

5.1.7.6.5 ftt = hardware_error

The hardware_error floating-point trap type indicates that the FPU detected a catastrophic
internal error, such as an illegal state or a parity error dmegyister access.

Programming Note:
If a hardware_error occurs while executing user code, it may not be possible to recover sufficient
state to continue execution of the user application.

48 5 Registers

5.1.7.6.6 ftt = invalid_fp_register

The invalid_fp_register trap indicates that one (or more) operands of an FPop are mis-
aligned; that is, a quad-precision register number is mab@ 4. An implementation shall
generate ar_exception_other trap with FSKRtt = invalid_fp_register in this case.

5.1.7.7 FSR_FQ_not_empty (gne)

Bit 13 indicates whether the optional floating-point deferred-trap queue (FQ) is empty
after a deferred floating-point exception trap or after a read privileged register (RDPR)
instruction that reads the queue has been executeghdf O, the queue is empty; if
gne= 1, the queue is not empty.

The gne bit can be read by the STFSR and STXFSR instructions. The LDFSR and
LDXFSR instructions do not affe@ne However, executing successivRDPR %fpd
instructions will (eventually) cause the FQ to become emghe€ 0). If an implementa-

tion does not provide an FQ, this bit shall read as zero. Supervisor software must arrange
for this bit to always read as zero to user-mode software.

5.1.7.8 FSR_accrued_exception (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions while floating-point
exception traps are disabled using the TEM field. See figure 13 on page 50. After an FPop
completes, the TEM anckxcfields are logically ANDed together. If the result is nonzero,
aexcis left unchanged and ap_exception_ieee_754 trap is generated; otherwise, the new
cexcfield is ORed into theaexcfield and no trap is generated. Thus, while (and only
while) traps are masked, exceptions are accumulated aexuofield.

5.1.7.9 FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were gen-
erated by the most recently executed FPop instruction. The absence of an exception causes
the corresponding bit to be cleared. See figure 14 on page 50.

The cexcbhits are set as described in 5.1.7.10, “Floating-Point Exception Fields,” by the
execution of an FPop that either does not cause a trap or caugessarption_ieee_754

trap with FSRitt = IEEE 754 exception. An IEEE_754_exception that traps shall cause
exactly one bit in FSRexcto be set, corresponding to the detected IEEE Std 754-1985
exception.

Floating-point operations which cause an overflow or underflow condition may also cause
an "inexact" condition. For overflow and underflow conditions, FE8kcbits are set and
trapping occurs as follows:

— If an IEEE 754 overflow condition occurs:

— if tem.ofm= 0 andtem.nxme 0, thecexc.ofandcexc.nxdits are both setto 1,
the other three bits afexcare set to 0, and afa_exception_ieee_754 trap does
not occur.

5.1 Nonprivileged Registers 49

— if tem.ofm= 0 andtem.nxne 1, the cexc.nxc bit is set to 1, the other four bits
of cexcare set to 0, and &n _exception_ieee_754 trap does occur.

— if tem.ofnE 1, thecexc.ofdit is set to 1, the other four bits aexcare set to
0, and anp_exception_ieee_754 trap does occur.

— If an IEEE 754 underflow condition occurs:
— if tem.ufm= 0 andtem.nxnmE 0, thecexc.ufcandcexc.nxdits are both setto 1,

the other three bits afexcare set to 0, and afp_exception_ieee_754 trap does
not occur.

— if tem.ufm= 0 andtem.nxnE 1, thecexcnxc bit is set to 1, the other four bits
of cexcare set to 0, and a@nm exception_ieee_754 trap does occur.

— if tem.ufim= 1, thecexc.ufdit is set to 1, the other four bits eExcare set to O,
and anfp_exception_ieee_754 trap does occur.

The above behavior is summarized in table 11 (wherentlicates “don’t care”):
Table 11—Setting ofFSR.cexc Bits

Conditions Results

Exception(s) Current

Detected Trap Enable fp—_ Exception

in F.p. Mask bits exception_ bits (in

operation (in FSR.tem) 'e_?fa—g >4 FSRcexq
of uf nx ofm ufm nxm | Occurs? ofc ufc nxc |Notes
- - - X X X no 0 0 0
- - O X X 0 no 0 0 1
- 0 O X 0 0 no 0 1 1 1)
o - o 0 X 0 no 1 0 1 (2)
- - O X X 1 yes 0 0 1
- o0 O X 0 1 yes 0 0 1 (1)
- O - X 1 X yes 0 1 0
- 0o o X 1 X yes 0 1 0
o - O 1 X X yes 1 0 0 (2)
o - O 0 X 1 yes 0 0 1 (2)

Notes:

(1) When the nderflow trap is disabled (TEM.ufm = 0, underflow is always
accompanied by inexact.
(2) Overflow is always accompanied by inexact.

If the execution of an FPop causes a trap other fhaexception_ieee 754, FSRcexcis
left unchanged.

50 5 Registers

5.1.7.10 Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the following
definitions of the floating-point exception conditions (per IEEE Std 754-1985):

NVM | OFM | UFM [DZM [NXM

27 26 25 24 23
Figure 12—Trap Enable Mask (TEM) Fields of FSR

nva | ofa ufa | dza | nxa

9 8 7 6 5
Figure 13—Accrued Exception Bits §exq Fields of FSR

nvc | ofc | ufc | dzc | nxc

4 3 2 1 0
Figure 14—Current Exception Bits cexq Fields of FSR

5.1.7.10.1 FSR_invalid (nvc, nva)

An operand is improper for the operation to be performed. For example,@®ande —
o are invalid. 1 = invalid operand(s), O = valid operand(s).

5.1.7.10.2 FSR_overflow (ofc, ofa)

The result, rounded as if the exponent range were unbounded, would be larger in magni-
tude than the destination format’s largest finite number. 1 = overflow, 0 = no overflow.

5.1.7.10.3 FSR_underflow (ufc, ufa)

The rounded result is inexact and would be smaller in magnitude than the smallest normal-
ized number in the indicated format. 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is zero. Otherwise:

If UFM =0: Underflow occurs if a nonzero result is tiny and a loss of accuracy
occurs. Tininess may be detected before or after rounding (impl. dep.
#55). Loss of accuracy may be either a denormalization loss or an inex-
act result.

If UFM =1: Underflow occurs if a nonzero result is tiny. Tininess may be detected
before or after rounding (impl. dep. #55).

5.1.7.10.4 FSR_division-by-zero (dzc, dza)

X + 0.0, where X is subnormal or normalized. Note that-9@.0 doesot set thedzcor
dzabits. 1 = division by zero, 0 = no division by zero.

5.1 Nonprivileged Registers 51

5.1.7.10.5 FSR_inexact (nxc, nxa)

The rounded result of an operation differs from the infinitely precise unrounded result.
1 = inexact result, 0 = exact result.

5.1.7.11 FSR Conformance

IMPL. DEP. #22: An implementation may choose to implement the TEM, cexc, and aexc fields in
hardware in either of two ways (both of which comply with IEEE Std 754-1985):

(1) Implement all three fields conformant to IEEE Std 754-1985.

(2) Implement the NXM,nxa and nxc bits of these fields conformant to IEEE Std
754-1985. Implement each of the remaining bits in the three fields either

(a) Conformant to IEEE Std 754-1985, or

(b) As a state bit that may be set by software that calculates the IEEE Std 754-
1985 value of the bit. For any bit implemented as a state bit:

[1] The IEEE exception corresponding to the state bit nahstays cause an
exception (specifically, amnfinished_FPop exception). During exception
processing in the trap handler, the bit in the state field can be written to the
appropriate value by an LDFSR or LDXFSR instruction.

[2] The state bit must be implemented in such a way that if it is written to a
particular value by an LDFSR or LDXFSR instruction, it will be read back
as the same value by a subsequent STFSR or STXFSR.

Programming Note:

Software must be capable of simulating the operation of the FPU in order to handle the
unimplemented_FPop, unfinished_FPop, and IEEE_754_exception floating-point trap types prop-

erly. Thus, a user application program always sees an FSR that is fully compliant with IEEE Std
754-1985.

5.1.8 Address Space ldentifier Register (ASI)

ASI

7 0

Figure 15—ASI Register

The ASI register specifies the address space identifier to be used for load and store alter-
nate instructions that use thes1 + simm13 addressing form. Nonprivileged (user-mode)
software may write any value into the ASI register; however, values with bit 7 = 0 indicate
restricted ASIs. When a nonprivileged instruction makes an access that uses an ASI with
bit 7 = 0, aprivileged_action exception is generated. See 6.3.1.3, “Address Space Identifiers
(ASls),” for details.

52 5 Registers

5.1.9 TICK Register (TICK)

TICK |NPT] counter

63 62 0

Figure 16—TICK Register

The counterfield of the TICK register is a 63-bit counter that counts CPU clock cycles.
Bit 63 of the TICK register is the Nonprivileged Trap (NPT) bit, which controls access to
the TICK register by nonprivileged software. Privileged software can always read the
TICK register with either the RDPR or RDTICK instruction. Privileged software can
always write the TICK register with the WRPR instruction; there is no WRTICK instruc-
tion.

Nonprivileged software can read the TICK register using the RDTICK instruction;
TICK.NPT must be 0. When TICK.NPT = 1, an attempt by nonprivileged software to read
the TICK register causes garivileged_action exception. Nonprivileged software cannot
write the TICK register.

TICK.NPT is set to 1 by a power-on reset trap. The value of Tkokinteris undefined
after a power-on reset trap.

After the TICK register is written, reading the TICK register returns a value incremented
(by one or more) from the last value written, rather than from some previous value of the
counter. The number of counts between a write and a subsequent read need not accurately
reflect the number of processor cycles between the write and the read. Software may only
rely on read-to-read counts of the TICK register for accurate timing, not on write-to-read
counts.

IMPL. DEP. #105: The difference between the values read from the TICK register on two reads
should reflect the number of processor cycles executed between the reads. If an accurate count
cannot always be returned, any inaccuracy should be small, bounded, and documented. An imple-
mentation may implement fewer than 63 bits in TICK.counter, however, the counter as imple-
mented must be able to count for at least 10 years without overflowing. Any upper bits not
implemented must read as zero.

Programming Note:

TICK.NPT may be used by a secure operating system to control access by user software to high-
accuracy timing information. The operation of the timer might be emulated by the trap handler,
which could read TICKounterand “fuzz” the value to lower accuracy.

5.2 Privileged Registers

The registers described in this subsection are visible only to software running in privileged
mode; that is, when PSTATE.PRIV = 1. Privileged registers are written using the WRPR
instruction and read using the RDPR instruction.

5.2 Privileged Registers 53

5.2.1 Processor State Register (PSTATE)

PSTATE|PID1 | PIDO | CLE | TLE MM RED| PEF | AM [(PRIV| IE AG

11 10 9 8 7 6 5 4 3 2 1 0

Figure 17—PSTATE Fields

The PSTATE register holds the current state of the processor. There is only one instance of
the PSTATE register. See Chapter 7, “Traps,” for more details.

Writing PSTATE is nondelayed; that is, new machine state written to PSTATE is visible to
the next instruction executed. The privileged RDPR and WRPR instructions are used to
read and write PSTATE, respectively.

Implementation Note:

To ensure the nondelayed semantics, a write to PSTATE may take multiple cycles to complete on
some implementations.

5.2.1.2 through 5.2.1.10 describe the fields contained in the PSTATE register.

5.2.1.1 PSTATE_impldep (PID1, PIDO)

IMPL. DEP. #127: The presence and semantics of PSTATE.PID1 and PSTATE.PIDO are imple-
mentation-dependent. Software intended to run on multiple implementations should only write
these bits to values previously read from PSTATE, or to zeroes.

See also TSTATE bits 19..18.

5.2.1.2 PSTATE_current_little_endian (CLE)

When PSTATE.CLE =1, all data accesses using an implicit ASI are performed in little-
endian byte order. When PSTATE.CLE =0, all data accesses using an implicit ASI are
performed in big-endian byte order. Instruction accesses are always performed in big-
endian byte order. Specific ASls used are shown in table 12 on page 73.

5.2.1.3 PSTATE_trap_little_endian (TLE)

When a trap is taken, the current PSTATE register is pushed onto the trap stack and the
PSTATE.TLE bit is copied into PSTATE.CLE in the new PSTATE register. This allows
system software to have a different implicit byte ordering than the current process. Thus, if
PSTATE.TLE is set to 1, data accesses using an implicit ASI in the trap handler are little-
endian. The original state of PSTATE.CLE is restored when the original PSTATE register
is restored from the trap stack.

54 5 Registers

5.2.1.4 PSTATE_mem_model (MM)

This 2-bit field determines the memory model in use by the processor. Its values are:

Value Memory model
00 Total Store Order (TSO)
01 Partial Store Order (PSO)
10 Relaxed Memory Order (RMO)
11 —

An implementation must provide a memory model that allows programs conforming to the
TSO model to run correctly; that is, TSO or a stronger model. Whether the Partial Store
Order (PSO) model or the Relaxed Memory Ordering (RMO) model is supported is imple-
mentation-dependent (impl. dep. #113).

The current memory model is determined by the value of PSTATE.MM. The effect of set-
ting PSTATE.MM to an unsupported value is implementation-dependent (impl. dep.
#119).

5.2.1.5 PSTATE_RED_state (RED)

When PSTATE.RED is set to 1, the processor is operating in RED (Reset, Error, and
Debug) state. See 7.2.1, “RED_state.” The IU sets PSTATE.RED when any hardware reset
occurs. It also sets PSTATE.RED when a trap is taken while TL = (MAXTL — 1). Soft-
ware can exit RED_state by one of two methods:

(1) Execute a DONE or RETRY instruction, which restores the stacked copy of
PSTATE and clears PSTATE.RED if it was 0 in the stacked copy.

(2) Write a 0 to PSTATE.RED with a WRPR instruction.

Programming Note:
Changing PSTATE.RED may cause a change in address mapping on some systems. It is recom-
mended that writes of PSTATE.RED be placed in the delay slot of a JMPL; the target of this IMPL
should be in the new address mapping. The JMPL sets the nPC, which becomes the PC for the
instruction that folows the WRPR in its delay slot. The effect of the WRPR instruction is immedi-
ate.

5.2.1.6 PSTATE_enable_floating-point (PEF)

When set to 1, this bit enables the floating-point unit, which allows privileged software to
manage the FPU. For the floating-point unit to be usable, both PSTATE.PEF and
FPRS.FEF must be set. Otherwise, a floating-point instruction that tries to reference the
FPU will cause amp_disabled trap.

5.2.1.7 PSTATE_address_mask (AM)

When PSTATE.AM = 1, both instruction and data addresses are interpreted as if the high-
order 32 bits were masked to zero before being presented to the MMU or memory system.
Thirty-two-bit application software must run with this bit set.

5.2 Privileged Registers 55

Branch target addresses (sent to the nPC) and addresses sent to registers by CALL, JMPL,
and RDPC instructions are always 64-bit values, but the value of the high-order 32-bits are
implementation-dependent. Similarly, the value of the high-order 32-bits of TPC and
TNPC after a trap taken while PSTATE.AM =1 is implementation-dependent.

IMPL. DEP. #125: When PSTATE.AM = 1, the value of the high-order 32-bits of the PC transmitted
to the specified destination register(s) by CALL, JMPL, RDPC, and on a trap is implementation-
dependent.

5.2.1.8 PSTATE_privileged_mode (PRIV)

When PSTATE.PRIV = 1, the processor is in privileged mode.

5.2.1.9 PSTATE_interrupt_enable (IE)

When PSTATE.IE = 1, the processor can accept interrupts.

5.2.1.10 PSTATE_alternate_globals (AG)

When PSTATE.AG = 0, the processor interprets integer register numbers in the range 0..7
as referring to the normal global register set. When PSTATE.AG = 1, the processor inter-
prets integer register numbers in the range 0..7 as referring to the alternate global register
set.

5.2.2 Trap Level Register (TL)

TL TL

2 0

Figure 18—Trap Level Register

The trap level register specifies the current trap level. TL = 0 is the normal (nontrap) level
of operation. TL > 0 implies that one or more traps are being processed. The maximum
valid value that the TL register may contain is “MAXTL.” This is always equal to the
number of supported trap levels beyond level 0. See Chapter 7, “Traps,” for more details
about the TL register. An implementation shall support at least four levels of traps beyond
level O; that is, MAXTL shall be 4.

IMPL. DEP. #101: How many additional trap levels, if any, past level 4 are supported is implemen-
tation-dependent.

The remainder of this subsection assumes that there are four trap levels beyond level 0.

Programming Note:

Writing the TL register with avrpr %tl instruction does not alter any other machine state; that
is, it is not equivalent to taking or returning from a trap.

56 5 Registers

5.2.3 Processor Interrupt Level (PIL)

PIL PIL

3 0

Figure 19—Processor Interrupt Level Register

The processor interrupt level (PIL) is the interrupt level above which the processor will
accept an interrupt. Interrupt priorities are mapped such that interrupt level 2 has greater
priority than interrupt level 1, and so on. See table 17 on page 103 for a list of exception
and interrupt priorities.

V8 Compatibility Note:

On SPARC-V8 processors, the level 15 interrupt is considered to be nonmaskable, so it has differ-
ent semantics from other interrupt levels. SPARC-V9 processors do not treat level 15 interrupts dif-
ferently from other interrupt levels. See 7.6.2.4, “Externally Initiated Reset (XIR) Traps,” for a
facility in SPARC-V9 that is similar to a nonmaskable interrupt.

5.2.4 Trap Program Counter (TPC)

TPCy PC from trap while TL =0 00
TPC, PC from trap while TL =1 00
TPCs3 PC from trap while TL =2 00
TPC, PC from trap while TL =3 00

63 210

Figure 20—Trap Program Counter Register

The TPC register contains the program counter (PC) from the previous trap level. There
are MAXTL instances of the TPC (impl. dep. #101), but only one is accessible at any
time. The current value in the TL register determines which instance of the TPC register is
accessible. An attempt to read or write the TPC register when TL = 0 caus#syan
instruction exception.

5.2.5 Trap Next Program Counter (TNPC)

TNPC, nPC from trap while TL =0 00
TNPC, nPC from trap while TL =1 00
TNPC3 nPC from trap while TL =2 00
TNPC,4 nPC from trap while TL =3 00
63 210

Figure 21—Trap Next Program Counter Register

5.2 Privileged Registers 57

The TNPC register is the next program counter (nPC) from the previous trap level. There
are MAXTL instances of the TNPC (impl. dep. #101), but only one is accessible at any
time. The current value in the TL register determines which instance of the TNPC register
is accessible. An attempt to read or write the TNPC register when TL = 0 causlegan
instruction exception.

5.2.6 Trap State (TSTATE)

TSTATE; | CCRfromTL =0 | ASlfromTL =0 — PSTATE from TL =0 — | cwPfromTL =0
TSTATE, | cCRfromTL =1 | ASIfromTL =1 — PSTATE from TL =1 — | CWPfromTL =1
TSTATE3 | CCRfromTL =2 | ASIfrom TL =2 — PSTATE from TL =2 — | cwPfromTL =2
TSTATE4 | CCRfromTL =3 | ASIfromTL =3 — PSTATE from TL =3 — | CwWPfromTL =3
39 32 31 24 23 20 19 87 54 0

Figure 22—Trap State Register

TSTATE contains the state from the previous trap level, comprising the contents of the
CCR, ASI, CWP, and PSTATE registers from the previous trap level. There are MAXTL
instances of the TSTATE register, but only one is accessible at a time. The current value in
the TL register determines which instance of TSTATE is accessible. An attempt to read or
write the TSTATE register when TL = 0 causesiianal_instruction exception.

TSTATE bits 19 and 18 are implementation-dependemPL.DEP. #127: If PSTATE bit 11
(10) is implemented, TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE bit
11 (10) from the previous trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18)
shall read as zero. Software intended to run on multiple implementations should only write these
bits to values previously read from PSTATE, or to zeroes.

5.2.7 Trap Type Register (TT)

TT, | Trap type from trap while TL =0

TT, | Trap type from trap while TL =1

TT3| Trap type from trap while TL =2

TT,4 | Trap type from trap while TL =3

8 0

Figure 23—Trap Type Register

The TT register normally contains the trap type of the trap that caused entry to the current
trap level. On a reset trap the TT field contains the trap type of the reset (see 7.2.1.1,
“RED_state Trap Table”), except when a watchdog (WDR) or externally initiated (XIR)
reset occurs while the processor is in error_state. When this occurs, the TT register will
contain the trap type of the exception that caused entry into error_state.

58 5 Registers

There are MAXTL instances of the TT register (impl. dep. #101), but only one is accessi-

ble at a time. The current value in the TL register determines which instance of the TT reg-
ister is accessible. An attempt to read or write the TT register when TL = 0 shall cause an
illegal_instruction exception.

5.2.8 Trap Base Address (TBA)

Trap Base Address 000000000000000

63 15 14 0

Figure 24—Trap Base Address Register

The TBA register provides the upper 49 bits of the address used to select the trap vector
for a trap. The lower 15 bits of the TBA always read as zero, and writes to them are
ignored.

The full address for a trap vector is specified by the TBA, TL, TT[TL], and five zeroes:

TBA<63:15> TL>0 TTr. |00000

63 15 14 13 5 4 0

Figure 25—Trap Vector Address

Note that the “(TL>0)” bit is 0 if TL = 0 when the trap was taken, and 1 if TL > 0 when
the trap was taken. This implies that there are two trap tables: one for traps from TL=0
and one for traps from TL > 0. See Chapter 7, “Traps,” for more details on trap vectors.

5.2.9 Version Register (VER)

manuf impl mask — maxt/ — | maxwin

63 48 47 32 31 24 23 16 15 87 5 4 0

Figure 26—Version Register

The version register specifies the fixed parameters pertaining to a particular CPU imple-
mentation and mask set. The VER register is read-only.

IMPL. DEP. #104: VER.manuf contains a 16-bit manufacturer code. This field is optional and, if not
present, shall read as 0. VER.manuf may indicate the original supplier of a second-sourced chip. It
is intended that the contents of VER.manuf track the JEDEC semiconductor manufacturer code as
closely as possible. If the manufacturer does not have a JEDEC semiconductor manufacturer
code, SPARC International will assign a value for VER.manuf.

IMPL. DEP. #13: VER.impl uniquely identifies an implementation or class of software-compatible
implementations of the architecture. Values FFF0,4.. FFFF;g are reserved and are not available for
assignment.

The value of VERmplis assigned as described in C.3, “Implementation Dependency Cat-
egories.”

5.2 Privileged Registers 59

VER.maskspecifies the current mask set revision, and is chosen by the implementor. It
generally increases numerically with successive releases of the processor, but does not
necessarily increase by one for consecutive releases.

VER.maxtlcontains the maximum number of trap levels supported by an implementation
(impl. dep. #101), that is, MAXTL, the maximum value of the contents of the TL register.

VER.maxwincontains the maximum index number available for use as a valid CWP value
in an implementation; that is, VERaxwincontains the value “NWINDOWS — 1" (impl.
dep. #2).

5.2.10 Register-Window State Registers

The state of the register windows is determined by a set of privileged registers. They can
be read/written by privileged software using the RDPR/WRPR instructions. In addition,
these registers are modified by instructions related to register windows and are used to
generate traps that allow supervisor software to spill, fill, and clean register windows.

IMPL. DEP. #126: Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and
CLEANWIN contain values in the range 0..NWINDOWS-1. The effect of writing a value greater
than NWINDOWS-1 to any of these registers is undefined. Although the width of each of these
five registers is nominally 5 bits, the width is implementation-dependent and shall be between
Hog,(NWINDOWS)Oand 5 bits, inclusive. If fewer than 5 bits are implemented, the unimple-
mented upper bits shall read as 0, and writes to them shall have no effect. All five registers should
have the same width.

The details of how the window-management registers are used by hardware are presented
in 6.3.6, “Register Window Management Instructions.”

5.2.10.1 Current Window Pointer (CWP)

CWP Current Window #

4 0
Figure 27—Current Window Pointer Register

The CWP register is a counter that identifies the current window into the set of integer reg-
isters. See 6.3.6, “Register Window Management Instructions,” and Chapter 7, “Traps,”
for information on how hardware manipulates the CWP register.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined
(impl. dep. #126).

V8 Compatibility Note:
The following differences between SPARC-V8 and SPARC-V9 are visible only to privileged soft-
ware; they are invisible to nonprivileged software:

1) In SPARC-V9, SAVE increments CWP and RESTORE decrements CWP. In SPARC-V8, the
opposite is true: SAVE decrements PSR.CWP and RESTORE increments PSR.CWP.

2) PSR.CWP in SPARC-V8 is changed on each trap. In SPARC-V9, CWP is affected only by a
trap caused by a window fill or spill exception.

60 5 Registers

3) In SPARC-VS, writing a value into PSR.CWP that is greater than or equal to the number of
implemented windows causes dlegal_instruction exception. In SPARC-V9, the effect of
writing an out-of-range value to CWP is undefined.

5.2.10.2 Savable Windows (CANSAVE) Register

CANSAVE

4 0
Figure 28—CANSAVE Register

The CANSAVE register contains the number of register windows following CWP that are
not in use and are, hence, available to be allocated by a SAVE instruction without generat-
ing a window spill exception

The effect of writing a value greater than NWINDOWS-1 to this register is undefined
(impl. dep. #126).

5.2.10.3 Restorable Windows (CANRESTORE) Register

CANRESTORE

4 0
Figure 29—CANRESTORE Register

The CANRESTORE register contains the number of register windows preceding CWP
that are in use by the current program and can be restored (via the RESTORE instruction)
without generating a window fill exception.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined
(impl. dep. #126).

5.2.10.4 Other Windows (OTHERWIN) Register

OTHERWIN

4 0
Figure 30—OTHERWIN Register

The OTHERWIN register contains the count of register windows that will be spilled/filled
using a separate set of trap vectors based on the contents of WSTATE_OTHER. If OTH-
ERWIN is zero, register windows are spilled/filled using trap vectors based on the con-
tents of WSTATE_NORMAL.

The OTHERWIN register can be used to split the register windows among different
address spaces and handle spill/fill traps efficiently by using separate spill/fill vectors.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined
(impl. dep. #126).

5.2 Privileged Registers 61

5.2.10.5 Window State (WSTATE) Register

WSTATE OTHER NORMAL

5 3 2 0
Figure 31—WSTATE Register

The WSTATE register specifies bits that are inserted intg, €%:2> on traps caused by
window spill and fill exceptions. These bits are used to select one of eight different win-
dow spill and fill handlers. If OTHERWIN = 0 at the time a trap is taken due to a window
spill or window fill exception, then the WSTATE.NORMAL bits are inserted into TT[TL].
Otherwise, the WSTATE.OTHER bits are inserted into TT[TL]. See 6.4, “Register Win-
dow Management,” for details of the semantics of OTHERWIN.

5.2.10.6 Clean Windows (CLEANWIN) Register

CLEANWIN

4 0
Figure 32—CLEANWIN Register

The CLEANWIN register contains the number of windows that can be used by the SAVE
instruction without causing @ean_window exception.

The CLEANWIN register counts the number of register windows that are “clean” with
respect to the current program; that is, register windows that contain only zeros, valid
addresses, or valid data from that program. Registers in these windows need not be
cleaned before they can be used. The count includes the register windows that can be
restored (the value in the CANRESTORE register) and the register windows following
CWP that can be used without cleaning. When a clean window is requested (via a dSAVE
instruction) and none is availablecigan window exception occurs to cause the next win-
dow to be cleaned.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined
(impl. dep. #126).

5.2.11 Ancillary State Registers (ASRS)

SPARC-V9 provides for up to 25 ancillary state registers (ASRs), numbered from 7
through 31.

ASRs numbered 7..15 are reserved for future use by the architecture and should not be
referenced by software.

ASRs numbered 16..31 are available for implementation-dependent uses (impl. dep. #8),
such as timers, counters, diagnostic registers, self-test registers, and trap-control registers.
An IU may choose to implement from zero to sixteen of these ASRs. The semantics of
accessing any of these ASRs is implementation-dependent. Whether access to a particular
ancillary state register is privileged is implementation-dependent (impl. dep. #9).

62 5 Registers

An ASR is read and written with the RDASR and WRASR instructions, respectively. An
RDASR or WRASR instruction is privileged if the accessed register is privileged.

5.2.12 Floating-Point Deferred-Trap Queue (FQ)

If present in an implementation, the FQ contains sufficient state information to implement
resumable, deferred floating-point traps.

IMPL. DEP. #23: Floating-point traps may be precise or deferred. If deferred, a floating-point
deferred-trap queue (FQ) shall be present.

The FQ can be read with the read privileged register (RDPR) floating-point queue instruc-
tion. In a given implementation, it may also be readable or writable via privileged load/

store double alternate instructions (LDDA, STDA), or by read/write ancillary state register

instructions (RDASR, WRASR).

IMPL. DEP. #24: The presence, contents of, and operations upon the FQ are implementation-
dependent.

If an FQ is present, however, supervisor software must be able to deduce the exception-
causing instruction’s opcodegf), operands, and address from its FQ entry. This also
must be true of any other pending floating-point operations in the queuémptamenta-

tion Characteristics of Current SPARC-V9-based Products, Revisigna9document
available from SPARC International, for a discussion of the formats and operation of
implemented floating-point queues in existing SPARC-V9 implementations.

In implementations with a floating-point queue, an attempt to read the FQ with a RDPR
instruction when the FQ is empty (FSRe= 0) shall cause afy_exception_other trap with
FSRftt set to 4 gequence_error).In implementations without an FQ, tij@ebit in the FSR

is always 0.

IMPL. DEP. #25: In implementations without a floating-point queue, an attempt to read the FQ with
an RDPR instruction shall cause either an illegal_instruction trap or an fp_exception_other trap
with FSR.ftt SET TO 4 (sequence_error).

5.2.13 U Deferred-Trap Queue

An implementation may contain zero or more 1U deferred-trap queues. Such a queue con-
tains sufficient state to implement resumable deferred traps caused by the IU. See 7.3.2,
“Deferred Traps,” for more information. Note that deferred floating-point traps are han-
dled by the floating-point deferred-trap queue. $@plementation Characteristics of
Current SPARC-V9-based Products, Revision @.document available from SPARC
International, for a discussion of such queues in existing implementations.

IMPL. DEP. #16: The existence, contents, and operation of an IU deferred-trap queue are imple-
mentation-dependent; it is not visible to user application programs under normal conditions.

6 Instructions

Instructions are accessed by the processor from memory and are executed, annulled, or
trapped. Instructions are encoded in four major formats and partitioned into eleven general
categories.

6.1 Instruction Execution

The instruction at the memory location specified by the program counter is fetched and
then executed. Instruction execution may change program-visible processor and/or mem-
ory state. As a side-effect of its execution, new values are assigned to the program counter
(PC) and the next program counter (nPC).

An instruction may generate an exception if it encounters some condition that makes it
impossible to complete normal execution. Such an exception may in turn generate a pre-
cise trap. Other events may also cause traps: an exception caused by a previous instruction
(a deferred trap), an interrupt or asynchronous error (a disrupting trap), or a reset request
(areset trap). If a trap occurs, control is vectored into a trap table. See Chapter 7, “Traps,”
for a detailed description of exception and trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program
counter (nPC) is copied into the PC and the nPC is incremented by 4 (ignoring overflow, if
any). If the instruction is a control-transfer instruction, the next program counter (nPC) is
copied into the PC and the target address is written to nPC. Thus, the two program
counters provide for a delayed-branch execution model.

For each instruction access and each normal data access, the IU appends an 8-bit address
space identifier, or ASI, to the 64-bit memory address. Load/store alternate instructions
(see 6.3.1.3, “Address Space ldentifiers (ASIs),”) can provide an arbitrary ASI with their
data addresses, or use the ASI value currently contained in the ASI register.

Implementation Note:

The time required to execute an instruction is implementation-dependent, as is the degree of execu-
tion concurrency. In the absence of traps, an implementation should cause the same program-visi-
ble register and memory state changes as if a program had executed according to the sequential
model implied in this document. See Chapter 7, “Traps,” for a definition of architectural compli-
ance in the presence of traps.

6.2 Instruction Formats

Instructions are encoded in four major 32-bit formats and several minor formats, as shown
in figures 33 and 34.

63

64 6 Instructions

Format 1 (op=1): CALL

op disp30

31 30 29 0

Format 2 (op= 0): SETHI & Branches (Bicc, BPcc, BPr, FBfcc, FBPfcc)

op rd op2 imm22
op |a cond op2 disp22
op |a cond op2 |ccliccO| p disp19
op |a|0O]| rcond op2 dieéhi | p rsl d16lo
31 30 29 28 25 24 22 21 20 19 18 14 13 0

Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr, MEMBAR, Load, and Store

op rd op3 rsl i=0 — rs2
op rd op3 rsl i=1 simm13
op — op3 rsl i=0 — rs2
op — op3 rsl i=1 simm13
op rd op3 rsi i=0| rcond — rs2
op rd op3 rsl i=1{ rcond simm10
op rd op3 rsl i=0 — rs2
op rd op3 rsl i=1 — cmask mmask
op rd op3 rsl i=0 imm_asi rs2
op impl-dep op3 impl-dep

31 30 29 27 26 25 24 19 18 14 13 12 10 9 7 6 5 4 3 0

Figure 33—Summary of Instruction Formats: Formats 1, 2, and 3

6.2 Instruction Formats 65
Format 3 (op = 2 or 3)Continued
op rd op3 rsl i=0 x — rs2
op rd op3 rsl i=1x=0 — shcnt32
op rd op3 rsl i=1{x=1 — shent64
op rd op3 — opf rs2
op 000 (ccljccO op3 rsl opf rs2
op rd op3 rsl opf rs2
op rd op3 rsl _
op fcn op3 —
op rd op3 _
31 30 29 25 24 19 18 14 13 12 11 6 5 4
Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc
op rd op3 rsi i=0|cclccO — rs2
op rd op3 rsl i=1|cclccO simm1l
op rd op3 cc2) cond i=0|ccfccO — rs2
op rd op3 cc2 cond i=1|cclccO simm11l
op rd op3 rsl 0 rcond opf_low rs2
op rd op3 0 cond opf_cc opf_low rs2
10 |— cond op3 rsl i=0|ccllcco — rs2
10 [— cond op3 rsl i=1|cclfccO — sw_trap_#
31 30 29 28 25 24 19 18 17 14 13 12 11 10 9 7 6 5 4 0

Figure 34—Summary of Instruction Formats: Formats 3 and 4

66 6 Instructions

6.2.1 Instruction Fields
The instruction fields are interpreted as follows:

a
Thea bit annuls the execution of the following instruction if the branch is condi-
tional and untaken, or if it is unconditional and taken.

ccO, ccl, and cc2
cc2cclccOspecify the condition codesc€, xcg fccQ fecl, fee, feed) to be used
in the instruction. Individual bits of the same logical field are present in several
other instructions: Branch on Floating-Point Condition Codes with Prediction
Instructions (FBPfcc), Branch on Integer Condition Codes with Prediction (BPcc),
Floating-Point Compare Instructions, Move Integer Register if Condition is Satis-
fied (MOVcc), Move Floating-Point Register if Condition is Satisfied (FMOVcc),
and Trap on Integer Condition Codes (Tcc). In instructions such as Tcc that do not
contain thecc2 bit, the missingcc2 bit takes on a default value. See table 41 on
page 281 for a description of these fields’ values.

cmask
This 3-bit field specifies sequencing constraints on the order of memory references
and the processing of instructions before and after a MEMBAR instruction.

cond:
This 4-bit field selects the condition tested by a branch instruction. See Appendix
E, “Opcode Maps,” for descriptions of its values.

d16hi and d16lo
These 2-bit and 14-bit fields together comprise a word-aligned, sign-extended, PC-
relative displacement for a branch-on-register-contents with prediction (BPr)
instruction.

disp19
This 19-bit field is a word-aligned, sign-extended, PC-relative displacement for an
integer branch-with-prediction (BPcc) instruction or a floating-point branch-with-
prediction (FBPfcc) instruction.

disp22 and disp30
These 22-bit and 30-bit fields are word-aligned, sign-extended, PC-relative dis-
placements for a branch or call, respectively.

fcn:
This 5-bit field provides additional opcode bits to encode the DONE and RETRY
instructions.

Thei bit selects the second operand for integer arithmetic and load/store instruc-
tions. If i =0, the operand is r[rs2]. lif=1, the operand isimm210 simm11 or
simm13 depending on the instruction, sign-extended to 64 bits.

imma22:
This 22-bit field is a constant that SETHI places in bits 31..10 of a destination reg-
ister.

6.2 Instruction Formats 67

imm_asi
This 8-bit field is the address space identifier in instructions that access alternate
space.

impl-dep:
The meaning of these fields is completely implementation-dependent for
IMPDEP1 and IMPDEP?2 instructions.

mmask
This 4-bit field imposes order constraints on memory references appearing before
and after a MEMBAR instruction.

op and op2
These 2- and 3-bit fields encode the three major formats and the Format 2 instruc-
tions. See Appendix E, “Opcode Maps,” for descriptions of their values.

op3:
This 6-bit field (together with one bit frorap) encodes the Format 3 instructions.
See Appendix E, “Opcode Maps,” for descriptions of its values.

opf:
This 9-bit field encodes the operation for a floating-point operate (FPop) instruc-
tion. See Appendix E, “Opcode Maps,” for possible values and their meanings.

opf_cc
Specifies the condition codes to be used in FMOVcc instructions.c8&eccl,
and cc2above for details.

opf_low:
This 6-bit field encodes the specific operation for a Move Floating-Point Register
if Condition is satisfied (FMOVcc) or Move Floating-Point register if contents of
integer register match condition (FMOVTr) instruction.

p:
This 1-bit field encodes static prediction for BPcc and FBPfcc instructions, as fol-
lows:
p Branch prediction
0 Predict branch will not be taken
1 Predict branch will be taken
rcond:

This 3-bit field selects the register-contents condition to test for a move based on
register contents (MOVr or FMOVr) instruction or a branch on register contents
with prediction (BPr) instruction. See Appendix E, “Opcode Maps,” for descrip-
tions of its values.

rd:
This 5-bit field is the address of the destination (or souraa)f register(s) for a
load, arithmetic, or store instruction.

rsi:
This 5-bit field is the address of the firgir f register(s) source operand.

68 6 Instructions

rs2
This 5-bit field is the address of the secandr f register(s) source operand with
i=0.

shcnt32
This 5-bit field provides the shift count for 32-bit shift instructions.

shcnt64
This 6-bit field provides the shift count for 64-bit shift instructions.

simm10.
This 10-bit field is an immediate value that is sign-extended to 64 bits and used as
the second ALU operand for a MOVTr instruction whenl.

simml1l
This 11-bit field is an immediate value that is sign-extended to 64 bits and used as
the second ALU operand for a MOVcc instruction wherll.

simm13
This 13-bit field is an immediate value that is sign-extended to 64 bits and used as
the second ALU operand for an integer arithmetic instruction or for a load/store
instruction when = 1.

SW_trap#
This 7-bit field is an immediate value that is used as the second ALU operand for a
Trap on Condition Code instruction.

Thex bit selects whether a 32- or 64-bit shift will be performed..

6.3 Instruction Categories
SPARC-V9 instructions can be grouped into the following categories:
— Memory access
— Memory synchronization
— Integer arithmetic
— Control transfer (CTI)
— Conditional moves
— Register window management
— State register access
— Privileged register access
— Floating-point operate
— Implementation-dependent

— Reserved

6.3 Instruction Categories 69

Each of these categories is further described in the following subsections.

6.3.1 Memory Access Instructions

Load, Store, Prefetch, Load Store Unsigned Byte, Swap, and Compare and Swap are the
only instructions that access memory. All of the instructions except Compare and Swap
use either twa registers or am register andsimm213to calculate a 64-bit byte memory
address. Compare and Swap uses a singlegister to specify a 64-bit byte memory
address. To this 64-bit address, the IU appends an ASI that encodes address space infor-
mation.

The destination field of a memory reference instruction specifies t¢iné register(s) that

supply the data for a store or receive the data from a load or LDSTUB. For SWAP, the des-
tination register identifies the register to be exchanged atomically with the calculated
memory location. For Compare and Swap,raegister is specified whose value is com-
pared with the value in memory at the computed address. If the values are equal, the desti-
nation field specifies theregister that is to be exchanged atomically with the addressed
memory location. If the values are unequal, the destination field specifiesafister that

is to receive the value at the addressed memory location; in this case, the addressed mem-
ory location remains unchanged.

The destination field of a PREFETCH instruction is used to encode the type of the
prefetch.

Integer load and store instructions support byte (8-bit), halfword (16-bit), word (32-bit),
and doubleword (64-bit) accesses. Floating-point load and store instructions support word,
doubleword, and quadword memory accesses. LDSTUB accesses bytes, SWAP accesses
words, and CAS accesses words or doublewords. PREFETCH accesses at least 64 bytes.

Programming Note:
By settingi = 1 andrs1= 0, any location in the lowest or highest 4K bytes of an address space can
be accessed without using a register to hold part of the address.

6.3.1.1 Memory Alignment Restrictions

Halfword accesses shall ladigned on 2-byte boundaries, word accesses (which include
instruction fetches) shall be aligned on 4-byte boundaries, extended word and doubleword
accesses shall be aligned on 8-byte boundaries, and quadword accesses shall be aligned on
16-byte boundaries, with the following exceptions.

An improperly aligned address in a load, store, or load-store instruction causes_a
address_not_aligned exception to occur, except:

— An LDDF or LDDFA instruction accessing an address that is word-aligned but not
doubleword-aligned may cause aDDF _mem_address_not_aligned exception, or
may complete the operation in hardware (impl. dep. #109).

— An STDF or STDFA instruction accessing an address that is word-aligned but not
doubleword-aligned may cause &TDF_mem_address not_aligned exception or
may complete the operation in hardware (impl. dep. #110).

70 6 Instructions

— An LDQF or LDQFA instruction accessing an address that is word-aligned but not
guadword-aligned may cause BDQF_mem_address_not_aligned exception or may
complete the operation in hardware (impl. dep. #111).

— An STQF or STQFA instruction accessing an address that is word-aligned but not
guadword aligned may cause 8NQF_mem_address_not_aligned exception or may
complete the operation in hardware (impl. dep. #112).

6.3.1.2 Addressing Conventions

SPARC-V9 uses big-endian byte order for all instruction accesses and, by default, for data
accesses. It is possible to access data in little-endian format by using selected ASls. It is
also possible to change the default byte order for implicit data accesses. See 5.2.1, “Pro-
cessor State Register (PSTATE),” for more information.

6.3.1.2.1 Big-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the most significant; a
byte’s significance decreases as its address increases. The big-endian addressing conven-
tions are illustrated in figure 35 and defined as follows:

byte:
A load/store byte instruction accesses the addressed byte in both big- and little-
endian modes.

halfword:

For a load/store halfword instruction, two bytes are accessed. The most significant
byte (bits 15..8) is accessed at the address specified in the instruction; the least sig-
nificant byte (bits 7..0) is accessed at the address + 1.

word:

For a load/store word instruction, four bytes are accessed. The most significant
byte (bits 31..24) is accessed at the address specified in the instruction; the least
significant byte (bits 7..0) is accessed at the address + 3.

doubleword or extended word

For a load/store extended or floating-point load/store double instruction, eight
bytes are accessed. The most significant byte (bits 63..56) is accessed at the
address specified in the instruction; the least significant byte (bits 7..0) is accessed
at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two big-
endian words are accessed. The word at the address specified in the instruction cor-
responds to the even register specified in the instruction; the word at address + 4
corresponds to the following odd-numbered register.

1. See Cohen, D., “On Holy Wars and a Plea for Pe@aaiputerl4:10 (October 1981), pp. 48-54.

6.3 Instruction Categories 71

guadword:
For a load/store quadword instruction, sixteen bytes are accessed. The most signif-
icant byte (bits 127..120) is accessed at the address specified in the instruction; the
least significant byte (bits 7..0) is accessed at the address + 15.

Byte Address
7 0
Halfword Address<0> = 0 1
15 8|7 0
Word Address<1:0> = 00 01 10 11
31 24|23 1615 8|7 0
Doubleword / Address<2:0> = 000 001 010 011
Extended word 63 56| 55 48| 47 40|39 32
Address<2:0> = 100 101 110 111
31 24|23 16(15 8|7 0
Quadword Address<3:0> = 0000 0001 0010 0011
127 120 119 112|111 104 (103 96
Address<3:0> = 0100 0101 0110 0111
95 88| 87 80|79 72|71 64
Address<3:0> = 1000 1001 1010 1011
63 56| 55 48|47 4039 32
Address<3:0> = 1100 1101 1110 1111
31 2423 16(15 8|7 0

Figure 35—Big-Endian Addressing Conventions

6.3.1.2.2 Little-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the least significant; a
byte’s significance increases as its address increases. The little-endian addressing conven-
tions are illustrated in figure 36 and defined as follows:

byte:
A load/store byte instruction accesses the addressed byte in both big- and little-
endian modes.

halfword:
For a load/store halfword instruction, two bytes are accessed. The least significant
byte (bits 7..0) is accessed at the address specified in the instruction; the most sig-
nificant byte (bits 15..8) is accessed at the address + 1.

72

6 Instructions

word:

For a load/store word instruction, four bytes are accessed. The least significant
byte (bits 7..0) is accessed at the address specified in the instruction; the most sig-

nificant byte (bits 31..24) is accessed at the address + 3.

doubleword or extended word
For a load/store extended or floating-point load/store double instruction, eight
bytes are accessed. The least significant byte (bits 7..0) is accessed at the address
specified in the instruction; the most significant byte (bits 63..56) is accessed at the

address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two little-
endian words are accessed. The word at the address specified in the instruction + 4
corresponds to the even register specified in the instruction; the word at the address
specified in the instruction corresponds to the following odd-numbered register.

guadword:

For a load/store quadword instruction, sixteen bytes are accessed. The least signif-
icant byte (bits 7..0) is accessed at the address specified in the instruction; the most
significant byte (bits 127..120) is accessed at the address + 15

Byte Address
Halfword Address<0> =
Word Address<1:0>

Doubleword / Address<2:0>

Extended word

Address<2:0>

Quadword Address<3:0>
Address<3:0>

Address<3:0>

Address<3:0>

0 1

7 of 15 8
00 01 10 11

7 0|15 8| 23 16|31 24
000 001 010 011

7 0|15 8| 23 1631 24
100 101 110 111

39 32| 47 40| 55 48|63 56
0000 0001 0010 0011

7 0|15 8| 23 1631 24
0100 0101 0110 0111

39 32| 47 40| 55 48|63 56
1000 1001 1010 1011

71 64| 79 72| 87 80|95 88
1100 1101 1110 1111

103

96

111

104

119

112

127

120

Figure 36—Little-Endian Addressing Conventions

6.3 Instruction Categories 73

6.3.1.3 Address Space ldentifiers (ASIs)

Alternate-space load, store, and load-store instructions specify an explicit ASI to use for
their data access; whdr= 0, the explicit ASI is provided in the instructionimmm_asi
field, and when =1, it is provided in the ASI register.

Non-alternate-space load, store, and load-store instructions use an implicit ASI value that
depends on the current trap level (TL) and the value of PSTATE.CLE. Instruction fetches
use an implicit ASI that depends only on the current trap level. The cases are enumerated
in table 12.

Table 12—ASI Used for Data Accesses and Instruction Fetches

Access Type TL PSTATE.CLE ASI Used
Instruction Fetch =0 any ASI_PRIMARY
>0 any ASI_NUCLEUS
Non-alternate-space Load, =0 0 ASI_PRIMARY
Store, or Load-Store 1 AS|_PRIMARY_LITTLE
>0 0 ASI_NUCLEUS
1 ASI_NUCLEUS_LITTLE"
Alternate-space Load, any any ASI explicitly specified in the instructign
Store, or Load-Store (subject to privilege-level restrictions)

* On some early SPARC V9 implementations, ASI_PRIMARY may have been used for this case.

** On some early SPARC V9 implementations, ASI_PRIMARY_LITTLE may have been used for this
case.

See also section 8.3, Memory, Real Memory, and 1/O Locations, on page 120.

[Load and store instructions provide an implicit ASI value of ASI_PRIMARY or ASI_
PRIMARY_LITTLE. Load and store alternate instructions provide an explicit ASI, speci-
fied by theimm_asiinstruction field when = 0, or the contents of the ASI register when
i=1]

ASls 004 through 7Fg are restricted; only privileged software is allowed to access them.
An attempt to access a restricted ASI by nonprivileged software resultiiviiaged

action exception (see impl. dep. #103(6)). ASIs;8through FFkg are unrestricted; soft-
ware is allowed to access them whether the processor is operating in privileged or nonpriv-
ileged mode. This is illustrated in table 13.

Table 13—Allowed Accesses to ASls

Processor state

Value Access Type (PSTATE.PRIV) Result of ASI access
Nonprivileged (0 rivileged_action exception
00s6.. 7F Restricted p 9ed(0) | p . e P
Privileged (1) Valid access
i Nonprivileged (0) Valid access
80s6..FFg Unrestricted — .
Privileged (1) Valid access

The required ASI assignments are shown in table 14. In the table, “R” indicates a
restricted ASI, and “U” indicates an unrestricted ASI.

74 6 Instructions

IMPL. DEP. #29: These ASI assignments are implementation-dependent. restricted ASIs
0016"0316’ 0516"0816’ ODlG"0F16' 1216"1716’ AND 1A16"7F16; and unrestricted ASIs
CO04¢ .. FF16.

IMPL. DEP. #30: An implementation may choose to decode only a subset of the 8-bit ASI speci-
fier; however, it shall decode at least enough of the ASI to distinguish ASI_PRIMARY, ASI_
PRIMARY_LITTLE, ASI_AS_IF_USER_PRIMARY, ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_
PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY, ASI_
SECONDARY_LITTLE, ASI_AS_IF_USER_SECONDARY, ASI AS IF_USER_SECONDARY_
LITTLE, ASI_SECONDARY_NOFAULT, and ASI_SECONDARY_NOFAULT_LITTLE. If the nucleus
context is supported, then ASI_NUCLEUS and ASI_NUCLEUS_LITTLE must also be decoded
(impl. dep. #12% Finally, an implementation must always decode ASI bit<7> while
PSTATE.PRIV = 0, so that an attempt by nonprivileged software to access a restricted ASI will
always cause a privileged_action exception.

Table 14—Address Space ldentifiers (ASIs)

Value Name Access Address space
0046..03¢ — R |Implementation-dependént
0416 ASI_NUCLEUS R |Implementation-dependént
05;¢..0B¢ — R |Implementation-dependént
0Ci ASI_NUCLEUS_LITTLE R Implementation-dependént
0Dy6..0F¢ — R |Implementation-dependént
1046 ASI_AS_IF_USER_PRIMARY R Primary address space, user privi%ge
116 ASI_AS_IF_USER_SECONDARY R Secondary address space, user privilege
124 .17 — R |Implementation-dependént
1846 ASI_AS_IF_USER_PRIMARY_LITTLE R Primary address space, user privilege, litle-erdifin
194 ASI_AS_IF_USER_SECONDARY_LITTLE R Secondary address space, user priv., little-efdia
1A6..7TFg — R |Implementation-dependént
80;5 ASI_PRIMARY U Primary address space
8116 AS|_SECONDARY U Secondary address space
826 ASI_PRIMARY_NOFAULT U Primary address space, no fault
8316 ASI_SECONDARY_NOFAULT U Secondary address space, no fault
84.6..8715 — U |Reserved
8816 ASI_PRIMARY_LITTLE U Primary address space, little-endian
896 ASI_SECONDARY_LITTLE U Secondary address space, little-endian
8A16 ASI_PRIMARY_NOFAULT_LITTLE U Primary address space, no fault, little-enflian
8B AS|I_SECONDARY_NOFAULT_LITTLE U Secondary address space, no fault, little-erfdian
8Cy6..BFyg — U |Reserved
COy5..FFg — U |Implementation-dependént

1 These ASI assignments are implementation-dependent (impl. dep. #29) and available for use by
implementors. Code that references any of these ASIs may not be portable.

2 ASI_NUCLEUS{ LITTLE} are implementation-dependent (impl. dep. #124); they may not be sup-
ported in all implementations. See F.4.4, “Contexts,” for more information.

3 Use of these ASIs causes access checks to be performed as if the memory access instruction were
issued while PSTATE.PRIV =0 (that is, in nonprivileged mode) and directed towards the corre-
sponding address space.

4 ASI_PRIMARY_NOFAULT{ LITTLE} andASI_SECONDARY_ NOFAULT{ LITTLE} refer to the same
address spaces &S| _PRIMARY{ LITTLE} and ASI_SECONDARY{ LITTLE}, respectively, with
additional semantics as described in 8.3, “Addressing and Alternate Address Spaces.”

6.3 Instruction Categories 75

6.3.1.4 Separate Instruction Memory

A SPARC-V9 implementation may choose to place instruction and data in the same shared
address space and use hardware to keep the data and instruction memory consistent at all
times. It may also choose to overload independent address spaces for data and instructions
and allow them to become inconsistent when data writes are made to addresses shared
with the instruction space. A program containing such self-modifying code must issue a
FLUSH instruction or appropriate calls to system software to bring the address spaces to a
consistent state. See H.1.6, “Self-Modifying Code,” for more information.

6.3.2 Memory Synchronization Instructions

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the
order and completion of memory references. Ordering MEMBARS induce a partial order-
ing between sets of loads and stores and future loads and stores. Sequencing MEMBARSs
exert explicit control over completion of loads and stores. Both barrier forms are encoded
in a single instruction, with sub-functions bit-encoded in an immediate field.

V8 Compatibility Note:

The deprecated STBAR instruction is a subcase of the MEMBAR instruction; it is identical in oper-
ation to the STBAR instruction of SPARC-V8, and is included only for compatibility.

6.3.3 Integer Arithmetic Instructions

The integer arithmetic instructions are generally triadic-register-address instructions that
compute a result which is a function of two source operands. They either write the result
into the destination registefrd] or discard it. One of the source operands is alwassl}]

The other source operand depends onithi in the instruction; ifi = 0, the operand is
r[rs2]; if i =1, the operand is the constainm10 simm1] or simm13sign-extended to

64 bits.

Note that the value @f0] always reads as zero, and writes to it are ignored.

6.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions; one sets the integer condition
codes (cc andxcq as a side effect; the other does not affect the condition codes. A special
comparison instruction for integer values is not needed, since it is easily synthesized using
the “subtract and set condition codes” (SUBcc) instruction. See G.3, “Synthetic Instruc-
tions,” for details.

6.3.3.2 Shift Instructions

Shift instructions shift am register left or right by a constant or variable amount. None of
the shift instructions changes the condition codes.

76 6 Instructions

6.3.3.3 Set High 22 Bits of Low Word

The “set high 22 bits of low word of anregister” instruction (SETHI) writes a 22-bit con-
stant from the instruction into bits 31 through 10 of the destination register. It clears the
low-order 10 bits and high-order 32 bits, and does not affect the condition codes. Its pri-
mary use is to construct constants in registers.

6.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 844 — 64-bit operation; the integer divide
instructions perform 64 64 - 64-bit operations. For compatibility with SPARC-V8,
32 x 32 - 64-bit multiply instructions, 64 32 — 32-bit divide instructions, and the mul-
tiply step instruction are provided. Division by zero causaégisgion_by zero exception.

6.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is the
two low-order bits of each operand. If either of the two operands has a nonzero tag, or if
32-bit arithmetic overflow occurs, tag overflow is detected. TADDcc and TSUBcc set the
CCRIicc.V bit if tag overflow occurs; they set the CGRc.V bit if 64-bit arithmetic over-

flow occurs. The trapping versions (TADDccTV, TSUBccTV) of these instructions cause
atag overflow trap if tag overflow occurs. If 64-bit arithmetic overflow occurs but tag over-
flow does not, TADDccTV and TSUBccTV set the C&éR.V bit but do not trap.

6.3.4 Control-Transfer Instructions (CTIs)
These are the basic control-transfer instruction types:
— Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
— Unconditional Branch
— Call and Link (CALL)
— Jump and Link (JMPL, RETURN)
— Return from trap (DONE, RETRY)
— Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program counter
(nPC) or by changing the value of both the program counter (PC) and the next program
counter (nPC). When only the next program counter, nPC, is changed, the effect of the
transfer of control is delayed by one instruction. Most control transfers in SPARC-V9 are
of the delayed variety. The instruction following a delayed control transfer instruction is
said to be in thedelay slot of the control transfer instruction. Some control transfer
instructions (branches) can optionally annul, that is, not execute, the instruction in the
delay slot, depending upon whether the transfer is taken or not-taken. Annulled instruc-
tions have no effect upon the program-visible state nor can they cause a trap.

6.3 Instruction Categories 77

Programming Note:

The annul bit increases the likelihood that a compiler can find a useful instruction to fill the delay
slot after a branch, thereby reducing the number of instructions executed by a program. For exam-
ple, the annul bit can be used to move an instruction from within a loop to fill the delay slot of the
branch that closes the loop. Likewise, the annul bit can be used to move an instruction from either
the “else” or “then” branch of an “if-then-else” program block to the delay slot of the branch that
selects between them. Since a full set of conditions are provided, a compiler can arrange the code

(possibly reversing the sense of the condition) so that an instruction from either the “else” branch or
the “then” branch can be moved to the delay slot.

Table 15 below defines the value of the program counter and the value of the next program
counter after execution of each instruction. Conditional branches have two forms:
branches that test a condition, represented in the table by “Bcc,” and branches that are
unconditional, that is, always or never taken, represented in the table by “B.” The effect of
an annulled branch is shown in the table through explicit transfers of control, rather than
by fetching and annulling the instruction.

The effective address, EA in table 15, specifies the target of the control transfer instruc-

tion. The effective address is computed in different ways, depending on the particular
instruction:

PC-relative Effective Address

A PC-relative effective address is computed by sign extending the instruction’s
immediate field to 64-bits, left-shifting the word displacement by two bits to create
a byte displacement, and adding the result to the contents of the PC.

Register-Indirect Effective Address

A register-indirect effective address computes its target address as either
r[rs1+r[rs2] if i =0, orr[rsl]+sign_ext(simm13fi =1.

Trap Vector Effective Address

A trap vector effective address first computes the software trap number as the least
significant seven bits afirs1]+r[rs2] if i =0, or as the least significant seven bits

of r[rs1]+sw_trap#if i = 1. The trap level, TL, is incremented. The hardware trap
type is computed as 256sw_trap#and stored in TT[TL]. The effective address is
generated by concatenating the contents of the TBA register, the “TL>0" bit, and
the contents of TT[TL]. See 5.2.8, “Trap Base Address (TBA),” for details.

Trap State Effective Address

A trap state effective address is not computed, but is taken directly from either
TPC[TL] or TNPCJTL].

| V8 Compatibility Note:

SPARC-V8 specified that the delay instruction was always fetched, even if annulled, and that an

annulled instruction could not cause any traps. SPARC-V9 does not require the delay instruction to
be fetched if it is annulled.

| V8 Compatibility Note:

SPARC-V8 left as undefined the result of executing a delayed conditional branch that had a delayed

control transfer in its delay slot. For this reason, programmers should avoid such constructs when
backwards compatibility is an issue.

78 6 Instructions

Table 15—Control Transfer Characteristics

Instruction group A?(;ir:ﬁss Delayed Taken A?)?[UI New PC New nPC
Non-CTls — — — — nPC nPC +4
Bcc PC-relative Yes Yes 0 nPC EA

Bcc PC-relative Yes No 0 nPC nPC + 4
Bcc PC-relative Yes Yes 1 nPC EA

Bcc PC-relative Yes No 1 nPC +4 nPC + 8
BA PC-relative Yes Yes 0 nPC EA

BN PC-relative Yes No 0 nPC nPC + 4
BA PC-relative Yes Yes 1 EA EA+4

BN PC-relative Yes No 1 nPC + 4 nPC + 8
CALL PC-relative Yes — — nPC EA

JMPL, RETURN Register-ind Yes — — nPC EA
DONE Trap state No — — TNPC[TL] TNPC[TL]+4
RETRY Trap state No — — TPC[TL] TNPCJ[TL]
Tcc Trap vector No Yes — EA EA+4
Tcc Trap vector No No — nPC nPC + 4

6.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is true. If the annul bit is
0, the instruction in the delay slot is always executed. If the annul bitis 1, the instruction in
the delay slot is1ot executedunlessthe conditional branch is taken. Note that the annul
behavior of a taken conditional branch is different from that of an unconditional branch.

6.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is
“always”; it never transfers control if its specified condition is “never.” If the annul bit is O,
the instruction in the delay slot is always executed. If the annul bit is 1, the instruction in
the delay slot isxever executed. Note that the annul behavior of an unconditional branch
is different from that of a taken conditional branch.

6.3.4.3 CALL and JMPL instructions

The CALL instruction writes the contents of the PC, which points to the CALL instruction
itself, intor[15] (outregister 7) and then causes a delayed transfer of control to a PC-rela-
tive effective address. The value written imf@5] is visible to the instruction in the delay
slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction
itself, into r[rd] and then causes a delayed transfer of control to a PC-relative effective
address. The value written intppd] is visible to the instruction in the delay slot.

6.3 Instruction Categories 79

When PSTATE.AM =1, the value of the high order 32-bits transmitted 18] by the
CALL instruction or tor[rd] by the JMPL instruction is implementation-dependent. (impl.
dep #125).

6.3.4.4 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in nonpriviliged

mode. RETURN combines the control-transfer characteristics of a JMPL instruction with
r[0] specified as the destination register and the register-window semantics of a
RESTORE instruction.

6.3.4.5 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap.
These instructions restore the machine state to values saved in the TSTATE register.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE
returns to the instruction pointed to by the value of nPC associated with the instruction
that caused the trap, that is, the next logical instruction in the program. DONE presumes
that the trap handler did whatever was requested by the program and that execution should
continue.

6.3.4.6 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified bydadfield matches the
current state of the condition code register specified byafgeld, otherwise it executes as

a NOP. If the trap is taken, it increments the TL register, computes a trap type which is
stored in TT[TL], and transfers to a computed address in the trap table pointed to by TBA.
See 5.2.8, “Trap Base Address (TBA).”

A Tcc instruction can specify one of 128 software trap types. When a Tcc is taken, 256
plus the seven least significant bits of the sum of the Tcc’s source operands is written to
TT[TL]. The only visible difference between a software trap generated by a Tcc instruc-

tion and a hardware trap is the trap number in the TT register. See Chapter 7, “Traps,” for
more information.

Programming Note:
Tcc can be used to implement breakpointing, tracing, and calls to supervisor software. Tcc can also
be used for run-time checks, such as out-of-range array index checks or integer overflow checks.

6.3.5 Conditional Move Instructions

6.3.5.1 MOVcc and FMOVcc Instructions

The MOVcc and FMOVcc instructions copy the contents of any integer or floating-point

register to a destination integer or floating-point register if a condition is satisfied. The
condition to test is specified in the instruction and may be any of the conditions allowed in
conditional delayed control-transfer instructions. This condition is tested against one of

80 6 Instructions

the six condition codesdc, xcg, fccQ, fccl, fcc2 andfced) as specified by the instruction.
For example:

fmovdg %fcc2, %f20, %f22

moves the contents of the double-precision floating-point redgisf2f to registerdof22

if floating-point condition code number 2fc€2) indicates a greater-than relation
(FSRfcc2=2). If fcc2 does not indicate a greater-than relation (F&2 # 2), then the
move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in pro-
grams. In most implementations, branches will be more expensive than the MOVcc or
FMOVcc instructions. For example, the following C statement:

f(A>B)X = 1;elseX = 0;

can be coded as:

cmp %i0, %i2 1'(A>B)
or %g0, 0, %i3 IlsetX =0
movg %xcc, 1, %i3 I overwrite X with 1 if A> B

which eliminates the need for a branch.

6.3.5.2 MOVr and FMQVr Instructions

The MOVr and FMOVTr instructions allow the contents of any integer or floating-point
register to be moved to a destination integer or floating-point register if a condition speci-
fied by the instruction is satisfied. The condition to test may be any of the following:

Condition Description

NZ Nonzero

Z Zero

GEzZ Greater than or equal to zero
Lz Less than zero

LEZ Less than or equal to zero
Gz Greater than zero

Any of the integer registers may be tested for one of the conditions, and the result used to
control the move. For example,

movrnz %i2, %l4, %Il6

moves integer registébl4 to integer registe?l6 if integer registefsi2 contains a non-
zero value.

MOVr and FMOVr can be used to eliminate some branches in programs, or to emulate
multiple unsigned condition codes by using an integer register to hold the result of a com-
parison.

6.3 Instruction Categories 81

6.3.6 Register Window Management Instructions

This subsection describes the instructions used to manage register windows in SPARC-
V9. The privileged registers affected by these instructions are described in 5.2.10, “Regis-
ter-Window State Registers.”

6.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register win-
dow by incrementing the CWP register.

If CANSAVE = 0, execution of a SAVE instruction causesi@low_spill exception.

If CANSAVE % 0, but the number of clean windows is zero, that is:
(CLEANWIN — CANRESTORE) =0

then SAVE causes @ean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements CAN-
SAVE, and increments CANRESTORE. The source registers for the ADD are from the
old window (the one to which CWP pointed before the SAVE), while the result is written
into a register in the new window (the one to which the incremented CWP points).

6.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the
CWP register.

If CANRESTORE = 0, execution of a RESTORE instruction causegndow fill excep-
tion.

If RESTORE does not cause an exception, it performs an ADD operation, decrements
CANRESTORE, and increments CANSAVE. The source registers for the ADD are from
the “old” window (the one to which CWP pointed before the RESTORE), while the result
is written into a register in the “new” window (the one to which the decremented CWP
points).

Programming Note:

The following describes a common convention for use of register windows, SAVE, RESTORE,
CALL, and JMPL instructions.

A procedure is invoked by executing a CALL (or a JMPL) instruction. If the procedure requires a
register window, it executes a SAVE instruction. A routine that does not allocate a register window
of its own (possibly a leaf procedure) should not modify any windowed registers exagggis-

ters O through 6. See H.1.2, “Leaf-Procedure Optimization.”

A procedure that uses a register window returns by executing both a RESTORE and a JMPL
instruction. A procedure that has not allocated a register window returns by executing a JMPL only.
The target address for the IMPL instruction is normally eight plus the address saved by the calling
instruction, that is, to the instruction after the instruction in the delay slot of the calling instruction.

82 6 Instructions

The SAVE and RESTORE instructions can be used to atomically establish a new memory stack
pointer in arr register and switch to a new or previous register window. See H.1.4, “Register Allo-
cation within a Window.”

6.3.6.3 SAVED Instruction

The SAVED instruction should be used by a spill trap handler to indicate that a window
spill has completed successfully. It increments CANSAVE:

CANSAVE (CANSAVE + 1)

If the saved window belongs to a different address space (OTHER¥WINIit decrements
OTHERWIN:

OTHERWIN ~ (OTHERWIN — 1)

Otherwise, the saved window belongs to the current address space (OTHERWIN = 0), so
SAVED decrements CANRESTORE:

CANRESTORE~ (CANRESTORE - 1)

6.3.6.4 RESTORED Instruction

The RESTORED instruction should be used by a fill trap handler to indicate that a window
has been filled successfully. It increments CANRESTORE:

CANRESTORE~ (CANRESTORE+ 1)

If the restored window replaces a window that belongs to a different address space
(OTHERWIN # 0), it decrements OTHERWIN:

OTHERWIN ~ (OTHERWIN — 1)

Otherwise, the restored window belongs to the current address space (OTHERWIN = 0),
so RESTORED decrements CANSAVE:

CANSAVE . (CANSAVE - 1)

If CLEANWIN is less than NWINDOWS-1, the RESTORED instruction increments
CLEANWIN:

if (CLEANWIN < (NWINDOWS-1))then CLEANWIN — (CLEANWIN + 1)

6.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows except the current window,
by performing repetitive spill traps. The FLUSHW instruction is implemented by causing
a spill trap if any register window (other than the current window) has valid contents. The
number of windows with valid contents is computed as

NWINDOWS — 2 — CANSAVE

6.3 Instruction Categories 83

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise,
FLUSHW has no effect. If the spill trap handler exits with a RETRY instruction, the

FLUSHW instruction will continue causing spill traps until all the register windows

except the current window have been flushed.

6.3.7 State Register Access

The read/write state register instructions access program-visible state and status registers.
These instructions read/write the state registers into/froegisters. A read/write Ancil-
lary State Register instruction is privileged only if the accessed register is privileged.

6.3.8 Privileged Register Access

The read/write privileged register instructions access state and status registers that are vis-
ible only to privileged software. These instructions read/write privileged registers into/
fromr registers. The read/write privileged register instructions are privileged.

6.3.9 Floating-Point Operate (FPop) Instructions

Floating-point operate instructions (FPops) are generally triadic-register-address instruc-
tions. They compute a result that is a function of one or two source operands and place the
result in one or more destinatibregisters. The exceptions are:

— Floating-point convert operations, which use one source and one destination oper-
and

— Floating-point compare operations, which do not write td aegister, but update
one of thefcenfields of the FSR instead

The term “FPop” refers to those instructions encoded by the FPopl and FPop2 opcodes
and doesot include branches based on the floating-point condition codes (FBfcc and
FBPfcc) or the load/store floating-point instructions.

The FMOVcc instructions function for the floating-point registers as the MOVcc instruc-
tions do for the integer registers. See 6.3.5.1, “MOVcc and FMOVcc Instructions.”

The FMOVTr instructions function for the floating-point registers as the MOVTr instructions
do for the integer registers. See 6.3.5.2, “MOVr and FMOVr Instructions.”

If there is no floating-point unit present or if PSTATE.PEF =0 or FPRS.FEF =0, any
instruction that attempts to access an FPU register, including an FPop instruction, gener-
ates anp_disabled exception.

All FPop instructions clear thét field and set thecexcfield, unless they generate an
exception. Floating-point compare instructions also write one ofdtefields. All FPop
instructions that can generate IEEE exceptions setéxeand aexcfields, unless they
generate an exception. FABS(s,d,q), FMOV(s,d,q), FMOVcc(s,d,q), FMOVr(s,d,q), and
FNEG(s,d,q) cannot generate IEEE exceptions, so they desc and leaveaexc
unchanged. FMOVcc and FMOVr instructions clear these FSR fields regardless of the
value of the conditional predicate.

84 6 Instructions

IMPL. DEP. #3. An implementation may indicate that a floating-point instruction did not produce a
correct IEEE STD 754-1985 result by generating a special unfinished FPop or unimplemented_
FPop exception. Privileged-mode software must emulate any functionality not present in the hard-
ware.

6.3.10 Implementation-Dependent Instructions

SPARC-V9 provides two instructions that are entirely implementation-dependent,
IMPDEP1 and IMPDEP2 (impl. dep. #106).

V8 Compatibility Note:
The IMPDER instructions replace the CRojmstructions in SPARC-V8.

See A.23, “Implementation-Dependent Instructions,” for more information.

6.3.11 Reserved Opcodes and Instruction Fields

If a conforming SPARC V9 implementation attempts to execute an instruction that is not
specifically defined in this specification, it behaves as follows:

— If the instruction encodes an implementation-specific extension to the instruction
set, that extension is executed.

— If the instruction does not encode an extension to the instruction set, but would
decode as a valid instruction if nonzero bits in reserved instruction field(s) were
ignored (read as 0): The recommended behavior is to generalegal _instruc-
tion exception (or, in the FPop opcode space frarexception other exception
with FSR.ftit = 3 (unimplemented_FPop)). Alternatively, the implementation can
ignore the nonzero reserved field bits and execute the instruction as if those bits
had been zero.

— If the instruction does not encode an extension to the instruction set and would still
not decode as a valid instruction if nonzero bits in reserved instruction field(s)
were ignored, then the instruction is invalid and causes an exception. Specifically,
attempting to execute an invalid instruction in the FPop opcode space causes an
fo_exception_other trap (with FSR.ftt = unimplemented_FPop); attempting to
execute any other invalid instruction causedlagal_instruction trap.

See Appendix E, “Opcode Maps,” for an enumeration of the reserved opcodes.

Implementation Note

As described above, implementations are strongly encouraged, but not strictly required, to trap on
nonzero values in reserved instruction fields.

Programming Note:

For software portability, software (such as assemblers, static compilers, and dynamic compil-
ers) that generates SPARC instructions must always generate zeroes in instruction fields
marked "reserved" ("--").

6.4 Register Window Management 85

6.4 Register Window Management

The state of the register windows is determined by the contents of the set of privileged reg-
isters described in 5.2.10, “Register-Window State Registers.” Those registers are affected
by the instructions described in 6.3.6, “Register Window Management Instructions.” Priv-
ileged software can read/write these state registers directly by using RDPR/WRPR
instructions.

6.4.1 Register Window State Definition

In order for the state of the register windows to be consistent, the following must always
be true:

CANSAVE + CANRESTORE+ OTHERWIN = NWINDOWS - 2

Figure 3 on page 34 shows how the register windows are partitioned to obtain the above
equation. In figure 3, the partitions are as follows:

— The current window and the window that overlaps two other valid windows and so
must not be used (in the figure, windows 0 and 4, respectively) are always present
and account for the 2 subtracted from NWINDOWS in the right-hand side of the
equation.

— Windows that do not have valid contents and can be used (via a SAVE instruction)
without causing a spill trap. These windows (windows 1, 2 and 3 in the figure) are
counted in CANSAVE.

— Windows that have valid contents for the current address space and can be used
(via the RESTORE instruction) without causing a fill trap. These windows (win-
dow 7 in the figure) are counted in CANRESTORE.

— Windows that have valid contents for an address space other than the current
address space. An attempt to use these windows via a SAVE (RESTORE) instruc-
tion results in a spill (fill) trap to a separate set of trap vectors, as discussed in the
following subsection. These windows (windows 5 and 6 in the figure) are counted
in OTHERWIN.

In addition,
CLEANWIN = CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows fol-
lowing CWP.

In order to use the window-management features of the architecture as described here, the
state of the register windows must be kept consistent at all times, except in trap handlers
for window spilling, filling, and cleaning. While handling window traps the state may be
inconsistent. Window spill/fill trap handlers should be written such that a nested trap can
be taken without destroying state.

86 6 Instructions

6.4.2 Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register win-
dows, to support clean windows, and to implement the FLUSHW instruction.

6.4.2.1 Window Spill and Fill Traps

A window overflow occurs when a SAVE instruction is executed and the next register win-
dow is occupied (CANSAVE = 0). An overflow causes a spill trap that allows privileged
software to save the occupied register window in memory, thereby making it available for
use.

A window underflow occurs when a RESTORE instruction is executed and the previous
register window is not valid (CANRESTORE = 0). An underflow causes a fill trap that
allows privileged software to load the registers from memory.

6.4.2.2 Clean-Window Trap

SPARC-V9 provides thelean_window trap so that software can create a secure environ-
ment in which it is guaranteed that register windows contain only data from the same
address space.

A clean register window is one in which all of the registers, including uninitialized regis-
ters, contain either zero or data assigned by software executing in the address space to
which the window belongs. A clean window cannot contain register values from another
process, that is, software operating in a different address space.

Supervisor software specifies the number of windows that are clean with respect to the
current address space in the CLEANWIN register. This includes register windows that can
be restored (the value in the CANRESTORE register) and the register windows following
CWP that can be used without cleaning. Therefore, the number of clean windows that are
available to be used by the SAVE instruction is

CLEANWIN — CANRESTORE

The SAVE instruction causesc&ean_window trap if this value is zero. This allows supervi-
sor software to clean a register window before it is accessed by a user.

6.4.2.3 Vectoring of Fill/Spill Traps

In order to make handling of fill and spill traps efficient, SPARC-V9 provides multiple
trap vectors for the fill and spill traps. These trap vectors are determined as follows:

— Supervisor software can mark a set of contiguous register windows as belonging to
an address space different from the current one. The count of these register win-
dows is kept in the OTHERWIN register. A separate set of trap vectiors (other
and spill_n_other) is provided for spill and fill traps for these register windows (as
opposed to register windows that belong to the current address space).

— Supervisor software can specify the trap vectors for fill and spill traps by presetting
the fields in the WSTATE register. This register contains two subfields, each three

6.4 Register Window Management 87

bits wide. The WSTATE.NORMAL field is used to determine one of eight spill
(fill) vectors to be used when the register window to be spilled (filled) belongs to
the current address space (OTHERWIN = 0). If the OTHERWIN register is non-
zero, the WSTATE.OTHER field selects one of eigtn_other (spill_n_other) trap
vectors.

See Chapter 7, “Traps,” for more details on how the trap address is determined.

6.4.2.4 CWP on Window Traps

On a window trap the CWP is set to point to the window that must be accessed by the trap
handler, as follows (note that all arithmetic on CWP is done modulo NWINDOWS):

— If the spill trap occurs due to a SAVE instruction (when CANSAVE = 0), there is
an overlap window between the CWP and the next register window to be spilled

CWP « (CWP+ 2) mod NWINDOWS

If the spill trap occurs due to a FLUSHW instruction, there can be unused windows
(CANSAVE) in addition to the overlap window, between the CWP and the window
to be spilled

CWP ~ (CWP+ CANSAVE + 2) mod NWINDOWS

Implementation Note:
All spill traps can use:
CWP ~ (CWP+ CANSAVE + 2) mod NWINDOWS

since CANSAVE is zero whenever a trap occurs due to a SAVE instruction.

— On afill trap, the window preceding CWP must be filled
CWP ~ (CWP - 1)mod NWINDOWS

— On a clean_window trap, the window following CWP must be cleaned. Then

CWP ~ (CWP+ 1) mod NWINDOWS

6.4.2.5 Window Trap Handlers

The trap handlers for fill, spill andiean_window traps must handle the trap appropriately
and return using the RETRY instruction, to reexecute the trapped instruction. The state of
the register windows must be updated by the trap handler, and the relationship among
CLEANWIN, CANSAVE, CANRESTORE, and OTHERWIN must remain consistent.
The following recommendations should be followed:

— A spill trap handler should execute the SAVED instruction for each window that it
spills.

— A fill trap handler should execute the RESTORED instruction for each window
that it fills.

88 6 Instructions

— A clean_window trap handler should increment CLEANWIN for each window that
it cleans:

CLEANWIN ~ (CLEANWIN + 1)

Window trap handlers in SPARC-V9 can be very efficient. See H.2.2, “Example Code for
Spill Handler,” for details and sample code.

7 Traps

7.1 Overview

A trap is a vectored transfer of control to supervisor software through a trap table that con-
tains the first eight (thirty-two for fill/spill traps) instructions of each trap handler. The
base address of the table is established by supervisor software, by writing the Trap Base
Address (TBA) register. The displacement within the table is determined by the trap type
and the current trap level (TL). One-half of the table is reserved for hardware traps; one-
guarter is reserved for software traps generated by Tcc instructions; the remaining quarter
is reserved for future use.

A trap behaves like an unexpected procedure call. It causes the hardware to

(1) Save certain processor state (program counters, CWP, ASI, CCR, PSTATE, and
the trap type) on a hardware register stack

(2) Enter privileged execution mode with a predefined PSTATE
(3) Begin executing trap handler code in the trap vector
When the trap handler has finished, it uses either a DONE or RETRY instruction to return.

A trap may be caused by a Tcc instruction, an SIR instruction, an instruction-induced
exception, a reset, an asynchronous exception, or an interrupt request not directly related
to a particular instruction. The processor must appear to behave as though, before execut-
ing each instruction, it determines if there are any pending exceptions or interrupt
requests. If there are pending exceptions or interrupt requests, the processor selects the
highest-priority exception or interrupt request and causes a trap.

Thus, an exception is a condition that makes it impossible for the processor to continue
executing the current instruction stream without software intervention. A trap is the action
taken by the processor when it changes the instruction flow in response to the presence of
an exception, interrupt, or Tcc instruction.

A catastrophic error exception is due to the detection of a hardware malfunction from
which, due to the nature of the error, the state of the machine at the time of the exception
cannot be restored. Since the machine state cannot be restored, execution after such an
exception may not be resumable. An example of such an error is an uncorrectable bus par-
ity error.

89

90 7 Traps

IMPL. DEP. #31. The causes and effects of catastrophic errors are implementation-dependent.
They may cause precise, deferred, or disrupting traps.

7.2 Processor States, Normal and Special Traps
The processor is always in one of three discrete states:
— execute_state, which is the normal execution state of the processor

— RED_state (Reset, Error, and Debug state), which is a restricted execution state
reserved for processing traps that occur when TL = MAXTL — 1, and for process-
ing hardware- and software-initiated resets

— error_state, which is a halted state that is entered as a result of a trap when
TL = MAXTL, or due to an unrecoverable error

Traps processed in execute_state are caltgdhal traps. Traps processed in RED_state

are calledspecial traps Exceptions that cause the processor to enter error_state are
recorded by the hardware and are made available in the TT field after the processor is
reset.

Figure 37 shows the processor state diagram.

Trap or SIR @
TL = MAXTL
Trap @ Trap or SIR @
TL = MAXTL-1, TL = MAXTL
SIR@
TL< MAXTL,
RED -~ 1
execute_state RED_state error_state
POR, Trap or SIR @
WDR, TL < MAXTL
Trap @ XIR
TL < MAXTL-1
Any State

Including Power Off

Figure 37—Processor State Diagram

7.2.1 RED_state

RED_state is an acronym féteset,Error, andDebug state. The processor enters RED _
state under any one of the following conditions:

— Atrap is taken when TL = MAXTL-1.

7.2 Processor States, Normal and Special Traps 91

— Any of the four reset requests occurs (POR, WDR, XIR, SIR).

— An implementation-dependent trapjnternal_processor_error exception, or
catastrophic_error exception occurs.

— System software sets PSTATE.RED = 1.
RED_state serves two mutually exclusive purposes:

— During trap processing, it indicates that there are no more available trap levels; that
is, if another nested trap is taken, the processor will enter error_state and halt.
RED _state provides system software with a restricted execution environment.

— It provides the execution environment for all reset processing.

RED_state is indicated by PSTATE.RED. When this bit is set, the processor is in RED _
state; when this bit is clear, the processor is not in RED_state, independent of the value of
TL. Executing a DONE or RETRY instruction in RED_state restores the stacked copy of
the PSTATE register, which clears the PSTATE.RED flag if the stacked copy had it
cleared. System software can also set or clear the PSTATE.RED flag with a WRPR
instruction, which also forces the processor to enter or exit RED_state, respectively. In this
case, the WRPR instruction should be placed in the delay slot of a jump, so that the PC can
be changed in concert with the state change.

Programming Note:

Setting TL = MAXTL with a WRPR instructiordoes notalso set PSTATE.RED = 1; nor does it
alter any other machine state. The values of PSTATE.RED and TL are independent.

7.2.1.1 RED_state Trap Table

Traps occurring in RED_state or traps that cause the processor to enter RED_state use an
abbreviated trap vector. The RED_state trap vector is constructed so that it can overlay the
normal trap vector if necessary. Figure 38 illustrates the RED _state trap vector.

Offset TT Reason

006 0 ReservedSPARC-V8 reset)

2046 1 Power-on reset (POR)

40,4 2" | watchdog reset (WDR)

60,6 3* | Externally initiated reset (XIR)
806 4 Software-initiated reset (SIR)
AO04g * All other exceptions in RED_state

TTT = 2 if a watchdog reset occurs while the processor is not in error_state; TT = trap type of the
exception that caused entry into error_state if a watchdog reset (WDR) occurs in error_state.

FTT=3 if an externally initiated reset (XIR) occurs while the processor is not in error_state;
TT =trap type of the exception that caused entry into error_state if the externally initiated reset
occurs in error_state.

TT = trap type of the exception. See table 16 on page 102.
Figure 38—RED_state Trap Vector Layout

92 7 Traps

IMPL. DEP. #114: The RED_state trap vector is located at an implementation-dependent address
referred to as RSTVaddr.

Implementation Note:

The RED_state trap handlers should be located in trusted memory, for example, in ROM. The value
of RSTVaddr may be hard-wired in an implementation, but it is suggested that it be externally setta-
ble, for instance by scan, or read from pins at power-on reset.

7.2.1.2 RED_state Execution Environment

In RED_state the processor is forced to execute in a restricted environment by overriding
the values of some processor controls and state registers.

Programming Note:

The values are overridden, not set. This is to allow them to be switched atomically.

IMPL. DEP. #115: A processor’s behavior in RED_state is implementation-dependent.
The following are recommended:

(1) Instruction address translation is a straight-through physical map; that is, the
MMU is always suppressed for instruction access in RED_state.

(2) Data address translation is handled normally; that is, the MMU is used if it is
enabled. However, any event that causes the processor to enter RED_state also dis-
ables the MMU. The handler executing in RED_state can reenable the MMU.

(3) All references are uncached.

(4) Cache coherence in RED_state is the problem of the system designer and system
programmer. Normally, cache enables are left unchanged by RED_state; thus, if a
cache is enabled, it will continue to participate in cache coherence until explicitly
disabled by recovery code. A cache may be disabled automatically if an error is
detected in the cache.

(5) Unessential functional units (for example, the floating-point unit) and capabilities
(for example, superscalar execution) should be disabled.

(6) If a store buffer is present, it should be emptied, if possible, before entering RED _
state.

(7) PSTATE.MM is set to TSO.

Programming Note:

When RED_state is entered due to component failures, the handler should attempt to recover from
potentially catastrophic error conditions or to disable the failing components. When RED_state is
entered after a reset, the software should create the environment necessary to restore the system to a
running state.

7.2 Processor States, Normal and Special Traps 93

7.2.1.3 RED_state Entry Traps

The following traps are processed in RED_state in all cases
— POR (Power-on reset)
— WDR (Watchdog reset)
— XIR (Externally initiated reset)

In addition, the following trap is processed in RED_state if TL < MAXTL when the trap is
taken. Otherwise it is processed in error_state.

— SIR (Software-initiated Reset)

An implementation also may elect to set PSTATE.RED = 1 aftevnannal_processor_
error trap (impl. dep. #31), or any of the implementation-dependent traps (impl. dep. #35).

Implementation-dependent traps may force additional state changes, such as disabling
failing components.

Traps that occur when TL = MAXTL — 1 also set PSTATE.RED = 1; that is, any trap han-
dler entered with TL = MAXTL runs in RED_state.

Any nonreset trap that sets PSTATE.RED =1 or that occurs when PSTATE.RED =1,
branches to a special entry in the RED_state trap vector at RSTVaddg.+ AO

In systems in which it is desired that traps not enter RED_state, the RED_state handler
may transfer to the normal trap vector by executing the following code:

I Assumptions:

! -- In RED_state handler, therefore we know that

! PSTATE.RED = 1, so a WRPR can directly toggle itto O
! and, we don't have to worry about intervening traps.

! -- Registers %g1 and %g2 are available as scratch registers.

#define PSTATE_RED 0x0020 ! PSTATE.RED is bit 5

rdpr %tt,%g1l ! Get the normal trap vector
rdpr %tba,%g2 ! address in %g2.

slix %g1,5,%91

add %4g1,%02,%g2

rdpr %pstate,%g1l ! Read PSTATE into %g1.
jmpl %g2 I Jump to normal trap vector,
wrpr %g1,PSTATE_RED,%pstate I toggling PSTATE.RED to O.

7.2.1.4 RED_state Software Considerations

In effect, RED_state reserves one level of the trap stack for recovery and reset processing.
Software should be designed to require only MAXTL — 1 trap levels for normal process-

94 7 Traps

ing. That is, any trap that causes TL = MAXTL is an exceptional condition that should
cause entry to RED_state.

Since the minimum value for MAXTL is 4, typical usage of the trap levels is as follows:

TL Usage
0 Normal execution
1 System calls; interrupt handlers; instruction emulatjon
2 Window spill / fill
3 Page-fault handler
4 RED_state handler

Programming Note:

In order to log the state of the processor, RED_state-handler software needs either a spare register
or a preloaded pointer to a save area. To support recovery, the operating system might reserve one
of the alternate global registers, (for exampta,?) for use in RED_state.

7.2.2 Error_state

The processor enters error_state when a trap occurs while the processor is already at its
maximum supported trap level, that is, when TL = MAXTL.

IMPL. DEP. #39. The processor may enter error_state when an implementation-dependent error
condition occurs.

IMPL. DEP. #40: Effects when error_state is entered are implementation-dependent, but it is rec-
ommended that as much processor state as possible be preserved upon entry to error_state.

In particular:
(1) The processor should present an external indication that it has entered error_state.
(2) The processor should halt, that is, make no further changes to system state.

(3) The processor should be restarted by a watchdog reset (WDR). Alternatively, it
may be restarted by an externally initiated reset (XIR) or a power-on reset (POR).

After a reset that brings the processor out of error_state, the processor enters RED_state
with TL set as defined in table 20 on page 106; the trap state describes the state at the time

of entry into error_state. In particular, for WDR and XIR, TT is set to the value of the orig-
inal trap that caused entry to error_state, not the normal TT value for the WDR or XIR.

7.3 Trap Categories
An exception or interrupt request can cause any of the following trap types:

— A precise trap

7.3 Trap Categories 95

— A deferred trap
— A disrupting trap

— Avreset trap

7.3.1 Precise Traps

A precise trapis induced by a particular instruction and occurs before any program-visi-
ble state has been changed by the trap-inducing instruction. When a precise trap occurs,
several conditions must be true.

— The PC saved in TPC[TL] points to the instruction that induced the trap, and the
nPC saved in NTPCJTL] points to the instruction that was to be executed next.

— All instructions issued before the one that induced the trap have completed execu-
tion.

— Any instructions issued after the one that induced the trap remain unexecuted.

Programming Note:
Among the actions the trap handler software might take after a precise trap are:

— Return to the instruction that caused the trap and reexecute it, by executing a RETRY instruc-
tion (PC < old PC, nPC« old nPC)

— Emulate the instruction that caused the trap and return to the succeeding instruction by execut-
ing a DONE instruction (PG- old nPC, nPC— old nPC + 4)

— Terminate the program or process associated with the trap

7.3.2 Deferred Traps

A deferred trap is also induced by a particular instruction, but unlike a precise trap, a
deferred trap may occur after program-visible state has been changed. Such state may
have been changed by the execution of either the trap-inducing instruction itself or by one
or more other instructions.

If an instruction induces a deferred trap and a precise trap occurs simultaneously, the
deferred trap may not be deferred past the precise trap, except that a floating-point excep-
tion may be deferred past a precise trap.

Associated with a particular deferred-trap implementation, there must exist:

— An instruction that causes a potentially outstanding deferred-trap exception to be
taken as a trap.

— Privileged instructions that access the deferred-trap queues. This queue contains
the state information needed by supervisor software to emulate the deferred-trap-

96 7 Traps

inducing instruction, and to resume execution of the trapped instruction stream.
See 5.2.13, “IU Deferred-Trap Queue.”)

Note that resuming execution may require the emulation of instructions that had not com-
pleted execution at the time of the deferred trap, that is, those instructions in the deferred-
trap queue.

IMPL. DEP. #32: Whether any deferred traps (and associated deferred-trap queues) are present is
implementation-dependent.

Note that to avoid deferred traps entirely, an implementation would need to execute all
implemented floating-point instructions synchronously with the execution of integer
instructions, causing all generated exceptions to be precise. A deferred-trap queue (e.qg.,
FQ) would be superfluous in such an implementation.

Programming Note:

Among the actions software can take after a deferred trap are:

— Emulate the instruction that caused the exception, emulate or cause to execute any other execu-
tion-deferred instructions that were in an associated deferred-trap state queue, and use RETRY
to return control to the instruction at which the deferred trap was invoked, or

— Terminate the program or process associated with the trap.

7.3.3 Disrupting Traps

A disrupting trap is neither a precise trap nor a deferred trap. A disrupting trap is caused
by acondition (e.g., an interrupt), rather than directly by a particular instruction; this dis-
tinguishes it from precise and deferred traps. When a disrupting trap has been serviced,
program execution resumes where it left off. This differentiates disrupting traps from reset
traps, which resume execution at the unique reset address.

Disrupting traps are controlled by a combination of the Processor Interrupt Level (PIL)
register and the Interrupt Enable (IE) field of PSTATE. A disrupting trap condition is
ignored when interrupts are disabled (PSTATE.IE = 0) or when the condition’s interrupt
level is lower than that specified in PIL.

A disrupting trap may be due to either an interrupt request not directly related to a previ-
ously executed instruction, or to an exception related to a previously executed instruction.
Interrupt requests may be either internal or external. An interrupt request can be induced
by the assertion of a signal not directly related to any particular processor or memory state.
Examples of this are the assertion of an “I/O done” signal or setting external interrupt
request lines.

A disrupting trap related to an earlier instruction causing an exception is similar to a
deferred trap in that it occurs after instructions following the trap-inducing instruction
have modified the processor or memory state. The difference is that the condition which
caused the instruction to induce the trap may lead to unrecoverable errors, since the imple-

7.3 Trap Categories 97

mentation may not preserve the necessary state. An example of this is an ECC data-access
error reported after the corresponding load instruction has completed.

Disrupting trap conditions should persist until the corresponding trap is taken.

Programming Note:
Among the actions that trap-handler software might take after a disrupting trap are:

— Use RETRY to return to the instruction at which the trap was invoked
(PC ~ old PC, nPC- old nPC), or

— Terminate the program or process associated with the trap.

7.3.4 Reset Traps

A reset trap occurs when supervisor software or the implementation’s hardware deter-
mines that the machine must be reset to a known state. Reset traps differ from disrupting
traps, since they do not resume execution of the program that was running when the reset
trap occurred.

IMPL. DEP. #37. Some of a processor’s behavior during a reset trap is implementation-dependent.
See 7.6.2, “Special Trap Processing,” for details.

The following reset traps are defined for SPARC-V9:

Software-initiated reset (SIR)
Initiated by software by executing the SIR instruction.

Power-on reset (POR)
Initiated when power is applied (or reapplied) to the processor.

Watchdog reset (WDR)
Initiated in response to error_state or expiration of a watchdog timer.

Externally initiated reset (XIR):
Initiated in response to an external signal. This reset trap is normally used for criti-
cal system events, such as power failure.

7.3.5 Uses of the Trap Categories
The SPARC-V3rap model stipulates that:

(1) Reset traps, excepbfiware_initiated_reset traps, occur asynchronously to program
execution.

(2) When recovery from an exception can affect the interpretation of subsequent
instructions, such exceptions shall be precise. These exceptions are:

— software_initiated_reset
— Instruction_access_exception
— privileged_action

— privileged_opcode

98 7 Traps

— trap_instruction

— instruction_access_error

— clean_window

— fp_disabled

— LDDF mem_address _not_aligned
— STDF_mem_address _not_aligned
— tag_overflow

— unimplemented_LDD

— unimplemented_STD

— spill_n_normal

— spill_n_other

— fill_n_normal

— fill_n_other

(3) IMPL. DEP. #33: Exceptions that occur as the result of program execution may be precise
or deferred, although it is recommended that such exceptions be precise. Examples:
mem_address_not_aligned, division_by_zero.

(4) An exception caused after the initial access of a multiple-access load or store
instruction (load-store doubleword, LDSTUB, CASA, CASXA, or SWAP) that
causes a catastrophic exception may be precise, deferred, or disrupting. Thus, a
trap due to the second memory access can occur after the processor or memory
state has been modified by the first access.

(5) Implementation-dependent catastrophic exceptions may cause precise, deferred, or
disrupting traps (impl. dep. #31).

(6) Exceptions caused by external events unrelated to the instruction stream, such as
interrupts, are disrupting.

For the purposes of this subsection, we must distinguish between the dispatch of an
instruction and its execution by some functional unit. An instruction is deemed to have
beendispatched when the software-visible PC advances beyond that instruction in the
instruction stream. An instruction is deemed to have b@actutedwhen the results of

that instruction are available to subsequent instructions.

For most instructions, dispatch and execution appear to occur simultaneously; when the
PC has advanced beyond the instruction, its results are immediately available to subse-
guent instructions. For floating-point instructions, however, the PC may advance beyond
the instruction as soon as the IU places the instruction into a floating-point queue; the
instruction itself may not have completed (or even begun) execution, and results may not
be available to subsequent instructions for some time. In particular, the fact that a floating-
point instruction will generate an exception may not be noticed by the hardware until addi-

7.4 Trap Control 99

tional floating-point instructions have been placed into the queue by the IU. This creates
the condition for a deferred trap.

A deferred trap may occur one or more instructions after the trap-inducing instruction is
dispatched. However, a deferred trap must occur before the execution (but not necessarily
the dispatch) of any instruction that depends on the trap-inducing instruction. That is, a
deferred trap may not be deferred past the execution of an instruction that specifies source
registers, destination registers, condition codes, or any software-visible machine state that
could be modified by the trap-inducing instruction.

In the case of floating-point instructions, if a floating-point exception is currently deferred,
an attempt to dispatch a floating-point instruction (FPop, FBfcc, FBPfcc, or floating-point
load/store) invokes or causes the outstanglingkception_ieee_754 trap.

Implementation Note:

To provide the capability to terminate a user process on the occurrence of a catastrophic exception
that can cause a deferred or disrupting trap, an implementation should provide one or more instruc-
tions that provoke an outstanding exception to be taken as a trap. For example, an outstanding float-
ing-point exception might cause & exception_ieee_754 trap when any of an FPop, load or store
floating-point register (including the FSR), FBfcc, or FBPfcc instruction is executed.

7.4 Trap Control
Several registers control how any given trap is processed:

— The interrupt enable (IE) field in PSTATE and the processor interrupt level (PIL)
register control interrupt processing.

— The enable floating-point unit (FEF) field in FPRS, the floating-point unit enable
(PEF) field in PSTATE, and the trap enable mask (TEM) in the FSR control float-
ing-point traps.

— The TL register, which contains the current level of trap nesting, controls whether
a trap causes entry to execute_state, RED_state, or error_state.

— PSTATE.TLE determines whether implicit data accesses in the trap routine will be
performed using the big- or little-endian byte order.

7.4.1 PIL Control

Between the execution of instructions, the IU prioritizes the outstanding exceptions and
interrupt requests according to table 17. At any given time, only the highest priority excep-
tion or interrupt request is taken as a tFaWhen there are multiple outstanding excep-

tions or interrupt requests, SPARC-V9 assumes that lower-priority interrupt requests will

1. The highest priority exception or interrupt is the one with the lowest priority value in table 17. For
example, a priority 2 exception is processed before a priority 3 exception.

100 7 Traps

persist and lower-priority exceptions will recur if an exception-causing instruction is reex-
ecuted.

For interrupt requests, the IU compares the interrupt request level against the processor
interrupt level (PIL) register. If the interrupt request level is greater than PIL, the processor
takes the interrupt request trap, assuming there are no higher-priority exceptions outstand-

ing

IMPL. DEP. #34: How quickly a processor responds to an interrupt request and the method by
which an interrupt request is removed are implementation-dependent.

7.4.2 TEM Control

The occurrence of floating-point traps of tyeE 754 _exception can be controlled with
the user-accessible trap enable mask (TEM) field of the FSR. If a particular bit of TEM is
1, the associatedEE 754 exception can cause afp_exception_ieee_754 trap.

If a particular bit of TEM is 0, the associatedeE 754 exception does not cause afp_
exception_ieee_754 trap. Instead, the occurrence of the exception is recorded in the FSR’s
accrued exception fiel&éxg.

If an IEEE_754 exception results in anfp_exception_ieee_754 trap, then the destinatioh
register, fccn andaexcfields remain unchanged. However, if BEE_754_exception does
not result in a trap, then tHeegisterfccn andaexcfields are updated to their new values.

7.5 Trap-Table Entry Addresses

Privileged software initializes the trap base address (TBA) register to the upper 49 bits of
the trap-table base address. Bit 14 of the vector address (the “TL>0" field) is set based on
the value of TL at the time the trap is taken; that is, to O if TL=0and to 1 if TL > 0. Bits
13..5 of the trap vector address are the contents of the TT register. The lowest five bits of
the trap address, bits 4..0, are always 0 (hence each trap-table entry is abf lea822
bytes long). Figure 39 illustrates this.

TBA<63:15> TL>0| TTy |00000

63 15 14 13 5 4 0

Figure 39—Trap Vector Address

7.5 Trap-Table Entry Addresses 101

7.5.1 Trap Table Organization

The trap table layout is as illustrated in figure 40.

Trap Table Contents Trap Type
Value of TL

Before the Trap Hardware traps 00044..07F ¢
B Spillffill traps 0804¢..0FF ¢
TL=0 Software traps 10044..17F
Reserved 1804¢..1FF 4
Hardware traps 20044..27F ¢
TL>0 Spill/fill traps 28046..2FF 44
Software traps 30044..37F1¢
Reserved 38045..3FF 4

Figure 40—Trap Table Layout

The trap table for TL = 0 comprises 512 32-byte entries; the trap table for TL > 0 com-
prises 512 more 32-byte entries. Therefore, the total size of a full trap table is
512x 32x 2, or 32K bytes. However, if privileged software does not use software traps
(Tcc instructions) at TL > 0, the table can be made 24K bytes long.

7.5.2 Trap Type (TT)

When a normal trap occurs, a value that uniquely identifies the trap is written into the cur-
rent 9-bit TT register (TT[TL]) by hardware. Control is then transferred into the trap table
to an address formed by the TBA register (“TL>0") and TT[TL] (see 5.2.8, “Trap Base
Address (TBA)"). Since the lowest five bits of the address are always zero, each entry in
the trap table may contain the first eight instructions of the corresponding trap handler.

Programming Note:

The spill/fill andclean_window trap types are spaced such that their trap table entries are 128 bytes
(32 instructions) long. This allows the complete code for one spill/fiklean_window routine to
reside in one trap table entry.

When a special trap occurs, the TT register is set as described in 7.2.1, “RED_state.” Con-
trol is then transferred into the RED_state trap table to an address formed by the RST-
Vaddr and an offset depending on the condition.

TT values 00¢;..0FF4 are reserved for hardware traps. TT values 31007F¢ are
reserved for software traps (traps caused by execution of a Tcc instruction). TT values
180;c.. 1FF ¢ are reserved for future uses. The assignment of TT values to traps is shown in
table 16; table 17 lists the traps in priority order. Traps marked with an open hullate

optional and possibly implementation-dependent. Traps marked with a closed bullet *

are mandatory; that is, hardware must detect and trap these exceptions and interrupts and
must set the defined TT values.

The trap type for theclean_window exception is 024. Three subsequent trap vectors
(0255..027,¢) are reserved to allow for an inline (branchless) trap handler. Window spill/

fill traps are described in 7.5.2.1. Three subsequent trap vectors are reserved for each spill/
fill vector, to allow for an inline (branchless) trap handler.

102 7 Traps
Table 16—Exception and Interrupt Requests, Sorted by TT Value
M/O Exception or interrupt request TT Priority

° Reserved 0004 n/a
° power_on_reset 0014 0
O | watchdog_reset 0024 1
O | externally_initiated_reset 0034 1
° software_initiated_reset 0044 1
° RED_state_exception 0054 1
° Reserved 006;6..0074 n/a
° instruction_access_exception 0084 5
O instruction_access_MMU_miss 0094 2
d instruction_access_error 00A6 3
° Reserved 00B;¢..00FR4 n/a
° illegal_instruction 0104 7
° privileged _opcode 014 6
O unimplemented LDD 012 6
O | unimplemented_STD 0134 6
° Reserved 014,6..01R¢ n/a
° fo_disabled 0204 8
O fo_exception_ieee_754 0214 11
O | fo_exception_other 0224 11
° tag_overflow 0234 14
O | clean_window 024,6..027¢ 10
° division_by_zero 0284 15
O internal_processor_error 0294 4
° Reserved 02A5..02F4 n/a
° data_access_exception 0304 12
O data_access MMU_miss 036 12
a data_access_error 0324 12
O | data_access_protection 033 12
° mem_address_not_aligned 0345 10
O LDDF_mem_address_not_aligned (impl. dep. #109) 033 10
O STDF_mem_address_not_aligned (impl. dep. #110) 036 10
° privileged_action 0376 11
O LDQF_mem_address_not_aligned (impl. dep. #111) 038 10
O STQF_mem_address_not_aligned (impl. dep. #112) 032 10
° Reserved 03Aq5.-03F¢ n/a
a async_data_error 0404 2
° interrupt_level n (n=1..15) 041¢..04F4 32—n
° Reserved 050;6..05FR ¢ n/a
O implementation_dependent_exception_n (impl. dep. #35) 06Q..07F¢ impl.-dep.
° spill_n_normal (n=0..7) 08Qe..09F ¢ 9
° spill_n_other (n=0..7) 0AQ¢..0BFg 9
° fill_n_normal (n=0..7) 0CQg..0DFyg 9
° fill_n_other (N =10..7) OEQg..0FFg 9
° trap_instruction 1006..17F4 16
° Reserved 1805¢..1FFg n/a

7.5 Trap-Table Entry Addresses 103
Table 17—Exception and Interrupt Requests, Sorted by Priority (0 = Highest)
M/O Exception or Interrupt Request TT Priority

° power_on_reset 00L4 0
O watchdog_reset 0026 1
O externally_initiated _reset 0034 1
° software_initiated_reset 0044 1
° RED_state_exception 0054 1
a instruction_access_MMU_miss 0096 2
O async_data_error 0404 2
O instruction_access_error 00A 3
0 internal_processor_error 0294 4
° instruction_access_exception 0084 5
° privileged opcode 014 6
O unimplemented_LDD 0124 6
0 unimplemented_STD 0134 6
° illegal _instruction 0105 7
° fo_disabled 0205 8
° spill_n_normal (n=10..7) 08Qg..09F¢ 9
° spill_n_other (n=0..7) 0AQg..0BFg 9
° fill_n_normal (n=0..7) 0CQg..0DFg 9
° fill_n_other (N=10..7) OEQg..0FF 9
O clean_window 024,6..027,¢ 10
° mem_address_not_aligned 0346 10
O LDDF _mem_address_not_aligned (impl. dep. #109) 033 10
O STDF_mem_address _not_aligned (impl. dep. #110) 036 10
O LDQF_mem_address_not_aligned (impl. dep. #111) 038 10
O STQF_mem_address_not_aligned (impl. dep. #112) 032 10
O fo_exception_ieee_754 0244 11
O fo_exception_other 022 11
° privileged_action 0376 11
° data_access_exception 0304 12
O data_access MMU_miss 0344 12
O data_access_error 0326 12
0 data_access_protection 0335 12
° tag_overflow 0234 14
° division_by zero 0284 15
° trap_instruction 1006..17R¢ 16
° interrupt_level_n (n=1..15) 04%6..04F¢ 32-n
O implementation_dependent_exception_n (impl. dep. #35) 06Q..07F¢ impl.-dep.

104 7 Traps

V8 Compatibility Note:

Support for some trap types is optional because they are associated with specific instruction(s),
which, in a given implementation, might be implemented purely in software. In such a case, hard-

ware would never generate that type of trap; therefore, support for it would be superfluous. Exam-
ples of trap types to which this applies &resxception_ieee_754 andfp_exception_other.

Since the assignment of exceptions and interrupt requests to particular trap vector
addresses and the priority levels are not visible to a user program, an implementation is
allowed to define additional hardware traps.

IMPL. DEP. #35: TT values 060, TO 07F;¢4 are reserved for implementation-dependent excep-
tions. The existence of implementation_dependent n traps and whether any that do exist are pre-
cise, deferred, or disrupting is implementation-dependent. See Appendix C, “SPARC-V9
Implementation Dependencies.”

Trap Type values markedReservedin table 16 are reserved for future versions of the
architecture.

7.5.2.1 Trap Type for Spill/Fill Traps

The trap type for window spill/fill traps is determined based on the contents of the OTH-
ERWIN and WSTATE registers as follows:

Trap Type SPILL_OR_FILL |[OTHER WTYPE 0 0

8 6 5 4 2 1 0

The fields have the following values:

SPILL_OR_FILL :
010, for spill traps; 013 for fill traps

OTHER:
(OTHERWINZ0)

WTYPE:
If (OTHER) then WSTATE.OTHER else WSTATE.NORMAL

7.5.3 Trap Priorities

Table 16 shows the assignment of traps to TT values and the relative priority of traps and
interrupt requests. A trap priority is an ordinal number, with O indicating the highest prior-
ity and greater priority numbers indicating decreasing priority; that iX,4fY, a pending
exception or interrupt request with prioridy is taken instead of a pending exception or
interrupt request with priority.

IMPL. DEP. #36: The priorities of particular traps are relative and are implementation-dependent,
because a future version of the architecture may define new traps, and an implementation may
define implementation-dependent traps that establish new relative priorities.

7.6 Trap Processing 105

However, the TT values for the exceptions and interrupt requests shown in table 16 must
remain the same for every implementation.

7.6 Trap Processing

The processor’s action during trap processing depends on the trap type, the current level of
trap nesting (given in the TL register), and the processor state. All traps use normal trap
processing, except those due to reset requests, catastrophic errors, traps taken when
TL = MAXTL — 1, and traps taken when the processor is in RED_state. These traps use
special RED_state trap processing.

During normal operation, the processor is in execute_state. It processes traps in execute
state and continues.

When a normal trap or software-initiated reset (SIR) occurs with TL = MAXTL, there are

no more levels on the trap stack, so the processor enters error_state and halts. In order to
avoid this catastrophic failure, SPARC-V9 provides the RED _state processor state. Traps
processed in RED_state use a special trap vector and a special trap-vectoring algorithm.
RED_state vectoring and the setting of the TT value for RED_state traps are described in
7.2.1, "RED_state.”

Traps that occur with TL = MAXTL — 1 are processed in RED_state. In addition, reset
traps are also processed in RED_state. Reset trap processing is described in 7.6.2, “Special
Trap Processing.” Finally, supervisor software can force the processor into RED_state by
setting the PSTATE.RED flag to one.

Once the processor has entered RED _state, no matter how it got there, all subsequent traps
are processed in RED_state until software returns the processor to execute_state or a nor-
mal or SIR trap is taken when TL = MAXTL, which puts the processor in error_state.
Tables 18, 19, and 20 describe the processor mode and trap level transitions involved in
handling traps:

Table 18—Trap Received While in execute_state

New State, after receiving trap type
Original state l(\)lro irr?::rlrttzgtp POR \1\r/r|13pFle I;(g; SIR
execute_state execute_state RED_state RED_state RED_state
TL<MAXTL-1 TL+1 MAXTL TL+1 TL+1
execute_state RED_state RED_state RED_state RED_state
TL =MAXTL-1 MAXTL MAXTL MAXTL MAXTL
execute_stafe error_state RED_state RED_state error_state
TL = MAXTL MAXTL MAXTL MAXTL MAXTL

™This state occurs when software changes TL to MAXTL and does not set PSTATE.RED, or if it
clears PSTATE.RED while at MAXTL.

106

7 Traps

Table 19—Trap Received While in RED_state

New State, after receiving trap type
Normal trap WDR, XIR,
Original state or interrupt POR Impl. Dep. SIR
RED_state RED_state RED_state RED_state RED_state
TL<MAXTL-1 TL+1 MAXTL TL+1 TL+1
RED_state RED_state RED_state RED_state RED_state
TL =MAXTL-1 MAXTL MAXTL MAXTL MAXTL
RED_state error_state RED_state RED_state error_state
TL = MAXTL MAXTL MAXTL MAXTL MAXTL
Table 20—Reset Received While in error_state
New State, after receiving trap type
Normal trap WDR, XIR,
Original state or interrupt POR Impl. Dep. SIR
error_state RED_state RED_state
TL < MAXTL-1 - MAXTL TL+1 o
error_state RED_state RED_state
TL = MAXTL-1 o MAXTL MAXTL o
error_state RED_state RED_state
TL = MAXTL o MAXTL MAXTL -

Implementation Note:
The processor shall not recognize interrupts while it is in error_state.

7.6.1 Normal Trap Processing
A normal trap causes the following state changes to occur:

— If the processor is already in RED_state, the new trap is processed in RED_state
unless TL = MAXTL. See 7.6.2.6, “Normal Traps When the Processor is in RED_
state.”

— If the processor is in execute_state and the trap level is one less than its maximum
value, thatis, TL = MAXTL-1, the processor enters RED_state. See 7.2.1, “RED _
state,” and 7.6.2.1, “Normal Traps with TL = MAXTL —-1."

— If the processor is in either execute_state or RED_state, and the trap level is
already at its maximum value, that is, TL = MAXTL, the processor enters error_
state. See 7.2.2, “Error_state.”

Otherwise, the trap uses normal trap processing, and the following state changes occur:

— The trap level is set. This provides access to a fresh set of privileged trap-state reg-
isters used to save the current state, in effect, pushing a frame on the trap stack.

TL « TL+1

7.6 Trap Processing 107

— Existing state is preserved

TSTATE[TL].CCR ~ CCR
TSTATE[TL].ASI « ASI
TSTATE[TL].PSTATE ~ — PSTATE
TSTATE[TL].CWP — CWP
TPC[TL] - PC
TNPC[TL] - nPC

— The trap type is preserved.
TT[TL] « the trap type

— The PSTATE register is updated to a predefined state
PSTATE.MM is unchanged
PSTATE.RED ~ 0
PSTATE.PEF ~ 1if FPU is present, O otherwise
PSTATE.AM ~ 0 (address masking is turned off)
PSTATE.PRIV < 1 (the processor enters privileged mode)
PSTATE.IE ~ O (interrupts are disabled)
PSTATE.AG — 1 (global regs are replaced with alternate globals)
PSTATE.CLE — PSTATE.TLE (set endian mode for traps)

— For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

o If TT[TL] = 0244 (a clean_window trap), then CWR- CWP+ 1.

« 1f (080,5< TT[TL] < OBF,o) (window spill trap), then CWR-
CWP+ CANSAVE + 2.

* If (0CO;5< TT[TL] < OFFg) (window fill trap), then CWR- CWP-1.
For non-register-window traps, CWP is not changed.
— Control is transferred into the trap table:
PC ~ TBA<63:15>[] (TL>0)[] TT[TL][] 00000
nPC ~ TBA<63:15>[] (TL>0)[] TT[TL][] 00100
where “(TL>0)"is0if TL=0,and 1 if TL > 0.
Interrupts are ignored as long as PSTATE.IE = 0.

Programming Note:

State in TPQf], TNPCIn], TSTATE[n], and TT|n] is only changed autonomously by the processor
when a trap is taken while TL r—1, however, software can change any of these values with a
WRPR instruction when TL n.

108

7 Traps

7.6.2 Special Trap Processing

The following conditions invoke special trap processing:

— Traps taken with TL = MAXTL -1

— Power-on reset traps

— Watchdog reset traps

— Externally initiated re

set traps

— Software-initiated reset traps

— Traps taken when the processor is already in RED_state

— Implementation-dependent traps

IMPL. DEP. #38: Implementation
reset traps.

-dependent registers may or may not be affected by the various

7.6.2.1 Normal Traps with TL = MAXTL -1

Normal traps that occur when TL = MAXTL — 1 are processed in RED_state. The follow-

ing state changes occur:

— The trap level is advanced.

TL — MAXTL

— Existing state is preserved

TSTATE[TL].CCR
TSTATE[TL].ASI
TSTATE[TL].PSTATE
TSTATE[TL].CWP
TPC[TL]

TNPC[TL]

~ CCR

— ASI

— PSTATE
~ CWP

< PC

—~ nPC

— The trap type is preserved.
TT[TL] the trap type

— The PSTATE register
PSTATE.MM -
PSTATE.RED -
PSTATE.PEF -
PSTATE.AM -
PSTATE.PRIV
PSTATE.IE -
PSTATE.AG -
PSTATE.CLE -

is set as follows:

00, (TSO)

1 (enter RED_state)

1if FPU is present, O otherwise

0 (address masking is turned off)

1 (the processor enters privileged mode)

0 (interrupts are disabled)

1 (global regs are replaced with alternate globals)
PSTATE.TLE (set endian mode for traps)

— For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

o If TT[TL] = 0244 (a clean_window trap), then CWR- CWP+ 1.

7.6 Trap Processing

109

« 1f (080,5< TT[TL] < OBF,) (window spill trap), then CWR-
CWP+ CANSAVE + 2.

o If (0CO;5< TT[TL] < OFF)(window fill trap), then CWP- CWP-1.
For non-register-window traps, CWP is not changed.

— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table
PC ~ RSTVaddr<63:8%] 1010 0090
nPC — RSTVaddr<63:8%] 10100190

7.6.2.2 Power-On Reset (POR) Traps

Initiated when power is applied to the processor. If the processor is in error_state, a power-
on reset (POR) brings the processor out of error_state and places it in RED_state. Proces-
sor state is undefined after POR, except for the following:

— The trap level is set.

TL — MAXTL

— The trap type is set.

TT[TL] < 00,

— The PSTATE register is set as follows:

PSTATE.MM -
PSTATE.RED -
PSTATE.PEF -
PSTATE.AM -
PSTATE.PRIV —
PSTATE.IE -
PSTATE.AG -
PSTATE.TLE -
PSTATE.CLE -

00, (TSO)

1 (enter RED_state)

1if FPU is present, O otherwise

0 (address masking is turned off)

1 (the processor enters privileged mode)

0 (interrupts are disabled)

1 (global regs are replaced with alternate globals)
0 (big-endian mode for traps)

0 (big-endian mode for non-traps)

— The TICK register is protected.
TICK.NPT ~ 1 (TICK unreadable by nonprivileged software)

— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table
PC ~ RSTVaddr<63:8%] 0010 0090
nPC « RSTVaddr<63:8%] 0010 0190

For any reset when TL = MAXTL, for alh<MAXTL, the values in TPQf], TNPC|n],
and TSTATER] are undefined.

7.6.2.3 Watchdog Reset (WDR) Traps

WDR traps are initiated by an external signal. Typically, this is generated in response to
error_state or expiration of a watchdog timer. WDR clears error_state and hung states, and

110 7 Traps

performs a system reset; pending and in-progress hardware operations (for example, loads
and stores) may be cancelled or aborted. Architecturally defined registers (e. g., floating-

point registers, integer registers, etc.) and state are unchanged from before the WDR, but
they may be in an inconsistent state if operations are aborted. If the processor is in error_

state, a watchdog reset (WDR) brings the processor out of error_state and places it in

RED_state.

The following state changes occur:

— The trap level is set.
TL « MIN(TL + 1, MAXTL)

— Existing state is preserved.

TSTATE[TL].CCR — CCR
TSTATE[TL].ASI ~ ASI
TSTATE[TL].PSTATE =~ PSTATE
TSTATE[TL].CWP — CWP
TPC[TL] - PC
TNPC[TL] - nPC

— TTI[TL] is set as described below.

— The PSTATE register is set as follows:
PSTATE.MM ~ 00, (TSO)
PSTATE.RED ~ 1 (enter RED_state)
PSTATE.PEF ~ 1if FPU is present, 0 otherwise
PSTATE.AM ~ 0 (address masking is turned off)
PSTATE.PRIV ~ 1 (the processor enters privileged mode)
PSTATE.IE ~ 0O (interrupts are disabled)
PSTATE.AG ~ 1 (global regs are replaced with alternate globals)
PSTATE.CLE — PSTATE.TLE (set endian mode for traps)

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table.
PC ~ RSTVaddr<63:8%] 0100 0090
nPC ~ RSTVaddr<63:8%] 0100 0190
If a watchdog reset occurs when the processor is in error_state, the TT field gives the type

of the trap that caused entry into error_state. If a watchdog reset occurs with the processor
in execute_state, TT is set to 2 (WDR).

For any reset when TL = MAXTL, for alh<MAXTL, the values in TPQf], TNPCJn],
and TSTATER] are undefined.

7.6.2.4 Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that cannot be
masked by IE = 0 or PIL. Typically, XIR is used for critical system events such as power

failure, reset button pressed, failure of external components that does not require a WDR
(which aborts operations), or system-wide reset in a multiprocessor. If the processor is in

7.6 Trap Processing 111

error_state, an externally initiated reset (XIR) brings the processor out of error_state and
places it in RED_state.

The following state changes occur:

— The trap level is set.
TL « MIN(TL + 1, MAXTL)

— Existing state is preserved.

TSTATE[TL].CCR ~ CCR
TSTATE[TL].ASI « ASI
TSTATE[TL].PSTATE ~ ~ PSTATE
TSTATE[TL].CWP — CWP
TPC[TL] -« PC
TNPC[TL] - nPC

— TTI[TL] is set as described below.

— The PSTATE register is set as follows:
PSTATE.MM ~ 00, (TSO)
PSTATE.RED ~ 1 (enter RED_state)
PSTATE.PEF ~ 1if FPU is present, 0 otherwise
PSTATE.AM ~ 0 (address masking is turned off)
PSTATE.PRIV ~ 1 (the processor enters privileged mode)
PSTATE.IE « 0 (interrupts are disabled)
PSTATE.AG ~ 1 (global regs are replaced with alternate globals)
PSTATE.CLE — PSTATE.TLE (set endian mode for traps)

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table.
PC — RSTVaddr<63:8%] 0110 0090
nPC ~ RSTVaddr<63:8%] 01100190

TT is set in the same manner as for watchdog reset. If the processor is in execute_state
when the externally initiated reset (XIR) occurs, TT = 3. If the processor is in error_state
when the XIR occurs, TT identifies the exception that caused entry into error_state.

For any reset when TL = MAXTL, for alh<MAXTL, the values in TPQf], TNPCJ|n],
and TSTATER] are undefined.

7.6.2.5 Software-Initiated Reset (SIR) Traps

SIR traps are initiated by executing an SIR instruction. This is used by supervisor software
as a panic operation, or a meta-supervisor trap.

The following state changes occur:
— If TL = MAXTL, then enter error_state. Otherwise, do the following:

— The trap level is set.
TL -« TL+1

112 7 Traps

— Existing state is preserved

TSTATE[TL].CCR - CCR
TSTATE[TL].ASI — ASI
TSTATE[TL].PSTATE ~ PSTATE
TSTATE[TL].CWP ~ CWP
TPC[TL] - PC
TNPC[TL] — nPC

— The trap type is set.
TT[TL] < 04

— The PSTATE register is set as follows:
PSTATE.MM — 00, (TSO)
PSTATE.RED ~ 1 (enter RED_state)
PSTATE.PEF ~ 1if FPU is present, 0 otherwise
PSTATE.AM ~ 0 (address masking is turned off)
PSTATE.PRIV « 1 (the processor enters privileged mode)
PSTATE.IE ~ 0O (interrupts are disabled)
PSTATE.AG — 1 (global regs are replaced with alternate globals)
PSTATE.CLE ~ PSTATE.TLE (set endian mode for traps)

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table
PC ~ RSTVaddr<63:8%] 1000 0000
nPC — RSTVaddr<63:83] 1000 0190

For any reset when TL = MAXTL, for alh < MAXTL, the values in TPQfi], TNPCJn],
and TSTATER] are undefined.

7.6.2.6 Normal Traps When the Processor is in RED_state

Normal traps taken when the processor is already in RED_state are also processed in
RED_state, unless TL = MAXTL, in which case the processor enters error_state.

The processor state shall be set as follows:

— The trap level is set.

TL « TL+1

— Existing state is preserved.
TSTATE[TL].CCR ~ CCR
TSTATE[TL].ASI ~ ASI
TSTATE[TL].PSTATE ~ PSTATE
TSTATE[TL].CWP ~ CWP
TPC[TL] - PC
TNPCI[TL] — nPC

— The trap type is preserved.
TT[TL] ~ trap type

7.7 Exception and Interrupt Descriptions 113

— The PSTATE register is set as follows:
PSTATE.MM ~ 00, (TSO)
PSTATE.RED — 1 (enter RED_state)
PSTATE.PEF ~ 1if FPU is present, 0 otherwise
PSTATE.AM ~ 0 (address masking is turned off)
PSTATE.PRIV « 1 (the processor enters privileged mode)
PSTATE.IE « 0 (interrupts are disabled)
PSTATE.AG — 1 (global regs are replaced with alternate globals)
PSTATE.CLE — PSTATE.TLE (set endian mode for traps)

— For a register-window trap only, CWP is set to point to the register window that
must be accessed by the trap-handler software, that is:

o If TT[TL] = 0244 (a clean_window trap), then CWR- CWP+ 1.

« 1f (080,5< TT[TL] < OBFo) (window spill trap), then

CWP ~ CWP+ CANSAVE + 2.
» If (0CO5< TT[TL] < OFF;¢) (window fill trap), then CWR- CWP — 1.
For non-register-window traps, CWP is not changed.

— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table
PC ~ RSTVaddr<63:8%] 1010 0090
nPC ~ RSTVaddr<63:8%] 1010 0190

7.6.2.7 Implementation-Dependent Traps

The operation of the processor fomplementation_dependent_exception_n traps is imple-
mentation-dependent (impl. dep. #35).

7.7 Exception and Interrupt Descriptions

The following paragraphs describe the various exceptions and interrupt requests and the
conditions that cause them. Each exception and interrupt request describes the correspond-
ing trap type as defined by the trap model. An open bullgtidlentifies optional and pos-

sibly implementation-dependent traps; traps marked with a closed bulletare
mandatory. Each trap is marked as precise, deferred, disrupting, or reset. Example excep-
tion conditions are included for each exception type. Appendix A, “Instruction Defini-
tions,” enumerates which traps can be generated by each instruction.

[0 async_data_error[tt = 040,¢ (Disrupting)

An asynchronous data error occurred on a data access. Examples: an ECC error
occurred while writing data from a cache store buffer to memory, or an ECC error
occurred on an MMU hardware table walk. Whenagpnc_data_error occurs, the

TPC and TNPC stacked by the trap are not necessarily related to the instruction or
data access that caused the error; thakysgc data error causes a disrupting trap.

114 7 Traps

V8 Compatibility Note:
The SPARC-V9async_data_error exception supersedes the less general SPAR@AIS store
error exception.

[0 clean_window[tt = 0245..027,¢] (Precise)
A SAVE instruction discovered that the window about to be used contains data
from another address space; the window must be cleaned before it can be used.

IMPL. DEP. #102: An implementation may choose either to implement automatic cleaning

of register windows in hardware, or to generate a clean_window trap, when needed, so
that window(s) can be cleaned by software. If an implementation chooses the latter
option, then support for this trap type is mandatory.

[0 data_access_erroftt = 0324] (Precise, Deferred, or Disrupting)

A catastrophic error exception occurred on a data access from/to memory (for
example, a parity error on a data cache access, or an uncorrectable ECC memory
error) (impl. dep. #31).

e data access_exceptiofit = 030,4] (Precise or Deferred)

An exception occurred on a data access. For example, an MMU indicated that a
page was invalid or protected (impl. dep. #33).

[0 data_access_MMU_mis§tt = 031;4 (Precise or Deferred)

A miss in an MMU occurred on a data access from/to memory. For example, a
page descriptor cache or translation lookaside buffer did not contain a translation
for the virtual address. (impl. dep. #33)

[0 data_access_protectiofitt = 0334 (Precise or Deferred)

A protection fault occurred on a data access; for example, an MMU indicated that
the page was write-protected (impl. dep. #33).

e division_by_zero[tt = 028,¢ (Precise or Deferred)
An integer divide instruction attempted to divide by zero (impl. dep..#33)

[0 externally_initiated_reset[tt = 0034 (Reset)

An external signal was asserted. This trap is used for catastrophic events such as
power failure, reset button pressed, and system-wide reset in multiprocessor sys-
tems.

e fill_n_normal [tt = 0COs..0DF,4] (Precise)

e fill_n_other [tt = OEQ4.. OFFg4] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a regis-
ter window must be restored from memory.

V8 Compatibility Note:
The SPARC-VYill_n_*exceptions supersede the SPARCwWBdow_underflow exception.

e fp_disabled[tt = 0204 (Precise)

An attempt was made to execute an FPop, a floating-point branch, or a floating-
point load/store instruction while an FPU was not present, PSTATE.PEF =0, or
FPRS.FEF = 0.

7.7 Exception and Interrupt Descriptions 115

[0 fp_exception_ieee_ 758t =021,4 (Precise or Deferred (impl. dep. #23))

An FPop instruction generated an IEEE_754 exception and its corresponding trap
enable mask (TEM) bit was 1. The floating-point exception typeE 754 excep-

tion, is encoded in the FSR, and specificlEEE_754_exception information is
encoded in FSRexc

0 fp_exception_other[tt = 022 (Precise or Deferred (impl. dep. #23))

An FPop instruction generated an exception other thastam 754 exception. For
example, the FPop is unimplemented, or the FPop did not complete, or there was a
sequence or hardware error in the FPU. The floating-point exception type is
encoded in the FSRf# field.

e illegal_instruction [tt = 010,4] (Precise or Deferred)

An attempt was made to execute an instruction with an unimplemented opcode, an
ILLTRAP instruction, an instruction with invalid field usage, or an instruction that
would result in illegal processor state. Note that unimplemented FPop instructions
generatép_exception_other traps.

[0 implementation_dependent_exceptiom [tt = 060,5..07F¢] (Pre, Def, or Dis)
These exceptions are implementation-dependent (impl. dep. #35).

[0 instruction_access_error[tt = 00A] (Precise, Deferred, or Disrupting)

A catastrophic error exception occurred on an instruction access. For example, a
parity error on an instruction cache access (impl. dep. #31).

e instruction_access_exceptiofit = 008,¢] (Precise)

An exception occurred on an instruction access. For example, an MMU indicated
that the page was invalid or not executable.

[0 instruction_access_MMU_misdtt = 009,¢ (Precise, Deferred, or Disrupting)

A miss in an MMU occurred on an instruction access from memory. For example,
a PDC or TLB did not contain a translation for the virtual address. (impl. dep. #33)

[0 internal_processor_error [tt = 029,¢] (Precise, Deferred, or Disrupting)

A catastrophic error exception occurred in the main processor. For example, a par-
ity or uncorrectable ECC error on an internal register or bus (impl. dep. #31).

V8 Compatibility Note:
The SPARC-V9internal_processor_error exception supersedes the less general SPARG-V8
register_access_error exception.

e interrupt_level_n [tt = 041¢..04F¢ (Disrupting)

An interrupt request level af was presented to the IU, while PSTATE.IE = 1 and
(interrupt request level > PIL).

[0 LDDF_mem_address_not_alignedtt = 035] (Precise)

An attempt was made to execute an LDDF instruction and the effective address
was word-aligned but not doubleword-aligned. Use of this exception is implemen-
tation-dependent (impl. dep. #109). A separate trap entry for this exception sup-
ports fast software emulation of the LDDF instruction when the effective address is
word-aligned but not doubleword-aligned. See A.25, “Load Floating-Point.”

116 7 Traps

[0 LDQF_mem_address_not_alignedtt = 038,¢] (Precise)

An attempt was made to execute an LDQF instruction and the effective address
was word-aligned but not quadword-aligned. Use of this exception is implementa-
tion-dependent (impl. dep. #111). A separate trap entry for this exception supports
fast software emulation of the LDQF instruction when the effective address is

word-aligned but not quadword-aligned. See A.25, “Load Floating-Point.”

mem_address_not_aligneditt = 0344 (Precise or Deferred)

A load/store instruction generated a memory address that was not properly aligned
according to the instruction, or a JMPL or RETURN instruction generated a non-
word-aligned address (impl. dep. #33).

e power_on_reseftt = 001 (] (Reset)

An external signal was asserted. This trap isused to bring a system reliably from
the power-off to the power-on state.

privileged_action [tt = 0374 (Precise)
An action defined to be privileged has been attempted while PSTATE.PRIV = 0.
Examples: a data access by nonprivileged software using an ASI value with its
most significant bit = 0 (a restricted ASI), or an attempt to read the TICK register
by nonprivileged software when TICK.NPT = 1.

privileged_opcode[tt = 011 (] (Precise)
An attempt was made to execute a privileged instruction while PSTATE.PRIV = 0.
V8 Compatibility Note:

This trap type is identical to the SPARC-\f8ivileged_instruction trap. The name was changed to
distinguish it from the newrivileged_action trap type.

e software_initiated_reset[tt = 004,¢] (Reset)

Caused by the execution of the SIR, Software-Initiated Reset, instruction. It allows
system software to reset the processor.

e spill_n_normal [tt = 080,5..09F¢] (Precise)
e spill_n_other [tt = 0AQ,¢..0BF,4] (Precise)

A SAVE or FLUSHW instruction has determined that the contents of a register
window must be saved to memory.

V8 Compatibility Note:
The SPARC-V9 spilln_* exceptions supersede the SPARCMBdow_overflow exception.

0 STDF_mem_address_not_aligneftt = 036,¢] (Precise)
An attempt was made to execute an STDF instruction and the effective address was
word-aligned but not doubleword-aligned. Use of this exception is implementa-
tion-dependent (impl. dep. #110). A separate trap entry for this exception supports
fast software emulation of the STDF instruction when the effective address is
word-aligned but not doubleword-aligned. See A.52, “Store Floating-Point.”

0 STQF_mem_address_not_aligneftt = 039,¢] (Precise)

An attempt was made to execute an STQF instruction and the effective address was
word-aligned but not quadword-aligned. Use of this exception is implementation-

7.7 Exception and Interrupt Descriptions 117

dependent (impl. dep. #112). A separate trap entry for this exception supports fast
software emulation of the STQF instruction when the effective address is word-
aligned but not quadword-aligned. See A.52, “Store Floating-Point.”

e tag_overflow[tt = 0234 (Precise)

A TADDccTV or TSUBccTV instruction was executed, and either 32-bit arith-
metic overflow occurred or at least one of the tag bits of the operands was nonzero.

e ftrap_instruction [tt = 1004..17F¢] (Precise)
A Tcc instruction was executed and the trap condition evaluated to TRUE.

O unimplemented_LDD [tt = 0124] (Precise)

An attempt was made to execute an LDD instruction, which is not implemented in
hardware on this implementation (impl. dep. #107).

0 unimplemented_STDJtt = 0134 (Precise)

An attempt was made to execute an STD instruction which is not implemented in
hardware on this implementation (impl. dep. #108).

e watchdog_reseftt = 002¢] (Precise)

An external signal was asserted. This trap exists to break a system deadlock cre-
ated when an expected external event does not happen within the expected time. In
simple systems it is also used to bring a system out of error_state, through RED_
state, and ultimately back to execute_state.

All other trap types are reserved.

118 7 Traps

8 Memory Models

8.1 Introduction

The SPARC-V9memory models define the semantics of memory operations. The
instruction set semantics require that loads and stores seem to be performed in the order in
which they appear in the dynamic control flow of the program. The actual order in which
they are processed by the memory may be different. The purpose of the memory models is
to specify what constraints, if any, are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared-memory multiprocessors.
Formal memory models are necessary in order to precisely define the interactions between
multiple processors and input/output devices in a shared-memory configuration. Program-
ming shared-memory multiprocessors requires a detailed understanding of the operative
memory model and the ability to specify memory operations at a low level in order to
build programs that can safely and reliably coordinate their activities. See Appendix J,
“Programming With the Memory Models,” for additional information on the use of the
models in programming real systems.

The SPARC-V9 architecture ismaodel that specifies the behavior observable by software
on SPARC-V9 systems. Therefore, access to memory can be implemented in any manner,
as long as the behavior observed by software conforms to that of the models described
here and formally defined in Appendix D, “Formal Specification of the Memory Models.”

The SPARC-V9 architecture defines three different memory modetal Store Order
(TSO), Partial Store Order (PSO), andRelaxed Memory Order (RMO). All SPARC-

V9 processors must provide Total Store Order (or a more strongly ordered model, for
example, Sequential Consistency) to ensure SPARC-V8 compatibility.

IMPL. DEP. 113: Whether the PSO or RMO models are supported is implementation-dependent.

Figure 41 shows the relationship of the various SPARC-V9 memory models, from the
least restrictive to the most restrictive. Programs written assuming one model will function
correctly on any included model.

RMO PSO

Figure 41—Memory Models from Least Restrictive (RMO) to Most Restrictive (TSO)

119

120 8 Memory Models

SPARC-V9 provides multiple memory models so that:
— Implementations can schedule memory operations for high performance.
— Programmers can create synchronization primitives using shared memory.

These models are described informally in this subsection and formally in Appendix D,
“Formal Specification of the Memory Models.” If there is a conflict in interpretation
between the informal description provided here and the formal models, the formal models
supersede the informal description.

There is no preferred memory model for SPARC-V9. Programs written for Relaxed Mem-
ory Order will work in Partial Store Order and Total Store Order as well. Programs written
for Partial Store Order will work in Total Store Order. Programs written for a weak model,
such as RMO, may execute more quickly, since the model exposes more scheduling
opportunities, but may also require extra instructions to ensure synchronization. Multipro-
cessor programs written for a stronger model will behave unpredictably if run in a weaker
model.

Machines that implemerdequential consistencyalso called strong ordering or strong
consistency) automatically support programs written for TSO, PSO, and RMO. Sequential
consistency is not a SPARC-V9 memory model. In sequential consistency, the loads,
stores, and atomic load-stores of all processors are performed by memory in a serial order
that conforms to the order in which these instructions are issued by individual processors.
A machine that implements sequential consistency may deliver lower performance than an
equivalent machine that implements a weaker model. Although particular SPARC-V9
implementations may support sequential consistency, portable software must not rely on
having this model available.

8.2 Memory, Real Memory, and I/O Locations

Memory is the collection of locations accessed by the load and store instructions
(described in Appendix A, “Instruction Definitions”). Each location is identified by an
address consisting of two elements:amdress space identifie(ASI), which identifies an
address space, and a 64-&idress,which is a byte offset into that address space. Mem-

ory addresses may be interpreted by the memory subsystem to be either physical addresses
or virtual addresses; addresses may be remapped and values cached, provided that mem-
ory properties are preserved transparently and coherency is maintained.

When two or more data addresses refer to the same datum, the address is said to be
aliased In this case, the processor and memory system must cooperate to maintain consis-
tency; that is, a store to an aliased address must change all values aliased to that address.

Memory addresses identify either real memory or I/O locations.

Real memory stores information without side effects. A load operation returns the value
most recently stored. Operations are side-effect-free in the sense that a load, store, or
atomic load-store to a location in real memory has no program-observable effect, except
upon that location.

I/0O locations may not behave like memory and may have side effects. Load, store, and
atomic load-store operations performed on I/O locations may have observable side effects

8.3 Addressing and Alternate Address Spaces 121

and loads may not return the value most recently stored. The value semantics of operations
on 1/O locations ar@ot defined by the memory models, but the constraints on the order in
which operations are performed is the same as it would be if the 1/0O locations were real
memory. The storage properties, contents, semantics, ASI assignments, and addresses of
I/O registers are implementation-dependent (impl. dep. #6) (impl. dep. #7) (impl. dep.
#123).

IMPL. DEP. #118: The manner in which I/O locations are identified is implementation-dependent.
See F.3.2, “Attributes the MMU Associates with Each Mapping,” for example.

IMPL. DEP #120: The coherence and atomicity of memory operations between processors and
I/O DMA memory accesses are implementation-dependent.

V8 Compatibility Note:

Operations to I/O locations aret guaranteed to be sequentially consistent between themselves, as
they are in SPARC-VS8.

SPARC-V9 does not distinguish real memory from I/O locations in terms of ordering. All refer-
ences, both to I/O locations and real memory, conform to the memory model’s order constraints.
References to 1/0O locations may need to be interspersed with MEMBAR instructions to guarantee
the desired ordering. Loads following stores to locations with side effects may return unexpected
results due to lookaside into the processor’s store buffer, which may subsume the memory transac-
tion. This can be avoided by using a MEMBARookAside .

Systems supporting SPARC-V8 applications that use memory mapped I/O locations must ensure
that SPARC-V8 sequential consistency of I/O locations can be maintained when those locations are
referenced by a SPARC-V8 application. The MMU either must enforce such consistency or cooper-
ate with system software and/or the processor to provide it.

IMPL. DEP #121: An implementation may choose to identify certain addresses and use an imple-
mentation-dependent memory model for references to them.

For example, an implementation might choose to process addresses tagged with a flag bit
in the memory management unit (see Appendix F, “SPARC-V9 MMU Requirements”), or
to treat those that utilize a particular ASI (see 8.3, “Addressing and Alternate Address
Spaces,” below) as using a sequentially consistent model.

8.3 Addressing and Alternate Address Spaces

An address in SPARC-V9 is a tuple consisting of an 8-bit address space identifier (ASI)
and a 64-bit byte-address offset in the specified address space. Memory is byte-addressed,
with halfword accesses aligned on 2-byte boundaries, word accesses (which include
instruction fetches) aligned on 4-byte boundaries, extended-word and doubleword
accesses aligned on 8-byte boundaries, and quadword quantities aligned on 16-byte
boundaries. With the possible exception of the cases described in 6.3.1.1, “Memory Align-
ment Restrictions,” an improperly aligned address in a load, store, or load-store instruction
always causes a trap to occur. The largest datum that is guaranteed to be atomically read or
written is an aligned doubleword. Also, memory references to different bytes, halfwords,
and words in a given doubleword are treated for ordering purposes as references to the
same location. Thus, the unit of ordering for memory is a doubleword.

122 8 Memory Models

Programming Note:

While the doubleword is the coherency unit for update, programmers should not assume that dou-
bleword floating-point values are updated as a unit unless they are doubleword-aligned and always
updated using double-precision loads and stores. Some programs use pairs of single-precision oper-
ations to load and store double-precision floating-point values when the compiler cannot determine
that they are doubleword-aligned. Also, while quad-precision operations are defined in the SPARC-
V9 architecture, the granularity of loads and stores for quad-precision floating-point values may be
word or doubleword.

The processor provides an address space identifier with every address. This ASI may serve
several purposes:

— To identify which of several distinguished address spaces the 64-bit address offset
is to be interpreted as addressing

— To provide additional access control and attribute information, for example, the
processing which is to be taken if an access fault occurs or to specify the endian-
ness of the reference

— To specify the address of an internal control register in the processor, cache, or
memory management hardware

The memory management hardware can associate an indeperfddmyte2 memory
address space with each ASI. If this is done, it becomes possible to allow system software
easy access to the address space of the faulting program when processing exceptions, or to
implement access to a client program’s memory space by a server program.

The architecturally specified ASIs are listed in table 14 on page 74. ASIs need not be fully
decoded by the hardware (impl. dep. #30). In particular, specifying an architecturally
undefined ASI value in a memory reference instruction or in the ASI register may produce
unexpected implementation-dependent results.

When TL =0, normal accesses by the processor to memory when fetching instructions
and performing loads and stores implicitly specify ASI_PRIMARY or ASI_PRIMARY _
LITTLE, depending on the setting of the PSTATE.CLE bit.

IMPL. DEP. #124: When TL > 0, the implicit ASI for instruction fetches, loads, and stores is imple-
mentation-dependent.

Implementation Note:

Implementations that support the nucleus context should use ASI_NUCLEUS{ LITTLE}; those
that do not should use ASI_PRIMARY{ LITTLE}. See F.4.4, “Contexts,” for more information
about the nucleus context.

Accesses to other address spaces use the load/store alternate instructions. For these
accesses, the ASl is either contained in the instruction (for the register-register addressing
mode) or taken from the ASI register (for register-immediate addressing).

ASls are either unrestricted or restricted. An unrestricted ASI is one that may be used
independent of the privilege level (PSTATE.PRIV) at which the processor is running.
Restricted ASIs require that the processor be in privileged mode for a legal access to
occur. Restricted ASIs have their high-order bit equal to zero. The relationship between
processor state and ASI restriction is shown in table 13 on page 73.

8.4 The SPARC-V9 Memory Model 123

Several restricted ASIs must be provided: ASI_AS IF_USER_PRIMARY{ LITTLE}
and ASI_AS IF_USER_SECONDARY{ LITTLE}. The intent of these ASlIs is to give
system software efficient access to the memory space of a program.

The normal address space is primary address space, which is accessed by the unrestricted
ASI_PRIMARY{ LITTLE}. The secondary address space, which is accessed by the unre-
stricted ASI_SECONDARY{_LITTLE}, is provided to allow a server program to access a
client program’s address space.

AS|I_PRIMARY_NOFAULT{ LITTLE} and ASI_SECONDARY_NOFAULT{ LIT-
TLE} supportnonfaulting loads. These ASls are aliased to ASI_PRIMARY{ LITTLE}

and ASI_SECONDARY{ _LITTLE}, respectively, and have exactly the same action. They
may be used to color (that is, distinguish into classes) loads in the instruction stream so
that, in combination with a judicious mapping of low memory and a specialized trap han-
dler, an optimizing compiler can move loads outside of conditional control structures.

Programming Note:

Nonfaulting loads allow optimizations that move loads ahead of conditional control structures
which guard their use; thus, they can minimize the effects of load latency by improving instruction
scheduling. The semantics of nonfaulting load are the same as for any other load, except when non-
recoverable catastrophic faults occur (for example, address-out-of-range errors). When such a fault
occurs, it is ignored and the hardware and system software cooperate to make the load appear to
complete normally, returning a zero result. The compiler's optimizer generates load-alternate
instructions with the ASI field or register set to ASI_PRIMARY_NOFAULT{ LITTLE} or ASI_
SECONDARY_NOFAULT{ LITTLE} for those loads it determines should be nonfaulting. To
minimize unnecessary processing if a fault does occur, it is desirable to map low addresses (espe-
cially address zero) to a page of all zeros, so that references through a NULL pointer do not cause
unnecessary traps.

Implementation Note:

An implementation, through a combination of hardware and system software, must prevent non-
faulting loads on memory locations that have side effects; otherwise, such accesses produce unde-
fined results.

8.4 The SPARC-V9 Memory Model

The SPARC-V9 processor architecture specifies the organization and structure of a
SPARC-V9 central processing unit, but does not specify a memory system architecture.
Appendix F, “SPARC-V9 MMU Requirements,” summarizes the MMU support required
by a SPARC-V9 central processing unit.

The memory models specify the possible order relationships between memory-reference
instructions issued by a processor and the order and visibility of those instructions as seen
by other processors. The memory model is intimately intertwined with the program execu-
tion model for instructions.

8.4.1 The SPARC-V9 Program Execution Model

The SPARC-V9 processor model consists of three units: an issue unit, a reorder unit, and
an execute unit, as shown in figure 42.

124 8 Memory Models

The issue unit reads instructions over the instruction path from memory and issues them in
program order. Program order is precisely the order determined by the control flow of
the program and the instruction semantics, under the assumption that each instruction is
performed independently and sequentially.

Issued instructions are collected, reordered, and then dispatched to the execute unit.
Instruction reordering allows an implementation to perform some operations in parallel
and to better allocate resources. The reordering of instructions is constrained to ensure that
the results of program execution are the same as they would be if the instructions were
performed in program order. This property is cafjeacessor self-consistency

Processor

Data Path

Issue [Reorder [Execute Memory

Instruction Path

Figure 42—Processor Model: Uniprocessor System

Processor self-consistency requires that the result of execution, in the absence of any
shared memory interaction with another processor, be identical to the result that would be
observed if the instructions were performed in program order. In the model in figure 42,
instructions are issued in program order and placed in the reorder buffer. The processor is
allowed to reorder instructions, provided it does not violate any of the data-flow con-
straints for registers or for memory.

The data-flow order constraints for register reference instructions are:

— An instruction cannot be performed until all earlier instructions that set a register it
uses have been performed (read-after-write hazard; write-after-write hazard).

— An instruction cannot be performed until all earlier instructions that use a register
it sets have been performed (write-after-read hazard).

An implementation can avoid blocking instruction execution in the second case by using a
renaming mechanism which provides the old value of the register to earlier instructions
and the new value to later uses.

The data-flow order constraints for memory-reference instructions are those for register
reference instructions, plus the following additional constraints:

(1) A memory-reference instruction that sets (stores to) a location cannot be per-
formed until all previous instructions that use (load from) the location have been
performed (write-after-read hazard).

(2) A memory-reference instruction that uses (loads) the value at a location cannot be
performed until all earlier memory-reference instructions that set (store to) the
location have been performed (read-after-write hazard).

8.4 The SPARC-V9 Memory Model 125

As with the case for registers, implementations can avoid blocking instructions in case (2)
by providing an additional mechanism, in this case, a write buffer which guarantees that
the value returned by a load is that which would be returned by the most recent store, even
though the store has not completed. As a result, the value associated with an address may
appear to be different when observed from a processor that has written the location and is
holding the value in its write buffer than it would be when observed from a processor that
references memory (or its own write buffer). Moreover, the load that was satisfied by the
write buffer never appears at the memory.

Memory-barrier instructions (MEMBAR and STBAR) and the active memory model
specified by PSTATE.MM also constrain the issue of memory-reference instructions. See
8.4.3, “The MEMBAR Instruction,” and 8.4.4, “Memory Models,” for a detailed descrip-
tion.

The constraints on instruction execution assert a partial ordering on the instructions in the
reorder buffer. Every one of the several possible orderings is a legal execution ordering for
the program. See Appendix D, “Formal Specification of the Memory Models,” for more
information.

8.4.2 The Processor/Memory Interface Model

Each processor in a multiprocessor system is modelled as shown in figure 43; that is, hav-

ing two independent paths to memory: one for instructions and one for data. Caches and

mappings are considered to be part of the memory. Data caches are maintained by hard-
ware to be consistent (coherent). Instruction caches need not be kept consistent with data
caches and, therefore, require explicit program action to ensure consistency when a pro-
gram modifies an executing instruction stream. Memory is shared in terms of address

space, but may be inhomogeneous and distributed in an implementation. Mapping and

cache? are ignored in the model, since their functions are transparent to the memory

model:

In real systems addresses may have attributes that the processor must respect. The proces-
sor executes loads, stores, and atomic load-stores in whatever order it chooses, as con-
strained by program order and the current memory model. The ASI-address couples it
generates are translated by a memory management unit (MMU), which associates
attributes with the address and may, in some instances, abort the memory transaction and
signal an exception to the CPU. For example, a region of memory may be marked as non-
prefetchable, non-cacheable, read-only, or restricted. It is the MMU’s responsibility, work-

ing in conjunction with system software, to ensure that memory attribute constraints are
not violated. See Appendix F, “SPARC-V9 MMU Requirements,” for more information.

Instructions are performed in an order constrained by local dependencies. Using this
dependency ordering, an execution unit submits one or more pending memory transac-
tions to the memory. The memory performs transactioma@mory order. The memory

1. The model described here is only a model. Implementations of SPARC-V9 systems are unconstrained
so long as their observable behaviors match those of the model.

126 8 Memory Models

unit may perform transactions submitted to it out of order; hence, the execution unit must
not submit two or more transactions concurrently that are required to be ordered.

Memory Transactions

Processors In Memory Order

Instructions

Data

| u Memory

Figure 43—Data Memory Paths: Multiprocessor System

The memory accepts transactions, performs them, and then acknowledges their comple-
tion. Multiple memory operations may be in progress at any time and may be initiated in a
nondeterministic fashion in any order, provided that all transactions to a location preserve
the per-processor partial orders. Memory transactions may complete in any order. Once
initiated, all memory operations are performed atomically: loads from one location all see
the same value, and the result of stores are visible to all potential requestors at the same
instant.

The order of memory operations observed at a single locatiortotaborder that pre-
serves the partial orderings of each processor’s transactions to this address. There may be
many legal total orders for a given program’s execution.

8.4.3 The MEMBAR Instruction

MEMBAR serves two distinct functions in SPARC-V9. One variant of the MEMBAR, the
ordering MEMBAR, provides a way for the programmer to control the order of loads and
stores issued by a processor. The other variant of MEMBAR, the sequencing MEMBAR,
allows the programmer to explicitly control order and completion for memory operations.
Sequencing MEMBARSs are needed only when a program requires that the effect of an
operation become globally visible, rather than simply being scheduleboth forms are
bit-encoded into the instruction, a single MEMBAR can function both as an ordering
MEMBAR and as a sequencing MEMBAR.

2. Sequencing MEMBARSs are needed for some input/output operations, forcing stores into specialized
stable storage, context switching, and occasional other systems functions. Using a Sequencing MEM-
BAR when one is not needed may cause a degradation of performance. See Appendix J, “Program-
ming With the Memory Models,” for examples of their use.

8.4 The SPARC-V9 Memory Model 127

8.4.3.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a single
processor. Sets of loads and stores that appear before the MEMBAR in program order are
ordered with respect to sets of loads and stores that follow the MEMBAR in program
order. Atomic operations (LDSTUB(A), SWAP(A), CASA, and CASXA) are ordered by
MEMBAR as if they were both a load and a store, since they share the semantics of both.
An STBAR instruction, with semantics that are a subset of MEMBAR, is provided for
SPARC-V8 compatibility. MEMBAR and STBAR operate on all pending memory opera-
tions in the reorder buffer, independent of their address or ASI, ordering them with respect
to all future memory operations. This ordering applies only to memory-reference instruc-
tions issued by the processor issuing the MEMBAR. Memory-reference instructions
issued by other processors are unaffected.

The ordering relationships are bit-encoded as shown in table 21. For example, MEMBAR
01,6 written as ‘membar #LoadLoad ” in assembly language, requires that all load
operations appearing before the MEMBAR in program order complete before any of the
load operations following the MEMBAR in program order complete. Store operations are
unconstrained in this case. MEMBAR Q&#StoreStor e) is equivalent to the STBAR
instruction; it requires that the values stored by store instructions appearing in program
order prior to the STBAR instruction be visible to other processors prior to issuing any
store operations that appear in program order following the STBAR.

In table 21 these ordering relationships are specified by the sgmbol, which signifies
memory order. See Appendix D, “Formal Specification of the Memory Models,” for a for-
mal description of therarelationship.

Table 21—Ordering Relationships Selected by Mask

Ordering relation, Suggested Mask nmask
earlier < later assembler tag value bit #
Load <m Load #lLoadLoad 016 0
Store ¢m Load #StoreLoad 0244 1
Load <m Store #LoadStore 0446 2
Store €n Store #StoreStore 086 3

Selections may be combined to form more powerful barriers. For example, a MEMBAR
instruction with a mask of 09 (#LoadLoad | #StoreStore) orders loads with
respect to loads and stores with respect to stores, but does not order loads with respect to
stores or vice versa.

An ordering MEMBAR instruction does not guarantee any completion property; it only
introduces an ordering constraint. For example, a program should not assume that a store
preceding a MEMBAR instruction has completed following execution of the MEMBAR.

8.4.3.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations. There
are three sequencing MEMBAR options, each with a different degree of control and a dif-
ferent application.

128 8 Memory Models

Lookaside Batrrier:
Ensures that loads following this MEMBAR are from memory and not from a
lookaside into a write bufferLookaside Barrier requires that pending stores
issued prior to the MEMBAR be completed before any load from that address fol-
lowing the MEMBAR may be issued. Aookaside Barrier MEMBAR may be
needed to provide lock fairness and to support some plausible 1/0O location seman-
tics. See the example in J.14.1, “I/O Registers With Side Effects.”

Memory Issue Batrrier:

Ensures that all memory operations appearing in program order before the
sequencing MEMBAR complete before any any new memory operation may be
initiated. See the example in J.14.2, “The Control and Status Register (CSR).”

Synchronization Barrier:

Ensures that all instructions (memory reference and others) preceding the MEM-
BAR complete and the effects of any fault or error have become visible before any
instruction following the MEMBAR in program order is initiated.@ynchroniza-

tion Barrier MEMBAR fully synchronizes the processor that issues it.

Table 22 shows the encoding of these functions in the MEMBAR instruction.

Table 22—Sequencing Barrier Selected by Mask

Sequencing Assembler tag Mask cmaskbit
function value #
Lookaside Barrier #Lookaside 1046 0
Memory Issue Barrier #Memlssue 2046 1
Synchronization Barrier #Sync 40,6 2

8.4.4 Memory Models

The SPARC-V9 memory models are defined below in terms of order constraints placed
upon memory-reference instruction execution, in addition to the minimal set required for
self-consistency. These order constraints take the form of MEMBAR operations implicitly

performed following some memory-reference instructions.

8.4.4.1 Relaxed Memory Order (RMO)

Relaxed Memory Order places no ordering constraints on memory references beyond
those required for processor self-consistency. When ordering is required, it must be pro-
vided explicitly in the programs using MEMBAR instructions.

8.4.4.2 Partial Store Order (PSO)

Partial Store Order may be provided for compatibility with existing SPARC-V8 pro-
grams. Programs that execute correctly in the RMO memory model will execute correctly
in the PSO model.

8.4 The SPARC-V9 Memory Model 129

The rules for PSO are:
— Loads are blocking and ordered with respect to earlier loads.
— Atomic load-stores are ordered with respect to loads.

Thus, PSO ensures that:

— Each load and atomic load-store instruction behaves as if it were followed by a
MEMBAR with a mask value of Qa

— Explicit MEMBAR instructions are required to order store and atomic load-store
instructions with respect to each other.

8.4.4.3 Total Store Order (TSO)

Total Store Order must be provided for compatibility with existing SPARC-V8 pro-
grams. Programs that execute correctly in either RMO or PSO will execute correctly in the
TSO model.

The rules for TSO are:

— Loads are blocking and ordered with respect to earlier loads.

— Stores are ordered with respect to stores.

— Atomic load-stores are ordered with respect to loads and stores.
Thus, TSO ensures that:

— Each load instruction behaves as if it were followed by a MEMBAR with a mask
value of 05

— Each store instruction behaves as if it were followed by a MEMBAR with a mask
of 08

— Each atomic load-store behaves as if it were followed by a MEMBAR with a mask
of 0Dy,

8.4.5 Mode Control

The memory model is specified by the two-bit state in PSTATE.MM, described in 5.2.1.4,
“PSTATE_mem_model (MM).”

Writing a new value into PSTATE.MM causes subsequent memory reference instructions
to be performed with the order constraints of the specified memory model.

SPARC-V9 processors need not provide all three memory models; undefined values of
PSTATE.MM have implementation-dependent effects.

IMPL. DEP. #119: The effect of writing an unimplemented memory mode designation into
PSTATE.MM is implementation-dependent.

130 8 Memory Models

Implementation Note:

All SPARC-V9 implementations must provide TSO or a stronger model to maintain SPARC-V8
compatibility. An implementation may provide PSO, RMO, or neither.

Except when a trap enters RED_state, PSTATE.MM is left unchanged when a trap is
entered and the old value is stacked. When entering RED _state, the value of PSTATE.MM
is setto TSO.

8.4.6 Hardware Primitives for Mutual Exclusion

In addition to providing memory-ordering primitives that allow programmers to construct
mutual-exclusion mechanisms in software, SPARC-V9 provides three hardware primitives
for mutual exclusion:

— Compare and Swap (CASA, CASXA)
— Load Store Unsigned Byte (LDSTUB, LDSTUBA)
— Swap (SWAP, SWAPA)

Each of these instructions has the semantics of both a load and a store in all three memory
models. They are adlitomic, in the sense that no other store can be performed between the
load and store elements of the instruction. All of the hardware mutual exclusion operations
conform to the memory models and may require barrier instructions to ensure proper data
visibility.

When the hardware mutual-exclusion primitives address 1/O locations, the results are
implementation-dependent (impl. dep. #123). In addition, the atomicity of hardware
mutual-exclusion primitives is guaranteed only for processor memory references and not
when the memory location is simultaneously being addressed by an 1/O device such as a
channel or DMA (impl. dep. #120).

8.4.6.1 Compare and Swap (CASA, CASXA)

Compare-and-swap is an atomic operation which compares a value in a processor register
to a value in memory, and, if and only if they are equal, swaps the value in memory with
the value in a second processor register. Both 32-bit (CASA) and 64-bit (CASXA) opera-
tions are provided. The compare-and-swap operation is atomic in the sense that once
begun, no other processor can access the memory location specified until the compare has
completed and the swap (if any) has also completed and is potentially visible to all other
processors in the system.

Compare-and-swap is substantially more powerful than the other hardware synchroniza-
tion primitives. It has an infinite consensus number; that is, it can resolve, in a wait-free
fashion, an infinite number of contending processes. Because of this property, compare-
and-swap can be used to construct wait-free algorithms that do not require the use of
locks. See Appendix J, “Programming With the Memory Models,” for examples.

8.4 The SPARC-V9 Memory Model 131

8.4.6.2 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a processor register with a word in mem-
ory. Swap has a consensus number of two; that is, it cannot resolve more than two con-
tending processes in a wait-free fashion.

8.4.6.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the valygifiib the
addressed byte atomically. LDSTUB is the classic test-and-set instruction. Like SWAP, it
has a consensus number of two and so cannot resolve more than two contending processes
in a wait-free fashion.

8.4.7 Synchronizing Instruction and Data Memory

The SPARC-V9 memory models do not require that instruction and data memory images
be consistent at all times. The instruction and data memory images may become inconsis-
tent if a program writes into the instruction stream. As a result, whenever instructions are
modified by a program in a context where the data (that is, the instructions) in the memory
and the data cache hierarchy may be inconsistent with instructions in the instruction cache
hierarchy, some special programmatic action must be taken.

The FLUSH instruction will ensure consistency between the instruction stream and the
data references across any local caches for a particular doubleword value in the processor
executing the FLUSH. It will ensure eventual consistency across all caches in a multipro-
cessor system. The programmer must be careful to ensure that the modification sequence
is robust under multiple updates and concurrent execution. Since, in the general case,
loads and stores may be performed out of order, appropriate MEMBAR and FLUSH
instructions must be interspersed as needed to control the order in which the instruction
data is mutated.

The FLUSH instruction ensures that subsequent instruction fetches from the doubleword
target of the FLUSH by the processor executing the FLUSH appear to execute after any
loads, stores, and atomic load-stores issued by the processor to that address prior to the
FLUSH. FLUSH acts as a barrier for instruction fetches in the processor that executes it
and has the properties of a store with respect to MEMBAR operations.

FLUSH has no latency on the issuing processor; the modified instruction stream is imme-
diately availablé®

IMPL. DEP. #122: The latency between the execution of FLUSH on one processor and the point at
which the modified instructions have replaced outdated instructions in a multiprocessor is imple-
mentation-dependent.

If all caches in a system (uniprocessor or multiprocessor) have a unified cache consistency
protocol, FLUSH does nothing.

3. SPARC-V8 specified a five-instruction latency. Invalidation of instructions in execution in the instruc-
tion cache is likely to force an instruction-cache fault.

132 8 Memory Models

Use of FLUSH in a multiprocessor environment may cause unexpected performance deg-
radation in some systems, because every processor that may have a copy of the modified
data in its instruction cache must invalidate that data. In the worst case naive sgtem,
processors must invalidate the data. The performance problem is compounded by the dou-
bleword granularity of the FLUSH, which must be observed even when the actual invali-
dation unit is larger, for example, a cache line.

Programming Note:
Because FLUSH is designed to act on a doubleword, and because, on some implementations,
FLUSH may trap to system software, it is recommended that system software provide a user-call-
able service routine for flushing arbitrarily sized regions of memory. On some implementations,
this routine would issue a series of FLUSH instructions; on others, it might issue a single trap to
system software that would then flush the entire region.

A Instruction Definitions

A.1 Overview

This appendix describes each SPARC-V9 instruction. Related instructions are grouped
into subsections. Each subsection consists of these parts:

(1) Atable of the opcodes defined in the subsection with the values of the field(s) that
uniquely identify the instruction(s).

(2) An illustration of the applicable instruction format(s). In these illustrations, a dash
‘—’ indicates that the field iseservedfor future versions of the architecture and
shall be zero in any instance of the instruction. If a conforming SPARC-V9 imple-
mentation encounters nonzero values in these fields, its behavior is as defined in
6.3.11 on page 84. See Appendix |, “Extending the SPARC-V9 Architecture,” for
information about extending the SPARC-V9 instruction set.

(3) A list of the suggested assembly language syntax; the syntax notation is described
in Appendix G, “Suggested Assembly Language Syntax.”

(4) A description of the features, restrictions, and exception-causing conditions.

(5) A list of the exceptions that can occur as a consequence of attempting to execute
the instruction(s). Exceptions due to @struction_access_error, instruction_access
exception, instruction_access MMU_miss, async data error, Of internal_processor _
error, and interrupt requests are not listed, since they can occur on any instruction.
Also, any instruction that is not implemented in hardware shall generategan
instruction exception (orfo_exception_other exception withftt = 3(unimplemented_

FPop) for floating-point instructions) when it is executed.

This appendix does not include any timing information (in either cycles or clock time),
since timing is implementation-dependent.

Table 24 summarizes the instruction set; the instruction definitions follow the table.
Within table 24, throughout this appendix, and in Appendix E, “Opcode Maps,” certain
opcodes are marked with mnemonic superscripts. The superscripts and their meanings are
defined in table 23:

Table 23—Opcode Superscripts

Superscrip
t Meaning
D Deprecated instruction
P Privileged opcode
P.si Privileged action if bit 7 of the referenced ASl is zero
Pasr Privileged opcode if the referenced ASR register is privileged
Pupr Privileged action if PSTATE.PRIV = 0 and TICK.NPT =1

133

134

A Instruction Definitions

Table 24—Instruction Set

Opcode Name Page
ADD (ADDcc) Add (and modify condition codes) 137
ADDC (ADDCcc) Add with carry (and modify condition codes) 13)
AND (ANDcc) And (and modify condition codes) 184
ANDN (ANDNCcc) And not (and modify condition codes) 184
BPcc Branch on integer condition codes with prediction 148
BiccP Branch on integer condition codes 146
BPr Branch on contents of integer register with prediction 138
CALL Call and link 151
CASAPs Compare and swap word in alternate space 152
CASXAPs! Compare and swap doubleword in alternate space 152
DONEP Return from trap 157
FABS(s,d,q) Floating-point absolute value 164
FADD(s,d,q) Floating-point add 158
FBfcc® Branch on floating-point condition codes 14D
FBPfcc Branch on floating-point condition codes with prediction 143
FCMP(s,d,q) Floating-point compare 159
FCMPE(s,d,q) Floating-point compare (exception if unordered) 159
FDIV(s,d,q) Floating-point divide 165
FdMULq Floating-point multiply double to quad 164
FiTO(s,d,q) Convert integer to floating-point 163
FLUSH Flush instruction memory 167
FLUSHW Flush register windows 169
FMOV(s,d,q) Floating-point move 164
FMOV(s,d,q)cc Move floating-point register if condition is satisfied 188
FMOVR(s,d,q) Move f-p reg. if integer reg. contents satisfy condition 192
FMUL(s,d,q) Floating-point multiply 165
FNEG(s,d,q) Floating-point negate 164
FsMULd Floating-point multiply single to double 164
FSQRT(s,d,q) Floating-point square root 166
F(s,d,q)TOI Convert floating point to integer 161
F(s,d,q)TO(s,d,q) Convert between floating-point formats 162
F(s,d,q)TOx Convert floating point to 64-bit integer 161
FSUB(s,d,q) Floating-point subtract 15§
FxTO(s,d,q) Convert 64-bit integer to floating-point 1683
ILLTRAP lllegal instruction 170
IMPDEP1 Implementation-dependent instruction 171
IMPDEP2 Implementation-dependent instruction 171
JMPL Jump and link 172
LDDP Load doubleword 178
LDDAP: Pasi Load doubleword from alternate space 140
LDDF Load double floating-point 173
LDDFAPssi Load double floating-point from alternate space 176
LDF Load floating-point 173
LDFAPas! Load floating-point from alternate space 176
LDFSR Load floating-point state register lower 178

A.1 Overview

135

Table 24—Instruction Set Continued

Opcode Name Page
LDQF Load quad floating-point 173
LDQFAP:s! Load quad floating-point from alternate space 176
LDSB Load signed byte 178
LDSBAPs! Load signed byte from alternate space 180
LDSH Load signed halfword 178
LDSHAPs! Load signed halfword from alternate space 180
LDSTUB Load-store unsigned byte 187
LDSTUBAPs! Load-store unsigned byte in alternate space 183
LDSW Load signed word 178
LDSWAPss! Load signed word from alternate space 180
LDUB Load unsigned byte 178
LDUBA Pssi Load unsigned byte from alternate space 180
LDUH Load unsigned halfword 178
LDUHAPasi Load unsigned halfword from alternate space 180
LDUW Load unsigned word 178
LDUWA Pssi Load unsigned word from alternate space 180
LDX Load extended 178
LDXA Pasi Load extended from alternate space 180
LDXFSR Load floating-point state register 178
MEMBAR Memory barrier 186
MOVcc Move integer register if condition is satisfied 194
MOVr Move integer register on contents of integer register 108
MULScc® Multiply step (and modify condition codes) 202
MULX Multiply 64-bit integers 199
NOP No operation 204
OR (ORcc) Inclusive-or (and modify condition codes) 184
ORN (ORNCcc) Inclusive-or not (and modify condition codes) 184
POPC Population count 205
PREFETCH Prefetch data 204
PREFETCHA®s! Prefetch data from alternate space 206
RDASI Read ASI register 215
RDASR™sR Read ancillary state register 21%
RDCCR Read condition codes register 215
RDFPRS Read floating-point registers state register 215
RDPC Read program counter 215
RDPR’ Read privileged register 212
RDTICKPNeT Read TICK register 215
RDYP Read Y register 215
RESTORE Restore caller’s window 219
RESTORED Window has been restored 220
RETRYP Return from trap and retry 157
RETURN Return 217
SAVE Save caller's window 218
SAVEDP Window has been saved 22(
SDIVP (SDIVed) 32-bit signed integer divide (and modify condition codes) 154
SDIVX 64-bit signed integer divide 199

136 A Instruction Definitions
Table 24—Instruction Set Continued

Opcode Name Page
SETHI Set high 22 bits of low word of integer register 231
SIR Software-initiated reset 224
SLL Shift left logical 222
SLLX Shift left logical, extended 222
SMULP (SMULc®) Signed integer multiply (and modify condition codes) 200
SRA Shift right arithmetic 222
SRAX Shift right arithmetic, extended 2272
SRL Shift right logical 222
SRLX Shift right logical, extended 222
STB Store byte 230
STBAPs! Store byte into alternate space 23
STBARP Store barrier 225
STDP Store doubleword 230
STDAD: sl Store doubleword into alternate space 230
STDF Store double floating-point 224
STDFAMs! Store double floating-point into alternate space 2p8
STF Store floating-point 226
STFAPs! Store floating-point into alternate space 278
STFSR Store floating-point state register 226
STH Store halfword 230
STHAPs! Store halfword into alternate space 23p
STQF Store quad floating-point 224
STQFAPss! Store quad floating-point into alternate space 2p8
STW Store word 230
STWAPsI Store word into alternate space 23p
STX Store extended 230
STXAPss! Store extended into alternate space 282
STXFSR Store extended floating-point state register 226
SUB (SUBcc) Subtract (and modify condition codes) 234
SUBC (SUBCcc) Subtract with carry (and modify condition codes) 234
SWAP° Swap integer register with memory 23%
SWAPAD: Pasi Swap integer register with memory in alternate space 436
TADDcc (TADDccTVP) | Tagged add and modify condition codes (trap on overflow) 238
Tcc Trap on integer condition codes 241
TSUBcc (TSUBccTVY) Tagged subtract and modify condition codes (trap on overfloy) 239
UDIVP (UDIVccP) Unsigned integer divide (and modify condition codes) 154
UDIVX 64-bit unsigned integer divide 199
UMULP (UMULccP) Unsigned integer multiply (and modify condition codes) 200
WRASI Write ASI register 245
WRASR™ SR Write ancillary state register 245
WRCCR Write condition codes register 24%
WRFPRS Write floating-point registers state register 245
WRPR’ Write privileged register 243
WRYP Write Y register 245
XNOR (XNORcc) Exclusive-nor (and modify condition codes) 184
XOR (XORcc) Exclusive-or (and modify condition codes) 184

A.2 Add 137

A.2 Add
Opcode Op3 Operation
ADD 00 0000 Add
ADDcc 01 0000 Add and modify cc’s
ADDC 00 1000 Add with Carry
ADDCcc 01 1000 Add with Carry and modify cc’s
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
add regs1, reg_or_immregy
addcc regs1, reg_or_immregy
addc regs1, reg_or_immregy
addccc regs1, reg_or_immregy
Description:

ADD and ADDcc compute r{rs1] + r[rs2]” if i =0, or “r[rs]] + sign_ext6imm13” if
i =1, and write the sum intgrd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit caioc(C)
bit; that is, they computerfrsi] + r[rs2] + icc.c’ or “r[rs1] + sign_ext6éimm13 + icc.c’
and write the sum intdrd].

ADDcc and ADDCcc modify the integer condition codes (CicRand CCRxcc). Over-
flow occurs on addition if both operands have the same sign and the sign of the sum is dif-
ferent.

Programming Note:
ADDC and ADDCcc read the 32-bit condition codes’ carry bit (CIC&c), not the 64-bit condi-
tion codes’ carry bit (CCRcc.c).

V8 Compatibility Note:
ADDC and ADDCcc were named ADDX and ADDXcc, respectively, in SPARC-V8.

Exceptions:
(none)5

138 A Instruction Definitions

A.3 Branch on Integer Register with Prediction (BPr)

Register
Opcode rcond Operation contents test
— 000 Reserved —
BRZ 001 Branch on Register Zero rfrsl] =0
BRLEZ 010 Branch on Register Less Than or Equal to Zero rirs] <0
BRLZ 011 Branch on Register Less Than Zero rfrsl] <0
— 100 Reserved —
BRNZ 101 Branch on Register Not Zero rirsl] #0
BRGZ 110 Branch on Register Greater Than Zero rfrs] >0
BRGEZ 111 Branch on Register Greater Than or Equal to Zero rfrsl] =0
Format (2):
00 |a|0" rcond 011 |d1i6hi | p rsi di6lo
3130 29 28 27 25 24 22 21 20 19 18 14 13 0

* Although SPARC V9 implementations should cause an illegal_instruction exception when bit 28 = 1, many early implementations
ignored the value of this bit and executed the opcode as a BPrinstruction even if bit 28 = 1.

Suggested Assembly Language Syntax
brz {,a { .pt |,pn} regsy, label
briez {,a ¥{ ,pt |,pn} regsy, label
briz {,a {.pt |.pn } regsy, label
brnz {,a { ,pt |,pn } regsy, label
brgz {,a { .pt |.pn } regsy, label
brgez {,a ¥{ ,pt |,pn } regsy, label

Programming Note:

To set the annul bit for BPr instructions, appenad " to the opcode mnemonic. For example, use
“brz,a %i3 label” The preceding table indicates that th@™ is optional by enclosing it in
braces. To set the branch prediction kpt™append either ;pt " for predict taken or /pn ” for
predict not taken to the opcode mnemonic. If neithet “” nor “,pn " is specified, the assembler
shall default to ;p t".

Description:

These instructions branch based on the contentg®f]. They treat the register contents
as a signed integer value.

A BPr instruction examines all 64 bits dfrs1] according to thecondfield of the instruc-

tion, producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the
instruction causes a PC-relative, delayed control transfer to the address “PC + (4 * sign_
extd16hi[] d1619).” If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of
the annul bit. If the branch is not taken and the annul&itig 1, the delay instruction is
annulled (not executed).

A.3 Branch on Integer Register with Prediction (BPr) 139

The predict bit p) is used to give the hardware a hint about whether the branch is expected
to be taken. A 1 in th@ bit indicates that the branch is expected to be takdhindicates
that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are described fur-
ther in Chapter 6, “Instructions.”

Implementation Note:
If this instruction is implemented by tagging each register value with an N (negative) bit and Z
(zero) bit, the following table can be used to determineoifidis TRUE:

Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ Nor Z
BRGZ not (N or 2)

Exceptions:
illegal_instruction (if rcond= 000, or 10Q)

140

A Instruction Definitions

A.4 Branch on Floating-Point Condition Codes (FBfcc)

The FBfcc instructions are deprecated; they are provided only for compatibify

with previous versions of the architecture. They should not be used in new SPA
V9 software. It is recommended that the FBPfcc instructions be used in their pifice.

Opcode cond Operation fcc test
FBAP 1000 Branch Always 1
FBNP 0000 Branch Never (
FBUP 0111 Branch on Unordered y
FBGP 0110 Branch on Greater 5
FBUGP 0101 Branch on Unordered or Greater oJ
FBLP 0100 Branch on Less i
FBULP 0011 Branch on Unordered or Less otLU
FBLGP 0010 Branch on Less or Greater ot.G
FBNEP 0001 Branch on Not Equal &r Gor U
FBEP 1001 Branch on Equal E
FBUEP 1010 Branch on Unordered or Equal oEU
FBGEP 1011 Branch on Greater or Equal 0EG
FBUGE 1100 Branch on Unordered or Greater or Equal orBorU
FBLEP 1101 Branch on Less or Equal OE L
FBULEP 1110 Branch on Unordered or Less or Equal orfE or U
FBOP 1111 Branch on Ordered @& LorG
Format (2):
00 |a cond 110 disp22
3130 29 28 2524 2221

A.4 Branch on Floating-Point Condition Codes (FBfcc) 141

Suggested Assembly Language Syntax

fba {,a} label

fon {,a} label

fou {,a} label

fbg {,a} label

foug {,a} label

fol {,a} label

foul {,a} label

folg {,a} label

fone {,a} label (synonymfbnz)
fbe {,a} label (synonymfbz)
foue {,a} label

fbge {,a} label

fouge {,a} label

fble {,a} label

foule {,a} label

fbo {,a} label

Programming Note:
To set the annul bit for FBfcc instructions, appena " to the opcode mnemonic. For example, use
“fbl,a label” The preceding table indicates that the * is optional by enclosing it in braces .

Description:
Unconditional Branches (FBA, FBN)
If its annul field is 0, an FBN (Branch Never) instruction acts like a NOP. If its
annul field is 1, the following (delay) instruction is annulled (not executed) when
the FBN is executed. In neither case does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_extfisp29),” regardless of the value of the floating-point condi-
tion code bits. If the annul field of the branch instruction is 1, the delay instruction
is annulled (not executed). If the annul field is O, the delay instruction is executed.

Fcc-Conditional Branches
Conditional FBfcc instructions (except FBA and FBN) evaluate floating-point con-
dition code zeroftcO) according to theondfield of the instruction. Such evalua-
tion produces either a TRUE or FALSE result. If TRUE, the branch is taken, that
is, the instruction causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_extfisp29).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regard-
less of the value of the annul field. If a conditional branch is not taken and the
(annul) field is 1, the delay instruction is annulled (not executed). Note that the
annul bit has alifferent effect on conditional branches than it does on uncondi-
tional branches.

142 A Instruction Definitions

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, “Instructions.”

V8 Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare
operation and a floating-point branch (FBfcc, FBPfcc).

If FPRS.FEF = 0 or PSTATE.PEF =0, or if an FPU is not present, the FBfcc instruction is
not executed and instead, generates afisabled exception.

Exceptions:
fo_disabled

A.5 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) 143

A.5 Branch on Floating-Point Condition Codes with Prediction

(FBPfcc)
Opcode cond Operation fcc test
FBPA 1000 Branch Always
FBPN 0000 Branch Never
FBPU 0111 Branch on Unordered
FBPG 0110 Branch on Greater
FBPUG 0101 Branch on Unordered or Greater or®
FBPL 0100 Branch on Less
FBPUL 0011 Branch on Unordered or Less orLU
FBPLG 0010 Branch on Less or Greater oG
FBPNE 0001 Branch on Not Equal d Gor U
FBPE 1001 Branch on Equal
FBPUE 1010 Branch on Unordered or Equal (o](=0]
FBPGE 1011 Branch on Greater or Equal orEs
FBPUGE 1100 Branch on Unordered or Greater or Equal or Gor U
FBPLE 1101 Branch on Less or Equal OEL
FBPULE 1110 Branch on Unordered or Less or Equal orEor U
FBPO 1111 Branch on Ordered OEL or G
Format (2):
00 |a cond 101 [cclccO| p disp19
3130 29 28 25 24 22 21 20 19 18

Condition
ccl[] cco code
00 fccO
01 fccl
10 fcc2
11 fcc3

144

A Instruction Definitions

Suggested Assembly Language Syntax

fba {,a {.,pt |pn} %fcc n, label

fon {,a }{ .pt |pn} %fcc n, label

fou {,a }{,pt |pn} %fcc n, label

fbg {,a { .pt |pn} %fcc n, label

foug {,a { ,pt |,pn } %fcc n, label

fbl {,a }{.pt |pn} %fcc n, label

foul {,a {,pt |,pn} %fcc n, label

fblg {,a {.pt |.pn} %fcc n, label

fone {,a { ,pt |,pn } %fcc n, label (synonymfbnz)
fbe {,a }{.pt |pn} %fcc n, label (synonymfbz)
foue {,a { ,pt |,pn} %fcc n, label

fbge {,a { .,pt |.pn } %fcc n, label

fouge {,a { .pt |,pn } %fcc n, label

fble {,a { .pt |.pn} %fcc n, label

foule {,a H{.pt |,pn} %fcc n, label

fbo {,a }{.pt |pn} %fcc n, label

Programming Note:

To set the annul bit for FBPfcc instructions, appera ™ to the opcode mnemonic. For example,
use ‘fbl,a %fcc3,label . The preceding table indicates that tha “ is optional by enclos-
ing it in braces. To set the branch prediction bit, append eithegr " (for predict taken) or pn”

(for predict not taken) to the opcode mnemonic. If neithgat “” nor “,pn ” is specified, the
assembler shall default tgp' t”. To select the appropriate floating-point condition code, include
"%fccO ", "%fccl ", "%fcc2" |, or "%fcc3 " before the label.

Description:

Unconditional Branches (FBPA, FBPN)

If its annul field is 0, an FBPN (Floating-Point Branch Never with Prediction)
instruction acts like a NOP. If the Branch Never’s annul field is 0, the following
(delay) instruction is executed; if the annul field is 1, the following instruction is
annulled (not executed). In no case does an FBPN cause a transfer of control to
take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional
PC-relative, delayed control transfer to the address “PCxqign_extdispl9).”

If the annul field of the branch instruction is 1, the delay instruction is annulled
(not executed). If the annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches

Conditional FBPfcc instructions (except FBPA and FBPN) evaluate one of the four
floating-point condition codeddcO, fccl, fccz, fccd as selected bgcOandccl,
according to theondfield of the instruction, producing either a TRUE or FALSE
result. If TRUE, the branch is taken, that is, the instruction causes a PC-relative,
delayed control transfer to the address “PC @&gn_extdispl9).” If FALSE,

the branch is not taken.

A.5 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) 145

If a conditional branch is taken, the delay instruction is always executed, regard-
less of the value of the annul field. If a conditional branch is not taken and the
(annul) field is 1, the delay instruction is annulled (not executed). Note that the
annul bit has alifferent effect on conditional branches than it does on uncondi-
tional branches.

The predict bit p) is used to give the hardware a hint about whether the branch is
expected to be taker\ 1 in thep bit indicates that the branch is expected to be
taken. A O indicates that the branch is expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, “Instructions.”

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, an FBPfcc instruction is
not executed and instead, generates afisabled exception.

V8 Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare

operation and a floating-point branch (FBfcc, FBPfcc).

Exceptions:
fo_disabled

146

A Instruction Definitions

A.6 Branch on Integer Condition Codes (Bicc)

The Bicc instructions are deprecated; they are provided only for compatibility

previous versions of the architecture. They should not be used in new SPARC/9

software. It is recommended that the BPcc instructions be used in their place.

L

Opcode | cond Operation icc test
BAP 1000 | Branch Always 1
BNP 0000 | Branch Never (
BNEP 1001 | Branch on Not Equal not Z
BEP 0001 | Branch on Equal 2
BGP 1010 | Branch on Greater not (Z or (N xor V))
BLEP 0010 | Branch on Less or Equal oZ (N xor V)
BGEP 1011 | Branch on Greater or Equal not (N xor V)
BLP 0011 | Branch on Less Xor V
BGUP 1100 | Branch on Greater Unsigned not (Cor 2)
BLEUP 0100 | Branch on Less or Equal Unsigned orZ
BCCP 1101 | Branch on Carry Cle#Greater than or Equal, Unsigned not C
BCS 0101 | Branch on Carry Set (Less than, Unsigned)
BPOS 1110 | Branch on Positive not N
BNEGP | 0110 | Branch on Negative)
BvCP 1111 | Branch on Overflow Clear not V
BvSP 0111 | Branch on Overflow Set
Format (2):
00 |a cond 010 disp22
3130 29 28 25 24 22 21 0
Suggested Assembly Language Syntax

ba{,a} label

bn{,a} label

bne{,a} label (synonymbnz)

be{,a} label (synonymbz)

bg{,a} label

ble{,a} label

bge{,a} label

bl{,a} label

bgu{,a} label

bleu{,a} label

bccf,a} label (synonymbgeu)

bcs{,a} label (synonymbilu)

bpos{,a} label

bneg{,a} label

bvc{,a} label

bvs{,a} label

A.6 Branch on Integer Condition Codes (Bicc) 147

Programming Note:
To set the annul bit for Bicc instructions, append “ to the opcode mnemonic. For example, use
“bgu,a label” The preceding table indicates that the * is optional by enclosing it in braces.

Description:

Unconditional Branches (BA, BN)
If its annul field is 0, a BN (Branch Never) instruction acts like a NOP. If its annul
field is 1, the following (delay) instruction is annulled (not executed). In neither
case does a transfer of control take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer
to the address “PC + (4 sign_ext(lisp22).” If the annul field of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul field is
0, the delay instruction is executed.

Icc-Conditional Branches
Conditional Bicc instructions (all except BA and BN) evaluate the 32-bit integer
condition codesi¢c), according to thecond field of the instruction, producing
either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruc-
tion causes a PC-relative, delayed control transfer to the address “P&€sigd
ext(disp29).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless
of the value of the annul field. If a conditional branch is not taken and ta@nul)

field is 1, the delay instruction is annulled (not executed). Note that the annul bit
has adifferent effect on conditional branches than it does on unconditional
branches.

Annulment, delay instructions, and delayed control transfers are described further
in Chapter 6, “Instructions.”

Exceptions:
(none)

148

A Instruction Definitions

A.7 Branch on Integer Condition Codes with Prediction (BPcc)

Opcode | cond Operation icc test
BPA 1000 | Branch Always
BPN 0000 | Branch Never
BPNE 1001 | Branch on Not Equal not Z
BPE 0001 | Branch on Equal
BPG 1010| Branch on Greater not (Z or (N xor V))
BPLE 0010 | Branch on Less or Equal OZ (N xor V)
BPGE 1011| Branch on Greater or Equal not (N xor V)
BPL 0011 | Branch on Less kor V
BPGU 1100| Branch on Greater Unsigned not (Cor 2)
BPLEU | 0100| Branch on Less or Equal Unsigned orZ
BPCC 1101| Branch on Carry Cle@sreater Than or Equal, Unsigned not C
BPCS 0101| Branch on Carry Set (Less than, Unsigned)
BPPOS | 1110, Branch on Positive not N
BPNEG | 0110| Branch on Negative
BPVC 1111 | Branch on Overflow Clear not V
BPVS 0111| Branch on Overflow Set
Format (2):
00 |a cond 001 [cclccO| p disp19
3130 29 28 25 24 22 21 20 19 18

Condition
ccl[] cco code
00 icc
01 —
10 Xcc
11 —

A.7 Branch on Integer Condition Codes with Prediction (BPcc) 149

Suggested Assembly Language Syntax
ba{,a { .pt |.pn} i_or_x_cc label
bn{,a { .pt |,pn} i_or_x_cc label (or: iprefetch label)
bne{,a { .pt |,pn} i_or_x_cc label (synonymbnz)
be{,a { .pt |pn} i_or_x_cc label (synonymbz)
bg{.a { .pt |.pn} i_or_x_cc label
ble {,a { .,pt |.pn} i_or_x_cc label
bge{,a { .pt |.pn} i_or_x_cc label
bl {,a {.pt |pn} i_or_x_cc label
bgu{,a H .pt |.pn} i_or_x_cc label
bleu {,a { ,pt |,pn } i_or_x_cc label
bce {,a { .pt |.pn} i_or_x_cc label (synonymbgeu)
bes{,a { .pt |.pn} i_or_x_cc label (synonymblu)
bpos{,a X .pt |.pn} i_or_x_cc label
bneg{,a { ,pt |,pn} i_or_x_cc label
bve {,a { .pt |.pn} i_or_x_cc label
bvs {,a { ,pt |,pn} i_or_x_cc label

Programming Note:

To set the annul bit for BPcc instructions, apperal ™ to the opcode mnemonic. For example, use
“bgu,a %icc,label . The preceding table indicates that tha ™ is optional by enclosing it in
braces. To set the branch prediction bit, append to an opcode mnemonic githérfor predict
taken or ;pn " for predict not taken. If neither,ppt " nor “,pn " is specified, the assembler shall
default to ,p t”. To select the appropriate integer condition code, incluti@ct " or “%xcc”
before the label.

Description:
Unconditional Branches (BPA, BPN)

A BPN (Branch Never with Prediction) instruction for this branch type2= 1) is

used in SPARC-V9 as an instruction prefetch; that is, the effective address
(PC + (4x sign_ext@ispl9)) specifies an address of an instruction that is expected
to be executed soon. The processor may use this information to begin prefetching
instructions from that address. Like the PREFETCH instruction, this instruction
may be treated as a NOP by an implementation. If the Branch Never’s annul field
is 1, the following (delay) instruction is annulled (not executed). If the annul field

is 0, the following instruction is executed. In no case does a Branch Never cause a
transfer of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative,
delayed control transfer to the address “PC «&€ign_extfisp19)).” If the annul

field of the branch instruction is 1, the delay instruction is annulled (not executed).
If the annul field is 0, the delay instruction is executed.

Conditional Branches

Conditional BPcc instructions (except BPA and BPN) evaluate one of the two inte-
ger condition codeddc or xco), as selected bgcOandccl, according to theond
field of the instruction, producing either a TRUE or FALSE result. If TRUE, the

150

A Instruction Definitions

branch is taken; that is, the instruction causes a PC-relative, delayed control trans-
fer to the address “PC + (4 sign_extflisp19).” If FALSE, the branch is not
taken.

If a conditional branch is taken, the delay instruction is always executed regardless
of the value of the annul field. If a conditional branch is not taken and ta@nul)

field is 1, the delay instruction is annulled (not executed). Note that the annul bit
has adifferent effect for conditional branches than it does for unconditional
branches.

The predict bit p) is used to give the hardware a hint about whether the branch is
expected to be take\ 1 in the p bit indicates that the branch is expected to be
taken; a O indicates that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are
described further in Chapter 6, “Instructions.”

Exceptions:

illegal_instruction (ccl [] ccO= 01, or 11,

A.8 Call and Link

151

A.8 Call and Link

Opcode op Operation

CALL 01 Call and Link

Format (1):

01 disp30
3130 29 0
Suggested Assembly Language Syntax

call label

Description:

The CALL instruction causes an unconditional, delayed, PC-relative control transfer to
address PC + (4 sign_ext@isp30). Since the word displacementigp3Q field is 30 bits
wide, the target address lies within a range of'+4@ +23! — 4 bytes. The PC-relative dis-
placement is formed by sign-extending the 30-bit word displacement field to 62 bits and
appending two low-order zeros to obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the
CALL, into r[15] (outregister 7). The high-order 32-bits of the PC value stored1B]

are implementation-dependent when PSTATE.AM = 1 (impl. dep. #125). The value writ-
ten intor[15] is visible to the instruction in the delay slot.

Exceptions:
(none)

152 A Instruction Definitions

A.9 Compare and Swap

Opcode op3 Operation
CASAPss! 111100 | Compare and Swap Word from Alternate space
CASXAMs | 111110 Compare and Swap Extended from Alternate space

Format (3):
11 rd op3 rsi i=0 imm_asi rs2
11 rd op3 rsi i=1 — rs2
3130 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
casa [regs1] Imm_asj reggo, regy
casa [regsy] %0asi, reggo, regy
casxa [regs1] Imm_asj reggo, regy
casxa [regs1] %asi, reggo, regy
Description:

These instructions are used for synchronization and memory updates by concurrent pro-
cesses. Uses of compare-and-swap include spin-lock operations, updates of shared
counters, and updates of linked-list pointers. The latter two can use wait-free (nonlocking)
protocols.

The CASXA instruction compares the value in registgs2] with the doubleword in
memory pointed to by the doubleword address[is1]. If the values are equal, the value
in r[rd] is swapped with the doubleword pointed to by the doubleword addre$siyy. If
the values are not equal, the contents of the doubleword pointedfodiy replaces the
value inr[rd], but the memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of registes?] with a word in
memory pointed to by the word addresgjrsl]. If the values are equal, the low-order 32

bits of register[rd] are swapped with the contents of the memory word pointed to by the
address im[rs1] and the high-order 32 bits of registgrd] are set to zero. If the values are

not equal, the memory location remains unchanged, but the zero-extended contents of the
memory word pointed to bi[rs1] replace the low-order 32 bits ofrd] and the high-order

32 bits of register[rd] are set to zero.

A compare-and-swap instruction comprises three operations: a load, a compare, and a
swap. The overall instruction is atomic; that is, no intervening interrupts or deferred traps
are recognized by the processor, and no intervening update resulting from a compare-and-
swap, swap, load, load-store unsigned byte, or store instruction to the doubleword contain-
ing the addressed location, or any portion of it, is performed by the memory system.

A compare-and-swap operation doest imply any memory barrier semantics. When
compare-and-swap is used for synchronization, the same consideration should be given to
memory barriers as if a load, store, or swap instruction were used.

A.9 Compare and Swap 153

A compare-and-swap operation behaves as if it performs a store, either of a new value
from r[rd] or of the previous value in memory. The addressed location must be writable,
even if the values in memory ands2] are not equal.

If i =0, the address space of the memory location is specified imtie asifield; if i = 1,
the address space is specified in the ASI register.

A mem_address_not_aligned exception is generated if the address|irs1] is not properly
aligned. CASXA and CASA causemivileged_action exception if PSTATE.PRIV =0 and
bit 7 of the ASlI is zero.

The coherence and atomicity of memory operations between processors and 1/O0 DMA
memory accesses are implementation-dependent (impl. dep #120).

Implementation Note:
An implementation might cause an exception due to an error during the store memory access, even
though there was no error during the load memory access.

Programming Note:
Compare and Swap (CAS) and Compare and Swap Extended (CASX) synthetic instructions are
available for “big endian” memory accesses. Compare and Swap Little (CASL) and Compare and
Swap Extended Little (CASXL) synthetic instructions are available for “little endian” memory
accesses. See G.3, “Synthetic Instructions,” for these synthetic instructions’ syntax.

The compare-and-swap instructions do not affect the condition codes.

Exceptions:
privileged_action
mem_address_not_aligned
data_access_exception
data_access MMU_miss
data_access_protection
data_access_error
async_data_error

154 A Instruction Definitions

A.10 Divide (64-bit / 32-bit)

The UDIV, UDIVcce, SDIV, and SDIVcc instructions are deprecated; they are pri§-
vided only for compatibility with previous versions of the architecture. They sho
not be used in new SPARC-V9 software. It is recommended that the UDIVX afd
SDIVX instructions be used in their place.

Opcode op3 Operation
uDIVP 001110 | Unsigned Integer Divide
SDIVP 001111 | Signed Integer Divide

uUDIVccP 011110 | Unsigned Integer Divide and modify cc’s
SDived® 011111 | Signed Integer Divide and modify cc’s

Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
udiv reggq, reg_or_imm, reg
sdiv regsq, reg_or_imm, reg
udivce regg1, reg_or_imm, reg
sdivce regsq, reg_or_imm, reg
Description:

The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If
i =0, they compute “(Y[] lower 32 bits of [rs1]) + lower 32 bits of frs2].” Otherwise
(i.e., if i = 1), the divide instructions compute “(¥ lower 32 bits of [rs1]) + lower 32
bits ofsign_ext6imm13.” In either case, if overflow does not occur, the less significant 32
bits of the integer quotient are sign-or zero-extended to 64 bits and are writtdindjto

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide oper-
ation.

Unsigned Divide:

Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword dividend
(Y [] lower 32 bits of frs1]) and an unsigned integer word divisdower 32 bits of [rs2]

or lower 32 bits ofsign_ext6éimm13) and computes an unsigned integer word quotient
(r[rd]). Immediate values isimml13are in the ranges 0.:2-1 and 22— 2'2,.2%2—1 for
unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero .

A.10 Divide (64-bit / 32-bit) 155

Programming Note:
Therational quotient is the infinitely precise result quotient. It includes both the integer part and
the fractional part of the result. For example, the rational quotient of 11/4 =2.75 (Integer part = 2,
fractional part =.75).

The result of an unsigned divide instruction can overflow the low-order 32 bits of the des-
tination register[rd] under certain conditions. When overflow occurs the largest appropri-
ate unsigned integer is returned as the quotient[rd]. The condition under which
overflow occurs and the value returned jrd] under this condition is specified in the fol-
lowing table.

Table 25—UDIV / UDIVcc Overflow Detection and Value Returned

Condition under which overflow occurs Value returned inr[rd]
32
. . 30 2°c-1
Rational quotient 2 (0000 0000 FFFF FFR)

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written into reg-
isterr[rd].

UDIV does not affect the condition code bits. UDIVcc writes the integer condition code
bits as shown in the following table. Note that negative (N) and zero (Z) are set according
to the value of[rd] after it has been set to reflect overflow, if any.

Bit UDIVce
icc.N | Setifr[rd]<31>=1
icc.Zz | Setifr[rd]<31:0> =0
icc.V | Set if overflow per table 2%
icc.C | Zero
xccN | Setifr[rd]<63>=1
xceZ | Setifr[rd]<63:0>=0
xccV | Zero
xccC | Zero

Signed Divide:

Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividendi¢wer
32 bits of frs1]) and a signed integer word divisdo{ver 32 bits of frs2] or lower 32 bits
of sign_extéimm13) and computes a signed integer word quotignd]).

Signed division rounds an inexact quotient toward zero. For example 4-&quals the
rational quotient of —1.75, which rounds to —1 (not —2) when rounding toward zero.

The result of a signed divide can overflow the low-order 32 bits of the destination register
r[rd] under certain conditions. When overflow occurs the largest appropriate signed inte-
ger is returned as the quotientifrd]. The conditions under which overflow occurs and
the value returned irfrd] under those conditions are specified in the following table.

156

A Instruction Definitions

Table 26—SDIV / SDIVcc Overflow Detection and Value Returned

Condition under which overflow occurs

Value returned inr[rd]

Rational quotieng 231

2311
(0000 0000 7FFF FFRE)

Rational quotient -231-1

_231
(FFFF FFFF 8000 00QQ)

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into reg-

isterr[rd].

SDIV does not affect the condition code bits. SDIVcc writes the integer condition code
bits as shown in the following table. Note that negative (N) and zero (Z) are set according

to the value of[rd] after it has been set to reflect overflow, if any.

Bit SDIVce

iccN | Setifr[rd]<31>=1

icc.Z | Setifr[rd]<31:0> =0

icc.V | Setif overflow per table 26

icc.C | Zero

xccN | Setifr[rd]<63]>=1

xccZ | Setifr[rd]<63:0>=0

xccV | Zero

xccC | Zero

Exceptions:
division_by zero

A.11 DONE and RETRY 157

A.11 DONE and RETRY

Opcode op3 fcn Operation
DONEP 111110 0 Return from Trap (skip trapped instruction)
RETRYP 111110 1 Return from Trap (retry trapped instruction)
— 111110 | 2..31| Reserved
Format (3):
10 fcn op3 —
3130 29 25 24 19 18 0
Suggested Assembly Language Syntax
done
retry
Description:

The DONE and RETRY instructions restore the saved state from TSTATE (CWP, ASI,
CCR, and PSTATE), set PC and nPC, and decrement TL.

The RETRY instruction resumes execution with the trapped instruction by setting
PC~ TPCJTL] (the saved value of PC on trap) and nRONPCJ[TL] (the saved value of
nPC on trap).

The DONE instruction skips the trapped instruction by setting-PIONPC|[TL] and
NPC— TNPC[TL]+4.

Execution of a DONE or RETRY instruction in the delay slot of a control-transfer instruc-
tion produces undefined results.

Programming Note:
The DONE and RETRY instructions should be used to return from privileged trap handlers.

Exceptions:
privileged_opcode
illegal_instruction (if TL = 0 orfcn=2..31)

158 A Instruction Definitions

A.12 Floating-Point Add and Subtract

Opcode op3 opf Operation
FADDs 11 0100 001000001 Add Single
FADDd 110100, 001000010 Add Double
FADD(q 110100| 001000011 Add Quad
FSUBs 110100, 001000101 Subtract Single
FSUBd 110100; 001000110 Subtract Double
FSUBq 110100, 001000111 Subtract Quad

Format (3):
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax
fadds fregsy, fregsy, fregq
faddd fregsy, fregsy, fregy
faddq fregsy, fregsy, fregq
fsubs fregsy, fregsy, fregy
fsubd fregsy, fregsy, fregq
fsubq fregsy, fregsy, fregy
Description:

The floating-point add instructions add the floating-point register(s) specified bglhe
field and the floating-point register(s) specified by tb2field, and write the sum into the
floating-point register(s) specified by tiukefield.

The floating-point subtract instructions subtract the floating-point register(s) specified by
thers2field from the floating-point register(s) specified by tsé field, and write the dif-
ference into the floating-point register(s) specified bydHesId.

Rounding is performed as specified by the FSR.RD field.

Exceptions:
fp_disabled
fo_exception_ieee_754 (OF, UF, NX, NV)
fo_exception_other (invalid_fp_register (only FADDQ and FSUBQ))

A.13 Floating-Point Compare 159
A.13 Floating-Point Compare
Opcode op3 opf Operation
FCMPs 11 0101] 00101 000L Compare Single
FCMPd 110101 001010010 Compare Double
FCMPq 110101} 001010011 Compare Quad
FCMPEs | 110101 001010101 Compare Single and Exception if Unordered
FCMPEd | 110101 001010110 Compare Double and Exception if Unordered
FCMPEq | 110101 001010111 Compare Quad and Exception if Unordefed
Format (3):
10 000 |cclfccO op3 rsl opf rs2
31 30 29 27 26 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax
fcmps %fcc n, fregg, fregss
fcmpd %fcc n, fregsy, fregso
fcmpq %fcc n, freggq, fregso
fcmpes %fcc n, freggq, fregso
fcmped %fce n, freggq, fregsy
fcmpeq %fcc n, fregsy, fregso
Condition
ccl[] cco code
00 fccO
01 fccl
10 fcc2
11 fcc3
Description:

These instructions compare the floating-point register(s) specified glfield with the
floating-point register(s) specified by th& field, and set the selected floating-point con-
dition code {cc n) according to the following table:

Relation

fregs; = fregrss
fregs1 < fregyso

fregrsg > fregrs2
fregs1 ? fregs, (Unordered

fcc value
0

1
2
3

The “?” in the above table indicates that the comparison is unordered. The unordered con-
dition occurs when one or both of the operands to the compare is a signaling or quiet NaN.

160 A Instruction Definitions

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEQ)
instructions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signaling NaN.

V8 Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare
operation and a floating-point branch (FBfcc, FBPfcc).

V8 Compatibility Note:
SPARC-V8 floating-point compare instructions are required to have a zero irfrdjefield. In
SPARC-V9, bits 26 and 25 of tigrd] field are used to specify the floating-point condition code to
be set. Legal SPARC-V8 code will work on SPARC-V9 because the zeroes nfrtfdield are
interpreted agccO , and the FBfcc instruction branches basedcofl .

Exceptions:
fp_disabled
fo_exception_ieee_754 (NV)
fo_exception_other (invalid_fp_register (FCMPq, FCMPE(q only))

A.14 Convert Floating-Point to Integer 161

A.14 Convert Floating-Point to Integer

Opcode op3 opf Operation
FsTOXx 110100, 010000001 Convert Single to 64-bit Integer
FdTOx 110100 010000010 Convert Double to 64-bit Integer
FgQTOXx 11 0100; 010000011 Convert Quad to 64-bit Intege

=

FsTOi 110100 011010001 Convert Single to 32-bit Integéer
FdTOIi 110100 011010010 Convert Double to 32-bit Integer
FqTOi 110100, 011010011 Convert Quad to 32-bit Integer
Format (3):
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax
fstox fregso fregy
fdtox fregso fregy
fgtox fregso fregy
fstoi fregso fregy
fdtoi fregso fregy
fgtoi fregso fregy
Description:

FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point regis-
ter(s) specified bys2 to a 64-bit integer in the floating-point register(s) specifiediby

FsTOI, FdTOI, and FgTOi convert the floating-point operand in the floating-point regis-
ter(s) specified bys2 to a 32-bit integer in the floating-point register specifieddby

The result is always rounded toward zero; that is, the rounding direction (RD) field of the
FSR register is ignored.

If the floating-point operand’s value is too large to be converted to an integer of the speci-
fied size, or is a NaN or infinity, an invalid (NV) exception occurs. The value written into
the floating-point register(s) specified ty/in these cases is defined in B.5, “Integer Over-
flow Definition.”

Exceptions:
fp_disabled
fo_exception_ieee_754 (NV, NX)
fo_exception_other (invalid_fp_register (FQTOI, FQTOX only))

162

A Instructio

n Definitions

A.15 Convert Between Floating-Point Formats

Opcode op3 opf Operation
FsTOd 11 0100; 011001001 Convert Single to Douple
FsTOq 110100 011001101 Convert Single to Quafd
FdTOs 11 0100; 011000110 Convert Double to Single
FdTOq | 110100/ 011001110 Convert Double to Quad
FgTOs 110100 011000111 Convert Quad to Single
FgTOd | 110100 011001011 Convert Quad to Double
Format (3):
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax
fstod fregso fregy
fstoq fregso, fregy
fdtos fregso fregy
fdtoq fregso, fregy
fgtos fregso fregy
fgtod fregso, fregy
Description:

These instructions convert the floating-point operand in the floating-point register(s) spec-
ified by rs2to a floating-point number in the destination format. They write the result into
the floating-point register(s) specified fialy

Rounding is performed as specified by the FSR.RD field.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can raise OF, UF,
and NX exceptions. FdTOq, FsTOq, and FsTOd (the “widening” conversion instructions)
cannot.

Any of these six instructions can trigger an NV exception if the source operand is a signal-
ing NaN.

B.2.1, “Untrapped Result in Different Format from Operands,” defines the rules for con-
verting NaNs from one floating-point format to another.

Exceptions:
fp_disabled
fo_exception_ieee_754 (OF, UF, NV, NX)
fo_exception_other (invalid_fp_register) (FSTOq, FATOq, FqTOs, FqTOd)

A.16 Convert Integer to Floating-Point 163

A.16 Convert Integer to Floating-Point

Opcode op3 opf Operation
FxTOs 11 0100 010000100 Convert 64-bit Integer to Single
FxTOd 11 0100 01000 1000 Convert 64-bit Integer to Double
FXTOq 11 0100 010001100 Convert 64-bit Integer to Quad
FiTOs 11 0100 011000100 Convert 32-bit Integer to Single
FiTOd 11 0100 011001000, Convert 32-bit Integer to Double
FiTOq 11 0100 011001100, Convert 32-bit Integer to Quad

Format (3):

10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Suggested Assembly Language Syntax
fxtos fregso fregy
fxtod fregso fregy
fxtoq fregso fregy
fitos fregso fregy
fitod fregso fregy
fitoq fregso fregy

Description:

FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-point
register(s) specified bys2 into a floating-point number in the destination format. The
source register, floating-point register(s) specifiedd® must be an even-numbered (that

is, double-precision) floating-point register.

FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point reg-
ister(s) specified bys2 into a floating-point number in the destination format. All write
their result into the floating-point register(s) specifieady

FiTOs, FxXTOs, and FxTOd round as specified by the FSR.RD field.

Exceptions:
fp_disabled
fo_exception_ieee_754 (NX (FITOs, FXTOs, FXTOd only))
fo_exception_other (invalid_fp_register (FiTOq, FXTOQq only))

164 A Instruction Definitions

A.17 Floating-Point Move, Negate, and Absolute Value

Opcode op3 opf Operation
FMOVs | 110100| 000000001 Move Single
FMOVd | 110100, 000000010 Move Double
FMOVqg | 110100| 000000011 Move Quad

|
FNEGs 110100/ 000000101 Negate Single
FNEGd | 110100 000000110 Negate Double
FNEGq | 110100, 00000011f Negate Quad
FABSs 110100| 000001001 Absolute Value Single
FABSd 110100, 00000 101p Absolute Value Double
FABSq 110100, 000001011 Absolute Value Quad
Format (3):
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax
fmovs frego, fregy
fmovd fregso, fregy
fmovq frego, fregy
fnegs fregso, fregy
fnegd frego, fregy
fnegq fregsy, fregy
fabss frego, fregy
fabsd fregso, fregy
fabsq frego, fregy
Description:

The single-precision versions of these instructions copy the contents of a single-precision
floating-point register to the destination. The double-precision forms copy the contents of
a double-precision floating-point register to the destination. The quad-precision versions
copy a quad-precision value in floating-point registers to the destination.

FMOQV copies the source to the destination unaltered.

FNEG copies the source to the destination with the sign bit complemented.
FABS copies the source to the destination with the sign bit cleared.

These instructions do not round.

Exceptions:
fp_disabled
fo_exception_other (invalid_fp_register(FMOV(q, FNEG(q, FABSq only))

A.18 Floating-Point Multiply and Divide 165

A.18 Floating-Point Multiply and Divide

Opcode op3 opf Operation
FMULs 11 0100| 001001001 Multiply Single
FMULd 110100| 001001010 Multiply Double
FMULq 110100| 001001011 Multiply Quad
FsMULd 11 0100| 001101001 Multiply Single to Doublg
FdMUL(q 110100| 001101110 Multiply Double to Quad

FDIVs 11 0100| 001001101 Divide Single
FDIvd 110100| 001001110 Divide Double
FDIVq 110100, 001001111 Divide Quad
Format (3):
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax
fmuls fregsy, fregsy, fregy
fmuld fregsy, fregsy, fregy
fmulg fregsy, fregsy, fregy
fsmuld fregsy, fregsy, fregy
fdmulq fregsy, fregsy, fregy
fdivs fregsy, fregsy, fregy
fdivd fregsy, fregsy, fregy
fdivqg fregsy, fregsy, fregq
Description:

The floating-point multiply instructions multiply the contents of the floating-point regis-
ter(s) specified by thes1field by the contents of the floating-point register(s) specified by
thers2 field, and write the product into the floating-point register(s) specified bydhe
field.

The FsMULJ instruction provides the exact double-precision product of two single-preci-
sion operands, without underflow, overflow, or rounding error. Similarly, FdAMULq pro-
vides the exact quad-precision product of two double-precision operands.

The floating-point divide instructions divide the contents of the floating-point register(s)
specified by thesl field by the contents of the floating-point register(s) specified by the
rs2field, and write the quotient into the floating-point register(s) specified by fredd.

Rounding is performed as specified by the FSR.RD field.

Exceptions:
fp_disabled
fo_exception_ieee_754 (OF, UF, DZ (FDIV only), NV, NX)
fo_exception_other (invalid_fp_register (FMULQ, FAMULQq, and FDIVQq only))

166 A Instruction Definitions

A.19 Floating-Point Square Root

Opcode op3 opf Operation
FSQRTs 1101000 000101001 Square Root Single
FSQRTd 110100, 000101010 Square Root Doublg
FSQRTq 110100] 000101011 Square Root Quad

Format (3):
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax

fsgrts fregso fregy
fsqrtd freg.so fregy
fsgrtq fregso fregy

Description:

These instructions generate the square root of the floating-point operand in the floating-
point register(s) specified by thie2 field, and place the result in the destination floating-
point register(s) specified by thefield.

Rounding is performed as specified by the FSR.RD field.

Implementation Note:
Seelmplementation Characteristics of Current SPARC-V9-based Products, Revisjan dgu-
ment available from SPARC International, for information on whether the FSQRT instructions are
implemented in hardware or software in the various SPARC-V9 implementations.

Exceptions:
fp_disabled
fo_exception_ieee_754 (IEEE_754_exception (NV, NX))
fo_exception_other (invalid_fp_register (FSQRTQ))

A.20 Flush Instruction Memory 167

A.20 Flush Instruction Memory

Opcode op3 Operation
FLUSH 111011 | Flush Instruction Memory

Format (3):

10 — op3 rsl i=0 — rs2

10 — op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Suggested Assembly Language Syntax
flush address

Description:

FLUSH ensures that the doubleword specified as the effective address is consistent across
any local caches and, in a multiprocessor system, will eventually become consistent every-
where.

In the following discussion R sy refers to the processor that executed the FLUSH
instruction. FLUSH ensures that instruction fetches from the specified effective address by
PrLusy appear to execute after any loads, stores, and atomic load-stores to that address
issued by B sy prior to the FLUSH. In a multiprocessor system, FLUSH also ensures
that these values will eventually become visible to the instruction fetches of all other pro-
cessors. FLUSH behaves as if it were a store with respect to MEMBAR-induced order-
ings. See A.32, “Memory Barrier.”

FLUSH operates on at least the doubleword containing the addressed location.

The effective address operand for the FLUSH instructiorrfissl] + r[rs2]” if i =0, or

“r[rs1] + sign_ext6imm13” if i = 1. The least significant two address bits of the effective
address are unused and should be supplied as zeros by software. Bit 2 of the address is
ignored, because FLUSH operates on at least a doubleword.

Programming Notes:

(1) Typically, FLUSH is used in self-modifying code. See H.1.6, “Self-Modifying Code,” for informa-
tion about use of the FLUSH instruction in portable self-modifying code. The use of self-modifying
code is discouraged.

(2) The order in which memory is modified can be controlled by using FLUSH and MEMBAR instruc-
tions interspersed appropriately between stores and atomic load-stores. FLUSH is needed only
between a store and a subsequent instruction fetch from the modified location. When multiple pro-
cesses may concurrently modify live (that is, potentially executing) code, care must be taken to
ensure that the order of update maintains the program in a semantically correct form at all times.

(3) The memory model guarantees in a uniprocessordats loads observe the results of the most
recent store, even if there is no intervening FLUSH.

168 A Instruction Definitions

(4) FLUSH may be time-consuming. Some implementations may trap rather than implement FLUSH
in hardware. In a multiprocessor configuration, FLUSH requires all processors that may be refer-
encing the addressed doubleword to flush their instruction caches, a potentially disruptive activity.

(5) In a multiprocessor system, the time it takes for a FLUSH to take effect is implementation-depen-
dent (impl. dep. #122). No mechanism is provided to ensure or test completion.

(6) Because FLUSH is designed to act on a doubleword, and because, on some implementations,
FLUSH may trap to system software, it is recommended that system software provide a user-call-
able service routine for flushing arbitrarily sized regions of memory. On some implementations,
this routine would issue a series of FLUSH instructions; on others, it might issue a single trap to
system software that would then flush the entire region.

Implementation Notes:

(1) IMPL. DEP. #42: If FLUSH is not implemented in hardware, it causes an illegal _instruction
exception and the function of FLUSH is performed by system software. Whether FLUSH
traps is implementation-dependent.

(2) The effect of a FLUSH instruction as observed from Ry is immediate. Other processors in a
multiprocessor system eventually will see the effect of the FLUSH, but the latency is implementa-
tion-dependent (impl. dep. #122).

Exceptions:
(none)

A.21 Flush Register Windows

169

A.21 Flush Register Windows

Opcode op3 Operation
FLUSHW 101011 | Flush Register Windows
Format (3):
10 — op3 i=0
31 30 29 25 24 19 18 14 13 12
Suggested Assembly Language Syntax
flushw
Description:

FLUSHW causes all active register windows except the current window to be flushed to
memory at locations determined by privileged software. FLUSHW behaves as a NOP if
there are no active windows other than the current window. At the completion of the
FLUSHW instruction, the only active register window is the current one.

Programming Note:

FLUSHW acts as a NOP if CANSAVE = NWINDOWS - 2. Otherwise, there is more than
one active window, so FLUSHW causes a spill exception. The trap vector for the spill
exception is based on the contents of OTHERWIN and WSTATE. The spill trap handler is
invoked with the CWP set to the window to be spilled (that is, (CYXPANSAVE + 2)

The FLUSHW instruction can be used by application software to switch memory stacks or examine
register contents for previous stack frames.

mod NWINDOWS). See 6.3.6, “Register Window Management Instructions.”

Programming Note:

Exceptions:
spill_n_normal

spill_n_other

Typically, the spill handler will save a window on a memory stack and return to reexecute the
FLUSHW instruction. Thus, FLUSHW will trap and reexecute until all active windows other than
the current window have been spilled.

170

A Instruction Definitions

A.22 lllegal Instruction Trap

Opcode op op2 Operation
ILLTRAP 00 000 illegal_instruction trap
Format (2):
00 — 000 const22
3130 29 25 24 22 21 0
Suggested Assembly Language Syntax
illtrap const22

Description:

The ILLTRAP instruction causes atlegal_instruction exception. Theconst22value is
ignored by the hardware; specifically, this fielchist reserved by the architecture for any

future use.

V8 Compatibility Note:
Except for its name, this instruction is identical to the SPARC-V8 UNIMP instruction.

Exceptions:

illegal_instruction

A.23 Implementation-Dependent Instructions 171

A.23 Implementation-Dependent Instructions

Opcode op3 Operation
IMPDEP1 110110 | Implementation-Dependent Instruction 1
IMPDEP2 110111 | Implementation-Dependent Instruction 2

Format (3):

10 impl-dep op3 impl-dep

31 30 29 25 24 19 18 0

Description:

IMPL. DEP. #106: The IMPDEP1 and IMPDEP?2 instructions are completely implementation-
dependent. Implementation-dependent aspects include their operation, the interpretation of bits
29..25 and 18..0 in their encodings, and which (if any) exceptions they may cause.

See 1.1.2, “Implementation-Dependent and Reserved Opcodes,” for information about
extending the SPARC-V9 instruction set using the implementation-dependent instructions.

V8 Compatibility Note:
These instructions replace the CRapstructions in SPARC-V8.

Exceptions:
illegal_instruction (if the implementation does not define the instructions)
implementation-dependent (if the implementation defines the instructions)

172 A Instruction Definitions

A.24 Jump and Link

Opcode op3 Operation
JMPL 11 1000 Jump and Link
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
jmpl address, regy
Description:

The JMPL instruction causes a register-indirect delayed control transfer to the address
given by ‘t[rs1] + r[rs2]” if i field =0, or f[rs1] + sign_ext6imm13}" if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction,
into registerr[rd]. The high-order 32-bits of the PC value storedf|ird] are implementa-
tion-dependent when PSTATE.AM =1 (impl. dep. #125). The value writtenrijmt is
visible to the instruction in the delay slot.

If either of the low-order two bits of the jump address is nonzereea_address_not
aligned exception occurs.

Programming Note:

A JMPL instruction withrd = 15 functions as a register-indirect call using the standard link regis-
ter.

JMPL with rd =0 can be used to return from a subroutine. The typical return address is
“r[31] + 8,” if a nonleaf routine (one that uses the SAVE instruction) is entered by a CALL instruc-
tion, or “r[15] + 8" if a leaf routine (one that does not use the SAVE instruction) is entered by a
CALL instruction or by a JMPL instruction witld = 15.

Exceptions:
mem_address _not_aligned

A.25 Load Floating-Point 173

A.25 Load Floating-Point

The LDFSR instruction is deprecated; it is provided only for compatibility wit
previous versions of the architecture. It should not be used in new SPARC-V9 sjift-
ware. It is recommended that the LDXFSR instruction be used in its place.

Opcode op3 rd Operation
LDF 10000 | 0..31 | Load Floating-Point Register
0
LDDF 10 001 T Load Double Floating-Point Register
1
LDQF 10 001 T Load Quad Floating-Point Register
0
LDFSR 10 000 0 Load Floating-Point State Register Lower
1
LDXFSR 10 000 1 Load Floating-Point State Register
1
— 10000 | 2..31 | Reserved
1
T Encoded floating-point register value, as described in 5.1.4.1
Format (3):
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
Id [addres$ fregyq
Idd [addres$ fregy
Idg [addres$ fregyq
Id [addres} %fsr
ldx [addres$ %fsr
Description:

The load single floating-point instruction (LDF) copies a word from memoryf[irdp

The load doubleword floating-point instruction (LDDF) copies a word-aligned double-
word from memory into a double-precision floating-point register.

The load quad floating-point instruction (LDQF) copies a word-aligned quadword from
memory into a quad-precision floating-point register.

174 A Instruction Definitions

The load floating-point state register lower instruction (LDFSR) waits for all FPop instruc-
tions that have not finished execution to complete, and then loads a word from memory
into the lower 32 bits of the FSR. The upper 32 bits of FSR are unaffected by LDFSR.

The load floating-point state register instruction (LDXFSR) waits for all FPop instructions
that have not finished execution to complete, and then loads a doubleword from memory
into the FSR.

V8 Compatibility Note:
SPARC-V9 supports two different instructions to load the FSR; the SPARC-V8 LDFSR instruction
is defined to load only the lower 32 bits into the FSR, whereas LDXFSR allows SPARC-V9 pro-
grams to load all 64 bits of the FSR.

Load floating-point instructions access the primary address space (AS})=Bte effec-
tive address for these instructions is[rs1] +r[rs2]” if i=0, or “r[rs]]+ sign_
ext(imm13y’if i =1.

LDF, LDFSR, LDDF, and LDQF causeraem_address_not_aligned exception if the effec-

tive memory address is not word-aligned; LDXFSR causesea_address not_aligned
exception if the address is not doubleword-aligned. If the floating-point unit is not enabled
(per FPRS.FEF and PSTATE.PEF), or if no FPU is present, a load floating-point instruc-
tion causes am_disabled exception.

IMPL. DEP. #109(1): LDDF requires only word alignment. However, if the effective address is
word-aligned but not doubleword-aligned, LDDF may cause an LDDF _mem_address _not_aligned
exception. In this case the trap handler software shall emulate the LDDF instruction and return.

IMPL. DEP. #111(1): LDQF requires only word alignment. However, if the effective address is
word-aligned but not quadword-aligned, LDQF may cause an LDQF_mem_address_not_aligned
exception. In this case the trap handler software shall emulate the LDQF instruction and return.

Programming Note:
In SPARC-V8, some compilers issued sequences of single-precision loads when they could not
determine that double- or quadword operands were properly aligned. For SPARC-V9, since emula-
tion of misaligned loads is expected to be fast, it is recommended that compilers issue sets of sin-
gle-precision loads only when they can determine that double- or quadword operanuist are
properly aligned.

Implementation Note:
IMPL. DEP. #44: If a load floating-point instruction traps with any type of access error, the
contents of the destination floating-point register(s) remain unchanged or are undefined.

Exceptions:
async_data_error
illegal_instruction (0p3=21;¢ andrd = 2..31)
fp_disabled
LDDF_mem_address_not_aligned (LDDF only) (impl. dep. #109)
LDQF_mem_address_not_aligned (LDQF only) (impl. dep. #111)
fo_exception_other (invalid_fp_register (LDQF only))
mem_address_not_aligned
data_access MMU_miss

data_access_exception
data_access_error

A.25 Load Floating-Point 175

data_access_protection

176 A Instruction Definitions

A.26 Load Floating-Point from Alternate Space

Opcode op3 rd Operation
LDFAPss! 11000 | 0..31 | Load Floating-Point Register from Alternate space
0
LDDFAPss! 11001 T Load Double Floating-Point Register from Alternate space
1
LDQFAP:s! 11001 T Load QuadFloating-Point Register from Alternate space
0
T Encoded floating-point register value, as described in 5.1.4.1
Format (3):
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Suggested Assembly Language Syntax
Ida [regadd] imm_asi, fregy
Ida [reg_plus_imrh %asi , freg
ldda [regadd] imm_asi, fregy
ldda [reg_plus_imrh %asi , freg
ldga [regadd] imm_asi, fregy
ldga [reg_plus_imrh %asi , freg

Description:

The load single floating-point from alternate space instruction (LDFA) copies a word from
memory intof[rd].

The load doubleword floating-point from alternate space instruction (LDDFA) copies a
word-aligned doubleword from memory into a double-precision floating-point register.

The load quad floating-point from alternate space instruction (LDQFA) copies a word-
aligned quadword from memory into a quad-precision floating-point register.

Load floating-point from alternate space instructions contain the address space identifier
(ASI) to be used for the load in thenm_asifield if i = 0, or in the ASI register if=1. The
access is privileged if bit seven of the ASI is zero; otherwise, it is not privileged. The
effective address for these instructions i§r&1] + r[rs2]” if i =0, or “r[rs1] + sign_
ext(simm13y’if i = 1.

LDFA, LDDFA, and LDQFA cause anem_address_not_aligned exception if the effective
memory address is not word-aligned; If the floating-point unit is not enabled (per
FPRS.FEF and PSTATE.PEF), or if no FPU is present, load floating-point from alternate
space instructions cause &ndisabled exception. LDFA, LDDFA and LDQFA cause a
privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASlI is zero.

A.26 Load Floating-Point from Alternate Space 177

IMPL. DEP. #109(2): LDDFA requires only word alignment. However, if the effective address is
word-aligned but not doubleword-aligned, LDDFA may cause an LDDF mem_address not_
aligned exception. In this case the trap handler software shall emulate the LDDF instruction and
return.

IMPL. DEP. #111(2): LDQFA requires only word alignment. however, if the effective address is
word-aligned but not quadword-aligned, LDQFA may cause an ldqgf mem_address not_aligned
exception. In this case the trap handler software shall emulate the LDQF instruction and return.

Programming Note:

In SPARC-V8, some compilers issued sequences of single-precision loads when they could not
determine that double- or quadword operands were properly aligned. For SPARC-V9, since emula-
tion of mis-aligned loads is expected to be fast, it is recommended that compilers issue sets of sin-
gle-precision loads only when they can determine that double- or quadword operanuist are

properly aligned.

Implementation Note:

If a load floating-point instruction traps with any type of access error, the destination floating-point

register(s) either remain unchanged or are undefined. (impl. dep. #44)

Exceptions:
async_data_error
fo_disabled
LDDF_mem_address_not_aligned (LDDFA only) (impl. dep. #109)
LDQF_mem_address_not_aligned (LDQFA only) (impl. dep. #111)
fo_exception_other (invalid_fo_register (LDQFA only))
mem_address_not_aligned
privileged_action
data_access MMU_miss
data_access_exception
data_access_error
data_access_protection

178 A Instruction Definitions

A.27 Load Integer

The LDD instruction is deprecated; it is provided only for compatibility with previ
ous versions of the architecture. It should not be used in new SPARC-V9 softwie.
It is recommended that the LDX instruction be used in its place.

Opcode op3 Operation
LDSB 00 1001 | Load Signed Byte
LDSH 001010 | Load Signed Halfword
LDSW 00 1000 | Load Signed Word
LDUB 000001 | Load Unsigned Byte
LDUH 000010 | Load Unsigned Halfword
LDUW 00 0000 | Load Unsigned Word
LDX 001011 | Load Extended Word
LDDP 000011 | Load Doubleword
Format (3):
11 rd op3 rsi i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
Idsb [addres$ regy
Idsh [addres$ regy
Idsw [addres$ regy
Idub [addres$ regy
Iduh [addres$ regy
l[duw [addres$ regy (synonymld)
ldx [addres$ regy
ldd [addres$ regy
Description:

The load integer instructions copy a byte, a halfword, a word, an extended word, or a dou-
bleword from memory. All except LDD copy the fetched value intal]. A fetched byte,
halfword, or word is right-justified in the destination regist¢rd]; it is either sign-
extended or zero-filled on the left, depending on whether the opcode specifies a signed or
unsigned operation, respectively.

The load doubleword integer instructions (LDD) copy a doubleword from memory into an

r-register pair. The word at the effective memory address is copied into the esgister.
The word at the effective memory address + 4 is copied into the following odd-numbered

A.27 Load Integer 179

register. The upper 32 bits of both the even-numbered and odd-numbezgibters are
zero-filled. Note that a load doubleword witth = 0 modifies onlyr[1]. The least signifi-

cant bit of therd field in an LDD instruction is unused and should be set to zero by soft-
ware. An attempt to execute a load doubleword instruction that refers to a misaligned
(odd-numbered) destination register causesiegal_instruction exception.

IMPL. DEP. #107(1): It is implementation-dependent whether LDD is implemented in hardware. If
not, an attempt to execute it will cause an unimplemented_ldd exception.

Load integer instructions access the primary address space (AS$)= 8be effective
address isr{rs1] + r[rs2]” if i =0, or ‘r[rs1] + sign_ext6imm13” if i = 1.

A successful load (notably, load extended and load doubleword) instruction operates
atomically.

LDUH and LDSH cause aem_address_not_aligned exception if the address is not half-
word-aligned. LDUW and LDSW causen@&m_address_not_aligned exception if the effec-
tive address is not word-aligned. LDX and LDD causemam_address_not_aligned
exception if the address is not doubleword-aligned.

Programming Note:
LDD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9
machines because of data path and register-access difficulties. In some systems it may trap to emu-
lation code. It is suggested that programmers and compilers avoid using these instructions.

If LDD is emulated in software, an LDX instruction should be used for the memory access in order
to preserve atomicity.

V8 Compatibility Note:
The SPARC-V8 LD instruction has been renamed LDUW in SPARC-V9. The LDSW instruction is
new in SPARC-V9.

Exceptions:
async_data_error
unimplemented_LDD (LDD only (impl. dep. #107))
illegal_instruction (LDD with oddrd)
mem_address_not_aligned (all except LDSB, LDUB)
data_access_exception
data_access_protection
data_access MMU_miss
data_access_error

180 A Instruction Definitions

A.28 Load Integer from Alternate Space

The LDDA instruction is deprecated; it is provided only for compatibility with pr
vious versions of the architecture. It should not be used in new SPARC-V9 s

ware. It is recommended that the LDXA instruction be used in its place.

Opcode op3 Operation
LDSBAPss! 011001 Load Signed Byte from Alternate space
LDSHAPs! 011010 | Load Signed Halfword from Alternate space
LDSWAPs! 011000 | Load Signed Word from Alternate space
LDUBA Pssi 010001 | Load Unsigned Byte from Alternate space
LDUHA Pasi 010010 | Load Unsigned Halfword from Alternate space
LDUWA Pssi 01 0000 | Load Unsigned Word from Alternate space
LDXA Pasi 011011 | Load Extended Word from Alternate space
LDDADP: Psi 01 0011 | Load Doubleword from Alternate space
Format (3):
11 rd op3 rsi i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
Idsba [regadd] imm_asijreg g
Idsha [regadd] imm_asijreg g
[dswa [regadd] imm_asjregq
Iduba [regadd] imm_asijreg g
l[duha [regadd] imm_asijreg g
[duwa [regadd] imm_asjregq (synonymida)
ldxa [regadd] imm_asijreg g
ldda [regadd] imm_asijreg g
Idsba [reg_plus_imrh %asi , reg g4
Idsha [reg_plus_imrh %asi , reg g4
[dswa [reg_plus_imrh %asi, regq
Iduba [reg_plus_imrh %asi , reg g4
l[duha [reg_plus_imrh %asi , reg g4
[duwa [reg_plus_imrh %asi, regq (synonymida)
ldxa [reg_plus_imrh %asi , reg g4
ldda [reg_plus_imrh %asi , reg g4
Description:

The load integer from alternate space instructions copy a byte, a halfword, a word, an
extended word, or a doubleword from memory. All except LDDA copy the fetched value
into r[rd]. A fetched byte, halfword, or word is right-justified in the destination register

A.28 Load Integer from Alternate Space 181

r[rd]; it is either sign-extended or zero-filled on the left, depending on whether the opcode
specifies a signed or unsigned operation, respectively.

The load doubleword integer from alternate space instruction (LDDA) copies a double-
word from memory into am-register pair. The word at the effective memory address is
copied into the evenregister. The word at the effective memory address + 4 is copied into
the following odd-numberedregister. The upper 32 bits of both the even-numbered and
odd-numbered registers are zero-filled. Note that a load doubleword vdth O modifies

only r[1]. The least significant bit of thed field in an LDDA instruction is unused and
should be set to zero by software. An attempt to execute a load doubleword instruction that
refers to a misaligned (odd-numbered) destination register causeégah instruction
exception.

IMPL. DEP. #107(2): It is implementation-dependent whether LDDA is implemented in hardware. If
not, an attempt to execute it will cause an unimplemented_Idd exception.

The load integer from alternate space instructions contain the address space identifier
(ASI) to be used for the load in thenm_asifield if i = 0, or in the ASI register if = 1. The
access is privileged if bit seven of the ASI is zero; otherwise, it is not privileged. The
effective address for these instructions i§r&1] + r[rs2]” if i =0, or “r[rs1] + sign_
ext(imm13y’if i =1.

A successful load (notably, load extended and load doubleword) instruction operates
atomically.

LDUHA, and LDSHA cause anem_address _not_aligned exception if the address is not
halfword-aligned. LDUWA and LDSWA cause rmem_address_not_aligned exception if
the effective address is not word-aligned; LDXA and LDDA causeea_address_not_
aligned exception if the address is not doubleword-aligned.

These instructions causeévileged_action exception if PSTATE.PRIV = 0 and bit 7 of the
ASl is zero.

Programming Note:
LDDA is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9
machines because of data path and register-access difficulties. In some systems it may trap to emu-
lation code. It is suggested that programmers and compilers avoid using this instruction.

If LDDA is emulated in software, an LDXA instruction should be used for the memory access in
order to preserve atomicity.

V8 Compatibility Note:
The SPARC-VS8 instruction LDA has been renamed LDUWA in SPARC-V9. The LDSWA instruc-
tion is new in SPARC-V9.

Exceptions:
async_data_error
privileged_action
unimplemented_LDD (LDDA only (impl. dep. #107))
illegal_instruction (LDDA with oddrd)
mem_address_not_aligned (all except LDSBA and LDUBA)
data_access_exception
data_access_protection
data_access MMU_miss
data_access_error

182 A Instruction Definitions

A.29 Load-Store Unsigned Byte

Opcode op3 Operation
LDSTUB 001101 | Load-Store Unsigned Byte

Format (3):

11 rd op3 rsl i=0 — rs2

11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Suggested Assembly Language Syntax
Idstub [addres} regy

Description:

The load-store unsigned byte instruction copies a byte from memory it and then
rewrites the addressed byte in memory to all ones. The fetched byte is right-justified in the
destination registefrd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or
deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,
LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the
same doubleword simultaneously are guaranteed to execute them in an undefined but
serial order.

The effective address for these instructionsrigsd] + r[rs2]” if i =0, or “r[rs1] + sign_
ext(simm13y’if i = 1.

The coherence and atomicity of memory operations between processors and 1/0 DMA
memory accesses are implementation-dependent (impl. dep #120).

Exceptions:
async_data_error
data_access_exception
data_access_error
data_access_protection
data_access MMU_miss

A.30 Load-Store Unsigned Byte to Alternate Space 183

A.30 Load-Store Unsigned Byte to Alternate Space

Opcode op3 Operation
LDSTUBAPsI 011101 | Load-Store Unsigned Byte into Alternate space
Format (3):
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
Idstuba [regaddi imm_asj regyq
Idstuba [reg_plus_imrh %asi, reggy
Description:

The load-store unsigned byte into alternate space instruction copies a byte from memory
into r[rd], then rewrites the addressed byte in memory to all ones. The fetched byte is
right-justified in the destination registgrd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or
deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,
LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the
same doubleword simultaneously are guaranteed to execute them in an undefined, but
serial order.

LDSTUBA contains the address space identifier (ASI) to be used for the load imthe
asifield if i =0, or in the ASI register if = 1. The access is privileged if bit seven of the
ASI is zero; otherwise, it is not privileged. The effective addressrfissi] + r[rs2]” if

i =0, or r[rs1] + sign_ext6imm13"if i = 1.

LDSTUBA causes arivileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI
is zero.

The coherence and atomicity of memory operations between processors and 1/0 DMA
memory accesses are implementation-dependent (impl. dep #120).

Exceptions:
async_data_error
privileged_action
data_access_exception
data_access_error
data_access_protection
data_access MMU_miss

184 A Instruction Definitions

A.31 Logical Operations

Opcode op3 Operation
AND 00 0001 And
ANDcc 01 0001 And and modify cc’s
ANDN 000101 And Not
ANDNcc 010101 And Not and modify cc’s
OR 00 0010 Inclusive Or
ORcc 01 0010 Inclusive Or and modify cc’s
ORN 000110 Inclusive Or Not
ORNCcc 010110 Inclusive Or Not and modify cc’$
XOR 000011 Exclusive Or
XORcc 01 0011 Exclusive Or and modify cc’s
XNOR 000111 Exclusive Nor
XNORcc 010111 Exclusive Nor and modify cc’s
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
and reggq, reg_or_imm regy
andcc regsy, reg_or_imm regyq
andn regsy, reg_or_imm regy
andncc regsy, reg_or_imm regyq
or regsy, reg_or_imm regy
orcc regsy, reg_or_imm regyq
orn regsy, reg_or_imm regyq
orncc regsy, reg_or_imm regy
xor regsy, reg_or_imm regyq
xorcc regsy, reg_or_imm regyq
xnor regsy, reg_or_imm regyq
xnorcc regsy, reg_or_imm regyq
Description:

These instructions implement bitwise logical operations. They compLrl] op r[rs2]”
if i =0, or ‘r[rs1] op sign_extéimm13’ if i = 1, and write the result intgrd].

ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition
codes icc and xcg. They seticc.y, icc.c, xcc.y andxcc.cto zero,icc.nto bit 31 of the
result,xcc.nto bit 63 of the resulticc.zto 1 if bits 31:0 of the result are zero (otherwise to
0), andxcc.zto 1 if all 64 bits of the result are zero (otherwise to 0).

A.31 Logical Operations 185

ANDN, ANDNcc, ORN, and ORNCcc logically negate their second operand before apply-
ing the main (AND or OR) operation.

Programming Note:

XNOR and XNORcc are identical to the XOR-Not and XOR-Not-cc logical operations, respec-
tively.

Exceptions:
(none)

186 A Instruction Definitions

A.32 Memory Barrier

Opcode op3 Operation
MEMBAR 10 1000 Memory Barrier
Format (3):
10 0 op3 01111 i=1 — cmask mmask
31 30 29 25 24 19 18 14 13 12 76 4 3 0
Suggested Assembly Language Syntax
membar membar_mask

Description:

The memory barrier instruction, MEMBAR, has two complementary functions: to express
order constraints between memory references and to provide explicit control of memory-
reference completion. Thmembar_maskeld in the suggested assembly language is the
bitwise OR of themaskandmmasknstruction fields.

MEMBAR introduces an order constraint between classes of memory references appear-
ing before the MEMBAR and memory references following it in a program. The particular
classes of memory references are specified byntheskfield. Memory references are
classified as loads (including load instructions, LDSTUB(A), SWAP(A), CASA, and
CASXA) and stores (including store instructions, LDSTUB(A), SWAP(A), CASA,
CASXA, and FLUSH). Thenmaskfield specifies the classes of memory references sub-
ject to ordering, as described below. MEMBAR applies to all memory operations in all
address spaces referenced by the issuing processor, but has no effect on memory refer-
ences by other processors. When theaskfield is nonzero, completion as well as order
constraints are imposed, and the order imposed can be more stringent than that specifiable
by themmaskield alone.

A load has been performed when the value loaded has been transmitted from memory and
cannot be modified by another processor. A store has been performed when the value
stored has become visible, that is, when the previous value can no longer be read by any
processor. In specifying the effect of MEMBAR, instructions are considered to be exe-
cuted as if they were processed in a strictly sequential fashion, with each instruction com-
pleted before the next has begun.

The mmaskfield is encoded in bits 3 through 0 of the instruction. Table 27 specifies the
order constraint that each bit ofmaskselected when set to 1) imposes on memory refer-
ences appearing before and after the MEMBAR. From zero to four mask bits may be
selected in thenmaskield.

A.32 Memory Barrier 187

Table 27—MEMBAR mmaskEncodings

Mask bit Name Description

mmask3> | #StoreStore The effects of all stores appearing prior to the MEMBAR instrucfion
must be visible to all processors before the effect of any stores follqwing
the MEMBAR. Equivalent to the deprecated STBAR instruction

mmask2> | #LoadStore All loads appearing prior to the MEMBAR instruction must have been
performed before the effect of any stores following the MEMBAR is yis-
ible to any other processor.

mmaskl1> |#StoreLoad The effects of all stores appearing prior to the MEMBAR instrucfion
must be visible to all processors before loads following the MEMBAR
may be performed.

mmask0> |#LoadLoad All loads appearing prior to the MEMBAR instruction must have been
performed before any loads following the MEMBAR may be performed.

The cmaskfield is encoded in bits 6 through 4 of the instruction. Bits in theaskfield,
illustrated in table 28, specify additional constraints on the order of memory references
and the processing of instructions.ciinaskis zero, then MEMBAR enforces the partial
ordering specified by themaskKield; if cmaskis nonzero, then completion as well as par-
tial order constraints are applied.

Table 28—MEMBAR cmaskEncodings

Mask bit Function Name Description
cmask2>| Synchronization#Sync All operations (including nonmemory reference operatipns)
barrier appearing prior to the MEMBAR must have been performed

and the effects of any exceptions become visible befor¢ any
instruction after the MEMBAR may be initiated.

cmask1l>| Memory issue|#Memlssue |All memory reference operations appearing prior to|the
barrier MEMBAR must have been performed before any memory
operation after the MEMBAR may be initiated.

cmask0> Lookaside |#Lookaside |A store appearing prior to the MEMBAR must complete
barrier before any load following the MEMBAR referencing the
same address can be initiated.

For information on the use of MEMBAR, see 8.4.3, “The MEMBAR Instruction,” and

Appendix J, “Programming With the Memory Models.” Chapter 8, “Memory Models,”

and Appendix F, “SPARC-V9 MMU Requirements,” contain additional information about
the memory models themselves.

The encoding of MEMBAR is identical to that of the RDASR instruction, except that
rs1=15,rd =0, andi = 1.

The coherence and atomicity of memory operations between processors and 1/O DMA
memory accesses are implementation-dependent (impl. dep #120).

V8 Compatibility Note:
MEMBAR with mmask= 8, andcmask= 0;¢ (“membar #StoreStore ") is identical in func-
tion to the SPARC-V8 STBAR instruction, which is deprecated.

Exceptions:
(none)

188

A Instruction Definitions

A.33 Move Floating-Point Register on Condition (FMOVcc)

For Integer Condition Codes

Opcode op3 cond Operation icc/xcctest
FMOVA 11 0101| 1000 Move Always
FMOVN 11 0101 0000 Move Never
FMOVNE | 110101 1001 Move if Not Equal not Z
FMOVE 11 0101] 00014 Move if Equal
FMOVG 110101] 1010 Move if Greater not (Z or (N xor V))
FMOVLE 110101 0010 Move if Less or Equal o (N xor V)
FMOVGE 11 0101 1011 Move if Greater or Equal not (N xor V)
FMOVL 11 0101| 0011 Move if Less Mor V
FMOVGU | 110101 1100 Move if Greater Unsigned not (C or Z)
FMOVLEU | 110101 0100 Move if Less or Equal Unsigned ai2)
FMOVCC | 110101 1101 Move if Carry ClearGreater or Equal, Unsigngd not C
FMOVCS 110101 0101 Move if Carry Set (Less than, Unsigned)
FMOVPOS | 110101 1110 Move if Positive not N
FMOVNEG | 11 0101) 011Q Move if Negative
FMOVVC | 110101| 1111 Move if Overflow Clear not V
FMOVVS 110101| 0111 Move if Overflow Set

For Floating-Point Condition Codes

Opcode op3 cond Operation fcc test
FMOVFA 110101 1000 | Move Always 1
FMOVFN 110101 0000 | Move Never D
FMOVFU 11 0101 0111 | Move if Unordered §]
FMOVFG 110101 0110 | Move if Greater 5
FMOVFUG 110101 0101 | Move if Unordered or Greater oJ
FMOVFL 110101 0100 Move if Less L
FMOVFUL 110101 0011 | Move if Unordered or Less ot U
FMOVFLG 11 0101 0010 | Move if Less or Greater otLG
FMOVFNE 11 0101 0001 | Move if Not Equal &r Gor U
FMOVFE 110101 1001 | Move if Equal E
FMOVFUE 110101 1010 | Move if Unordered or Equal oEU
FMOVFGE 110101 1011| Move if Greater or Equal 0EG
FMOVFUGE | 110101 1100| Move if Unordered or Greater or Equal orE&or U
FMOVFLE 110101 1101 | Move if Less or Equal OEL
FMOVFULE | 110101 1110 | Move if Unordered or Less or Equa orfE or U
FMOVFO 110101 1111 Move if Ordered atLorG

A.33 Move Floating-Point Register on Condition (FMOVcc) 189

Format (4):
10 rd op3 0 cond opf_cc opf_low rs2
31 30 29 25 24 19 18 17 14 13 11 10 5 4

Encoding of theopf_ccfield (also see table 41 on page 275):

opf_cc Condition code

000 fccO

001 fccl

010 fcc2

011 fcc3

100 icc

101 —

110 Xcc

111 —

Encoding of opffield (opf_cc [] opf_low)

Instruction variation opf _cc opf_low opf
FMOVScc | %fcc n,rs2,rd Onn 00 0001 Onn00 0001
FMOVDcc | %fcc n,rs2,rd Onn 00 0010 Onn00 0010
FMOVQcc | %fcc n,rs2,rd Onn 000011 Onn00 0011
FMOVScc | %icc, rs2,rd 100 00 0001 1 0000 0001
FMOVDcc | %icc, rs2,rd 100 00 0010 1 0000 0010
FMOVQcc | %icc, rs2rd 100 000011 1 0000 0011
FMOVScc | %xcc, rs2,rd 110 00 0001 1 1000 0001
FMOVDcc | %xcc, rs2rd 110 00 0010 11000 0010
FMOVQcc | %xcc, rs2,rd 110 000011 11000 0011

190

A Instruction Definitions

For Integer Condition Codes

Suggested Assembly Language Syntax

fmov{s,d,q}a

i_or_x_cc fregso,

fregy

fmov{s,d,q}n

i_or_x_c¢ fregso,

fregy

fmov{s,d,q}ne

i_or_x_cc fregso,

fregy

(synonymsfmov {s,d,q }nz)

fmov{s,d,q}e

i_or_x_c¢ fregso,

fregy

(synonymsfmov {s,d,q }z)

fmov{s,d,q}g

i_or_x_cc fregso,

fregy

fmov{s,d,q}le

i_or_x_c¢ fregso,

fregy

fmov{s,d,q}ge

i_or_x_cc fregso,

fregy

fmov{s,d,q}l

i_or_x_c¢ fregso,

fregy

fmov{s,d,q}gu

i_or_x_cc fregso,

fregy

fmov{s,d,q}leu

i_or_x_c¢ fregso,

fregy

fmov{s,d,q}cc

i_or_x_cc fregso,

fregy

(synonymsfmov {s,d,q }geu)

fmov{s,d,q}cs

i_or_x_c¢ fregso,

fregy

(synonymsfmov {s,d,q }Ilu)

fmov{s,d,q}pos

i_or_x_cc fregso,

fregy

fmov{s,d,q}neg

i_or_x_c¢ fregso,

fregy

fmov{s,d,q}vc

i_or_x_cc fregso,

fregy

fmov{s,d,q}vs

i_or_x_c¢ fregso,

fregy

Programming Note:
To select the appropriate condition code, incluidéct ” or “%xcc” before the registers.

For Floating-Point Condition Codes:

Suggested Assembly Language Syntax

fmov{s,d,q}a %fcc n, freggo fregy

fmov{s,d,q}n %fcc n, frego fregy

fmov{s,d,q}u %fcc n, freggo fregy

fmov{s,d,q}g %fcc n, freggp, fregy

fmov{s,d,q}ug %fcc n, freggo fregy

fmov{s,d,q}l %fcc n, frego fregy

fmov{s,d,q}ul %fcc n, freggo fregy

fmov{s,d,q}lg %fcc n, frego fregy

fmov{s,d,q}ne %fcc n, freggo fregy (synonymsfmov {s,d,q }nz)
fmov{s,d,q}e %fcc n, frego fregy (synonymsfmov {s,d,q }z)
fmov{s,d,q}ue %fcc n, freggo fregy

fmov{s,d,q}ge %fcc n, freggo fregy

fmov{s,d,qluge %fcc n, freggo fregy

fmov{s,d,q}le %fcc n, freggo fregy

fmov{s,d,q}ule %fcc n, freggo fregy

fmov{s,d,q}o %fcc n, fregsp, fregy

A.33 Move Floating-Point Register on Condition (FMOVcc) 191

Description:

These instructions copy the floating-point register(s) specifieg®yo the floating-point
register(s) specified bgd if the condition indicated by theondfield is satisfied by the
selected condition code. The condition code used is specified bypthecfield of the
instruction. If the condition is FALSE, then the destination register(s) are not changed.

These instructions do not modify any condition codes.

Programming Note:
Branches cause most implementations’ performance to degrade significantly. Frrequently, the
MOVcc and FMOVcc instructions can be used to avoid branches. For example, the following C
language segment:

double A, B, X;
if A>B)then X = 1.03;else X = 0.0;

can be coded as

I'assume A is in %f0; B is in %f2; %xx points to constant area
ldd [%xx+C_1.03],%f4 !X = 1.03
fcmpd %fcc3,%f0,%f2 IA>B
fble ,a %fcc3,label
! following only executed if the branch is taken
fsubd %f4,%f4,%f4 IX =0.0
label....

This takes four instructions including a branch.

Using FMOVcec, this could be coded as

ldd [Yoxx+C_1.03],%f4 !X = 1.03
fsubd %f4,%f4,%f6 IX" = 0.0
fcmpd %fcc3,%f0,%f2 IA>B
fmovdle %fcc3,%f6,%f4 IX =0.0

This also takes four instructions, but requires no branches and may boost performance significantly.
It is suggested that MOVcc and FMOVcc be used instead of branches wherever they would
improve performance.

Exceptions:
fp_disabled
fo_exception_other (invalid_fp_register (quad forms only))
fo_exception_other (ftt = unimplemented_FPop (opf_cc= 101, or 111)

192 A Instruction Definitions

A.34 Move F-P Register on Integer Register Condition (FMOVr)

Opcode op3 rcond Operation Test

— 11 0101 000 | Reserved —
FMOVRZ 110101 001 Move if Register Zero rirsl] =0
FMOVRLEZ | 110101 010 Move if Register Less Than or Equal to Zero | r[rs1] <0
FMOVRLZ 110101 011 Move if Register Less Than Zero rirsl] <0

— 11 0101 100 | Reserved —
FMOVRNZ 110101 101 Move if Register Not Zero rfrs1] #0
FMOVRGZ 110101 110 Move if Register Greater Than Zero r[rsl] >0
FMOVRGEZ | 110101 111 Move if Register Greater Than or Equal to Zeror[rs1] =0

Format (4):
10 rd op3 rsl 0| rcond opf_low rs2
31 30 29 25 24 19 18 14 13 12 10 9 5 4 0

Encoding ofopf_lowfield:

Instruction variation opf_low
FMOVRScond rslrs2, rd 00101
FMOVRDrcond rslrs2 rd 00110
FMOVRQrcond rslrs2 rd 00111

Suggested Assembly Language Syntax

fmovr{s,d,q}e reges1, fregso, fregy (synonymfmovr{s,d,q}z)
fmovr{s,d,q}lez regs1, fregso, fregy

fmovr{s,d,q}lz reges1, fregso, fregy

fmovr{s,d,q}ne regs1, fregso, fregy (synonymfmovr{s,d,q}nz)
fmovr{s,d,q}gz reges1, fregso, fregy

fmovr{s,d,q}gez regs1, fregso, fregy

Description:

If the contents of integer registejrsl] satisfy the condition specified in tireond field,
these instructions copy the contents of the floating-point register(s) specified bs2the
field to the floating-point register(s) specified by tidefield. If the contents of[rs1] do
not satisfy the condition, the floating-point register(s) specified byrdhgeld are not
modified.

These instructions treat the integer register contents as a signed integer value; they do not
modify any condition codes.

A.34 Move F-P Register on Integer Register Condition (FMOVr) 193

Implementation Note:
If this instruction is implemented by tagging each register value with an N (negative) and a Z (zero)
bit, use the following table to determine whetieemdis TRUE:

Branch Test
FMOVRNZ not Z
FMOVRZ Z
FMOVGEZ not N
FMOVRLZ N
FMOVRLEZ Nor Z
FMOVRGZ Nnor Z
Exceptions:
fo_disabled

fo_exception_other (invalid_fp_register (quad forms only))
fo_exception_other (unimplemented_FPop (rcond= 000, or 10Q))

194

A Instruction Definitions

A.35 Move Integer Register on Condition (MOVcc)

For Integer Condition Codes

Opcode op3 cond Operation icc/xcctest
MOVA 101100, 1000| Move Always
MOVN 10 1100; 0000, Move Never
MOVNE |101100 1001| Move if Not Equal not Z
MOVE 101100 0001 Move if Equal
MOVG 101100, 1010, Move if Greater not (Z or (N xorV))
MOVLE 101100, 0010| Move if Less or Equal & (N xorV)
MOVGE |101100 1011| Move if Greater or Equal not (N xorV)
MOVL 101100, 0011 Move if Less NorV
MOVGU | 101100 1100/ Move if Greater Unsigned not (C orz)
MOVLEU |10 1100; 0100| Move if Less or Equal Unsigned d2)
MOVCC | 101100 1101] Move if Carry Clear (Greater or Equal, Unsigned) not C
MOVCS | 101100 0101 Move if Carry Set (Less than, Unsigned)
MOVPOS | 101100 1110 Move if Positive not N
MOVNEG | 10 1100 0110/ Move if Negative
MOVVC 101100 1111| Move if Overflow Clear not V
MOVVS |101100 0111| Move if Overflow Set

For Floating-Point Condition Codes

Opcode op3 cond Operation fcc test
MOVFA 10 1100 1000 | Move Always 1
MOVFN 10 1100 0000 | Move Never D
MOVFU 101100 0111 | Move if Unordered U
MOVFG 101100 0110, Move if Greater 5
MOVFUG 101100 0101, Move if Unordered or Greater oiJ
MOVFL 101100 0100 | Move if Less L
MOVFUL 101100 0011 | Move if Unordered or Less oLU
MOVFLG 101100 0010 | Move if Less or Greater oLG
MOVFNE 10 1100 0001 | Move if Not Equal or Gor U
MOVFE 10 1100 1001| Move if Equal E
MOVFUE 101100 1010| Move if Unordered or Equal oEU
MOVFGE 101100 1011, Move if Greater or Equal oEG
MOVFUGE 101100 1100| Move if Unordered or Greater or Equal orBorU
MOVFLE 10 1100 1101 | Move if Less or Equal deL
MOVFULE 10 1100 1110 | Move if Unordered or Less or Equal orEE or U
MOVFO 101100 1111 | Move if Ordered & LorG

A.35 Move Integer Register on Condition (MOVcc) 195

Format (4):
10 rd op3 cc2 cond i=0|ccccO — rs2
10 rd op3 cc2 cond i=1|cclccO simm11l
31 30 29 25 24 19 18 17 14 13 12 11 10 5 4 0

cc2 [] ccl[] ccO Condition code

000 fccO

001 fccl

010 fcc2

011 fcc3

100 icc

101 Reserved

110 Xcc

111 Reserved

For Integer Condition Codes

Suggested Assembly Language Syntax
mova i_or_x_cc, reg_or_imml1, rgg
movn i_or_x_cc, reg_or_imm11, rgg
movne i_or_x_cc, reg_or_immll, rgg (Synonymmovnz)
move i_or_x_cc, reg_or_immll, rgg (Synonymmovz)
movg i_or_x_cc, reg_or_imml1, rgg
movle i_or_x_cc, reg_or_imm11, rgg
movge i_or_x_cc, reg_or_imml1, rgg
movl i_or_x_cc, reg_or_imm11, rgg
movgu i_or_x_cc, reg_or_imml1, rgg
movleu i_or_x_cc, reg_or_imm11, rgg
movcce i_or_x_cc, reg_or_imm11,rgg (Synonymmovgeu)
movcs i_or_x_cc, reg_or_immll,rgg (Synonymmoviu)
Movpos i_or_x_cc, reg_or_immll, rgg
movneg i_or_x_cc, reg_or_imml1, rgg
movvc i_or_x_cc, reg_or_imml1, rgg
movvs i_or_x_cc, reg_or_imm11, rgg

Programming Note:
To select the appropriate condition code, inclugigcc " or “ %xcc” before the register or immedi-
ate field.

196 A Instruction Definitions

For Floating-Point Condition Codes

Suggested Assembly Language Syntax

mova %fcen, reg_or_immllregy
movn %fce n, reg_or_immllregy
movu %fcen, reg_or_immllregy
movg %fce n, reg_or_immllregy
movug %fcec n, reg_or_immllregy
movl %fcc n, reg_or_immllregy
movul %fcc n, reg_or_immllregy
movlg %fcc n, reg_or_immllregy
movne %fcec n, reg_or_immllregy (synonymmovnz)
move %fccn, reg_or_immllregy (synonymmovz)

movue %fcec n, reg_or_immllregy
movge %fcc n, reg_or_immllregy
movuge %fcc n, reg_or_immllregy
movle %fcc n, reg_or_immllregy
movule %fcc n, reg_or_immllregy
movo %fccn, reg_or_immllregy

Programming Note:
To select the appropriate condition code, includéfécO ,” “%fccl " “%fcc2 ,” or “%fcc3 ”
before the register or immediate field.

Description:

These instructions test to seectindis TRUE for the selected condition codes. If so, they
copy the value in[rs2] if i field = 0, or “sign_ext§imm1)” if i =1 intor[rd]. The condi-
tion code used is specified by the2 ccl, andccOfields of the instruction. If the condi-
tion is FALSE, then[rd] is not changed.

These instructions copy an integer register to another integer register if the condition is
TRUE. The condition code that is used to determine whether the move will occur can be
either integer condition codéc€ or xcg or any floating-point condition codéccO, fccl,

fcc2 orfccd).

These instructions do not modify any condition codes.

Programming Note:
Branches cause many implementations’ performance to degrade significantly. Frequently, the
MOVcc and FMOVcc instructions can be used to avoid branches. For example, the C language if-
then-else statement

if A>B)then X = 1;else X = 0;

can be coded as

cmp %i0,%:i2
bg,a %xcc,label
or %g0,1,%i3 IX =1
or %g0,0,%i3 IX =0

label:...

A.35 Move Integer Register on Condition (MOVcc) 197

This takes four instructions including a branch. Using MOVcc this could be coded as

cmp %:i0,%:i2
or %g0,1,%i3 lassume X = 1
movle %xcc,0,%i3 I overwrite with X = 0

This takes only three instructions and no branches and may boost performance significantly. It is
suggested that MOVcc and FMOVcc be used instead of branches wherever they would increase
performance.

Exceptions:
illegal_instruction (cc2 [] ccl[] ccG= 101 or 111)
fo_disabled (cc2 [] ccl[] ccG 000,, 001, 010, or 01% and the FPU is dis-
abled)

198 A Instruction Definitions

A.36 Move Integer Register on Register Condition (MOVR)

Opcode op3 rcond Operation Test
— 101111 000 | Reserved —
MOVRZ 101111 001 Move if Register Zero rirs=0
MOVRLEZ | 101111 010 Move if Register Less Than or Equal to Zerp r[rs1] <0
MOVRLZ 101111 011 Move if Register Less Than Zero rirs] <0
— 101111 100 | Reserved —
MOVRNZ 101111 101 Move if Register Not Zero rirsl] #0
MOVRGZ 101111 110 Move if Register Greater Than Zero rirsl] >0
MOVRGEZ | 101111 111 Move if Register Greater Than or Equal to Zerfrs1] =0

Format (3):
10 rd op3 rsl i=0| rcond — rs2
10 rd op3 rsl i=1| rcond simm10
31 30 29 25 24 19 18 14 1312 10 9 5 4 0
Suggested Assembly Language Syntax
movrz regs1, reg_or_immiQregy (synonymmovre)
movrlez regs1, reg_or_immalQregy
movrlz regs1, reg_or_immiQregy
movrnz regs1, reg_or_immalQregy (synonymmovrne)
movrgz regs1, reg_or_immiQregy
movrgez regs1, reg_or_immalQregy

Description:

If the contents of integer registejrs1] satisfies the condition specified in threondfield,

these instructions copyrs?] (if i = 0) or sign_ex&imm210 (if i = 1) intor[rd]. If the con-

tents ofr[rs1] does not satisfy the condition thefrd] is not modified. These instructions
treat the register contents as a signed integer value; they do not modify any condition
codes.

Implementation Note:

If this instruction is implemented by tagging each register value with an N (negative) and a Z (zero)
bit, use the following table to determinedbndis TRUE:

Branch Test
MOVRNZ not Z
MOVRZ Z
MOVRGEZ not N
MOVRLZ N
MOVRLEZ NorZ
MOVRGZ N nor Z

Exceptions:
illegal_instruction (rcond= 000, or 10Q)

A.37 Multiply and Divide (64-bit)

199

A.37 Multiply and Divide (64-bit)

Opcode op3 Operation
MULX 00 1001 Multiply (signed or unsigned)
SDIVX 101101 Signed Divide
UDIVX 001101 Unsigned Divide
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 0
Suggested Assembly Language Syntax
mulx regsy, reg_or_imm, reg
sdivx regsy, reg_or_imm, reg
udivx reggy, reg_or_imm, reg
Description:

MULX computes *[rs1] x r[rs2]” if i =0 or “r[rs1] x sign_ext6imm13}" if i =1, and
writes the 64-bit product intgrd]. MULX can be used to calculate the 64-bit product for
signed or unsigned operands (the product is the same).

SDIVX and UDIVX compute f[rs1] = r[rs2]” if i =0 or “r[rs1] + sign_ext6imm13” if

i =1, and write the 64-bit result intdrd]. SDIVX operates on the operands as signed
integers and produces a corresponding signed result. UDIVX operates on the operands as
unsigned integers and produces a corresponding unsigned result.

For SDIVX, if the largest negative number is divided by —1, the result should be the largest
negative number. That is:

8000 0000 0000 00Qf+ FFFF FFFF FFFF FFRE= 8000 0000 0000 00GQg

These instructions do not modify any condition codes.

Exceptions:

division_by zero

200 A Instruction Definitions

A.38 Multiply (32-bit)

The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated; they a
provided only for compatibility with previous versions of the architecture. Th
should not be used in new SPARC-V9 software. It is recommended that the MURIX
instruction be used in their place.

Opcode op3 Operation
uUMULP 00 1010 Unsigned Integer Multiply
SMuLP 00 1011 Signed Integer Multiply

UMULccP 011010 Unsigned Integer Multiply and modify cc’s
SMULccP 011011 Signed Integer Multiply and modify cc's

Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
umul regsy, reg_or_imm regy
smul regg1, reg_or_imm regy
umulcc regs1, reg_or_imm regy
smulcc regg1, reg_or_imm regy
Description:

The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit
results. They computerfrs1]<31:0> x r[rs2]<31:0>" if i =0, or “r[rs1]<31:0> x sign_
ext(simm13<31:0>"if i = 1. They write the 32 most significant bits of the product into the
Y register and all 64 bits of the product imfad].

Unsigned multiply (UMUL, UMULcc) operates on unsigned integer word operands and
computes an unsigned integer doubleword product. Signed multiply (SMUL, SMULcc)
operates on signed integer word operands and computes a signed integer doubleword
product.

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write the
integer condition code bitsgc andxcg as follows. Note that 32-bit negativee¢.N) and
zero {cc.Z) condition codes are set according to tbesssignificant word of the product,
and not according to the full 64-bit result.

A.38 Multiply (32-bit) 201

Bit UMULcc / SMULcc
iccN | Setif product[31] =1
icc.Z | Setif product[31:0]=0
icc.V | Zero
icc.C | Zero
xccN | Set if product[63] =1
xceZ | Setif product[63:0] =0
xceV | Zero
xccC | Zero

Programming Note:
32-bit overflow after UMUL / UMULcc is indicated by # 0.

32-bit overflow after SMUL / SMULcc is indicated by ¥ (r[rd] >> 31), where “>>" indicates 32-
bit arithmetic right shift.

Implementation Note:
An implementation may assume that the smaller operand typically wilt4# or simm13

Implementation Note:
Seelmplementation Characteristics of Current SPARC-V9-based Products, Revisjan doxu-
ment available from SPARC International, for information on whether these instructions are imple-
mented by hardware or software in the various SPARC-V9 implementations.

Exceptions:
(none)

202 A Instruction Definitions

A.39 Multiply Step

The MULScc instruction is deprecated; it is provided only for compatibility wit
previous versions of the architecture. It should not be used in new SPARC-V9 sjift-
ware. It is recommended that the MULX instruction be used in its place.

Opcode op3 Operation
MULScc® 10 0100 Multiply Step and modify cc’s

Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
mulscc reggy, reg_or_imm regy
Description:

MULScc treats the lower 32 bits of botfrs1] and the Y register as a single 64-bit, right-
shiftable doubleword register. The least significant bitffcg1] is treated as if it were adja-
cent to bit 31 of the Y register. The MULScc instruction adds, based on the least signifi-
cant bit of .

Multiplication assumes that the Y register initially contains the multiphpgl] contains

the most significant bits of the product, arjds2] contains the multiplicand. Upon com-
pletion of the multiplication, the Y register contains the least significant bits of the prod-
uct.

Note that a standard MULScc instruction hsk= rd.
MULScc operates as follows:
(1) The multiplicand is[rs2] if i =0, or sign_exgimm13if i = 1.

(2) A 32-bit value is computed by shifting[rsl] right by one bit with
“CCR.icc.nxor CCRicc.V' replacing bit 31 ofr[rs1]. (This is the proper sign for
the previous partial product.)

(3) If the least significant bit of Y = 1, the shifted value from step (2) and the multipli-
cand are added. If the least significant bit of the Y =0, then 0 is added to the
shifted value from step (2).

A.39 Multiply Step 203

(4) The sum from step (3) is written intgrd]. The upper 32-bits of[rd] are unde-
fined. The integer condition codes are updated according to the addition performed
in step (3). The values of the extended condition codes are undefined.

(5) The Y register is shifted right by one bit, with the least significant bit of the
unshiftedr[rs1] replacing bit 31of Y.

Exceptions:
(none)

204 A Instruction Definitions

A.40 No Operation

Opcode op op2 Operation
NOP 00 100 No Operation
Format (2):
00 00000 op2 0000000000000000000000
31 30 29 2524 2221 0
Suggested Assembly Language Syntax
nop
Description:

The NOP instruction changes no program-visible state (except the PC and nPC).
Note that NOP is a special case of the SETHI instruction,imith22= 0 andrd = O.

Exceptions:
(none)

A.41 Population Count 205

A.41 Population Count

Opcode op3 Operation
POPC 101110 Population Count
Format (3):
10 rd op3 0 0000 i=0 — rs2
10 rd op3 0 0000 i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
popc reg_or_immregy
Description:

POPC counts the number of one bitsrjrs2] if i = 0, or the number of one bits in sign_
extSimm13 if i =1, and stores the count njrd]. This instruction does not modify the
condition codes.

Implementation Note:

Instruction bits 18 through 14 must be zero for POPC. Other encodings of thisri&)dray be
used in future versions of the SPARC architecture for other instructions.

Programming Note:
POPC can be used to “find first bit set” in a regis#&IC program illustrating how POPC can be

used for this purpose follows:

int ffs(zz) /* finds first 1 bit, counting from the LSB */

unsigned zz;
{
return popc (zz A (O(=zz))); I* for nonzero zz */
}
Inline assembly language code fta() is
neg %IN, %M _IN I —zz(2's complement)
xnor %IN, %M_IN, % TEMP I~ [-zz (exclusive nor)
popc %TEMP,%RESULT I'result = popc(zz AN [O-zz2)
movrz %IN,%g0,%RESULT 1 %RESULT should be 0 for %IN=0

wherelN , M_IN, TEMPandRESUL Tare integer registers.

Example:
IN = ...00101000! 1st 1 bit from rt is 4th bit
—IN = ...11011000
0 —IN = ...00100111
IN ~ O-IN = ...00001111
popc(INA O-IN) =4

Exceptions:
illegal_instruction (instruction<18:14* 0)

206 A Instruction Definitions

A.42 Prefetch Data

Opcode op3 Operation
PREFETCH 101101 Prefetch Data
PREFETCHA®S! 111101 Prefetch Data from Alternate Space

Format (3) PREFETCH:

11 fcn op3 rsl i=0 — rs2
11 fcn op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Format (3) PREFETCHA:

11 fcn op3 rsi i=0 imm_asi rs2

11 fcn op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

fcn Prefetch function
Prefetch for several reads
Prefetch for one read
Prefetch for several writes
Prefetch for one write

4 Prefetch page
5-15 Reserved
16-31 | Implementation-dependent

W|IN|IFP|O

Suggested Assembly Language Syntax
prefetch [addres$, prefetch_fcn
prefetcha [regadd] imm_asj prefetch_fcn
prefetcha [reg_plus_imrh %asi, prefetch_fcn

Description:

In nonprivileged code, a prefetch instruction has the same observable effect as a NOP; its
execution is nonblocking and cannot cause an observable trap. In particular, a prefetch
instruction shall not trap if it is applied to an illegal or nonexistent memory address.

IMPL. DEP. #103(1): Whether the execution of a PREFETCH instruction has observable effects in
privileged code is implementation-dependent.

IMPL. DEP. #103(2): Whether the execution of a PREFETCH instruction can cause a data_
access_mmu_miss exception is implementation-dependent.

A.42 Prefetch Data 207

Whether prefetch always succeeds whenniw is disabled is implementation-depen-
dent (impl. dep. # 117).

Implementation Note:
Any effects of prefetch in privileged code should be reasonable (e.g., handling ECC errors, no page
prefetching allowed within code that handles page faults). The benefits of prefetching should be
available to most privileged code.

Execution of a prefetch instruction initiates data movement (or preparation for future data
movement or address mapping) to reduce the latency of subsequent loads and stores to the
specified address range.

A successful prefetch initiates movement of a block of data containing the addressed byte
from memory toward the processor.

IMPL. DEP. #103(3): The size and alignment in memory of the data block is implementation-
dependent; the minimum size is 64 bytes and the minimum alignment is a 64-byte boundary.

Programming Note:
Software may prefetch 64 bytes beginning at an arbitrary adéds®ssby issuing the instruc-

tions
prefetch [addresy prefetch_fcn
prefetch [address+63], prefetch_fcn

Implementation Note:
Prefetching may be used to help manage memory cache(s). A prefetch from a nonprefetchable
location has no effect. It is up to memory management hardware to determine how locations are
identified as not prefetchable.

Prefetch instructions that dwot load from an alternate address space access the primary
address space (ASI_PRIMARY{ LITTLE}). Prefetch instructions thatload from an
alternate address space contain the address space identifier (ASI) to be used for the load in
theimm_asffield if i = 0, or in the ASI register if = 1. The access is privileged if bit seven

of the ASI is zero; otherwise, it is not privileged. The effective address for these instruc-
tions is ‘r[rsl] + r[rs2]” if i =0, or ‘r[rs]] + sign_ext6imm13"if i = 1.

Variants of the prefetch instruction can be used to prepare the memory system for different
types of accesses.

IMPL. DEP. #103(4): An implementation may implement none, some, or all of these variants. A
variant not implemented shall execute as a nop. An implemented variant may support its full
semantics, or may support just the simple common-case prefetching semantics.

IMPL. DEP. 103(6): Whether an attempt to reference a restricted ASI (< 80,5) by a PREFETCHA
instruction while in nonprivileged mode (PSTATEpriv = 0) causes a privileged_action exception or
executes as a NOP is implementation dependent.

A.42.1 Prefetch Variants

The prefetch variant is selected by tfem field of the instructionfcn values 5..15 are
reserved for future extensions of the architecture.

208 A Instruction Definitions

IMPL. DEP. #103(5): PREFETCH fcn values of 16..31 are implementation-dependent.

Each prefetch variant reflects an intent on the part of the compiler or programmer. This is
different from other instructions in SPARC-V9 (except BPN), all of which specify specific
actions. An implementation may implement a prefetch variant by any technique, as long as
the intent of the variant is achieved.

The prefetch instruction is designed to treat the common cases well. The variants are
intended to provide scalability for future improvements in both hardware and compilers. If

a variant is implemented, then it should have the effects described below. In case some of
the variants listed below are implemented and some are not, there is a recommended over-
loading of the unimplemented variants (see the Implementation Note labeled “Recom-
mended Overloadings” in A.42.2).

A.42.1.1 Prefetch for Several Reads (fcn =0)

The intent of this variant is to cause movement of data into the data cache nearest the pro-
cessor, with “reasonable” efforts made to obtain the data.

Implementation Note:
If, for example, some TLB misses are handled in hardware, then they should be handled. On the
other hand, a multiple ECC error is reasonable cause for cancellation of a prefetch.

This is the most important case of prefetching.

If the addressed data is already present (and owned, if necessary) in the cache, then this
variant has no effect.

A.42.1.2 Prefetch for One Read (fcn=1)

This variant indicates that, if possible, the data cache should be minimally disturbed by the
data read from the given address, because that data is expected to be read once and not
reused (read or written) soon after that.

If the data is already present in the cache, then this variant has no effect.

Programming Note:
The intended use of this variant is in streaming large amounts of data into the processor without
overwriting data in cache memory.

A.42.1.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2)
The intent of this variant is to cause movement of data in preparation for writing.

If the addressed data is already present in the data cache, then this variant has no effect.

Programming Note:
An example use of this variant is to write a dirty cache line back to memory, or to initialize a cache
line in preparation for a partial write.

A.42 Prefetch Data 209

Implementation Note:
On a multiprocessor, this variant indicates that exclusive ownership of the addressed data is needed,
so it may have the additional effect of obtaining exclusive ownership of the addressed cache line.

Implementation Note:
On a uniprocessor, there is no distinction between Prefetch for Several Reads and this variant.

A.42.1.4 Prefetch for One Write (fcn = 3)

This variant indicates that, if possible, the data cache should be minimally disturbed by the
data written to this address, because that data is not expected to be reused (read or written)
soon after it has been written once.

If the data is already present in the cache, then this variant has no effect.

A.42.1.5 Prefetch Page (fcn=4)

In a virtual-memory system, the intended action of this variant is for the supervisor soft-
ware or hardware to initiate asynchronous mapping of the referenced virtual address,
assuming that it is legal to do so.

Programming Note:
The desire is to avoid a later page fault for the given address, or at least to shorten the latency of a
page fault.

In a nonvirtual-memory system, or if the addressed page is already mapped, this variant
has no effect.

The referenced page need not be mapped when the instruction completes. Loads and
stores issued before the page is mapped should block just as they would if the prefetch had
never been issued. When the activity associated with the mapping has completed, the
loads and stores may proceed.

Implementation Note:
An example of mapping activity is DMA from secondary storage.

Implementation Note:
Use of this variant may be disabled or restricted in privileged code that is not permitted to cause
page faults.

A.42.1.6 Implementation-Dependent Prefetch (fcn=16..31)

These values are available for implementations to use. An implementation shall treat any
unimplemented prefetdien values as NOPs (impl. dep. #103).

A.42.2 General Comments

There is no variant of PREFETCH for instruction prefetching. Instruction prefetching
should be encoded using the Branch Never (BPN) form of the BPcc instruction (see A.7,
“Branch on Integer Condition Codes with Prediction (BPcc)”).

210 A Instruction Definitions

One error to avoid in thinking about prefetch instructions is that they should have “no cost
to execute.” As long as the cost of executing a prefetch instruction is well less than one-
third the cost of a cache miss, use of prefetching is a net win. It does not appear that
prefetching causes a significant number of useless fetches from memory, though it may
increase the rate afseful fetches (and hence the bandwidth), because it more efficiently
overlaps computing with fetching.

Implementation Note:
Recommended OverloadingsThere are four recommended sets of overloadings for the prefetch
variants, based on a simplistic classification of SPARC-V9 systems into cost (lowscdsgh-
cost) and processor multiplicity (uniprocessar multiprocessor) categories. These overloadings
are chosen to help ensure efficient portability of software across a range of implementations.

In a uniprocessor, there is no need to support multiprocessor cache protocols; hence, Prefetch for
Several Reads and Prefetch for Several Writes may behave identically. In a low-cost implementa-
tion, Prefetch for One Read and Prefetch for One Write may be identical to Prefetch for Several
Reads and Prefetch for Several Writes, respectively.

Could be overloaded
to mean the same as
Multiplicity Cost Prefetch for .. Prefetch for ..

One read Several writes

. Several reads Several writes

Uniprocessor Low - -

One write Several writes
Several writes —
One read —

. . Several reads Several writes

Uniprocessor High -

One write —
Several writes —
One read Several reads

. Several reads —

Multiprocessor Low - -

One write Several writes
Several writes —
One read —

. . Several reads —

Multiprocessor High -

One write —
Several writes —

Programming Note:

A SPARC-V9 compiler that generates PREFETCH instructions should generate each of the four

variants where it is most appropriate. The overloadings suggested in the previous Implementation
Note ensure that such code will be portable and reasonably efficient across a range of hardware
configurations.

Implementation Note:
The Prefetch for One Read and Prefetch for One Write variants assume the existence of a “bypass
cache,” so that the bulk of the “real cache” remains undisturbed. If such a bypass cache is used, it
should be large enough to properly shield the processor from memory latency. Such a cache should
probably be small, highly associative, and use a FIFO replacement policy.

Exceptions:

A.42 Prefetch Data 211

data_access MMU_miss (implementation-dependent (impl. dep. #103))
illegal_instruction (fcn=5..15)
privileged_action (PREFETCHA with PSTATE.priv =0 and

ASI < 8044 (impl. dep. #103(6)))

212

A Instruction Definitions

A.43 Read Privileged Register

Opcode op3 Operation
RDPR’ 10 1010 Read Privileged Register
Format (3):
10 rd op3 rsl —
31 30 29 25 24 19 18 14 13
rsl Privileged register
0 TPC
1 TNPC
2 TSTATE
3 TT
4 TICK
5 TBA
6 PSTATE
7 TL
8 PIL
9 CWP
10 CANSAVE
11 CANRESTORE
12 CLEANWIN
13 OTHERWIN
14 WSTATE
15 FQ
16..30 | —
31 VER

A.43 Read Privileged Register 213

Suggested Assembly Language Syntax]
rdpr %tpc, regy
rdpr %tnpc, regy
rdpr Y%tstate, regyq
rdpr O%ptt, regyq
rdpr %tick, regyq
rdpr %tha, regy
rdpr Y%pstate, regyq
rdpr %l regyq
rdpr %pil, regyq
rdpr %cwp, regy

rdpr %cansave, reggq
rdpr %canrestore, [(Clo™
rdpr %cleanwin, regyq
rdpr %otherwin, [(Clo™
rdpr Y%wstate, regyq

rdpr %fq, regy

rdpr %ver, regy

Description:

Thersl field in the instruction determines the privileged register that is read. There are
MAXTL copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of these
registers returns the value in the register indexed by the current value in the trap level reg-
ister (TL). A read of TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0)
causes arllegal_instruction exception.

RDPR instructions withis1 in the range 16..30 are reserved; executing a RDPR instruc-
tion with rs1in that range causes #lagal_instruction exception.

A read from the FQ (Floating-Point Deferred-Trap Queue) register copies the front dou-
bleword of the queue intdrd]. The semantics of reading the FQ and the data returned are
implementation-dependent (impl. dep. #24). However, the address of a trapping floating-
point instruction must be available to the privileged trap handler. On an implementation
with a floating-point queue, an attempt to execute RDPR of FQ when the queue is empty
(FSRgne= 0) shall cause am_exception exception with FSRit set to 4 éequence_error).

In an implementation without a floating-point queue, an attempt to execute RDPR of FQ
shall cause either afflegal instruction exception or anfp_exception_other exception with
FSRftt set to 3 gnimplemented_FPop) (impl. dep. #25).

Programming Note:
On an implementation with precise floating-point traps, the address of a trapping instruction will be
in the TPCI[TL] register when the trap code begins execution. On an implementation with deferred
floating-point traps, the address of the trapping instruction might be a value obtained from the FQ.

Exceptions:
privileged _opcode
illegal_instruction ((rs1=16..30) or ((rs¥3) and (TL = 0)))

214 A Instruction Definitions

fo_exception_other (sequence_error) (RDPR of FQ when FSRRne=0 in a system
with an FQ; (impl. dep. #25)
illegal_instruction (RDPR of FQ in a system without an FQ); (impl. dep. #25)

A.44 Read State Register

215

A.44 Read State Register

The RDY instruction is deprecated; it is provided only for compatibility with prev

ous versions of the architecture. It should not be used in new SPARC-V9 softwie.

It is recommended that all instructions which reference the Y register be avoid

Opcode op3 rsl Operation
RDYP 10 1000 0 Read Y Register
— 10 1000 1 reserved
RDCCR 101000 2 Read Condition Codes Register
RDASI 101000 3 Read ASI Register
RDTICKPNPT | 10 1000 4 Read Tick Register
RDPC 101000 5 Read Program Counter
RDFPRS 10 1000 6 Read Floating-Point Registers Status Register
RDASRASR 10 1000 714 | Read Ancillary State Registeegervedl
See text 10 1000 15 See text
RDASRASR 10 1000 16-31 | Implementation-dependefimpl. dep. #47)
Format (3):
10 rd op3 rsl i=0
31 30 29 25 24 19 18 14 13 12 0
Suggested Assembly Language SyntaL(
rd %y, regy
rd %ccr , regy
rd %asi , regy
rd %tick , regyg
rd %pcC, regy
rd %fprs |, regy
rd asr_regsy, regy
Description:

These instructions read the specified state register|[nafjo

Note that RDY, RDCCR, RDASI, RDPC, RDTICK, RDFPRS, and RDASR are distin-
guished only by the value in tigl field.

If rs1>7, an ancillary state register is read. Valuesgifin the range 7..14 are reserved

for future versions of the architecture; values in the range 16..31 are available for imple-
mentations to use (impl. dep. #8). A RDASR instruction wih= 15,rd =0, andi =0 is
defined to be an STBAR instruction (see A.51). An RDASR instruction wsth= 15,
rd=0, andi=1 is defined to be a MEMBAR instruction (see A.32). RDASR with

216 A Instruction Definitions

rs1=15 andrd#0 is reserved for future versions of the architecture; it causetegal
instruction exception.

RDTICK causes arivileged_action exception if PSTATE.PRIV =0 and TICK.NPT = 1.

For RDPC, the high-order 32-bits of the PC value stored[id] are implementation-
dependent when PSTATE.AM =1 (impl. dep. #125).

RDFPRS waits for all pending FPops and loads of floating-point registers to complete
before reading the FPRS register.

IMPL. DEP. #47: RDASR instructions with rdin the range 16..31 are available for implementation-
dependent uses (impl. dep. #8. For a RDASR instruction with rs1 in the range 16 .. 31, the follow-
ing are implementation-dependent: the interpretation of bits 13:0 and 29:25 in the instruction,
whether the instruction is privileged (impl. dep. #9, and whether the instruction causes an illegal_
instruction exception.

See I.1.1, “Read/Write Ancillary State Registers (ASRs),” for a discussion of extending
the SPARC-V9 instruction set using read/write ASR instructions

Implementation Note:
Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-
control registers. Seleplementation Characteristics of Current SPARC-V9-based Products, Revi-
sion 9.x a document available from SPARC International, for information on implemented ancil-
lary state registers.

V8 Compatibility Note:
The SPARC-V8 RDPSR, RDWIM, and RDTBR instructions do not exist in SPARC-V9 since the
PSR, WIM, and TBR registers do not exist in SPARC-V9.

Exceptions:
privileged_opcode (RDASR only; implementation-dependent (impl. dep. #47))
illegal_instruction (RDASR withrs1=1 or 7..14; RDASR withrs1 =15 andrd#0;
RDASR withrs1=16..31 and the implementation does not define the instruc-
tion as an extension; implementation-dependent (impl. dep. #47))
privileged_action (RDTICK only)

A.45 RETURN 217

A.45 RETURN

Opcode op3 Operation
RETURN 11 1001 RETURN

Format (3):
10 — op3 rsl i=0 — rs2
10 — op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
return address
Description:

The RETURN instruction causes a delayed transfer of control to the target address and has
the window semantics of a RESTORE instruction; that is, it restores the register window
prior to the last SAVE instruction. The target address nfgsil] + r[rs2]” if i =0, or

“r[rs1] + sign_ext6imm13” if i = 1. Registers[rs1] andr[rs2] come from theold win-

dow.

The RETURN instruction may cause an exception. It may causedaw _fill exception as
part of its RESTORE semantics or it may caus@en_address_not_aligned exception if
either of the two low-order bits of the target address are nonzero.

Programming Note:
To reexecute the trapped instruction when returning from a user trap handler, use the RETURN
instruction in the delay slot of a JMPL instruction, for example:

jmpl %I16,%g0 ! Trapped PC supplied to user trap handler
return %I7 ! Trapped nPC supplied to user trap handler

Programming Note:
A routine that uses a register window may be structured either as

save %sp,- framesize%sp

ret I Same as jmpl %i7 + 8, %g0

restore ! Something useful like “restore %02,%l2,%00"
or as

save %sp,- framesize%sp

return %i7 +8
nop ! Could do some useful work in the caller’s
I window e.g. “or %01, %02,%00"

Exceptions:
mem_address _not_aligned
fill_n_normal (n=0..7)
fill_n_other (N =0..7)

218 A Instruction Definitions

A.46 SAVE and RESTORE

Opcode op3 Operation
SAVE 111100 Save caller’'s window
RESTORE 111101 Restore caller's window
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Suggested Assembly Language Syntax
save reggy, reg_or_imm regy
restore regsq, reg_or_imm regy

Description (Effect on Nonprivileged State):

The SAVE instruction provides the routine executing it with a new register window. The
out registers from the old window become timeregisters of the new window. The con-
tents of theout and thelocal registers in the new window are zero or contain values from
the executing process; that is, the process sees a clean window.

The RESTORE instruction restores the register window saved by the last SAVE instruc-
tion executed by the current process. Theegisters of the old window become that
registers of the new window. The andlocal registers in the new window contain the pre-
vious values.

Furthermore, if and only if a spill or fill trap is not generated, SAVE and RESTORE
behave like normal ADD instructions, except that the source opergrsd$ and/orr[rs2]

are read from theld window (that is, the window addressed by the original CWP) and the
sum is written intor[rd] of the new window (that is, the window addressed by the new
CWP).

Note that CWP arithmetic is performed modulo the number of implemented windows,
NWINDOWS.

Programming Note:
Typically, if a SAVE (RESTORE) instruction traps, the spill (fill) trap handler returns to the trapped
instruction to reexecute it. So, although the ADD operation is not performed the first time (when
the instruction traps), it is performed the second time the instruction executes. The same applies to
changing the CWP.

Programming Note:
The SAVE instruction can be used to atomically allocate a new window in the register file and a
new software stack frame in memory. See H.1.2, “Leaf-Procedure Optimization,” for details.

Programming Note:
There is a performance tradeoff to consider between using SAVE/RESTORE and saving and restor-
ing selected registers explicitly.

A.46 SAVE and RESTORE 219

Description (effect on privileged state):

If the SAVE instruction does not trap, it increments the CWid@d NWINDOWS) to pro-
vide a new register window and updates the state of the register windows by decrementing
CANSAVE and incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated.
The trap vector for the spill trap is based on the value of OTHERWIN and WSTATE. The
spill trap handler is invoked with the CWP set to point to the window to be spilled (that is,
old CWP+ 2).

If CANSAVE # 0, the SAVE instruction checks whether the new window needs to be
cleaned. It causesaean_window trap if the number of unused clean windows is zero, that
is, (CLEANWIN — CANRESTORE) = 0. Thelean_window trap handler is invoked with
the CWP set to point to the window to be cleaned (that is, old €EQYP

If the RESTORE instruction does not trap, it decrements the CGW&RINWINDOWS) to

restore the register window that was in use prior to the last SAVE instruction executed by
the current process. It also updates the state of the register windows by decrementing
CANRESTORE and incrementing CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), a fill trap is
generated. The trap vector for the fill trap is based on the values of OTHERWIN and
WSTATE, as described in 7.5.2.1, “Trap Type for Spill/Fill Traps.” The fill trap handler is
invoked with CWP set to point to the window to be filled, that is, old CWP — 1.

Programming Note:
The vectoring of spill and fill traps can be controlled by setting the value of the OTHERWIN and
WSTATE registers appropriately. For details, see the unnumbered subsection titled “Splitting the
Register Windows” in H.2.3, “Client-Server Model.”

Programming Note:
The spill (fill) handler normally will end with a SAVED (RESTORED) instruction followed by a
RETRY instruction.

Exceptions:
clean_window (SAVE only)
fill_n_normal (RESTORE onlyn=0..7)
fill_n_other RESTORE onlyn=0..7)
spill_n_normal (SAVE only,n=0..7)
spill_n_other (SAVE only,n=0..7)

220 A Instruction Definitions

A.47 SAVED and RESTORED

Opcode op3 fcn Operation
SAVEDP 11 0001 0 Window has been Saved
RESTORED 11 0001 1 Window has been Restored

— 11 0001 2..31 | Reserved

Format (3):
10 fcn op3 —
31 30 29 25 24 19 18 0
Suggested Assembly Language Syntax
saved
restored
Description:

SAVED and RESTORED adjust the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, it decrements CANRESTORE.
If OTHERWIN=2O, it decrements OTHERWIN.

RESTORED increments CANRESTORE. If CLEANWK(NWINDOWS-1),
RESTORED increments CLEANWIN. If OTHERWIN = 0, it decrements CANSAVE.
If OTHERWIN # 0, it decrements OTHERWIN.

Programming Note:
The spill (fill) handlers use the SAVED (RESTORED) instruction to indicate that a window has
been spilled (filled) successfully. See H.2.2, “Example Code for Spill Handler,” for details.

Programming Note:
Normal privileged software would probably not do a SAVED or RESTORED from trap level zero
(TL = 0). However, it is not illegal to do so, and does not cause a trap.

Programming Note:
Executing a SAVED (RESTORED) instruction outside of a window spill (fill) trap handler is likely
to create an inconsistent window state. Hardware will not signal an exception, however, since main-
taining a consistent window state is the responsibility of privileged software.

Exceptions:
privileged_opcode
illegal_instruction (fcn=2..31)

A.48 SETHI 221

A.48 SETHI
Opcode op op2 Operation
SETHI 00 100 Set High 22 Bits of Low Word
Format (2):
00 rd 100 imm22
31 30 29 2524 2221 0
Suggested Assembly Language Syntax
sethi const22 regy
sethi %hi (value), regy
Description:

SETHI zeroes the least significant 10 bits and the most significant 32 br{sddf and
replaces bits 31 through 10gfd] with the value from itsmm22field.

SETHI does not affect the condition codes.

A SETHI instruction withrd = 0 andimm22= 0 is defined to be a NOP instruction, which
is defined in A.40.

Programming Note:
The most common form of 64-bit constant generation is creating stack offsets whose magnitude is
less than 2. The code below can be used to create the constant 0000 0000 ABClp 1234

sethi %hi(Oxabcd1234),%00
or %00, 0x234, %00

The following code shows how to create a negative constant. Note that the immediate field of the
Xor instruction is sign extended and can be used to get 1s in all of the upper 32 bits. For example,
to set the negative constant FFFF FFFF ABCD 1234

sethi %hi(0x5432edcb),%00! note 0x5432EDCB, not 0XABCD1234
xor %00, Ox1e34, %00 ! part of imm. overlaps upper bits

Exceptions:
(none)

222 A Instruction Definitions

A.49 Shift
Opcode op3 X Operation
SLL 100101 0 Shift Left Logical - 32 Bits
SRL 100110 0 Shift Right Logical - 32 Bits
SRA 10 0111 0 Shift Right Arithmetic - 32 Bits
SLLX 10 0101 1 Shift Left Logical - 64 Bits
SRLX 10 0110 1 Shift Right Logical - 64 Bits
SRAX 100111 1 Shift Right Arithmetic - 64 Bitd
Format (3):
10 rd op3 rsl i=0| x — rs2
10 rd op3 rsl i=1|x=Q — shcnt32
10 rd op3 rsl i=1|x=1 — shent64
31 30 29 25 24 19 18 14 13 12 6 5 4 0
Suggested Assembly Language Syntax
sli regsy, reg_or_shent regy
srl reggy, reg_or_shent regy
sra regsy, reg_or_shent regy
slix reggy, reg_or_shent regy
srix regsy, reg_or_shent regy
srax regsy, reg_or_shcntregy
Description:

Wheni = 0 andx = 0, the shift count is the least significant five bitsrp&s2]. Wheni =0

andx = 1, the shift count is the least significant six bitspt2]. Wheni = 1 andx = 0, the

shift count is the immediate value specified in bits O through 4 of the instruction. When
i =1 andx = 1, the shift count is the immediate value specified in bits O through 5 of the
instruction.

Shift count
bits 4 .. 0 of[rs2]
bits 5.. 0 of[rs2]
bits 4..0 of instruction
bits 5..0 of instruction

RO |O|—
RlO|Rr|O|X

SLL and SLLX shift all 64 bits of the value irffrs1] left by the number of bits specified by
the shift count, replacing the vacated positions with zeroes, and write the shifted result to
r[rd].

A.49 Shift 223

SRL shifts the low 32 bits of the value rfrs1] right by the number of bits specified by the
shift count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result is
written tor[rd].

SRLX shifts all 64 bits of the value inrs1] right by the number of bits specified by the
shift count. Zeroes are shifted into the vacated high-order bit positions, and the shifted
result is written ta[rd].

SRA shifts the low 32 bits of the value nfirs1] right by the number of bits specified by
the shift count, and replaces the vacated positions with bit 3lref]. The high order 32
bits of the result are all set with bit 31r§fs1], and the result is written tgrd].

SRAX shifts all 64 bits of the value inrs1] right by the number of bits specified by the
shift count, and replaces the vacated positions with bit 68rsfl]. The shifted result is
written tor[rd].

No shift occurs when the shift count is zero, but the high-order bits are affected by the 32-
bit shifts as noted above.

These instructions do not modify the condition codes.

Programming Note:
“Arithmetic left shift by 1 (and calculate overflow)” can be effected with the ADDcc instruction.

Programming Note:
The instruction $ra rs1,0, rd” can be used to convert a 32-bit value to 64 bits, with sign exten-
sion into the upper wordstl rs1,0, rd” can be used to clear the upper 32 bits[nf].

Exceptions:
(none)

224 A Instruction Definitions

A.50 Software-Initiated Reset

Opcode op3 rd Operation
SIR 11 0000 15 Software-initiated reset

Format (3):

10 01111 op3 0 0000 i=1 simm13
31 30 29 25 24 19 18 14 13 12 0
Suggested Assembly Language Syntax
Sir simm13
Description:

SIR is used to generate a software-initiated reset (SIR). It may be executed in either privi-
leged or nonprivileged mode, with slightly different effect. As with other traps, a software-
initiated reset performs different actions when TL = MAXTL than it does when
TL < MAXTL.

When executed in user mode, the action of SIR is conditional on the SIR_enable control
flag.

IMPL. DEP. #116: The location of the SIR_enable control flag and the means of accessing the
SIR_enable control flag are implementation-dependent. In some implementations it may be per-
manently zero.

When SIR_enable is 0, SIR executes without effect (as a NOP) in user mode. When SIR is
executed in privileged mode or in user mode with SIR_enable = 1, the processor performs
a software-initiated reset. See 7.6.2.5, “Software-Initiated Reset (SIR) Traps,” for more
information about software-initiated resets.

Programming Note:
This instruction is never illegal. It is not a privileged instruction, even though its action in privileged
mode is different than in user mode.

Exceptions:
software_initiated_reset

A.51 Store Barrier 225

A.51 Store Barrier

The STBAR instruction is deprecated; it is provided only for compatibility wit
previous versions of the architecture. It should not be used in new SPARC-V9 sjift-
ware. It is recommended that the MEMBAR instruction be used in its place.

Opcode op3 Operation
STBARP 10 1000 Store Barrier

Format (3):
10 0 op3 01111 0 —
31 30 29 25 24 19 18 14 13 12 0
Suggested Assembly Language Syntax
stbar
Description:

The store barrier instruction (STBAR) forcal store and atomic load-store operations
issued by a processor prior to the STBAR to complete their effects on memory befpre
store or atomic load-store operations issued by that processor subsequent to the STBAR
are executed by memory.

Note that the encoding of STBAR is identical to that of the RDASR instruction except that
rs1= 15 andrd = 0, and is identical to that of the MEMBAR instruction except that bit 13

(i) =0.
The coherence and atomicity of memory operations between processors and 1/O DMA
memory accesses are implementation-dependent (impl. dep #120).

V8 Compatibility Note:
STBAR is identical in function to a MEMBAR instruction withmask= 8,5, STBAR is retained
for compatibility with SPARC-V8.

Implementation Note:
For correctness, it is sufficient for a processor to stop issuing new store and atomic load-store oper-
ations when an STBAR is encountered and resume after all stores have completed and are observed
in memory by all processors. More efficient implementations may take advantage of the fact that
the processor is allowed to issue store and load-store operations after the STBAR, as long as those
operations are guaranteed not to become visible before all the earlier stores and atomic load-stores
have become visible to all processors.

Exceptions:
(none)

226

A Instruction Definitions

A.52 Store Floating-Point

The STFSR instruction is deprecated; it is provided only for compatibility with pr
vious versions of the architecture. It should not be used in new SPARC-V9 s

ware. It is recommended that the STXFSR instruction be used in its place.

Opcode op3 rd Operation
STF 10 0100 0..31 Store Floating-Point Register
STDF 100111 T Store Double Floating-Point Register
STQF 100110 T Store Quad Floating-Point Register
STFSR 100101 0 Store Floating-Point State Register Lower
STXFSR 10 0101 1 Store Floating-Point State Register
— 100101 2..31 | Reserved
T Encoded floating-point register value, as described in 5.1.4.1
Format (3):
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
st freg .4, [addres$
std freg .4, [addres$
stq freg .4, [addres$
st %fsr , [addres$
stx %fsr , [addres$
Description:

The store single floating-point instruction (STF) copied] into memory.

The store double floating-point instruction (STDF) copies a doubleword from a double
floating-point register into a word-aligned doubleword in memory.

The store quad floating-point instruction (STQF) copies the contents of a quad floating-
point register into a word-aligned quadword in memory.

The store floating-point state register lower instruction (STFSR) waits for any currently
executing FPop instructions to complete, and then writes the lower 32 bits of the FSR into
memory.

The store floating-point state register instruction (STXFSR) waits for any currently exe-
cuting FPop instructions to complete, and then writes all 64 bits of the FSR into memory.

A.52 Store Floating-Point 227

V8 Compatibility Note:
SPARC-V9 needs two store-FSR instructions, since the SPARC-V8 STFSR instruction is defined to
store only 32 bits of the FSR into memory. STXFSR allows SPARC-V9 programs to store all 64
bits of the FSR.

STFSR and STXFSR zero F$Rafter writing the FSR to memory.

Implementation Note:
FSRftt should not be zeroed until it is known that the store will not cause a precise trap.

The effective address for these instructionsrigs] + r[rs2]” if i =0, or “r[rs]] + sign_
extimm13y’if i = 1.

STF, STFSR, STDF, and STQF causeen_address _not_aligned exception if the effective
memory address is not word-aligned; STXFSR causesrm address_not_aligned excep-

tion if the address is not doubleword-aligned. If the floating-point unit is not enabled for
the source registed (per FPRS.FEF and PSTATE.PEF), or if the FPU is not present, a
store floating-point instruction causesfarvisabled exception.

IMPL. DEP. #110(1): STDF requires only word alignment in memory. If the effective address is
word-aligned but not doubleword-aligned, it may cause an STDF_mem_address _not_aligned
exception. In this case the trap handler software shall emulate the STDF instruction and return.

IMPL. DEP. #112(1): STQF requires only word alignment in memory. If the effective address is
word-aligned but not quadword-aligned, it may cause an STQF _mem address not aligned
exception. In this case the trap handler software shall emulate the STQF instruction and return.

Programming Note:
In SPARC-V8, some compilers issued sets of single-precision stores when they could not deter-
mine that double- or quadword operands were properly aligned. For SPARC-V9, since emulation of
misaligned stores is expected to be fast, it is recommended that compilers issue sets of single-preci-
sion stores only when they can determine that double- or quadword operandet groperly
aligned.

Exceptions:
async_data_error
fo_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDF only) (impl. dep. #110)
STQF_mem_address_not_aligned (STQF only) (impl. dep. #112)
data_access_exception
data_access_protection

data_access MMU_miss
data_access_error

illegal_instruction (0p3= 25, andrd = 2..31)
fo_exception_other (invalid_fp_register (STQF only))

228 A Instruction Definitions

A.53 Store Floating-Point into Alternate Space

Opcode op3 rd Operation
STEAPAS! 11 0100 0..31 Store Floating-Point Register to Alternate Space
STDFAPS! 110111 T Store Double Floating-Point Register to Alternate Space
STQFAMs! 110110 T Store Quad Floating-Point Register to Alternate Spage
T Encoded floating-point register value, as described in 5.1.4.1
Format (3):
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Suggested Assembly Language Syntax
sta freg .4, [regaddi imm_asi
sta freg 4, [reg_plus_imrh %asi
stda freg .4, [regaddi imm_asi
stda freg 4, [reg_plus_imrh %asi
stqa freg .4, [regaddi imm_asi
stqa freg 4, [reg_plus_imrh %asi

Description:

The store single floating-point into alternate space instruction (STFA) copisinto
memory.

The store double floating-point into alternate space instruction (STDFA) copies a double-
word from a double floating-point register into a word-aligned doubleword in memory.

The store quad floating-point into alternate space instruction (STQFA) copies the contents
of a quad floating-point register into a word-aligned quadword in memory.

Store floating-point into alternate space instructions contain the address space identifier
(ASI) to be used for the load in thenm_asifield if i = 0, or in the ASI register if=1. The
access is privileged if bit seven of the ASI is zero; otherwise, it is not privileged. The
effective address for these instructions 1$rs1] + r[rs2]” if i =0, or “r[rs]] + sign_
extSimml1y’if i = 1.

STFA, STDFA, and STQFA causermem_address_not_aligned exception if the effective
memory address is not word-aligned. If the floating-point unit is not enabled for the source
registerrd (per FPRS.FEF and PSTATE.PEF), or if the FPU is not present, store floating-
point into alternate space instructions caus# afisabled exception.

STFA, STDFA, and STQFA causemavileged_action exception if PSTATE.PRIV =0 and
bit 7 of the ASI is zero.

A.53 Store Floating-Point into Alternate Space 229

IMPL. DEP. #110(2): STDFA requires only word alignment in memory. If the effective address is
word-aligned but not doubleword-aligned, it may cause an STDF _mem address not_aligned
exception. In this case the trap handler software shall emulate the STDFA instruction and return.

IMPL. DEP. #112(2): STQFA requires only word alignment in memory. If the effective address is
word-aligned but not quadword-aligned, it may cause an STQF_mem_address not_aligned
exception. In this case the trap handler software shall emulate the STQFA instruction and return.

Programming Note:

In SPARC-V8, some compilers issued sets of single-precision stores when they could not deter-
mine that double- or quadword operands were properly aligned. For SPARC-V9, since emulation of
misaligned stores is expected to be fast, it is recommended that compilers issue sets of single-preci-

sion stores only when they can determine that double- or quadword operandst grperly
aligned.

Exceptions:
async_data_error
fp_disabled
mem_address _not_aligned
STDF_mem_address_not_aligned (STDFA only) (impl. dep. #110)
STQF_mem_address_not_aligned (STQFA only) (impl. dep. #112)
privileged_action
data_access_exception
data_access_protection
data_access MMU_miss
data_access_error
fo_exception_other (invalid_fp_register (STQFA only))

230 A Instruction Definitions

A.54 Store Integer

The STD instruction isdeprecated,; it is provided only for compatibility with prev
ous versions of the architecture. It should not be used in new SPARC-V9 softwie.
It is recommended that the STX instruction be used in its place.

Opcode op3 Operation
STB 000101 | Store Byte
STH 00 0110 | Store Halfword
STW 00 0100 | Store Word
STX 001110 | Store Extended Word
STDP 000111 | Store Doubleword
Format (3):
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
stb reg,q, [addres$ (synonymsstub , stsb)
sth reg,q, [addres} (synonymsstuh , stsh)
stw reg,q, [addres$ (synonymsst , stuw , stsw)
Stx reg,q, [addres}
std reg,q, [addres$
Description:

The store integer instructions (except store doubleword) copy the whole extended (64-bit)
integer, the less-significant word, the least significant halfword, or the least significant
byte ofr[rd] into memory.

The store doubleword integer instruction (STD) copies two words fromragister pair

into memory. The least significant 32 bits of the even-numberedister are written into
memory at the effective address, and the least significant 32 bits of the following odd-
numbered register are written into memory at the “effective address + 4.” The least sig-
nificant bit of therd field of a store doubleword instruction is unused and should always be
set to zero by software. An attempt to execute a store doubleword instruction that refers to
a misaligned (odd-numberer) causes arflegal_instruction exception.

IMPL. DEP. #108(1): IT is implementation-dependent whether STD is implemented in hardware. if
not, an attempt to execute it will cause an unimplemented_STD exception.

The effective address for these instructionsrigsd] + r[rs2]” if i =0, or “r[rs]] + sign_
extsimml1y’if i = 1.

A.54 Store Integer 231

A successful store (notably, store extended and store doubleword) instruction operates
atomically.

STH causes aem_address_not_aligned exception if the effective address is not halfword-
aligned. STW causes mem_address_not_aligned exception if the effective address is not
word-aligned. STX and STD causesnam_address_not_aligned exception if the effective
address is not doubleword-aligned.

With respect to little-endian memory, a STD instruction behaves as if it is composed of
two 32-bit stores, each of which is byte-swapped independently before being written into
each destination memory word.

Programming Note:
STD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machines
because of data path and register-access difficulties. In some SPARC-V9 systems it may cause a
trap to emulation code; therefore, STD should be avoided.

If STD is emulated in software, STX should be used in order to preserve atomicity.

V8 Compatibility Note:
The SPARC-V8 ST instruction has been renamed STW in SPARC-V9.

Exceptions:
async_data_error
unimplemented_STD (STD only) (impl. dep. #108)
illegal_instruction (STD with oddrd)
mem_address_not_aligned (all except STB)
data_access_exception
data_access_error
data_access_protection
data_access MMU_miss

232 A Instruction Definitions

A.55 Store Integer into Alternate Space

The STDA instruction is deprecated; it is provided only for compatibility with pr
vious versions of the architecture. It should not be used in new SPARC-V9 s

ware. It is recommended that the STXA instruction be used in its place.

Opcode op3 Operation
STBAMs! 010101 | Store Byte into Alternate space
STHAPAS! 01 0110 | Store Halfword into Alternate space
STWAPAS! 01 0100 | Store Word into Alternate space
STXAPss! 011110 | Store Extended Word into Alternate spage
STDAP-Psl | 010111 | Store Doubleword into Alternate space
Format (3):
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
stba regq, [regaddi imm_asi (synonymsstuba , stsha)
stha regy. [regaddi imm_asi (synonymsstuha , stsha)
stwa regqy, [regaddi imm_asi (synonymssta , stuwa , stswa)
stxa regy. [regaddi imm_asi
stda regqy, [regaddi imm_asi
stba regq. [reg_plus_imrh %asi (synonymsstuba , stsha)
stha regq, [reg_plus_imrh %asi (synonymsstuha , stsha)
stwa regq. [reg_plus_imrh %asi (synonymssta , stuwa , stswa)
stxa regq, [reg_plus_imrh %asi
stda regq. [reg_plus_imrh %asi
Description:

The store integer into alternate space instructions (except store doubleword) copy the
whole extended (64-bit) integer, the less-significant word, the least-significant halfword,
or the least-significant byte ofird] into memory.

The store doubleword integer instruction (STDA) copies two words fromragister pair

into memory. The least-significant 32 bits of the even-numberedister are written into
memory at the effective address, and the least-significant 32 bits of the following odd-
numbered register are written into memory at the “effective address + 4.” The least sig-
nificant bit of therd field of a store doubleword instruction is unused and should always be
set to zero by software. An attempt to execute a store doubleword instruction that refers to
a misaligned (odd-numberexd) causes arlegal_instruction exception.

A.55 Store Integer into Alternate Space 233

IMPL. DEP. #108(2): It is implementation-dependent whether STDA is implemented in hardware. If
not, an attempt to execute it will cause an unimplemented_STD exception.

Store integer to alternate space instructions contain the address space identifier (ASI) to be
used for the store in thenm_asifield if i = 0, or in the ASI register if = 1. The access is
privileged if bit seven of the ASI is zero; otherwise, it is not privileged. The effective
address for these instructions i§rs1] + r[rs2]” if i =0, or “r[rs1]+sign_ext6imm13’ if

i=1.

A successful store (notably, store extended and store doubleword) instruction operates
atomically.

STHA causes anem_address _not_aligned exception if the effective address is not half-
word-aligned. STWA causesreem_address_not_aligned exception if the effective address
is not word-aligned. STXA and STDA causeram_address_not_aligned exception if the
effective address is not doubleword-aligned.

A store integer into alternate space instruction causesivéieged action exception if
PSTATE.PRIV = 0 and bit 7 of the ASl is zero.

With respect to little-endian memory, a STDA instruction behaves as if it is composed of
two 32-bit stores, each of which is byte-swapped independently before being written into
each destination memory word.

Programming Note:
STDA is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9
machines because of data path and register-access difficulties. In some SPARC-V9 systems it may
cause a trap to emulation code; therefore, STDA should be avoided.

If STDA is emulated in software, STXA should be used in order to preserve atomicity.

V8 Compatibility Note:
The SPARC-V8 STA instruction is renamed STWA in SPARC-V9.

Exceptions:
async_data_error
unimplemented_STD (STDA only) (impl. dep. #108)
illegal_instruction (STDA with oddrd)
privileged_action
mem_address_not_aligned (all except STBA)
data_access_exception
data_access_error

data_access_protection
data_access MMU_miss

234 A Instruction Definitions

A.56 Subtract

Opcode op3 Operation

SUB 00 0100 Subtract

SUBcc 01 0100 Subtract and modify cc’s

SUBC 001100 Subtract with Carry

SUBCcc 011100 Subtract with Carry and modify cc’s|

Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
sub gy, reg_or_imm regy
subcc regsy, reg_or_imm regy
subc gy, reg_or_imm regy
subccc regsy, reg_or_imm regy
Description:

These instructions compute[fsl] —r[rs2]” if i =0, or “r[rs1] —sign_extsimm13’ if
i =1, and write the difference intfrd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit carry
(icc.0 bit; that is, they computerfrsl] —r[rs2] —icc.c’ or “r[rs1] — sign_ext6imm13 —
icc.c,” and write the difference intqrd].

SUBcc and SUBCcc modify the integer condition codes (G&Rand CCRxcg). 32-bit
overflow (CCRicc.v) occurs on subtraction if bit 31 (the sign) of the operands differ and
bit 31 (the sign) of the difference differs fronfirs1]<31>. 64-bit overflow (CCRkccv)
occurs on subtraction if bit 63 (the sign) of the operands differ and bit 63 (the sign) of the
difference differs fromr[rs1]<63>.

Programming Note:

A SUBcc withrd = 0 can be used to effect a signed or unsigned integer comparison. See the CMP
synthetic instruction in Appendix G.

Programming Note:
SUBC and SUBCcc read the 32-bit condition codes’ carry bit (G€2R:), not the 64-bit condition
codes’ carry bit (CCRcc.c).

V8 Compatibility Note:
SUBC and SUBCcc were named SUBX and SUBXcc, respectively, in SPARC-V8.

Exceptions:
(none)

A.57 Swap Register with Memory 235

A.57 Swap Register with Memory

The SWAP instruction is deprecated; it is provided only for compatibility with pr
vious versions of the architecture. It should not be used in new SPARC-V9 s

ware. It is recommended that the CASA (or CASXA) instruction be used in
place.

Opcode op3 Operation
SWAPP 0011112 SWAP register with memory

Format (3):

11 rd op3 rsl i=0 — rs2

11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Suggested Assembly Language Syntax
swap [addres$ regy

Description:

SWAP exchanges the lower 32 bitsrgpfd] with the contents of the word at the addressed
memory location. The upper 32 bits dird] are set to zero. The operation is performed
atomically, that is, without allowing intervening interrupts or deferred traps. In a multipro-
cessor system, two or more processors executing CASA, CASXA, SWAP, SWAPA,
LDSTUB, or LDSTUBA instructions addressing any or all of the same doubleword simul-
taneously are guaranteed to execute them in an undefined but serial order.

The effective address for these instructionsrigsd] + r[rs2]” if i =0, or “r[rs]] + sign_
ext(simm13’ if i = 1. This instruction causesmem_address _not_aligned exception if the
effective address is not word-aligned.

The coherence and atomicity of memory operations between processors and /0 DMA
memory accesses are implementation-dependent (impl. dep #120).

Implementation Note:
Seelmplementation Characteristics of Current SPARC-V9-based Products, Revisjan doxu-
ment available from SPARC International, for information on the presence of hardware support for
these instructions in the various SPARC-V9 implementations.

Exceptions:
mem_address _not_aligned
data_access_exception
data_access_error
data_access_protection
data_access MMU_miss
async_data_error

236 A Instruction Definitions

A.58 Swap Register with Alternate Space Memory

The SWAPA instruction is deprecated; it is provided only for compatibility wit
previous versions of the architecture. It should not be used in new SPARC-V9 sjift-
ware. It is recommended that the CASXA instruction be used in its place.

Opcode op3 Operation
SWAPAD: PAsl | 011111 | SWAP register with Alternate space memory
Format (3):
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
swapa [regaddi] imm_asj regyq
swapa [reg_plus_imrh %asi, regy
Description:

SWAPA exchanges the lower 32 bits ofrd] with the contents of the word at the
addressed memory location. The upper 32 bits[af] are set to zero. The operation is
performed atomically, that is, without allowing intervening interrupts or deferred traps. In
a multiprocessor system, two or more processors executing CASA, CASXA, SWAP,
SWAPA, LDSTUB, or LDSTUBA instructions addressing any or all of the same double-
word simultaneously are guaranteed to execute them in an undefined, but serial order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the load
in theimm_asifield if i = 0, or in the ASI register if = 1. The access is privileged if bit
seven of the ASI is zero; otherwise, it is not privileged. The effective address for this
instruction is f[rs1] + r[rs2]” if i =0, or r[rs1] + sign_ext6imm13”if i = 1.

This instruction causesmem_address_not_aligned exception if the effective address is not
word-aligned. It causes @ivileged_action exception if PSTATE.PRIV = 0 and bit 7 of the
ASl is zero.

The coherence and atomicity of memory operations between processors and 1/0 DMA
memory accesses are implementation-dependent (impl. dep #120).

Implementation Note:
Seelmplementation Characteristics of Current SPARC-V9-based Products, Revisjan dru-
ment available from SPARC International, for information on the presence of hardware support for
this instruction in the various SPARC-V9 implementations.

A.58 Swap Register with Alternate Space Memory 237

Exceptions:
mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
data_access_protection
data_access MMU_miss
async_data_error

238 A Instruction Definitions

A.59 Tagged Add

The TADDccTV instruction is deprecated; it is provided only for compatibilit
with previous versions of the architecture. It should not be used in new SPARC#9
software. It is recommended that TADDcc followed by BPVS be used in its plafle
(with instructions to save the pre-TADDcc integer condition codes, if necessar

Opcode op3 Operation
TADDcc 10 0000 Tagged Add and modify cc’s
TADDccTVP 10 0010 Tagged Add and modify cc’s, or Trap on Overflow

Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
taddcc gy, reg_or_imm regy
taddcctv regsy, reg_or_imm regyq
Description:

These instructions compute a sum that ifrsl] + r[rs2]” if i =0, or “r[rs]] + sign_
extimm13y’if i = 1.

TADDcc modifies the integer condition codesqandxcc), and TADDccTV does so also,
if it does not trap.

A tag_overflow exception occurs if bit 1 or bit O of either operand is nonzero, or if the addi-
tion generates 32-bit arithmetic overflow (i.e., both operands have the same value in bit 31,
and bit 31 of the sum is different).

If TADDccCTV causes a tag overflow, g _overflow exception is generated, anfd] and

the integer condition codes remain unchanged. If a TADDccTV does not cause a tag over-
flow, the sum is written into[rd], and the integer condition codes are updated. G&CR.

is set to O to indicate no 32-bit overflow. If a TADDcc causes a tag overflow, the 32-bit
overflow bit (CCRicc.V) is set to 1; if it does not cause a tag overflow, CCRYy is
cleared.

In either case, the remaining integer condition codes (both the otheri€@iRs and all
the CCRxccbits) are also updated as they would be for a normal ADD instruction. In par-
ticular, the setting of the CCRcc.vbit is not determined by the tag overflow condition
(tag overflow is used only to set the 32-bit overflow bit). C&Rv is set only based on
the normal 64-bit arithemetic overflow condition, like a normal 64-bit add.
V8 Compatibility Note:

TADDccTV traps based on the 32-bit overflow condition, just as in SPARC-V8. Although the

tagged-add instructions set the 64-bit condition codes &€&Rthere is no form of the instruction
that traps the 64-bit overflow condition.

Exceptions:
tag_overflow (TADDccTV only)

A.60 Tagged Subtract 239

A.60 Tagged Subtract

The TSUBccTYV instruction is deprecated; it is provided only for compatibility wit
previous versions of the architecture. It should not be used in new SPARC-V9 sjift-
ware. It is recommended that TSUBcc followed by BPVS be used in its place (Wih
instructions to save the pre-TSUBcc integer condition codes, if necessary).

Opcode op3 Operation
TSUBcc 10 0001 Tagged Subtract and modify cc's
TSUBccTWP 10 0011 Tagged Subtract and modify cc’s, or Trap on Overflqw

Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
tsubcc regs1, reg_or_imm regy
tsubcctv regs, reg_or_imm regy
Description:

These instructions compute[tsl] — r[rs2]” if i =0, or “r[rs1] — sign_ext6imm13" if
i=1.

TSUBcc modifies the integer condition codex(@ndxcc); TSUBccTV also modifies the
integer condition codes, if it does not trap.

A tag overflow occurs if bit 1 or bit O of either operand is nonzero, or if the subtraction
generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31
(the 32-bit sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of
r[rsl].

If TSUBCCTV causes a tag overflow,tag_overflow exception is generated amftd] and

the integer condition codes remain unchanged. If a TSUBccTV does not cause a tag over-
flow condition, the difference is written intqrd], and the integer condition codes are
updated. CCRec.vis set to 0 to indicate no 32-bit overflow. If a TSUBcc causes a tag
overflow, the 32-bit overflow bit (CCR.c.V) is set to 1; if it does not cause a tag overflow,
CCRicc.vis cleared.

In either case, the remaining integer condition codes (both the otheri€@iRs and all

the CCRxccbits) are also updated as they would be for a normal subtract instruction. In
particular, the setting of the CCORc.vbit is not determined by the tag overflow condition
(tag overflow is used only to set the 32-bit overflow bit). C&Rv is set only based on

the normal 64-bit arithemetic overflow condition, like a normal 64-bit subtract.

240 A Instruction Definitions

V8 Compatibility Note:
TSUBccTYV traps are based on the 32-bit overflow condition, just as in SPARC-V8. Although the
tagged-subtract instructions set the 64-bit condition codes &€Rhere is no form of the instruc-
tion that traps on 64-bit overflow.

Exceptions:
tag_overflow (TSUBCcCTV only)

A.61 Trap on Integer Condition Codes (Tcc) 241
A.61 Trap on Integer Condition Codes (Tcc)
Opcode| o0p3 cond Operation icc test
TA 111010, 1000| Trap Always
TN 11 1010[0000, Trap Never
TNE 11 1010, 1001 Trap on Not Equal not Z
TE 111010, 0001 Trap on Equal
TG 111010, 1010 Trap on Greater not (Z or (N xor V))
TLE 111010; 0010y Trap on Less or Equal ZXbr V)
TGE 111010 1011 Trap on Greater or Equal not (N xor V)
TL 111010, 0011| Trap on Less Ror vV
TGU 11 1010, 1100 Trap on Greater Unsigned not (C or Z)
TLEU |111010f 01004 Trap on Less or Equal Unsigned o(Q)
TCC 111010 1101 Trap on Carry Clg&reater than or Equal, Unsigned not C
TCS 111010 0101 Trap on Carry Set (Less Than, Unsigned)
TPOS | 111010 1110 Trap on Positive or zero not N
TNEG | 111010 0110 Trap on Negative
TVC 11 1010| 1111 Trap on Overflow Clear not vV
TVS 111010, 0111 Trap on Overflow Set
Format (4):
10 |— cond op3 rsl i=0|ccllcco — rs2
10 |— cond op3 rsl i=1|cclcco — sw_trap_#
3130 29 28 25 24 19 18 1413 12 11 10 7 65 4 0
ccl[] ccO | Condition codes
00 icc
01 —
10 Xcc
11 —

242 A Instruction Definitions

Suggested Assembly Language Syntax
ta i_or_x_cc, software_trap_number
tn i_or_x_cc, software_trap_number
tne i_or_x_cc, software_trap_number (synonymtnz)
te i_or_x_cc, software_trap_number (synonymtz)
tg i_or_x_cc, software_trap_number
tle i_or_x_cc, software_trap_number
tge i_or_x_cc, software_trap_number
tl i_or_x_cc, software_trap_number
tgu i_or_x_cc, software_trap_number
tleu i_or_x_cc, software_trap_number
tcc i_or_x_cc, software_trap_number (synonymtgeu)
tcs i_or_x_cc, software_trap_number (synonymtlu)
tpos i_or_x_cc, software_trap_number
tneg i_or_x_cc, software_trap_number
tvc i_or_x_cc, software_trap_number
tvs i_or_x_cc, software_trap_number

Description:

The Tcc instruction evaluates the selected integer condition camesr kcc) according to
the condfield of the instruction, producing either a TRUE or FALSE result. If TRUE and
no higher-priority exceptions or interrupt requests are pending, theapanstruction
exception is generated. If FALSE, t@ap_instruction exception does not occur and the
instruction behaves like a NOP.

The software trap number is specified by the least significant seven bits of
“r[rs1] + r[rs2]” if i =0, or the least significant seven bits ofrs1] + sw_trap #if i = 1.

Wheni =1, bits 7 through 10 are reserved and should be supplied as zeros by software.
When i =0, bits 5 through 10 are reserved, and the most significant 57 bits of
“r[rs1] + r[rs2]” are unused, and both should be supplied as zeros by software.

Description (Effect on Privileged State):

If a trap_instruction traps, 256 plus the software trap number is written into TT[TL]. Then
the trap is taken, and the processor performs the normal trap entry procedure, as described
in Chapter 7, “Traps.”

Programming Note:
Tcc can be used to implement breakpointing, tracing, and calls to supervisor software. It can also
be used for run-time checks, such as out-of-range array indexes, integer overflow, etc.

V8 Compatibility Note:
Tcc is upward compatible with the SPARC-V8 Ticc instruction, with one qualification: a Ticc with
i =1 andsimm13< 0 may execute differently on a SPARC-V9 processor. Use of the form of
Ticc is believed to be rare in SPARC-V8 software, &mim13< 0 is probably not used at all, so it
is believed that, in practice, full software compatibillity will be achieved.

Exceptions:
trap_instruction
illegal_instruction (ccl [] ccO= 01, or 11L)

A.62 Write Privileged Register

243

A.62 Write Privileged Register

Opcode op3 Operation
WRPR 110010 | Write Privileged Register
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12
rd Privileged register
0 TPC
1 TNPC
2 TSTATE
3 TT
4 TICK
5 TBA
6 PSTATE
7 TL
8 PIL
9 CWP
10 CANSAVE
11 CANRESTORE
12 CLEANWIN
13 OTHERWIN
14 WSTATE
15..31 | Reserved

244 A Instruction Definitions
Suggested Assembly Language Syntax
wrpr reg.s1, reg_or_imm %tpc
wrpr regsy, reg_or_imm %tnpc
wrpr regs1, reg_or_imm %itstate
wrpr regs1, reg_or_imm 9tt
wrpr regs1, reg_or_imm %tick
wrpr regsy, reg_or_imm %tba
wrpr regs1, reg_or_imm %pstate
wrpr regsy, reg_or_imm %itl
wrpr regs1, reg_or_imm %pil
wrpr regsy, reg_or_imm %cwp
wrpr regs1, reg_or_imm %cansave
wrpr regsy, reg_or_imm %canrestore
wrpr regs1, reg_or_imm %cleanwin
wrpr regsy, reg_or_imm %otherwin
wrpr regs1, reg_or_imm %wstate
Description:

This instruction stores the valuer[fsl] xor r[rs2]” if i=0, or “r[rsl] xor sign_
ext(simm13’ if i =1 to the writable fields of the specified privileged state register. Note
the exclusive-or operation.

Therd field in the instruction determines the privileged register that is written. There are at
least four copies of the TPC, TNPC, TT, and TSTATE registers, one for each trap level. A
write to one of these registers sets the register indexed by the current value in the trap level
register (TL). A write to TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0)
causes arllegal_instruction exception.

A WRPR of TL does not cause a trap or return from trap; it does not alter any other
machine state.
Programming Note:

A WRPR of TL ca be used to read the values of TPC, TNPC, and TSTATE for any trap level,
however, care must be taken that traps do not occur while the TL register is modified.

The WRPR instruction is aondelayed-write instruction. The instruction immediately fol-
lowing the WRPR observes any changes made to processor state made by the WRPR.

WRPR instructions withrd in the range 15..31 are reserved for future versions of the
architecture; executing a WRPR instruction within that range causes afegal_instruc-
tion exception.
Programming Note:
On an implementation that provides a floating-point queue, supervisor software should be aware of
the state of the FQ before disabling the floating-point unit (changing PSTATE.PEF from 1 to O with

a WRPR instruction) (impl. dep. #24). Typically, supervisor software ensures that the FQ is empty
(FSRgne= 0) before disabling the floating-point unit.

Exceptions:
privileged_opcode
illegal_instruction ((rd = 15..31) or ({d < 3) and (TL = 0)))

A.63 Write State Register 245

A.63 Write State Register

The WRY instruction is deprecated; it is provided only for compatibility with prev
ous versions of the architecture. It should not be used in new SPARC-V9 softwie.
It is recommended that all instructions which reference the Y register be avoid

Opcode op3 rd Operation
WRYP 11 0000 0 Write Y register
— 11 0000 1 Reserved
WRCCR 11 0000 2 Write Condition Codes Register
WRASI 11 0000 3 Write ASI register
WRASR™ SR | 11 0000 4,5 Write Ancillary State Registezgervedl
WRFPRS 11 0000 6 Write Floating-Point Registers Status regigter
WRASR™ SR | 11 0000 7..14 Write Ancillary State Registezdervedl
See text 11 0000 15 See text
WRASR™ SR | 11 0000 16.31 Implementation-depende(impl. dep. #48)
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Suggested Assembly Language Syntax
wr regs1, reg_or_imm %y
wr regsy, reg_or_imm %ccr
wr regs1, reg_or_imm %asi
wr regs1, reg_or_imm %fprs
wr regsy, reg_or_imm asr_regq t

T Syntax for WRASR with rd=16..31 may vary (impl. dep. #48)
Description:

WRY, WRCCR, WRFPRS, and WRASI stores the valugsl] xor r[rs2]” if i =0, or
“r[rs1] xor sign_ext6imm13’ if i = 1, to the writable fields of the specified state register.
Note the exclusive-or operation.

Note that WRY, WRCCR, WRASI, WRFPRS, and WRASR are distinguished only by the
rd field.

WRASR writes a value to the ancillary state register (ASR) indicated byhe operation
performed to generate the value written mayrtéelependent or implementation-depen-

246 A Instruction Definitions

dent (see below). A WRASR instruction is indicated &gy= 2,4, rd = 4, 5, or> 7 and
op3= 30

An instruction withop = 2,5 0p3=30, rd = 15,rs1=0, andi =1 is defined as a SIR
instruction. See A.50, “Software-Initiated Reset.” Whgre 2,5, op3= 30, andrd = 15,
if eitherrs1#0 ori#1, then anilegal_instruction exception shall be generated.

IMPL. DEP. #48. WRASR instructions with rd in the range 16..31 are available for implementation-
dependent uses (impl. dep. #8 For a WRASR instruction with rd in the range 16..31, the follow-
ing are implementation-dependent: the interpretation of bits 18:0 in the instruction, the opera-
tion(s) performed (for example, XOR) to generate the value written to the ASR, whether the
instruction is privileged (impl. dep. #9, and whether the instruction causes an illegal_instruction
exception.

See I.1.1, “Read/Write Ancillary State Registers (ASRs),” for a discussion of extending
the SPARC-V9 instruction set using read/write ASR instructions

The WRY, WRCCR, WRFPRS, and WRASI instructions ag delayed-write instruc-
tions. The instruction immediately following a WRY, WRCCR, WRFPRS, or WRASI
observes the new value of the Y, CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing the
FPRS register.

Implementation Note:
Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-
control registers. Seleplementation Characteristics of Current SPARC-V9-based Products, Revi-
sion 9.x a document available from SPARC International, for information on ancillary state regis-
ters provided by specific implementations.

V8 Compatibility Note:
The SPARC-V8 WRIER, WRPSR, WRWIM, and WRTBR instructions do not exist in SPARC-V9,
since the IER, PSR, TBR, and WIM registers do not exist in SPARC-V9.

Exceptions:
privileged_opcode (WRASR only; implementation-dependent (impl. dep. #48))
illegal_instruction (WRASR with rd =16..31 and the implementation does not
define the instruction as an extension; implementation-dependent (impl. dep.
#48), or WRASR withrd equal to 1, 4, 5, or in the range 7..14), WRASR with
rd equal to 15 ants1#£0 ori#1l

B IEEE Std 754-1985 Requirements for SPARC-V9

The IEEE Std 754-1985 floating-point standard contains a number of implementa-
tion-dependencies. This appendix specifies choices for these implementation-dependen-
cies, to ensure that SPARC-V9 implementations are as consistent as possible.

B.1 Traps Inhibit Results

As described in 5.1.7, “Floating-Point State Register (FSR),” and elsewhere, when a float-
ing-point trap occurs:

— The destination floating-point register(s) (thregisters) are unchanged.
— The floating-point condition codefe€0, fccl, fcc2, andfccd) are unchanged.
— The FSRaexc(accrued exceptions) field is unchanged.

— The FSRcexc (current exceptions) field is unchanged except for
IEEE_754 _exceptions; in that casegexccontains a bit set to “1” corresponding to
the exception that caused the trap. Only one bit shall be setan

Instructions causing af_exception_other trap due to unfinished or unimplemented FPops
execute as if by hardware; that is, a trap is undetectable by user software, except that tim-
ing may be affected. A user-mode trap handler invoked foriEFE 754 exception,
whether as a direct result of a hardwaseexception ieee_754 trap or as an indirect result

of supervisor handling of annfinished_FPop or unimplemented_FPop, can rely on the fol-
lowing:

— The address of the instruction that caused the exception will be available to it.

— The destination floating-point register(s) are unchanged from their state prior to
that instruction’s execution.

— The floating-point condition code&¢O, fccl, fcc2, andfccd) are unchanged.
— The FSRaexcfield is unchanged.

— The FSRecexcfield contains exactly one bit set to 1, corresponding to the exception
that caused the trap.

— The FSRItt, gne andreservedields are zero.

Supervisor software is responsible for enforcing these requirements if the hardware trap
mechanism does not.

247

248 B IEEE Std 754-1985 Requirements for SPARC-V9

B.2 NaN Operand and Result Definitions

An untrapped floating-point result can be in a format that is either the same as, or different
from, the format of the source operands. These two cases are described separately below.

B.2.1 Untrapped Result in Different Format from Operands

F[sdq]TO[sdq] with a quiet NaN operand
No exception caused; result is a quiet NaN. The operand is transformed as follows:

NaN transformation: The most significant bits of the operand fraction are copied
to the most significant bits of the result fraction. When converting to a narrower
format, excess low-order bits of the operand fraction are discarded. When convert-
ing to a wider format, excess low-order bits of the result fraction are set to 0. The
quiet bit (the most significant bit of the result fraction) is always set to 1, so the
NaN transformation always produces a quiet NaN. The sign bit is copied from the
operand to the result without modification.

F[sdq]TO[sdq] with a signaling NaN operand
Invalid exception; result is the signaling NaN operand processed byN#ie
transformation above to produce a quiet NaN.

FCMPE[sdq] with any NaN operand
Invalid exception; the selected floating-point condition code is set to unordered.

FCMP[sdq] with any signaling NaN operand
Invalid exception; the selected floating-point condition code is set to unordered.

FCMP[sdq] with any quiet NaN operand but no signaling NaN operand
No exception; the selected floating-point condition code is set to unordered.

B.2.2 Untrapped Result in Same Format as Operands

No NaN operand
For an invalid operation such agrt(—1.0) or 0.0+ 0.0, the result is the quiet NaN
with sign = zero, exponent = all ones, and fraction = all ones. The sign is zero to
distinguish such results from storage initialized to all ones.

One operand, a quiet NaN
No exception; result is the quiet NaN operand.

One operand, a signaling NaN
Invalid exception; result is the signaling NaN with its quiet bit (most significant bit
of fraction field) set to 1.

Two operands, both quiet NaNs
No exception; result is ths2 (second source) operand.

Two operands, both signaling NaNs
Invalid exception; result is ths2 operand with the quiet bit set to 1.

B.3 Trapped Underflow Definition (UFM = 1) 249

Two operands, only one a signaling NaN
Invalid exception; result is the signaling NaN operand with the quiet bit set to 1.

Two operands, neither a signaling NaN, only one a quiet NaN
No exception; result is the quiet NaN operand.

In table 29 NaM means that the NaN is imQ means quiet, S signaling.

Table 29—Untrapped Floating-Point Results

rs2 operand
Number QNaN2 SNaN2
None IEEE 754 QNaN2 QSNaN2
rsi Number IEEE 754 QNaN2 QSNaN2
operand QNaN1 QNaN1 QNaN2 QSNaN2
SNaN1 QSNaN1 QSNaN1 QSNaN2

QSNaN means a quiet NaN produced by tNaN transformation on a signaling NaN

from ran; the invalid exception is always indicated. The QNwefdsults in the table never
generate an exception, but IEEE 754 specifies several cases of invalid exceptions, and
QNaN results from operands that are both numbers.

B.3 Trapped Underflow Definition (UFM = 1)

IMPL. DEP. #55: Whether tininess (in IEEE 754 terms) is detected before or after rounding is
implementation-dependent. It is recommended that tininess be detected before rounding.

On an implementation that detects tininess before rounding, trapped underflow occurs
when the exact unrounded result has magnitude between zero and the smallest normalized
number in the destination format.

On an implementation that detects tininess after rounding, trapped underflow occurs when
the result, if it was rounded to a hypothetical format having the same precision as the des-
tination but of unbounded range, would have magnitude between zero and the smallest
normalized number in the actual destination format.

Note that the wrapped exponent results intended to be delivered on trapped underflows
and overflows in IEEE 754 are irrelevant to SPARC-V9 at the hardware and supervisor

software levels; if they are created at all, it would be by user software in a user-mode trap

handler.

B.4 Untrapped Underflow Definition (UFM = 0)

On an implementation that detects tininess before rounding, untrapped underflow occurs
when the exact unrounded result has magnitude between zero and the smallest normalized
number in the destination formatnd the correctly-rounded result in the destination for-

mat is inexact.

Table 30 summarizes what happens on an implementation that detects tininess before
rounding, when an exaahrounded valueu satisfying

250 B IEEE Std 754-1985 Requirements for SPARC-V9

0 < |u| < smallest normalized number

would round, if no trap intervened, toraunded valuer which might be zero, subnormal,
or the smallest normalized value. “UF” means underflow trap (with ufc setxg, “NX”
means inexact trap (with nxc setdexq, “uf” means untrapped underflow exception (with
ufc set incexcand ufa inaexq, and “nx” means untrapped inexact exception (with nxc set
in cexcand nxa set iaexq.

Table 30—Untrapped Floating-Point Underflow (Tininess Detected Before Rounding)

Underflow trap: UFM =1 UFM =0 UFM =0

Inexact trap: NXM = x NXM =1 NXM =0

r is minimum normal None None None

u=r | rissubnormal UF None None
ris zero None None None

r is minimum normal UF NX uf nx

uzr | rissubnormal UF NX uf nx
ris zero UF NX uf nx

UF =fp_exception_ieee_754 trap withcexcufc = 1

NX = fp_exception_ieee_754 trap withcexcnxc = 1

uf = cexcufc = 1,aexcufa = 1, nofp_exception_ieee_754 trap
nx =cexcnxc = 1,aexcnxa = 1, nofp_exception_ieee 754 trap

In an implementation that detects tininess after rounding, Table 30 applies to a narrower
range of values of the exact unrounded regulhe precise bounds depend on the round-
ing direction specified in FSR.RD, as follows:

— Let m denote the smallest normalized number andhe absolute difference
between 1 and the next larger representable number in the destination format.
Then the bounds amfor which Table 30 applies are shown in Table 31.

Table 31—Bounds on u in Table 30, if Tininess is Detected After Rounding

Range of Values of u for
FSR.RD | Roundng Toward which Table 30 applies
0 Nearest (even, if tie [u] <m(1 - e/4)
1 0 [u] <m
2 + 00 -m < u < u(l-e2)
3 -0 -m(1-¢€2) < u<m

— Whenu lies outside these ranges, underflow does not occur, although an inexact
exception still occurs wham# r, the rounded value.

B.5 Integer Overflow Definition

F[sdq]TOi:
When a NaN, infinity, large positive argumen®147483648.0, or large negative
argumenk —2147483649.0 is converted to an integer, the invalid_curreaj bit
of FSRcexcshould be set angh_exception_ieee_754 should be raised. If the float-
ing-point invalid trap is disabled (FSR.TEM.NVM = 0), no trap occurs and a
numerical result is generated: if the sign bit of the operand is 0, the result is
2147483647; if the sign bit of the operand is 1, the result is —2147483648.

B.6 Floating-Point Nonstandard Mode 251

F[sdq]TOx:
When a NaN, infinity, large positive argumen®®3, or large negative argumest
—(23+ 1), is converted to an extended integer, the invalid_currewnt) (bit of
FSRcexcshould be set anéb_exception _ieee 754 should be raised. If the float-
ing-point invalid trap is disabled (FSR.TEM.NVM = 0), no trap occurs and a
numerical result is generated: if the sign bit of the operand is 0, the resfit-is12
if the sign bit of the operand is 1, the result i$-2

B.6 Floating-Point Nonstandard Mode

SPARC-V9 implementations are permitted but not encouraged to deviate from IEEE Std

754-1985 requirements when the nonstandard mode (NS) bit of the FSR is set (impl. dep.
#18).

252 B IEEE Std 754-1985 Requirements for SPARC-V9

C SPARC-V9 Implementation Dependencies

This appendix provides a summary of all implementation dependencies in the SPARC-V9
standard. The notationMPL. DEP. #nn:” is used to identify the definition of an implemen-
tation dependency; the notation “(impl. demrn¥ is used to identify a reference to an
implementation dependency. The numbeprovides an index into table 32 on page 255.

SPARC International maintains a documemtplementation Characteristics of Current
SPARC-V9-based Products, Revision %Rich describes the implementation-dependent
design features of SPARC-V9-compliant implementations. Contact SPARC International
for this document at

SPARC International
535 Middlefield Rd, Suite 210
Menlo Park, CA 94025
(415) 321-8692

C.1 Definition of an Implementation Dependency

The SPARC-V9 architecture is model that specifies unambiguously the behavior
observed bysoftware on SPARC-V9 systems. Therefore, it does not necessarily describe
the operation of theardware of any actual implementation.

An implementation is1ot required to execute every instruction in hardware. An attempt to
execute a SPARC-V9 instruction that is not implemented in hardware generates a trap.
Whether an instruction is implemented directly by hardware, simulated by software, or
emulated by firmware is implementation-dependent (impl. dep. #1).

The two levels of SPARC-V9 compliance are described in 1.2.6, “SPARC-V9 Compli-
ance.”

Some elements of the architecture are defined to be implementation-dependent. These ele-
ments include certain registers and operations that may vary from implementation to
implementation, and are explicitly identified as such in this appendix.

Implementation elements (such as instructions or registers) that appear in an implementa-
tion but are not defined in this document (or its updates) are not considered to be SPARC-
V9 elements of that implementation.

C.2 Hardware Characteristics

Hardware characteristics that do not affect the behavior observed by software on SPARC-
V9 systems are not considered architectural implementation dependencies. A hardware
characteristic may be relevant to the user system design (for example, the speed of execu-
tion of an instruction) or may be transparent to the user (for example, the method used for

253

254 C SPARC-V9 Implementation Dependencies

achieving cache consistency). The SPARC International docutngpiementation Char-
acteristics of Current SPARC-V9-based Products, Revisionp8avides a useful list of
these hardware characteristics, along with the list of implementation-dependent design
features of SPARC-V9-compliant implementations.

In general, hardware characteristics deal with
— Instruction execution speed
— Whether instructions are implemented in hardware

— The nature and degree of concurrency of the various hardware units comprising a
SPARC-V9 implementation.

C.3 Implementation Dependency Categories

Many of the implementation dependencies can be grouped into four categories, abbrevi-
ated by their first letters throughout this appendix:

Value (v):
The semantics of an architectural feature are well-defined, except that a value asso-
ciated with it may differ across implementations. A typical example is the number
of implemented register windows (Implementation dependency #2).

Assigned Value (a)
The semantics of an architectural feature are well-defined, except that a value asso-
ciated with it may differ across implementations and the actual value is assigned
by SPARC International. Typical examples are thmpl field of Version register
(VER) (Implemententation dependency #13) and the F&Rield (Implementa-
tion dependency #19).

Functional Choice (f}
The SPARC-V9 architecture allows implementors to choose among several possi-
ble semantics related to an architectural function. A typical example is the treat-
ment of a catastrophic error exception, which may cause either a deferred or a
disrupting trap (Implementation dependency #31).

Total Unit (t):
The existence of the architectural unit or function is recognized, but details are left
to each implementation. Examples include the handling of 1/O registers (Imple-
mentation dependency #7) and some alternate address spaces (Implementation
dependency #29).

C.4 List of Implementation Dependencies

Table 32 provides a complete list of the implementation dependencies in the architecture,
the definition of each, and references to the page numbers in the standard where each is
defined or referenced. Most implementation dependencies occur because of the address
spaces, /O registers, registers (including ASRSs), the type of trapping used for an excep-

C.4 List of Implementation Dependencies

255

tion, the handling of errors, or miscellaneous non-SPARC-V9-architectural units such as
the MMU or caches (which affect the FLUSH instruction).

Table 32—Implementation Dependencies

Def/ Ref I
Number| Category page # Description
1 f 8, 253 Software emulation of instructions
Whether an instruction is implemented directly by hardware, [sim-
ulated by software, or emulated by firmware is implementation-
dependent.
2 Y 15, 30, 32, 59 |Number of IU registers
An implementation of the IU may contain from 64 to 528 general-
purpose 64-bit registers. This corresponds to a grouping of|the
registers into two sets of eight globalregisters, plus a circular
stack of from three to 32 sets of 16 registers each, known as fegis-
ter windows. Since the number of register windows pregsent
(NWINDOWS) is implementation-dependent, the total number of
registers is also implementation-dependent. T
3 f 84 Incorrect IEEE Std 754-1985 results
An implementation may indicate that a floating-point instruction
did not produce a correct IEEE Std 754-1985 result by generating
a special floating-point unfinished or unimplemented exceptign. In
this case, privileged mode software shall emulate any functionality
not present in the hardware.
4-5 — — Reserved
6 f 18, 121 1/O registers privileged status
Whether 1/O registers can be accessed by nonprivileged cgde is
implementation-dependent.
7 t 18, 121 I/O register definitions
The contents and addresses of 1/O registers are implementation-
dependent.
8 t 20, 30, 35, 61,|RDASR/WRASR target registers
215, 216, 246,| Software can use read/write ancillary state register instructigns to
258, 258 |read/write implementation-dependent processor registers (ASRs
16-31).
9 f 20, 36, 61, 246,RDASR/WRASR privileged status
258,258 |Whether each of the implementation-dependent read/write ancil-
lary state register instructions (for ASRs 16-31) is privileged is
implementation-dependent.
10-12 — — Reserved
13 a 58 VER.impl
VER.impl uniquely identifies an implementation or class of doft-
ware-compatible implementations of the architecture. Values
FFFO .. FFFR g are reserved and are not available for assignment.
14-15 — — Reserved
16 t 30 IU deferred-trap queue
The existence, contents, and operation of an IU deferred-trap
queue are implementation-dependent; it is not visible to user appli-
cation programs under normal operating conditions.
17 — — Reserved

256

C SPARC-V9 Implementation Dependencies

Table 32—Implementation DependenciesQontinued

Number

Category

Def/Ref
page #

Description

18

f

44, 251

Nonstandard IEEE 754-1985 results

Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set
causes the FPU to produce implementation-defined result
may not correspond to IEEE Standard 754-1985.

19

45

FPU version, FSR.ver

Bits 19:17 of the FSR, FSRer, identify one or more implementga-

tions of the FPU architecture.

20-21

Reserved

22

51

FPU TEM, cexc, and aexc
An implementation may choose to implement the TEex¢ and
aexcfields in hardware in either of two ways (see 5.1.7.11
details).

23

62, 115, 115

Floating-point traps
Floating-point traps may be precise or deferred. If deferrg
floating-point deferred-trap queue (FQ) must be present.

24

30, 213

FPU deferred-trap queue (FQ)
The presence, contents of, and operations on the floating
deferred-trap queue (FQ) are implementation-dependent.

25

47, 213, 214,
214

RDPR of FQ with nonexistent FQ
On implementations without a floating-point queue, an attem
read the FQ with an RDPR instruction shall cause eithelleya/_
instruction exception or anfp_exception_other exception with
FSRftt set to 4 §equence_error).

o 1,

5 that

for

d, a

point

pt to

26-28

Reserved

29

18,74, 74

Address space identifier (ASI) definitions

The following ASI assignments are implementation-depen
restricted ASlIs 0950316’ 0516"0816' ODlG"OFl@ 1216"1716’
and 1A.. 7F g and unrestricted ASIs G.. FFe.

Hent:

30

74

ASI address decoding
An implementation may choose to decode only a subset of t
bit ASI specifier; however, it shall decode at least enough o
ASI to distinguishASI_PRIMARY, ASI_PRIMARY_LITTLE, ASI_
AS_IF_USER_PRIMARY ASI_AS_IF_USER_PRIMARY_LITTLE]
ASI_PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE,

ASI_SECONDARY AS|_SECONDARY_LITTLE ASI_AS_IF_USER|

SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE ASI_
SECONDARY_NOFAULT and ASI_SECONDARY_NOFAULT_LIT-
TLE. If ASI_NUCLEUSandASI_NUCLEUS_LITTLE are supporte
(impl. dep. #124), they must be decoded also. Finally, an in
mentation must always decode ASI bit<7>
PSTATE.PRIV = 0, so that an attempt by nonprivileged softy
to access a restricted ASI will always causeréileged action
exception.

he 8-
f the

d
hple-

while

vare

31

90,93, 114, 115
115

Catastrophic error exceptions
The causes and effects of catastrophic error exceptions are
mentation-dependent. They may cause precise, deferred, q

mple-
or dis-

rupting traps.

C.4 List of Implementation Dependencies

257

Table 32—Implementation DependenciesQontinued

Number

Category

Def/Ref
page #

Description

32

t

96

Deferred traps
Whether any deferred traps (and associated deferred-trap q
are present is implementation-dependent.

Lleues)

33

98, 114, 114,
114, 114, 115,
116

Trap precision

Exceptions that occur as the result of program execution m
precise or deferred, although it is recommended that such ¢
tions be precise. Examples inclugem_address_not_aligned and
division_by_zero.

ay be
xcep-

34

100

Interrupt clearing
How quickly a processor responds to an interrupt request ar
method by which an interrupt request is removed are implem|
tion-dependent.

d the
enta-

35

93, 102, 103,
104 113, 115

Implementation-dependent traps
Trap type (TT) values 06@..07F g are reserved for implement
tion-dependent exceptions. The existence implementation
dependent_n traps and whether any that do exist are pre
deferred, or disrupting is implementation-dependent.

a_

Cise,

36

104

Trap priorities
The priorities of particular traps are relative and are implemé
tion-dependent, because a future version of the architecturg
define new traps, and implementations may define implem
tion-dependent traps that establish new relative priorities.

bnta-
2 may
enta-

37

97

Reset trap
Some of a processor’s behavior during a reset trap is implen
tion-dependent.

enta-

38

108

Effect of reset trap on implementation-dependent registers
Implementation-dependent registers may or may not be aff
by the various reset traps.

39

94

Entering error_state on implementation-dependent errors
The processor may enter error_state when an implement
dependent error condition occurs.

40

94

Error_state processor state

What occurs after error_state is entered is implementation-d
dent, but it is recommended that as much processor state as
ble be preserved upon entry to error_state.

41

Reserved

42

t,fv

168

FLUSH instruction

If FLUSH is not implemented in hardware, it causesikeyal_
instruction exception and its function is performed by system 4
ware. Whether FLUSH traps is implementation-dependent.

43

Reserved

44

174 177

Data access FPU trap
If a load floating-point instruction traps with any type of acq

ected

Ation-

epen-
possi-

oft-

€SS

error exception, the contents of the destination floating-point regis-

ter(s) either remain unchanged or are undefined.

45 - 46

Reserved

258

C SPARC-V9 Implementation Dependencies

Table 32—Implementation DependenciesQontinued

Number

Category

Def/Ref
page #

Description

47

t

215,216, 216,
216

RDASR

RDASR instructions withrd in the range 16..31 are available
implementation-dependent uses (impl. dep. #8). For an RO
instruction withrs1in the range 16..31, the following are imp
mentation-dependent: the interpretation of bits 13:0 and 29:
the instruction, whether the instruction is privileged (impl. ¢
#9), and whether it causes idiegal_instruction trap.

for
ASR
le-
P5 in
ep.

48

245, 245246,
246, 246

WRASR

WRASR instructions withrd in the range 16..31 are available
implementation-dependent uses (impl. dep. #8). For a WR
instruction withrd in the range 16..31, the following are imp|
mentation-dependent: the interpretation of bits 18:0 in the ing
tion, the operation(s) performed (for exampler) to generate th
value written to the ASR, whether the instruction is privile
(impl. dep. #9), and whether it causesiggal_instruction trap.

for
ASR
le-
truc-

D

jed

49-54

Reserved

55

50, 50,249, 247

Floating-point underflow detection

Whether "tininess" (in IEEE 754 terms) is detected before or
rounding is implementation-dependent. It is recommended
tininess be detected before rounding.

after
that

56-100

Reserved

101

21,55 56, 57,
58, 59

Maximum trap level
It is implementation-dependent how many additional levels, if
past level 4 are supported.

any,

102

114

Clean windows trap

An implementation may choose either to implement autory
“cleaning” of register windows in hardware, or generatgean
window trap, when needed, for window(s) to be cleaned by

ware.

hatic

50ft-

103

206, 206, 207,
207, 208 209,
211, 207

Prefetch instructions

The following aspects of the PREFETCH and PREFET(
instructions are implementation-dependent: (1) whether they
an observable effect in privileged code; (2) whether they can
a data_access MMU_miss exception; (3) the attributes of t
block of memory prefetched: its size (minimum = 64 bytes) an
alignment (minimum = 64-byte alignment); (4) whether each
ant is implemented as a NOP, with its full semantics, or with @
mon-case prefetching semantics; (5) whether and how va|
16..31 are implemented; (6) Whether an attempt to refere
restricted ASI (< 8Qg) by a PREFETCHA instruction while
nonprivileged mode (pstate.priv=0) causes a privileged_ g

exception or executes as a NOP is implementation dependennt.

HA
have
tause
he

d its
ari-
om-
riants
nce a
n
ction

—

C.4 List of Implementation Dependencies 259

Table 32—Implementation DependenciesQontinued

Number

Category

Def/Ref
page #

Description

104

a

58

VER.manuf
VER manufcontains a 16-bit semiconductor manufacturer c
This field is optional, and if not present reads as zero. ViRl
may indicate the original supplier of a second-sourced ch
cases involving mask-level second-sourcing. It is intended th

pde.

p in
at the

contents of VERmanuftrack the JEDEC semiconductor manufac-
turer code as closely as possible. If the manufacturer does naot have
a JEDEC semiconductor manufacturer code, SPARC International

will assign a VERnanufvalue.

105

52

TICK register
The difference between the values read from the TICK regist

eron

two reads should reflect the number of processor cycles exgcuted
between the reads. If an accurate count cannot always be returned,

any inaccuracy should be small, bounded, and documente
implementation may implement fewer than 63 bits
TICK.counter however, the counter as implemented must be
to count for at least 10 years without overflowing. Any upper
not implemented must read as zero.

d. An
in

able

bits

106

84,171

IMPDEP n instructions

The IMPDEP1 and IMPDEP?2 instructions are completely imple-

mentation-dependent. Implementation-dependent aspects i
their operation, the interpretation of bits 29:25 and 18:0 in
encodings, and which (if any) exceptions they may cause.

nclude
heir

107

179 179,181,
181

Unimplemented LDD trap

It is implementation-dependent whether LDD and LDDA
implemented in hardware. If not, an attempt to execute eithe
cause amnimplemented_LDD trap.

are
F will

108

117,230 231,
233 233

Unimplemented STD trap

It is implementation-dependent whether STD and STDA
implemented in hardware. If not, an attempt to execute eithe
cause amnimplemented_STD trap.

are
- will

109

115,174 174,
177

LDDF_mem_address_not_aligned

LDDF and LDDFA require only word alignment. However, if the

effective address is word-aligned but not doubleword-alig
either may cause ahDDF _mem_address not_aligned trap, in
which case the trap handler software shall emulate the LDD
LDDFA) instruction and return.

ned,

F (or

110

116,227, 227,
229 229

STDF_mem_address_not_aligned

STDF and STDFA require only word alignment in memory. H
ever, if the effective address is word-aligned but not doublew
aligned, either may cause a®TDF_mem_address_not_aligned
trap, in which case the trap handler software shall emulat
STDF or STDFA instruction and return.

DW-
ord-

b the

111

116,174 174,
177

LDQF_mem_address_not_aligned

LDQF and LDQFA require only word alignment. However, if
effective address is word-aligned but not quadword-aligned, ¢
may cause arLDQF_mem_address_not_aligned trap, in which
case the trap handler software shall emulate the LDQHR

he
bither

(or

LDQFA) instruction and return.

260 C SPARC-V9 Implementation Dependencies
Table 32—Implementation DependenciesQontinued
Def/ Ref I
Number| Category page # Description
112 f 117,227,227, |STQF_mem_address_not_aligned
229, 229 STQF and STQFA require only word alignment in memory. How-
ever, if the effective address is word-aligned but not quadword-
aligned, either may cause a®TQF _mem_address _not aligned
trap, in which case the trap handler software shall emulate the
STQF or STQFA instruction and return.
113 f 54,119 Implemented memory models
Whether the Partial Store Order (PSO) or Relaxed Memory Qrder
(RMO) models are supported is implementation-dependent.
114 f 92 RED_state trap vector address (RSTVaddr)
The RED_state trap vector is located at an implementation-depen-
dent address referred to as RSTVaddr.
115 f 92 RED_state processor state
What occurs after the processor enters RED_state is implenpenta-
tion-dependent.
116 f 224 SIR_enable control flag
The location of the SIR_enable control flag and the means of
accessing the SIR_enable control flag are implementation-depen-
dent. In some implementations, it may be permanently zero.
117 f 207,284 MMU disabled prefetch behavior
Whether Prefetch and Non-faulting Load always succeed whegn the
MMU is disabled is implementation-dependent.
118 f 121 Identifying 1/O locations
The manner in which 1/O locations are identified is implementa-
tion-dependent.
119 f 54129 Unimplemented values for PSTATE.MM
The effect of writing an unimplemented memory-mode designa-
tion into PSTATE.MM is implementation-dependent.
120 f 121, 130, 153, |Coherence and atomicity of memory operations
182, 187, 225,/ The coherence and atomicity of memory operations between pro-
235,236 |cessors and I/O DMA memory accesses are implementation-
dependent.
121 f 121 Implementation-dependent memory model
An implementation may choose to identify certain addresse$ and
use an implementation-dependent memory model for referenges to
them.
122 f 131, 168, 168 [FLUSH latency
The latency between the execution of FLUSH on one procgssor
and the point at which the modified instructions have replaced out-
dated instructions in a multiprocessor is implementation-dgpen-
dent.
123 f 18,121, 130 |Input/output (I/O) semantics
The semantic effect of accessing input/output (I/O) registers is
implementation-dependent.
124 % 74, 74122 256/|Implicit ASI when TL>0
When TL > 0, the implicit ASI for instruction fetches, loads, @and
stores is implementation-dependent. See F.4.4, “Contexts|” for
more information.

C.4 List of Implementation Dependencies 261

Table 32—Implementation DependenciesQontinued

Number

Category

Def/Ref
page #

Description

125

f

55,79,151,172
216

Address masking

When PSTATE.AM =1, the value of the high-order 32-bits of
PC transmitted to the specified destination register(s) by C
JMPL, RDPC, and on a trap is implementation-dependent.

the
ALL,

126

59, 59, 60, 60,
60, 61

Register Windows State Registers Width
Privileged registers CWP, CANSAVE, CANRESTORE, OTHEH
WIN, and CLEANWIN contain values in the ran

0..NWINDOWS-1. The effect of writing a value greater tman

NWINDOWS-1 to any of these registers is undefined.Althoug
width of each of these five registers is nominally 5 bits, the w
is implementation-dependent and shall be bety
Hog,(NWINDOWS)dand 5 bits, inclusive. If fewer than 5 bits 4
implemented, the unimplemented upper bits shall read as
writes to them shall have no effect. All five registers should |
the same width.

ER-
ge

the
idth
veen
Are
D and
nave

127

53, 57

PSTATE PID bits

The presence and semantics of PSTATE.PID1 and PSTATE
are implementation-dependent. The presence of TSTATE b
and 18 is implementation-dependent. If PSTATE bit 11 (1(
implemented, TSTATE bit 19 (18) shall be implemented and
tain the state of PSTATE bit 11 (10) from the previous trap le
If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (]
shall read as zero. Software intended to run on multiple imple
tations should only write these bits to values previously read

PIDO
ts 19
) is
con-
vel..
18)
men-
from

PSTATE, or to zeroes.

262 C SPARC-V9 Implementation Dependencies

D Formal Specification of the Memory Models

This appendix provides a formal description of the SPARC-V9 processor’s interaction
with memory. The formal description is more complete and more precise than the descrip-
tion of Chapter 8, “Memory Models,” and therefore represents the definitive specification.
Implementations must conform to this model, and programmers must use this description
to resolve any ambiguity.

This formal specification is not intended to be a description of an actual implementation,
only to describe in a precise and rigorous fashion the behavior that any conforming imple-
mentation must provide.

D.1 Processors and Memory

The system model consists of a collection of processgy$P.. P,.;. Each processor exe-
cutes its own instruction streahProcessors may share address space and access to real
memory and I/O locations.

To improve performance, processors may interposgcheor caches in the path between

the processor and memory. For data and 1/O references, caches are required to be transpar-
ent. The memory model specifies the functional behavior of the entire memory subsystem,
which includes any form of caching. Implementations must use appropriate cache coher-
ency mechanisms to achieve this transparéncy.

The SPARC-V9 memory model requires that all data references be consistent but does not
require that instruction references or input/output references be maintained consistent.
The FLUSH instruction or an appropriate operating system call may be used to ensure that
instruction and data spaces are consistent. Likewise, system software is needed to manage
the consistency of I/O operations.

The memory model is a local property of a processor that determines the order properties
of memory references. The ordering properties have global implications when memory is
shared, since the memory model determines what data is visible to observing processors
and in what order. Moreover, the operative memory model of the observing processor
affects the apparent order of shared data reads and writes that it observes.

1. Processors are equivalent to their software abstraction, processes, provided that context switching is
properly performed. See Appendix J, “Programming With the Memory Models,” for an example of con-
text switch code.

2. Philip Bitar and Alvin M. Despain, “Multiprocessor Cache Synchronization: Issues, Innovations, Evolu-
tion, Proc. 13th Annual International Symposium on Computer ArchitectDeenputer Architecture
News 14:2, June 1986, pp.424-433.

263

264 D Formal Specification of the Memory Models

D.2 An Overview of the Memory Model Specification

The underlying goal of the memory model is to place the weakest possible constraints on
the processor implementations and to provide a precise specification of the possible order-
ings of memory operations so that shared-memory multiprocessors can be constructed.

An execution traceis a sequence of instructions with a specified initial instruction. An
execution trace constitutes one possible execution of a program and may involve arbitrary
reorderings and parallel execution of instructionseN-consistenexecution trace is one

that generates precisely the same results as those produced by a program order execution
trace.

A program order execution traceis an execution trace that begins with a specified initial
instruction and executes one instruction at a time in such a fashion that all the semantic
effects of each instruction take effect before the next instruction is begun. The execution
trace this process generates is defined fardgram order.

A program is defined by the collection of all possible program order execution traces.

Dependence ordeiis a partial order on the instructions in an execution trace that is ade-
guate to ensure that the execution trace is self-consistent. Dependence order can be con-
structed using conventional data dependence analysis techniques. Dependence order holds
only between instructions in the instruction trace of a single processor; instructions that
are part of execution traces on different processors are never dependence-ordered.

Memory order is a total order on the memory reference instructions (loads, stores, and
atomic load/stores) which satisfies the dependence order and, possibly, other order con-
straints such as those introduced implicitly by the choice of memory model or explicitly
by the appearance of memory barrier (MEMBAR) instructions in the execution trace. The
existence of a global memory order on the performance of all stores implies that memory
access is write-atomft.

A memory modelis a set of rules that constrain the order of memory references. The
SPARC-V9 architecture supports three memory models: total store order (TSO), partial
store order (PSO), and relaxed memory order (RMO). The memory models are defined
only for memory and not for 1/O locations. See 8.2, “Memory, Real Memory, and I/O
Locations,” for more information.

The formal definition used in the SPARC-V8 specificafioemains valid for the defini-

tion of PSO and TSO, except for the FLUSH instruction, which has been modified
slightly.5 The SPARC-V9 architecture introduces a new memory model, RMO, which dif-
fers from TSO and PSO in that it allows load operations to be reordered as long as single
thread programs remain self-consistent.

3. W.W. Collier, “Reasoning About Parallel Architectures”, Prentice-Hall, 1992 includes an excellent dis-
cussion of write-atomicity and related memory model topics.

4. Pradeep Sindhu, Jean-Marc Frailong, and Michel Ceklov. “Formal Specification of Memory Models,”
Xerox Palo Alto Research Center Report CSL-91-11, December 1991

5. In SPARC-V8, a FLUSH instruction needs at least five instruction execution cycles before it is guaran-
teed to have local effects; in SPARC-V9 this five-cycle requirement has been removed.

D.3 Memory Transactions 265

D.3 Memory Transactions
D.3.1 Memory Transactions

A memory transaction is one of the following:

Store:
A request by a processor to replace the value of a specified memory location. The
address and new value are bound to the store transaction when the processor ini-
tiates the store transaction. A store is complete when the new value is visible to all
processors in the system.

Load:
A request by a processor to retrieve the value of the specified memory location.
The address is bound to the load transaction when the processor initiates the load
transaction. A load is complete when the value being returned cannot be modified
by a store made by another processor.

Atomic:
A load/storepair with the guarantee that no other memory transaction will alter the
state of the memory between the load and the store. The SPARC-V9 instruction set
includes three atomic instructions: LDSTUB, SWAP and C%&h atomic trans-
action is considered to be both a load and a $tore.

Flush:
A request by a processor to force changes in the data space aliased to the instruc-
tion space to become consistent. Flush transactions are considered to be store oper-
ations for memory model purposes.

Memory transactions are referred to by capital lett¥fs; which denotes a specific mem-
ory transactionX by processom to memory addressa. The processor index and the
address are specified only if needed. The predi§é¥gis true if and only ifX has store
semantics. The predicat€X) is true if and only iX has load semantics.

MEMBAR instructions are not memory transactions; rather they convey order information
above and beyond the implicit ordering implied by the memory model in use. MEMBAR
instructions are applied in program order.

D.3.2 Program Order

Theprogram order is a per-processor total order that denotes the sequence in which pro-
cessomn logically executes instructions. The program order relation is denotegb lsyich

6. There are three generic forms. CASA and CASXA reference 32-bit and 64-bit objects respectively. Both
normal and alternate ASI forms exist for LDSTUB and SWAP. CASA and CASXA only have alternate
forms, however, a CASA (CASXA) with ASI = ASI_PRIMARY{ LITTLE} is equivalent to CAS
(CASX). Synthetic instructions for CAS and CASX are suggested in G.3, “Synthetic Instructions.”

7. Even though the store part of a CASA is conditional, it is assumed that the store will always take place
whether it does or not in a particular implementation. Since the value stored when the condition fails is
the value already present, and since the CASA operation is atomic, no observing processor can deter-
mine whether the store occurred or not.

266 D Formal Specification of the Memory Models

that X, <p Y, is true if and only if the memory transactiof) is caused by an instruction
that is executed before the instruction that caused memory transggtion

Program order specifies a unique total order for all memory transactions initiated by one
processor.

Memory barrier (MEMBAR) instructions executed by the processor are ordered with
respect to<p. The predicatd(X,Y)is true if and only ifX <p Y and there exists a MEM-
BAR instruction that orderX andY (that is, it appears in program order betweeandY).
MEMBAR instructions can be either ordering or sequencing and may be combined into a
single instruction using a bit-encoded m&sk.

Ordering MEMBAR instructions impose constraints on the order in which memory trans-
actions are performed.

Sequencing MEMBARSs introduce additional constraints that are required in cases where
the memory transaction has side-effects beyond storing data. Such side-effects are beyond
thegscope of the memory model, which is limited to order and value semantics for mem-
ory.

This definition of program order is equivalent to the definition given in the SPARC-V8
memory model specification.

D.3.3 Dependence Order

Dependence order is a partial order that captures the constraints that hold between instruc-
tions that access the same processor register or memory location. In order to allow maxi-
mum concurrency in processor implementations, dependence order assumes that registers
are dynamically renamed to avoid false dependences arising from register reuse.

Two memory transactioX andY are dependence ordered, denoteXbyd Y, if and only
if they are program ordered,<p Y, and at least one of the following conditions is true:

(1) The execution oY is conditional orX, and SY) is true.
(2) Y reads a register that is written Xy
(3) XandY access the same memory location &()andL(Y) are both true.

The dependence order also holds between the memory transactions associated with the
instructions. It is important to remember that partial ordering is transitive.

Rule (1) includes all control dependences that arise from the dynamic execution of pro-
grams. In particular, a store or atomic memory transaction that is executed after a condi-

8. The Ordering MEMBAR instruction uses 4 bits of its argument to specify the existence of an order rela-
tion depending on whethet andY have load or store semantics. The Sequencing MEMBAR uses three
bits to specify completion conditions. The MEMBAR encoding is specified in A.32.

9. Sequencing constraints have other effects, such as controlling when a memory error is recognized or
when an /0 access reaches global visibility. The need for sequencing constraints is always associated
with I/O and kernel level programming and not usually with normal, user-level application program-
ming.

D.4 Specification of Relaxed Memory Order (RMO) 267

tional branch will depend on the outcome of that branch instruction, which in turn will
depend on one or more memory transactions that precede the branch instruction. Loads
after an unresolved conditional branch may proceed, that is, a conditional branch does not
dependence order subsequent loads. Control dependences always order the initiation of
subsequent instructions to the performance of the preceding instrj:?tions.

Rule (2) captures dependences arising from register use. It is not necessary to include an
ordering whenX reads a register that is later written lybecause register renaming will
allow out-of-order execution in this case. Register renaming is equivalent to having an
infinite pool of registers and requiring all registers to be write-once. Observe that the con-
dition code register is set by some arithmetic and logical instructions and used by condi-
tional branch instructions thus introducing a dependence order.

Rule (3) captures ordering constraints resulting from memory accesses to the same loca-
tion and require that the dependence order reflect the program order for store-load pairs,
but not for load-store or store-store pairs. A load may be executed speculatively, since

loads are side-effect free, provided that Rule (3) is eventually satisfied.

An actual processor implementation will maintain dependence order by score-boarding,
hardware interlocks, data flow techniques, compiler directed code scheduling, and so
forth, or, simply, by sequential program execution. The means by which the dependence
order is derived from a program is irrelevant to the memory model, which has to specify
which possible memory transaction sequences are legal for a given set of data depen-
dences. Practical implementations will not necessarily use the minimal set of constraints:
adding unnecessary order relations from the program order to the dependence order only
reduces the available concurrency, but does not impair correctness.

D.3.4 Memory Order

The sequence in which memory transactions are performed by the memory iswaited
ory order, which is a total order on all memory transactions.

In general, the memory order cannot be knoavpriori. Instead, the memory order is
specified as a set of constraints that are imposed on the memory transactions. The require-
ment that memory transactiod must be performed before memory transacthoris
denoted byX <m Y.Any memory order that satisfies these constraints is legal. The mem-
ory subsystem may choose arbitrarily among legal memory orders, hence multiple execu-
tions of the same programs may result in different memory orders.

D.4 Specification of Relaxed Memory Order (RMO)
D.4.1 Value Atomicity

Memory transactions will atomically set or retrieve the value of a memory location as long
as the size of the value is less than or equal to eight bytes, the unit of coherency.

10. Self modifying code (use of FLUSH instructions) also causes control dependences.

268 D Formal Specification of the Memory Models

D.4.2 Store Atomicity

All possible execution traces are consistent with the existence of a memory order that
totally orders all transactions including all store operations.

This does not imply that the memory order is observable. Nor does it imply that RMO
requires any central serialization mechanism.

D.4.3 Atomic Memory Transactions

The atomic memory transactions SWAP, LDSTUB, and CAS are performed as one mem-
ory transaction that is both a load and a store with respect to memory order constraints. No
other memory transaction can separate the load and store actions of an atomic memory
transaction. The semantics of atomic instructions are defined in Appendix A, “Instruction
Definitions.”

D.4.4 Memory Order Constraints

A memory order is legal in RMO if and only if:
(1) X<dY&LX)O X<mY
(2) M(X,Y)O X <mY
(B) Xa<pYa&S(YD X<mY

Rule (1) states that the RMO model will maintain dependence when the preceding transac-
tion is a load. Preceding stores may be delayed in the implementation, so their order may
not be preserved globally.

Rule (2) states that MEMBAR instructions order the performance of memory transactions.

Rule (3) states that stores to the same address are performed in program order. This is nec-
essary for processor self-consistency

D.4.5 Value of Memory Transactions

The value of a loatais the value of the most recent store that was performed with respect
to memory order or the value of the most recently initiated store by the same processor.
AssumingY is a load to memory locatian

Value(La) = Value(Max,,{S |Sa <m LaorSa <p La})

whereMax.{..} selects the most recent element with respect to the memory order and
where Value() yields the value of a particular memory transaction. This states that the
value returned by a load is either the result of the most recent store to that address which
has been performed by any processor or which has been initiated by the processor issuing
the load. The distinction between local and remote stores permits use of store-buffers,
which are explicitly supported in all SPARC-V9 memory models.

D.5 Specification of Partial Store Order (PSO) 269

D.4.6 Termination of Memory Transactions

Any memory transaction will eventually be performed. This is formalized by the require-
ment that only a finite number of memory ordered loads can be performed before a pend-
ing store is completed.

D.4.7 Flush Memory Transaction

Flush instructions are treated as store memory transactions as far as the memory order is
concerned. Their semantics are defined in A.20, “Flush Instruction Memory.” Flush
instructions introduce a control dependence to any subsequent (in program order) execu-
tion of the instruction that was addressed by the flush.

D.5 Specification of Partial Store Order (PSO)

The specification of Partial Store Order (PSO) is that of Relaxed Memory Order (RMO)
with the additional requirement that all memory transactions with load semantics are fol-
lowed by an implied MEMBAR¢{LoadLoad |#LoadStore

D.6 Specification of Total Store Order (TSO)

The specification of Total Store Order (TSO) is that of Partial Store Order (PSO) with the
additional requirement that all memory transactions with store semantics are followed by
an implied MEMBAR#StoreStore

D.7 Examples Of Program Executions

This subsection lists several code sequences and an exhaustive list of all possible execu-
tion sequences under RMO, PSO and TSO. For each example, the code is followed by the
list of order relations between the corresponding memory transactions. The memory trans-

actions are referred to by numbers. In each case, the program is executed once for each
memory model.

D.7.1 Observation of Store Atomicity

The code example below demonstrates how store atomicity prevents multiple processors
from observing inconsistent sequences of events. In this case, processors 2 and 3 observe
changes to the shared variabfeandB, which are being modified by processor 1. Initially

both variables are 0. The stores by processor 1 do not use any form of synchronization,
and they may in fact be issued by two independent processors.

Should processor 2 find to have the new value (1) afgito have the old value (0), it can
infer thatA was updated befor®. Likewise, processor 3 may firisl= 1 andA = 0, which
implies thatB was changed befom. It is impossible for both to occur in all SPARC-V9
memory models since there cannot exist a total order on all stores. This property of the
memory models has been encoded in the assertion Al.

270 D Formal Specification of the Memory Models

However, in RMO, the observing processor must separate the load operations with mem-
bar instructions. Otherwise, the loads may be reordered and no inference on the update
order can be made.

Figure 44 is taken from the output of the SPARC-V9 memory model simulator, which
enumerates all possible outcomes of short code sequences and which can be used to prove
assertions about such programs.

Processor 1 Processor 2 Processor 3
ST#1, A LD A, %rl LD B, %rl
T TP TP
ST#1,B LD B, %r2 LD A, %r2
T:TSO P:PSO R:RMO —— <m — <d

/*

* Store atomicity

* Note: will fail in RMO due to lack of membars between loads
*

Processor 1:

0) st #1,[A]

(1) st #1,[B]
Processor 2:

2) Id [A],%rl

3) Id [B],%r2
Processor 3:

(4) Id [B],%rl

(5) Id [A],%r2
Assertions:

AL I((P2:%rl == 1) && (P2:%r2 == 0)) || /((P3:%rl == 1) && (P3:%r2 == 0))

Possible values under all memory models:
2rl 22 3irl 32 A B example sequence of performance in <m

0 0 0 0O 1 1 452031
0 0 0 1 1 1 420531
0 0 1 1 1 1230145
0 1 0 O 1 1 452013
0 1 0 1 1 1 420513
0 1 1 1 1 1201345
1 0 0 0 1 1 450231
1 0 0 1 1 1405231
1 0 1 1 1 1 023145
1 1 0 0 1 1 450213
1 1 0 1 1 14051283
1 1 1 1 1 1014253

Possible values under PSO & RMO, but not under TSO:

2rl 22 3irl 32 A B example sequence of performance in <m
0 0 1 0 1 1 231450
0 1 1 0 1 1 214350
1 1 1 0 1 1 145023

Possible values under RMO, but not under PSO & TSO:
2rl 22 3irl 32 A B example sequence of performance in <m
1 0 1 0 1 1530214

Figure 44—Store Atomicity Example

D.7 Examples Of Program Executions 271

D.7.2 Dekker's Algorithm

The essence of Dekker’s algorithm is shown in figure 45 on pagé-27d assure mutual
exclusion, each processor signals its intent to enter a critical region by asserting a dedi-
cated variableA for processor 1 anB for processor 2). It then checks that the other pro-
cessor does not want to enter and, if it finds the other signal variable is deasserted, it enters
the critical region. This code does not guarantee that any processor can enter (that requires
a retry mechanism which is omitted here), but it does guarantee mutual exclusion, which
means that it is impossible that each processor finds the other’s lock idle (=0) when it
enters cthe ritical section.

Processor 1 Processor 2

ST #1, A ST#1,B
T,P R(T,P,R(
LD A, %rl

<m <

LD B, %rl

T:TSO P:PSO R:RMO

/*

* Dekker's Algorithm
*/

Processor 1:

0) st #1,[A]
membar #StoreLoad
(2) Id [B],%rl
Processor 2:
2 st #1,[B]
membar #StoreLoad
?3) Id [A],%rl
Assertions:

Al: (P1:%rl == 1) || (P2:%rl == 1)

Possible values under all memory models:

1irl 2r1 A B example sequence of performance in <m
0 1 1 10123
1 0 1 1 2301
1 1 1 12031

Possible values under PSO & RMO, but not under TSO:
--- none ---

Possible values under RMO, but not under PSO & TSO:
--- none ---

Figure 45—Dekker’s Algorithm

D.7.3 Indirection Through Processors

Another property of the SPARC-V9 memory models is that causal update relations are
preserved, which is a side-effect of the existence of a total memory order. In the example

11. See also DEC Litmus Test 8 described inAltygha Architecture HandboglPigital Equipment Corpora-
tion, 1992, p. 5-14.

272 D Formal Specification of the Memory Models

below, processor 3 observes updates made by processor 1. Processor 2 simply copies B to
C, which does not impact the causal chain of events.

Again, this example intentionally exposes two potential error sources. In PSO (and RMO),
the stores by processor 1 are not ordered automatically and may be performed out of pro-
gram order. The correct code would need to insert a MEMB#S®oreStore between

these stores. In RMO (but not in PSO), the observation process 3 needs to separate the two
load instructions by a MEMBARLoadLoad .

Processor 1 Processor 2 Processor 3
ST#1, A LD B, %rl LD C, %rl
T [TPR T,P(
ST #1,B A (CST %rl, C LD A, %r2
T:TSO P:PSO R:RMO —F <m <

/*

* Indirection through processors

* Note: Assertion will fail for PSO and RMO due to lack of
* membar #StoreStore after P1's first store

*/

Processor 1:

0) st #1,[A]

(1) st #1,[B]
Processor 2:

) Id [B],%rl

3) st %rl,[C]
Processor 3:

(4) Id [C],%r1

(5) Id [A],%r2
Assertions:

AL 1((P3:%rl == 1) && (P3:%r2 == 0))

Possible values under all memory models:
21 3rx1 312 A B C example sequence of performance in <m

0 0 0 1 1 0 450213
0 0 1 1 1 0 420513
1 0 0 1 1 1 450123
1 0 1 1 1 1 405123
1 1 1 1 1 1012345

Possible values under PSO & RMO, but not under TSO:
21 3rx1 312 A B C example sequence of performance in <m
1 1 0 1 1 1123450

Possible values under RMO, but not under PSO & TSO:
--- none ---

Figure 46—Indirection Through Processors

D.7.4 PSO Behavior

The code in figure 47 on page 273 shows how different results can be obtained by allow-
ing out of order performance of two stores in PSO and RMO models. A store to B is

D.7 Examples Of Program Executions 273

allowed to be performed before a store to A. If two loads of processor 2 are performed
between the two stores, then the assertion below is satisfied for the PSO and RMO models.

Processor 1 Processor 2

LD B, %rl
\\
CT

P
LD A, %r \ LD A, %r2
T.PR)
ST %r, B

T:TSO P:PSO R:RMO

<m <d

/*
* PSO behavior
*/

Processor 1:
(0) st #1, [A]
(2) Id [A], Yr
(2) st %r, [B]

Processor 2:
(3) Id [B], %r1
(4) Id [A], %r2

Assertions:
E: (P2:%rl == 1) && (P2:%r2 == 0);

Possible values under all memory models:

L1ir2:rl 2r2 A B example sequence of performance in <m
1 0 0 1 1 34012

1 0 1 1 1 03412

1 1 1 1 1 01234

Possible values under PSO & RMO, but not under TSO:
Lir2:rl 2r2 A B example sequence of performance in <m
1 1 0 1 1 12340

Possible values under RMO, but not under PSO & TSO:
--- none ---

Figure 47—PSO Behavior

D.7.5 Application to Compilers

A significant problem in a multiprocessor environment arises from the fact that normal
compiler optimizations which reorder code can subvert programmer intent. The SPARC-
V9 memory model can be applied to the program, rather than an execution, in order to
identify transformations that can be applied, provided that the program has a proper set of
MEMBARSs in place. In this case, the dependence order is a program dependence order,

rather than a trace dependence order, and must include the dependences from all possible
executions.

274 D Formal Specification of the Memory Models

D.7.6 Verifying Memory Models

While defining the SPARC-V9 memory models, software tools were developed that auto-
matically analyze and formally verify assembly-code sequences running in the models.
The core of this collection of tools is the Murphi finite-state verifier developed by David
Dill and his students at Stanford University.

For example, these tools can be used to confirm that synchronization routines operate
properly in various memory models and to generate counter example traces when they fail.
The tools work by exhaustively enumerating system states in a version of the memory
model, so they can only be applied to fairly small assembly code examples. We found the
tools to be helpful in understanding the memory models and checking our ex&mples.

Contact SPARC International to obtain the verification tools and a set of examples.

12. For a discussion of an earlier application of similar tools to TSO and PSO, see David Dill, Seungjoon
Park, and Andreas G. Nowatzyk, “Formal Specification of Abstract Memory ModelRegearch on
Integrated Systems: Proceedings of the 1993 Sympe&dnGaetano Borriello and Carl Ebeling, MIT
Press, 1993.

E Opcode Maps

E.1 Overview
This appendix contains the SPARC-V9 instruction opcode maps.

Opcodes marked with a dash ‘—' are reserved. An attempt to execute a reserved opcode
behaves as defined in section 6.3.11, “Reserved Opcodes and Instruction Fields.”

In this appendix and in Appendix A, “Instruction Definitions,” certain opcodes are marked
with mnemonic superscripts. These superscripts and their meanings are defined in table 23
on page 133. For deprecated opcodes, see the appropriate instruction pages in Appendix
A, “Instruction Definitions,” for preferred substitute instructions.

E.2 Tables
Table 33—op[1:0]
op [1:0]
0 1 2 3
Branches & SETHI CALL Arithmetic & Misc. Loads/Stores
See table 34 See table 35 See table 36
Table 34—op22:0] (op=0)
op2 [2:0]
0 1 2 3 4 5 6 7
BPcc BiccP BPr SETHI FBPfcc FBfc®
See table 39 See table 39 (bit 28 =0) | NOP' | See table 39 See table 39
ILLTRAP —_
See table 40
. (bit 28 = 1)
"See the footnote regarding bit 28 on page 138.

rd =0,imm22=0

275

276

E Opcode Maps

Table 35—o0p35:0] (op=2)

op3 [5:4]
0 1 2 3
WRYP (rd = 0)
— (rd=1)
WRCCR (d=2)
0 ADD ADDcc TADDcc WRASI (rd=3)
WRASR™®sR (seeA.63)
WRFPRS (d=6)
SIR (d=15,rs1=0,i=1)
SAVEDF (fcn = 0),
1 AND ANDcc TSUBcc RESTOREIS (fcn = 1)
2 OR ORcc TADDccTVP WRPFR
3 XOR XORcc TSUBccTVY —
FPopl
4 SUB SUBcc MULScE See table 37
5 | ANDN ANDNCcc SLL (x=0), SLLX (x=1) FPop2
ek B See table 38
6| ORN ORNcc SRLX=0), SRLX &= 1) IMPDEP1
7 | XNOR XNORcc SRA =0), SRAX &k=1) IMPDEP2
D —
op3 RDY® (rs1=0)
[3:0] — (rsl=1)
' RDCCR (s1=2)
RDASI (rs1=3)
RDTICKPT (rs1=4)
8 ADDC ADDCcc RDPC (s1=5) JMPL
RDFPRS (s1=6)
RDASR™“s® (seeA.44)
MEMBAR (rs1= 15rd=0,i = 1)
STBARP (rs1=15,d=0,i = 0)
9 MULX — — RETURN
Tcc
A | UMULP | UMULccP RDPR See table 39
(bit 29 =1)
B | SMUL® | SMULc® FLUSHW FLUSH
C SUBC SUBCcc MOVcc SAVE
D UDIVX — SDIVX RESTORE
POPC (s1=0) DONEP (fcn = 0)
D D
E | UDIVZ | UDIVee — (1s1>0) RETRY? (ficn = 1)
MOVr
D —_
F | SDIV SDIVed® See table 40

E.2 Tables 277
Table 36—op35:0] (op=3)
op3 [5:4]
0 1 2 3

0 LDUW LDUWA Fasi LDF LDFAPss

1 LDUB LDUBA Pasi LDFSR®, LDXFSR —

2 LDUH LDUHA Pasi LDQF LDQFAPs!

3 LDDP LDDAP: Fas LDDF LDDFAPss!

4 STW STWAPs! STF STFAR»s!

5 STB STBAP:s STFSF, STXFSR —

6 STH STHAPS STQF STQFA»s!
op3 7 STDP STDAPss! STDF STDFA®s
[3:0] | 8 LDSW LDSWAP-s! — _

9 LDSB LDSBAMs! — _

A LDSH LDSHAPs! — —

B LDX LDXA FPast — —

C — — — CASAPs!

D LDSTUB LDSTUBAPs! PREFETCH PREFETCH?S

E STX STXAPs! — CASXAPss

F SWAP? SWAPAD: Psi — —

Table 37—opf[8:0] (op= 2,0p3= 34, = FPopl)

opf[3:0]

opf
[8:4]

8

9

B

00

FNEGq

FABSs

FABSd

FABS(

01

02

FSQRTs

FSQRT

i FSQRT

03

04

]

FMULs

FMULd

FMULq

FDIVd

05

06

FsMULd

FdMULgq

07

08

09

0A

0B

ocC

0D

OE..1F

8.¢

sde\ apoodO 3

Table 38—opf[8:0] (op = 2, 0p3= 35,5= FPop2)

opf[3:0]

opf
[8:4]

1

2

3

5

6

7

8..F

00

FMQVs (fcc0)

FMOVd (fcc0)

FMOV(q (fcc0)

T

T

T

01

02

FMOVRsZ

FMOVRdZ

FMOVRQZ

03

04

FMQVs (fccl)

FMOVd (fccl)

FMOV(q (fccl)

FMOVRSLEZ

FMOVRdLEZ

FMOVRQgLEZ

05

FCMPs

FCMPd

FCMPq

FCMPEs

FCMPEd

FCMPEq

06

FMOVRsLZ

FMOVRdLZ

FMOVRqLZ

07

08

FMOVs (fcc2)

FMQOVd (fcc2)

FMOQOVq (fcc2)

¥

n

n

09

0A

FMOVRsNZ

FMOVRdANZ

FMOVRQgNZ

0B

0oC

FMQVs (fcc3)

FMOVd (fcc3)

FMOV(q (fcc3)

FMOVRsGZ

FMOVRdAGZ

FMOVRQGZ

0D

OE

FMOVRsGEZ

FMOVRAGEZ

FMOVRQGEZ

OF

10

FMOVs (icc)

FMOVd (icc)

FMOV(q (icc)

11..17

18

FMQVs (xcc)

FMOVd (xcc)

FMOV(q (xcc)

19..1F

T Undefined variation of FMOVr

sa|qel ¢'3

6.¢

280 E Opcode Maps
Table 39—ond3:0]

BPcc Bic® FBPfcc FBfcd® Tce
op=0 op=0 op=0 op=0 op=2
op2=1 op2=2 op2=5 op2==6 op3 = 3A;

0 BPN BNP FBPN FBN’ TN
1 BPE BE® FBPNE FBNE TE
2 BPLE BLEP FBPLG FBLG TLE
3 BPL BLP FBPUL FBULP TL
4 BPLEU BLEW FBPL FBLP TLEU
5 BPCS BCS FBPUG FBU® TCS
6 BPNEG BNE® FBPG FB® TNEG
cond | 7 BPVS BVS FBPU FBU TVS
[3:0] | 8 BPA BAP FBPA FBAP TA
9 BPNE BNE® FBPE FBE TNE
A BPG BG FBPUE FBUF? TG
B BPGE BGF FBPGE FBGE TGE
C BPGU BGY FBPUGE FBUGPE TGU
D BPCC BCC® FBPLE FBLE® TCC
E BPPOS BPO3 FBPULE FBULE® TPOS
F BPVC BV FBPO FBCOY TVC
Table 40—Encoding ofrcond[2:0] Instruction Field
BPr MOVr FMOVr
op=0 op=2 op=2
op2=3 op3 = 2F4 op3 =354
0 — — —
1 BRZ MOVRZ FMOVZ
2 BRLEZ MOVRLEZ FMOVLEZ
r[cz?g]d 3 BRLZ MOVRLZ FMOVLZ
4 _ — —
5 BRNZ MOVRNZ FMOVNZ
6 BRGZ MOVRGZ FMOVGZ
7 BRGEZ MOVRGEZ FMOVGEZ

E.2 Tables

281

Table 41—ccd/opf_ccFields (MOVcc and FMOVcc)

opf_cc Condition
cc2 | ccl| cco| code selected

0 0 0 fccO
0 0 1 fccl
0 1 0 fcc2
0 1 1 fcc3
1 0 0 icc

1 0 1 —

1 1 0 Xcc
1 1 1 —_

Table 42—¢c Fields (FBPfcc, FCMP and FCMPE)

ccl

ccO

Condition
code selected

fccO

fccl

fcc2

RIRL OO

R O, O

fcc3

Table 43—cc Fields (BPcc and Tcc)

cel | cco Condition
code selected
0 0 icc
0 1 —
1 0 Xcc
1 1 —

282 E Opcode Maps

This appendix is informative only.

It is not part of the SPARC-V9 specification.

F SPARC-V9 MMU Requirements

F.1 Introduction

This appendix describes the boundary conditions that all SPARC-V9 MMUs must satisfy.
The appendix does not define the architecture of any specific memory management unit. It
is possible to build a SPARC-V9-compliant system without an MMU.

F.1.1 Definitions

address space
A range of locations accessible with a 64-bit virtual address. Different address
spaces may use the same virtual address to refer to different physical locations.

aliases
Two virtual addresses are aliases of each other if they refer to the same physical
address.

context
A set of translations used to support a particular address space.

page:
The range of virtual addresses translated by a single translation element. The size
of a page is the size of the range translated by a single translation element. Differ-
ent pages may have different sizes. Associated with a page or with a translation
element are attributes (e.g., restricted, permission, etc.) and statistics (e.g., refer-

enced, modified, etc.)

translation element
Used to translate a range of virtual addresses to a range of physical addresses.

F.2 Overview
All SPARC-V9 MMUs must provide the following basic functions:

— Translate 64-bit virtual addresses to physical addresses. This translation may be
implemented with one or more page sizes.

283

284 F SPARC-V9 MMU Requirements

— Provide the RED_state operation, as defined in 7.2.1, “RED_state.”

— Provide a method for disabling the MMU. When the MMU is disabled, no transla-
tion occurs: Physical AddresskO> = Virtual Address#l:0>, whereN is imple-
mentation-dependent. Furthermore, the disabled MMU will not perform any
memory protection (see F.4.2, “Memory Protection”) or prefetch and non-faulting
load violation (see F.4.3, “Prefetch and Non-Faulting Load Violation”) checks.

IMPL. DEP. #117: Whether PREFETCH and non-faulting load always succeed when the
MMU is disabled is implementation-dependent.

— Provide page-level protections. Conventional protections (Read, Write, Execute)
for both privileged and nonprivileged accesses may be provided.

— Provide page-level enabling and disabling of prefetch and non-faulting load opera-
tion. The MMU, however, need not provide separate protection mechanisms for
prefetch and non-faulting load.

— Support multiple address spaces (ASIs). The MMU must support the address
spaces as defined in F.3.1, “Information the MMU Expects from the Processor.”

— Provide page-level statistics such as referenced and modified.

The above requirements apply only to those systems that include SPARC-V9 MMUs. See
F.8, “SPARC-V9 Systems without an MMU.”

F.3 The Processor-MMU Interface
A SPARC-V9 MMU must support at least two types of addresses:

(1) Virtual Addresses, which map all system-wide, program-visible memory. A
SPARC-V9 MMU may choose not to support translation for the entire 64-bit vir-
tual address space, as long as addresses outside the supported virtual address range
are treated either as No_translation or Translation_not_valid (see F.3.3, “Informa-
tion the MMU Sends to the Processor”).

(2) Physical Addresseswhich map real physical memory and 1/O device space.
There is no minimum requirement for how many physical address bits a SPARC-
V9 MMU must support.

F.3 The Processor-MMU Interface 285

A SPARC-V9 MMU translates virtual addresses from the processor into physical
addresses, as illustrated in figure 48.

Data
= > Physical
Address
Space
Processor
Virtual physical -------- : --------
B A
Address MMU Address Real | 110
Memory | Locations
|

Figure 48—Logical Diagram of a SPARC-V9 System with aMMU

Figure 48 shows only the address and data paths between the processor and the MMU.
The control interface between the processor and the MMU is discussed in F.3.1, “Informa-
tion the MMU Expects from the Processor,” and F.3.3, “Information the MMU Sends to

the Processor.”

F.3.1 Information the MMU Expects from the Processor

A SPARC-V9 MMU expects the following information to accompany each virtual address
from the processor:

RED_state
Indicates whether the MMU should operate in RED_state, as defined in 7.2.1,

“RED_state.”

Data / Instruction:
Indicates whether the access is an instruction fetch or data access (load or store).

Prefetch:
Indicates whether the data (Data / Instruction = Data) access was initiated by one

of the SPARC-V9 prefetch instructions.

Privileged:
Indicates whether this access is privileged.

Read / Write:
Indicates whether this access is a read (instruction fetch or data load) or a write

(data store) operation.

Atomic:
Indicates whether this is an atomic load-store operation. Whenever atomic is

asserted, the value of “Read/Write” is treated by the MMU as “don’t care.”

ASI:
An 8-bit address space identifier. See 6.3.1.3, “Address Space ldentifiers (ASIs),”

for the list of ASIs that the MMU must support.

286 F SPARC-V9 MMU Requirements

F.3.2 Attributes the MMU Associates with Each Mapping

In addition to translating virtual addresses to physical addresses, a SPARC-V9 MMU also
stores associated attributes, either with each mapping or with each page, depending upon
the implementation. Some of these attributes may be associated implicitly, as opposed to
explicitly, with the mapping. This information includes

Restricted:

Only privileged accesses are allowed (see F.3.1, “Information the MMU Expects
from the Processor”); nonprivileged accesses are disallowed.

Read, Write, and Execute Permissions
An MMU may allow zero or more of read, write, and execute permissions, on a
per-mapping basis. Read permission is necessary for data read accesses and atomic
accesses. Write permission is necessary for data write accesses and atomic
accesses. Execute permission is necessary for instruction accesses. At a minimum,
an MMU must allow for “all permissions,” “no permissions,” and “no write per-
mission”; optionally, it can provide “execute only” and “write only,” or any combi-
nation of “read/write/execute” permissions.

Prefetchable
The presence of this attribute indicates that accesses made with the prefetch indi-
cation from the processor are allowed; otherwise, they are disallowed. See F.3.1,
“Information the MMU Expects from the Processor.”

Non-faultable:
The presence of this attribute indicates that accesses made with
AS|_PRIMARY_NOFAULT{ LITTLE} and ASI_SECONDARY_NOFAULT{ LITTLE} are
allowed; otherwise, they are disallowed. An implementation may choose to com-
bine the prefetchable and non-faultable attributes into a single “No Side Effects”
attribute; that is, “reads from this address do not cause side effects, such as clear on
read.”

F.3.3 Information the MMU Sends to the Processor

The processor can expect one and only one of the following signals coming from any
SPARC-V9 MMU for each translation requested:

Translation_error:
The MMU has detected an error (for example, parity error) in the translation pro-
cess. Can causedata_access_error OF instruction_access_error exception.

No_translation:
The MMU is unable to translate the virtual address, since no translation exists for
it. Some implementations may not provide this information and provide only
Translation_not_valid. Can cause either data access exception Or an
instruction_access_exception exception.

Translation_not_valid:
The MMU is unable to translate the virtual address, since it cannot find a valid
translation. Some implementations may not provide this information and provide

F.4 Components of the SPARC-V9 MMU Architecture 287

only No_translation. Can cause either @ata access MMU_miss Or an
instruction_access_MMU_miss exception.

Privilege_violation:
The MMU has detected a privilege violation, i.e., an access to a restricted page
when the access does not have the required privilege (see F.3.1, “Information the
MMU Expects from the Processor”). Can cause eitheata_access_protection or
an instruction_access_protection exception.

Protection_violation:
The MMU has detected a protection violation, which is defined to be a read, write,
or instruction fetch attempt to a page that does not have read, write, or execute per-
mission, respectively. Can cause either data access protection oOr an
instruction_access_protection exception.

Prefetch_violation:
The MMU has detected an attempt to prefetch from a page for which prefetching is
disabled.

NF-Load_violation:
The MMU has detected an attempt to perform a non-faulting load from a page for
which non-faulting loads are disabled.

Translation_successful
The MMU has successfully translated the virtual address to a physical address;
none of the conditions described above has been detected.

F.4 Components of the SPARC-V9 MMU Architecture
A SPARC-V9 MMU should contain the following:
— Logic that implements virtual-to-physical address translation
— Logic that provides memory protection
— Logic that supports prefetching as noted in A.42, “Prefetch Data”

— Logic that supports non-faulting loading, as noted in 8.3, “Addressing and Alter-
nate Address Spaces”

— A method for specifying the primary, secondary and, optionally, nucleus address
spaces

— A method for supplying information related to failed translations

— A method for collecting “referenced” and “modified” statistics

F.4.1 Virtual-to-Physical Address Translation

A SPARC-V9 MMU tries to translate every virtual address it receives into a physical
address as long as:

— The MMU is enabled.

288 F SPARC-V9 MMU Requirements

— The processor indicates that this is a non-RED_state instruction fetch (see the
Data/Instruction description in F.3.1, “Information the MMU Expects from the
Processor”) or a data access with an ASI that indicates a translatable address space.

Although the MMU will attempt to translate every virtual address that meets the above

two conditions, it need not guarantee that it can provide a translation every time. When the
MMU encounters a virtual address that it cannot translate, it asserts either

Translation_error, No_translation, or Translation_not_valid, as discussed in F.3.3, “Infor-

mation the MMU Sends to the Processor.”

F.4.2 Memory Protection

For each virtual address for which a SPARC-V9 MMU can provide a translation, the
MMU checks whether memory protection would be violated. More specifically, the MMU

— Indicates Privilege_violation (see F.3.3) if the translation information indicates a
restricted page but the access was not privileged (see F.3.1)

— Indicates Protection_violation (see F.3.3) if a read, write, or instruction fetch uses
a translation that does not grant read, write, or execute permission, respectively

— Indicates Protection_violation (see F.3.3) if an atomic load-store uses a translation
that does not grant both read and write permission

F.4.3 Prefetch and Non-Faulting Load Violation

For each virtual address, the MMU checks for prefetch or non-faulting load violation as
long as

— The MMU can provide a translation, and

— The MMU does not detect any memory protection violation, as discussed in F.4.2,
“Memory Protection.”

More specifically, the MMU performs the following before sending the physical address
to the rest of the memory system:

— Asserts Prefetch_violation (see F.3.3) if an access with the prefetch indication (see
F.3.1) uses a translation that lacks the prefetchable attribute (see F.3.2)

— Asserts NF-Load_violation (see F.3.3) if the ASI (see F.3.1) indicates this access is
a non-faulting load, but the translation it uses lacks the non-faultable attribute (see
F.3.2)

F.4.4 Contexts

The MMU must support two contexts:
(1) Primary Context
(2) Secondary Context

F.4 Components of the SPARC-V9 MMU Architecture 289

In addition, it is also recommended that the MMU support a third context:
(3) Nucleus Context

On data accesss, the MMU decides which of these three contexts to use based on the ASI
field, as illustrated in table 44. Because the SPARC-V9 MMU cannot determine the
instruction opcode, it treats all data accesses with ASI_PRIMARY{ LITTLE} as normal
loads or stores, even though the processor may issue them with load/store alternate
instructions.

Table 44—Context Used for Data Access

MMU Inputs Output

ASI Mode Context
ASI_PRIMARY Either Primary
ASI_PRIMARY_LITTLE Either Primary
ASI_PRIMARY_NOFAULT Either Primary
AS|_PRIMARY_NOFAULT_LITTLE Either Primary
ASI_AS IF_USER_PRIMARY Privileged Primary
ASI_AS_IF_USER_PRIMARY_LITTLE Privileged Primary
ASI_SECONDARY Either Secondary|
AS|_SECONDARY_LITTLE Either Secondary
ASI_SECONDARY_NOFAULT Either Secondary
ASI_SECONDARY_NOFAULT_LITTLE Either Secondary
ASI_AS IF_USER_SECONDARY Privileged Secondary
ASI_AS IF_USER_SECONDARY_LITTLE Privileged Secondary
ASI_NUCLEUS' Privileged Nucleus
ASI_NUCLEUS_LITTLE" Privileged Nucleus

T Support for the nucleus context is only a recommendation; if an implementation does not sup-
port the nucleus context it may ignore this row.

On instruction fetch, the MMU decides which context to use based on the ASI field, as
illustrated in table 45. Note that the secondary context is never used for instruction fetch.

Table 45—Context Used for Instruction Access

ASI Mode Context
ASI_PRIMARY Either Primary
ASI_NUCLEUST Privileged* Nucleus

T Support for the Nucleus Context is only a recommendation; if an implementation does not
support the Nucleus Context it may ignore this row.

ltis implementation-dependent whether instruction fetch using ASI_NUCLEUS in nonprivi-
leged mode is allowed.

F.4.5 Fault Status and Fault Address
A SPARC-V9 MMU must provide the following:

290 F SPARC-V9 MMU Requirements

— Fault status information that specifies which condition listed in F.3.3, “Information
the MMU Sends to the Processor,” has resulted in a translation-related processor
trap, and any other information necessary for privileged software to determine the
cause of the trap; for example, ASI, Read/Write, Data/Instruction, etc.

— The Fault address associated with the failed translation. Since the address from an
instruction translation failure is available in the processor as the trap PC, the MMU
is not required to save the address of an instruction translation failure.

F.4.6 Referenced and Modified Statistics

A SPARC-V9 MMU shall allow, either through hardware, software, or some combination
thereof, for the collection of “referenced” and “modified” statistics associated with trans-
lations and/or physical pages. That is, there must be a method to determine if a page has
been referenced, a method to determine if a page has been modified, and a method for
clearing the indications that a page has been referenced and/or modified. These statistics
may be kept on either a per-translation basis or a per-physical-page basis.

It is implementation-dependent whether the referenced and/or modified statistics are
updated when an access is performed or when the translation for that access is performed.

F.5 RED_state Processing
It is recommended that the MMU perform as follows when the processor is in RED_state:

— Instruction address translation is a straight-through physical map; that is, the
MMU is always suppressed for instruction access in RED _state.

— Data address translation is handled normally; that is, the MMU is used if it is
enabled. Note that any event which causes the processor to enter RED_state also
disables the MMU, however, the handler executing in RED_state may reenable the
MMU.

F.6 Virtual Address Aliasing

Hardware and privileged software must cooperate so that multiple virtual addresses
aliased to the same physical address appear to be consistent as defined by the memory
models described in Chapter 8, “Memory Models.” Depending upon the implementation,
this may require allowing multiple translations to coexist only if they meet some imple-
mentation-dependent alignment constraint, or it may require that software ensure that only
one translation is in effect at any given time.

F.7 MMU Demap Operation

The SPARC-V9 MMU must provide a mechanism for privileged software to invalidate
some or all of the virtual-to-physical address translations.

F.8 SPARC-V9 Systems without an MMU 291

F.8 SPARC-V9 Systems without an MMU

It is possible to build a SPARC-V9 system that does not have an MMU. Such a system
should behave as if contains an MMU that is disabled.

292 F SPARC-V9 MMU Requirements

This appendix is informative only.

It is not part of the SPARC-V9 specification.

G Suggested Assembly Language Syntax

This appendix supports Appendix A, “Instruction Definitions.” Each instruction descrip-
tion in Appendix A includes a table that describes the suggested assembly language for-
mat for that instruction. This appendix describes the notation used in those assembly
language syntax descriptions and lists some synthetic instructions that may be provided by
a SPARC-V9 assembler for the convenience of assembly language programmers.

G.1 Notation Used
The notations defined here are also used in the syntax descriptions in Appendix A.

Items intypewriter font are literals to be written exactly as they appear. Iltems in
italic font are metasymbols that are to be replaced by numeric or symbolic values in actual
SPARC-V9 assembly language code. For examplant'_asi would be replaced by a
number in the range 0 to 255 (the value of men_asibits in the binary instruction), or by

a symbol bound to such a number.

Subscripts on metasymbols further identify the placement of the operand in the generated
binary instruction. For examplegg., is areg (register name) whose binary value will be
placed in thes2 field of the resulting instruction.

G.1.1 Register Names
reg.
A regis an integer register name. It may have any of the following values:
%r0..%r31
%g0..%Qg7 (global registers; same 86r0..%r7)

%00..%07 (out registers; same &&8..%r15)

%I0 ..%I7 (local registers; same &6r16..%r23)
%i0 ..%Ii7 (in registers; same #@24 ..%r31)
%fp (frame pointer; conventionally same%s6)

1. In actual usage, tBésp, %fp, %q, %o, %In, and%in forms are preferred ovésrn.

293

294 G Suggested Assembly Language Syntax

%sp (stack pointer; conventionally same%s6)
Subscripts identify the placement of the operand in the binary instruction as one of
the following:
regs1 (rslfield)
re€gso (rs2field)
regyq (rd field)
freg:
An fregis a floating-point register name. It may have the following values:
%f0, %f1, %f2 .. %f63 See 5.1.4, “Floating-Point Registers”

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

fregsy (rslfield)
freggo (rs2 field)
fregy (rd field)
asr_reg
An asr_regis an Ancillary State Register name. It may have one of the following
values:

%asrl6 ..%asr31

Subscripts further identify the placement of the operand in the binary instruction as
one of the following:

asr_regsq (rslfield)
asr_regy (rd field)
i_or_x_cc

An i_or_x_ccspecifies a set of integer condition cogg®se based on either the
32-bit result of an operationac) or on the full 64-bit resultcc). It may have
either of the following values:

%icc
%%xcc

fcen:
An fcenspecifies a set of floating-point condition codes. It may have any of the fol-
lowing values:

%fccO
%fccl
%fcc2
%fcc3

G.1.2 Special Symbol Names

Certain special symbols appear in the syntax tabtgpewriter font . They must be
written exactly as they are shown, including the leading percent%ign (

The symbol names and the registers or operators to which they refer are as follows:

G.1 Notation Used

295

%asi Address Space ldentifier register
%canrestore Restorable Windows register
%cansave Savable Windows register
%cleanwin Clean Windows register

%cwp Current Window Pointer register
%fq Floating-Point Queue

%fsr Floating-Point State Register
%otherwin Other Windows register

%pc Program Counter register

%pil Processor Interrupt Level register
Y%pstate Processor State register

%tba Trap Base Address register
%tick Tick (cycle count) register

%itl Trap Level register

%tnpc Trap Next Program Counter register
%tpc Trap Program Counter register
Y%tstate Trap State register

%tt Trap Type register

%ccr Condition Codes Register

%fprs Floating-Point Registers State register
Y%ver Version register

Y%wstate Window State register

%y Y register

The following special symbol names are unary operators that perform the functions
described:

%uhi Extracts bits 63..42 (high 22 bits of upper word) of its operand

%ulo Extracts bits 41..32 (low-order 10 bits of upper word) of its
operand

%hi Extracts bits 31..10 (high-order 22 bits of low-order word) of
its operand

%lo Extracts bits 9..0 (low-order 10 bits) of its operand

Certain predefined value names appear in the syntax tabjpeémwriter font . They
must be written exactly as they are shown, including the leading sharg}sign (

The value names and the values to which they refer are as follows:

#n_reads 0 (for PREFETCH instruction)
#one_read 1 (for PREFETCH instruction)
#n_writes 2 (for PREFETCH instruction)
#one_write 3 (for PREFETCH instruction)
#page 4 (for PREFETCH instruction)
#Sync 40,6 (for MEMBAR instructioncmaskfield)

#Memlssue 2056 (for MEMBAR instructioncmaskfield)

296 G Suggested Assembly Language Syntax
#Lookaside 106 (for MEMBAR instructioncmaskfield)
#StoreStore 086 (for MEMBAR instructionmmaskield)
#LoadStore 0446 (for MEMBAR instructionmmaskield)
#StoreLoad 025 (for MEMBAR instructionmmaskfield)
#LoadLoad 0146 (for MEMBAR instructionmmaskield)
#ASI_AIUP 106 ASI_AS_IF_USER_PRIMARY
#ASI_AIUS 116 ASI_AS IF_USER_SECONDARY
#ASI_AIUP_L 18 ASI_AS_IF_USER_PRIMARY_LITTLE
#ASI_AIUS L 195 ASI_AS_IF_USER_SECONDARY_LITTLE
#ASI_P 8046 ASI_PRIMARY
#ASI_S 8Ll ASI_SECONDARY
#ASI_PNF 8245 ASI_PRIMARY_NOFAULT
#ASI_SNF 835 ASI_SECONDARY_NOFAULT
#ASI_P_L 88,5 ASI_PRIMARY_LITTLE
#ASI_S_L 895 ASI_SECONDARY_LITTLE
#ASI_PNF_L 8Ay ASI_PRIMARY_NOFAULT _LITTLE
#ASI_SNF_L 8By ASI_SECONDARY_NOFAULT _LITTLE

The full names of the ASIs may also be defined:
#ASI_AS_IF_USER_PRIMARY 106
#ASI_AS IF_USER_SECONDARY 116

#AS|_AS_IF_USER_PRIMARY LITTLE 18
#AS|_AS_IF_USER_SECONDARY_LITTLE19;

#AS|_PRIMARY 80,
#AS|_SECONDARY 81,
#AS|_PRIMARY_NOFAULT 82
#AS|_SECONDARY_NOFAULT 83,
#AS|_PRIMARY_LITTLE 88,
#AS|_SECONDARY_LITTLE 89
#AS|_PRIMARY_NOFAULT_LITTLE 8A

#AS|_SECONDARY_ NOFAULT_LITTLE 8By

G.1.3 Values

Some instructions use operand values as follows:

A constant that can be represented in 4 bits

A constant that can be represented in 22 bits

An alternate address space identifier (0..255)

A signed immediate constant that can be represented in 7 bits
A signed immediate constant that can be represented in 10 bits
A signed immediate constant that can be represented in 11 bits
A signed immediate constant that can be represented in 13 bits
Any 64-bit value

A shift count from 0..31

const4
const22
imm_asi
simm7
simm10
simmll
simm13
value
shcnt32

G.1 Notation Used 297

shcnt64 A shift count from 0..63

G.1.4 Labels

A label is a sequence of characters that comprises alphabetic letters (a—z, A—Z [with upper
and lower case distinct]), underscores (), dollar signs ($), periods (.), and decimal digits
(0-9). A label may contain decimal digits, but may not begin with one. A local label con-
tains digits only.

G.1.5 Other Operand Syntax
Some instructions allow several operand syntaxes, as follows:

reg_plus_immmay be any of the following:
regs1 (equivalent taeg,s1 + %90
reggy + Simm13
regs1 — Simmi3
simm13 (equivalent t%g0 +simm13
simm13+ reg; (equivalent taegg; + SImmM13

addresamay be any of the following:
regs1 (equivalent taeg,g; + %90
regsy + Simm13
regs1 — Simmi3
simm13 (equivalent t%g0 +simm13
simm13+ regg; (equivalent taegg; + SImm13

re0rs1t reGrs?

membar_masks the following:

const7 A constant that can be represented in 7 bits. Typically, this is an
expression involving the logicabr of some combination of
#Lookaside , #Memissue, #Sync, #StoreStore
#LoadStore ,#StoreLoad , and#LoadlLoad .

prefetch_fcn(prefetch function) may be any of the following:
#n_reads
#one_read
#n_writes
#one_write
#page
0..31

regaddr(register-only address) may be any of the following:
regs (equivalent taeg,; + %90

regrs1t réGrs?

298 G Suggested Assembly Language Syntax

reg_or_imm(register or immediate value) may be either of:

regrso
simm13

reg_or_imm2l0(register or immediate value) may be either of:

regrso
simm10

reg_or_imm1ll(register or immediate value) may be either of:

regrso
simml11l

reg_or_shcnt(register or shift count value) may be any of:
€0rs2
shcnt32
shcnt64

software_trap_numbemay be any of the following:
regs1 (equivalent taeg,s1 + %90
regg, + Simm7
regs, — Simm?7
simm7 (equivalent td%g0 +simm7
simm7+regg; (equivalent taeggq + SIimm7

re0rs1t reGrs?

The resulting operand value (software trap number) must be in the range 0..127,
inclusive.

G.1.6 Comments

It is suggested that two types of comments be accepted by SPARC-V9 assemblers: C-style
“IELH " comments, which may span multiple lines, and.“ ” comments, which
extend from the!*” to the end of the line.

G.2 Syntax Design
The suggested SPARC-V9 assembly language syntax is designed so that

— The destination operand (if any) is consistently specified as the last (rightmost)
operand in an assembly language instruction.

— A reference to thecontents of a memory location (in a Load, Store, CASA,
CASXA, LDSTUB(A), or SWAP(A) instruction) is always indicated by square
brackets ([]); a reference to tlaeldressof a memory location (such as in a JMPL,
CALL, or SETHI) is specified directly, without square brackets.

G.3 Synthetic Instructions

299

G.3 Synthetic Instructions

Table 46 describes the mapping of a set of synthetic (or “pseudo”) instructions to actual
instructions. These and other synthetic instructions may be provided in a SPARC-V9
assembler for the convenience of assembly language programmers.

Note that synthetic instructions should not be confused with “pseudo-ops,” which typi-

cally provide information to the assembler but do not generate instructions. Synthetic
instructions always generate instructions; they provide more mnemonic syntax for stan-
dard SPARC-V9 instructions.

Table 46—Mapping Synthetic to SPARC-V9 Instructions

e

Synthetic instruction SPARC-V9 instruction(s) Comment
cmp regs;, reg_or_imm |subcc regsy, reg_or_imm%go compare
jmp address jmpl address%g0
call address jmpl address%o07
iprefetch label bn,a,pt %xcc, label instruction prefetch
tst regs1 orcc %90, reggy, %90 test
ret jmpl %i7+8, %g0 return from subroutine
retl jmpl %07+8, %90 return from leaf subroutine
restore restore %g0, %g0, %g0 trivial restore
save save %90, %90, %g0 trivial save
(Warning: trivial save
should only be used in kern
code)
set uw valug regy sethi %hi (value), regy (when ((value&3Fkg) = =0))
— or—
or %g0, valug regy (when Osvalue<4095)
—or—
sethi %hi (valug, regy; (otherwise)
or reg,q, %lo (value, regy Warning: do not useetuw in
the delay slot of a DCTI.
set value regy synonym forsetuw
set sw valug regy sethi %hi (value), regy (when (value> = 0) and
((value & 3FRg) = =0))
—or—
or %g0, value regy (when -409&value<4095)
— or—
sethi %hi (value), regyq (otherwise, if (value < 0) and
((value & 3FRg) = =0))
sra regyq, %90, regq
—or—
sethi %hi (valug, regy; (otherwise, if value> = 0)
or regq, %lo (value), regy
— or—
sethi %hi (valug), regy; (otherwise, if value<0)
or regy, %lo (value, regy
sra regq, %90, regy Warning: do not useetsw in
the delay slot of a CTI.
setx valug reg, regq sethi %uhi(value), reg create 64-bit constant
or reg, %oulo(value, reg (“reg” is used as a temporary
slix reg,32, reg register)

300

G Suggested Assembly Language Syntax

Table 46—Mapping Synthetic to SPARC-V9 Instructions Continued

Synthetic instruction

sethi
or
or

SPARC-V9 instruction(s)
%hi(valug, regy

regq, reg, regq
regq, %lo(valug), regy

Comment

Note:set x optimizations are
possible but not enumer-
ated here. The worst-case i
shown.Warning: do not use
set x in the delay slot of a
CTI.

G.3 Synthetic Instructions

301

Table 46—Mapping Synthetic to SPARC-V9 Instructions Continued

Synthetic instruction

SPARC-V9 instruction(s)

Comment

signx reGs1, regyq sra regsy, %90, regy sign-extend 32-bit value to

sighx regy sra regry, %90, regy 64 bits

not regs1, regq xnor regsy, %90, regyq one’s complement

not regyq xnor regyq, %90, regy one’'s complement

neg regso regyq sub %90, reggo, regy two’s complement

neg regq sub %090, regy, regyq two’s complement

cas [regsi], regss regq |casa [regs1]#ASI_P, regsy regq |compare and swap

casl [regsi], regss regq |casa [regs]#ASI_P_L, regsy regq|compare and swap, little-endig

casx [regsi, regso regq |casxa [regs]#ASI_P, rege, regq |compare and swap extended

casxl [regsi, regso regq |casxa [regs]#ASI_P_L, regsy regq|compare and swap extended,
little-endian

inc ey add regq, 1, regyq increment by 1

inc constl3 regy add reg,y, Constl3 regy increment by const13

inccc regyq addcc regq, 1, regy incr by 1; seticc & xcc

inccc constl3 regy addcc regy, Constl3 regy incr by constl13; seticc & xcc

dec regyq sub regq, 1, regyq decrement by 1

dec constl3 regy sub regy, Constl3 regy decrement by const13

deccc €y subcc regq, 1, regyq decr by 1; set icc & xcc

deccc constl3 regy subcc reg,y, Constl3 regy decr by const13; set icc & xcc

btst reg_or_imm regs; |andcc regsy, reg_or_imm%g0 bit test

bset reg_or_imm regq |Of regy, reg_or_imm regy bit set

belr reg_or_imm regq |andn regg, reg_or_imm regy bit clear

btog reg_or_imm regq |Xor regy, reg_or_imm regy bit toggle

clr €y or %90, %g0, regyq clear (zero) register

clrb [addres$ stb %40, [addres} clear byte

clrh [addres$ sth %g0, [addres$ clear halfword

clr [addres$ stw %g0, [addres$ clear word

clrx [addres$ stx %g0, [addres$ clear extended word

clruw regs1, reGyq srl regs1, %90, regy copy and clear upper word

clruw €y srl regq, %90, regy clear upper word

mov reg_or_imm regy |Or %g0, reg_or_imm regy

mov %y, regq rd %y, regyq

mov %asrn, regq rd %asr n, regy

mov reg_or_imm %y wr %g0, reg_or_imm %y

mov reg_or_imm%asr n |wr %4g0, reg_or_imm%asr n

5

302 G Suggested Assembly Language Syntax

This appendix is informative only.

It is not part of the SPARC-V9 specification.

H Software Considerations

This appendix describes how software can use the SPARC-V9 architecture effectively.
Examples do not necessarily conform to any specific Application Binary Interface (ABI).

H.1 Nonprivileged Software

This subsection describes software conventions that have proven or may prove useful,
assumptions that compilers may make about the resources available, and how compilers
can use those resources. It does not discuss how supervisor software (an operating system)
may use the architecture. Although a set of software conventions is described, software is
free to use other conventions more appropriate for specific applications.

The following are the primary goals for many of the software conventions described in this
subsection:

— Minimizing average procedure-call overhead
— Minimizing latency due to branches

— Minimizing latency due to memory access

H.1.1 Registers

Register usage is a critical resource allocation issue for compilers. The SPARC-V9 archi-
tecture provides windowed integer registarg out, local), global integer registers, and
floating-point registers.

H.1.1.1 Inand Out Registers

Thein andoutregisters are used primarily for passing parameters to and receiving results
from subroutines, and for keeping track of the memory stack. When a procedure is called
and executes a SAVE instruction, the calletiss become the callediss.

One of a procedure’sut registers %06) is used as its stack pointé&sp. It points to an
area in which the system can st®@16..%r31 (%I0 ..%I7 and%i0 ..%i7) when the
register file overflows (spill trap), and is used to address most values located on the stack.

303

304 H Software Considerations

A trap can occur at any tinffewhich may precipitate a subsequent spill trap. During this
spill trap, the contents of the user’s register window at the time of the original trap are
spilled to the memory to which i#$sp points.

A procedure may store temporary values inatd registers (excepsp) with the under-
standing that those values are volatile across procedure %sfscannot be used for tem-
porary values for the reasons described in H.1.1.3, “Register Windows and %sp.”

Up to six paramete?smay be passed by placing themont registers%00..%05 addi-

tional parameters are passed in the memory stack. The stack pointer is implicitly passed in
%06 and a CALL instruction places its own addres9407.°2 Floating-point parameters

may also be passed in floating-point registers.

After a callee is entered and its SAVE instruction has been executed, the calieeg)is-
ters are accessible as the call@e'egisters.

The caller's stack pointetosp (%06 automatically becomes the current procedure’s
frame pointefofp (%i6) when the SAVE instruction is executed.

The callee finds its first six integer parameter&i® ..%i5, and the remainder (if any) on
the stack.

A function returns a scalar integer value by writing it intoiits (which are the caller’s
outs), starting with%i0. A scalar floating-point value is returned in the floating-point reg-
isters, starting witl§of0.

A procedure’s return address, normally the address of the instruction just after the CALL's
delay-slot instruction, is @i7+8 .4

H.1.1.2 Local Registers

The locals are used for automativariables and for most temporary values. For access
efficiency, a compiler may also copy parameters (that is, those past the sixth) from the
memory stack into thiecals and use them from there.

See H.1.4, “Register Allocation within a Window,” for methods of allocating more or
fewer than eight registers for local values.

1. For example, due to an error in executing an instruction (for exampigena address _not_aligned
trap), or due to any type of external interrupt.

2. Six is more than adequate, since the overwhelming majority of procedures in system code take fewer
than six parameters. According to studies cited by Weicker (Weicker, R. P., “Dhrystone: A Synthetic
Systems Programming BenchmarlGACM 27:10, October 1984), at least 97% (measured statically)
take fewer than six parameters. The average number of parameters did not exceed 2.1, measured either
statically or dynamically, in any of these studies.

3. Ifa JMPL instruction is used in place of a CALL, it should place its addréseiifior consistency.

For convenience, SPARC-V9 assemblers may provideta ™ (return) synthetic instruction that gener-
ates a jmpl %i7+8 , %g0 hardware instruction. See G.3, “Synthetic Instructions.”

5. Inthe C language, an automatic variable is a local variable whose lifetime is no longer than that of its
containing procedure.

H.1 Nonprivileged Software 305

H.1.1.3 Register Windows and %sp

Some caveats about the useXe$p and the SAVE and RESTORE instructions are appro-
priate. If the operating system and user code use register windows, it is essential that

— %spalwayscontains a correct value, so that when (and if) a register window spill/
fill trap occurs, the register window can be correctly stored to or reloaded from
memory®

— Nonprivileged code uses SAVE and RESTORE instructions carefully. In particular,
“walking” the call chain through the register windows using RESTORES, expect-
ing to be able to return to where one started using SAVEs, does not work as one
might suppose. Since user code cannot disable traps, a trap (e.g., an interrupt)
could write over the contents of a user register window that has “temporarily” been
RESTOREd. The safe method is to flush the register windows to user memory
(the stack) by using the FLUSHW instruction. Then, user code can safely “walk”
the call chain through user memory, instead of through the register windows.

To avoid such problems, consider all data memory at addresses just le$é6gpan be
volatile, and the contents of all register windows “below” the current one to be volatile.

H.1.1.4 Global Registers

Unlike theins, locals, andouts, theglobals are not part of any register window. Tgl®-

bals are a set of eight registers with global scope, like the register sets of more traditional
processor architectures. An ABI may define conventions thaglbleals (except%g0

must obey. For example, if the convention assumesgludnialsare volatile across proce-
dure calls, either the caller or the callee must take responsibility for saving and restoring
their contents.

Global registefogOhas a hardwired value of zero; it always reads as zero, and writes to it
have no program-visible effect.

Typically, theglobalregisters other tha#hgOare used for temporaries, global variables, or
global pointers — either user variables, or values maintained as part of the program’s exe-
cution environment. For example, one could gabals in the execution environment by
establishing a convention that global scalars are addressed via offsets from a global base

6. Typically, the SAVE instruction is used to generate a 8é8sp value while shifting to a new register
window, all in one atomic operation. When SAVE is used this way, synchronization of the two opera-
tions should not be a problem.

7. Another reason this might fail is that user code has no way to determine how many register windows are
implemented by the hardware.

306 H Software Considerations

register. In the most general case, memory accessed at an arbitrary address requires six
instructions; for example,

sethi %uhi(address), tmp

or tmp, %ulo(address), tmp
slix tmp, 32, tmp

sethi %hi(address), reg

or reg , Yolo(address), reg
Id [reg +tmp], reg

Use of a global base register for frequently accessed global values would provide faster
(single-instruction) access té*bytes of those values; for example,

Id [%g n+offset], reg

Additional global registers could be used to provide single-instruction access to corre-
spondingly more global values.

H.1.1.5 Floating-Point Registers

There are sixteen quad-precision floating-point registers. The registers can also be
accessed as thirty-two double-precision registers. In addition, the first eight quad registers
can also be accessed as thirty-two single-precision registers. Floating-point registers are
accessed with different instructions than the integer registers; their contents can be moved
among themselves, and to or from memory. See 5.1.4, “Floating-Point Registers,” for
more information about floating-point register aliasing.

Like the global registers, the floating-point registers must be managed by software. Com-
pilers use the floating-point registers for user variables and compiler temporaries, pass
floating-point parameters, and return floating-point results in them.

H.1.1.6 The Memory Stack

A stack is maintained to hold automatic variables, temporary variables, and return infor-
mation for each invocation of a procedure. When a procedure is calidcl frame is
allocated; it is released when the procedure returns. The use of a stack for this purpose
allows simple and efficient implementation of recursive procedures.

Under certain conditions, optimization can allow a leaf procedure to use its caller’s stack
frame instead of one of its own. In that case, the procedure allocates no space of its own
for a stack frame. See H.1.2, “Leaf-Procedure Optimization,” for more information.

The stack pointe?sp must always maintain the alignment required by the operating sys-
tem’'s ABI. This is at least doubleword alignment, possibly with a constant offset to
increase stack addressability using constant offset addressing.

H.1.2 Leaf-Procedure Optimization

A leaf procedureis one that is a “leaf” in the program’s call graph; that is, one that does
not call (e.g., via CALL or JMPL) any other procedures.

H.1 Nonprivileged Software 307

Each procedure, including leaf procedures, normally uses a SAVE instruction to allocate a
stack frame and obtain a register window for itself, and a corresponding RESTORE
instruction to deallocate it. The time costs associated with this are

— Possible generation of register-window spillffill traps at runtime. This only hap-
pens occasionall§/,but when either a spill or fill trap does occur, it costs several
machine cycles to process.

— The cycles expended by the SAVE and RESTORE instructions themselves.

There are also space costs associated with this convention, the cumulative cache effects of
which may be nonnegligible. The space costs include

— The space occupied on the stack by the procedure’s stack frame
— The two words occupied by the SAVE and RESTORE instructions
Of the above costs, the trap-processing cycles typically are the most significant.

Some leaf procedures can be made to opewvéteout their own register window or stack
frame, using their caller’s instead. This can be done when the candidate leaf procedure
meets all of the following conditioris:

— It contains no references %sp, except in its SAVE instruction.
— It contains no references %fp.

— It refers to (or can be made to refer to) no more than eight of the thirty-two integer
registers, including§eo7 (the return address).

If a procedure conforms to the above conditions, it can be made to operate using its
caller's stack frame and registers, an optimization that saves both time and space. This
optimization is calledeaf procedure optimization. The optimized procedure may safely

use only registers that its caller already assumes to be volatile across a procedure call.

The optimization can be performed at the assembly language level using the following
steps:

(1) Change all references to registers in the procedure to registers that the caller
assumes volatile across the call.

(a) Leave references #6007 unchanged.
(b) Leave any references%6g0..%g7 unchanged.

(c) Changé%i0 ..%i5 to %00..%05 respectively. If ann register is changed to an
out register that was already referenced in the original unoptimized version of
the procedure, all original references to tloat register must be changed to
refer to an unuseadut or global register.

8. The frequency of overflow and underflow traps depends on the application and on the number of register
windows fiwiNDOwS) implemented in hardware.

9. Although slightly less restrictive conditions could be used, the optimization would become more com-
plex to perform and the incremental gain would usually be small.

308 H Software Considerations

(d) Change references to edoleal register into references to any unused register
that is assumed to be volatile across a procedure call.

(2) Delete the SAVE instruction. If it was in a delay slot, replace it with a NOP
instruction. If its destination register was g0 or %sp, convert the SAVE into
the corresponding ADD instruction instead of deleting it.

(3) If the RESTORE’s implicit addition operation is used for a productive purpose
(such as setting the procedure’s return value), convert the RESTORE to the corre-
sponding ADD instruction. Otherwise, the RESTORE is only used for stack and
register-window deallocation; replace it with a NOP instruction (it is probably in
the delay slot of the RET, and so cannot be deleted).

(4) Change the RET (return) synthetic instruction to RETL (return-from-leaf-proce-
dure synthetic instruction).

(5) Perform any optimizations newly made possible, such as combining instructions or
filling the delay slot of the RETL (or the delay slot occupied by the SAVE) with a
productive instruction.

After the above changes, there should be no SAVE or RESTORE instructions, and no ref-
erences tan or local registers in the procedure body. All original referencesscare now

to outs. All other register references are to registers that are assumed to be volatile across a
procedure call.

Costs of optimizing leaf procedures in this way include

— Additional intelligence in a peephole optimizer to recognize and optimize candi-
date leaf procedures

— Additional intelligence in debuggers to properly report the call chain and the stack
traceback for optimized leaf procedut®s

H.1.3 Example Code for a Procedure Call

This subsection illustrates common parameter-passing conventions and gives a simple
example of leaf-procedure optimization.

The code fragment in example 1 shows a simple procedure call with a value returned, and
the procedure itself.

Sincesum3 does not call any other procedures (i.e., it is a leaf procedure), it can be opti-
mized to become:

sum3:
add %00, %01, %00
retl ! (must use RETL, not RET,
add %00, %02, %00 I to return from leaf procedure)

10. A debugger can recognize an optimized leaf procedure by scanning it, noting the absence of a SAVE
instruction. Compilers often constrain the SAVE, if present, to appear within the first few instructions of
a procedure; in such a case, only those instruction positions need be examined.

H.1 Nonprivileged Software 309

| CALLER:
! inti; [* compiler assigns "i" to register %I7 */
! i = sum3(1,2,3)
mov 1, %00 I first arg to sum3is 1
mov 2, %01 I second arg to sum3 is 2
call sum3 ! the call to sum3
mov 3, %02 ! last parameter to sum3 in delay slot
mov %00, %I7 ! copy return value to %I7 (variable "i")

#define SA(X) ((X)+15)&(~0x1F)) /* rounds "X" up to extended word boundary
*

#define MINFRAME ((16+1+6)*8) /* minimum size stack frame, in bytes;
* 16 extended words for saving the
current
* register window,
* 1 extended word for “hidden parameter”,
* and 6 extended words in which a callee
* can store its arguments.
*/
I CALLEE:
! intsum3(a, b, c)
! inta, b, c; [* args received in %i0, %il, and %i2 */
! {
! return a+b+c;
! }
suma3:
save %sp,-SA(MINFRAME),%sp! set up new %sp; alloc min. stack frame
add %i0, %il, %lI7 I compute sum in local %I7
add %I7, %i2, %I7 I (or %i0 could have been used directly)
ret I return from sum3, and...
restore %I7, 0, %00 I move result into output reg & restore

Example 1—Simple Procedure Call with Value Returned

H.1.4 Register Allocation within a Window

The usual SPARC-V9 software convention is to allocate eight regis¥is .(%I7) for

local values. A compiler could allocate more registers for local values at the expense of
having fewerouts andins available for argument passing. For example, if instead of
assuming that the boundary between local values and input arguments is between r[23]
and r[24] Qol7 and %i0), software could, by convention, assume that the boundary is
between r[25] and r[26]%i1 and%:i2). This would provide ten registers for local values
and sixin andout registers. This is shown in table 47.

310 H Software Considerations

Table 47—Register Allocation within a Window

Standard 10 local Arbitrary
register register register
model model model
Registers for local values 8 10 n
In / outregisters
Reserved fobbsp/ %fp 1 1 1
Reserved for return address 1 1 1
Available for argument passing 6 4 ih
Totalins/ outs 8 6 16-n

H.1.5 Other Register-Window-Usage Models

So far, this appendix has described SPARC-V9 software conventions that are appropriate
for use in a general-purpose multitasking computer system. However, SPARC-V9 is used
in many other applications, notably embedded and/or real-time systems. In such applica-
tions, other schemes for allocation of SPARC-V9's register windows might be more nearly
optimal than the one described above.

One possibility is to avoid using the normal register-window mechanism by not using
SAVE and RESTORE instructions. Software would see 32 general-purpose registers
instead of SPARC-V9’s usual windowed register file. In this mode, SPARC-V9 would
operate like processors with more traditional (flat) register architectures. Procedure call
times would be more determinate (due to lack of spill/fill traps), but for most types of soft-
ware, average procedure call time would significantly increase, due to increased memory
traffic for parameter passing and saving/restoring local variables.

Effective use of this software convention would require compilers to generate different
code (direct register spills/fills to memory and no SAVE/RESTORE instructions) than for
the software conventions described above.

It would be awkward, at best, to attempt to mix (link) code that uses the SAVE/RESTORE
convention with code that does not use it. If both conventisese used in the same sys-
tem, two versions of each library would be required.

It would be possible to run user code with one register-usage convention and supervisor
code with another. With sufficient intelligence in supervisor software, user processes with
different register conventions could be run simultaneodsly.

H.1.6 Self-Modifying Code

If a program includes self-modifying code, it must issue a FLUSH instruction for each
modified doubleword of instructions (or a call to supervisor software having an equivalent
effect).

11. Although technically possible, this is not to suggest that there would be significant utility in mixing user
processes with differing register-usage conventions.

H.1 Nonprivileged Software 311

Note that self-modifying code intended to be portaflest use FLUSH instruction(s) (or
a call to supervisor software having equivalent effect) after storing into the instruction
stream.

All SPARC-V9 instruction accesses are big-endian. If a program is running in little-endian
mode and wishes to modify instructions, it must do one of the following:

— Use an explicit big-endian ASI to write the modified instruction to memory, or

— Reverse the byte ordering shown in the instruction formats in Appendix A,
“Instruction Definitions,” before doing a little-endian store, since the stored data
will be reordered before the bytes are written to memory.

H.1.7 Thread Management

SPARC-V9 provides support for the efficient management of user-level threads. The cost
of thread switching can be reduced by using the following features:

User Management of FPU:
The FEF bit in the FPRS register allows nonprivileged code to manage the FPU.
This is in addition to the management done by the supervisor code via the PEF bit
in the PSTATE register. A thread-management library can implement efficient
switching of the FPU among threads by manipulating the FEF bit in the FPRS reg-
ister and by providing a user trap handler (with support from the supervisor soft-
ware) for thefp_disabled exception. See the description of User Traps in H.2.4,
“User Trap Handlers.

FLUSHW Instruction :
The FLUSHW instruction is an efficient way for a thread library to flush the regis-
ter windows during a thread switch. The instruction executes as a NOP if there are
no windows to flush.

H.1.8 Minimizing Branch Latency

The SPARC-V9 architecture contains several instructions that can be used to minimize
branch latency. These are described below.

Conditional Moves
The conditional move instructions for both integer and floating-point registers can
be used to eliminate branches from the code generated for simple expressions and/
or assignments. The following example illustrates this.

The C code segment

double X,Y;
int i;

i = (x>y)?1:2;

312 H Software Considerations

can be compiled to use a conditional move as follows:

fcmp %fccl, X, y I x and y are double regs
mov 1, | liisint; assume x >y
movfle %fccl, 2, i I fix i if wrong

Branch or Move Based on Register Contents
The use of register contents as conditions for branch and move instructions allows
any integer register (other tha@) to hold a boolean value or the results of a com-
parison. This allows conditions to be used more efficiently in nested cases. It
allows the generation of a condition to be moved further from its use, thereby min-
imizing latency. In addition, it can eliminate the need for additional arithmetic
instructions to set the condition codes. This is illustrated in the following example.

The test for finding the maximum of an array of integers,

if (A[i] > max)
max = A[i];

can be compiled as follows, allowing the condition for the loop to be set before the
sequence and checked after it:

ldx [addr_of A], Ai
sub Ai, max, tmp
movrgz tmp, Ai, max

H.1.9 Prefetch

The SPARC-V9 architecture includes a prefetch instruction intended to help hide the
latency of accessing memo's.

As a general rule, given a loop of the following form (using C for assembly language, and
assuming a cache line size of 64 bytes and that A and B are arrays of 8-byte values)
for (i = 0;i<N;i++){
load A[i]
load BJ[i]

}

which takes C cycles per iteration (assuming all loads hit in cache) and given L cycles of
latency to memory, prefetch instructions may be inserted for data that will be needed
ceiling(L/C") iterations in the future, where C' is number of cycles per iteration of the
modified loop. Thus, the loop would be transformed into

12. Two papers describing the use of prefetch instructions are Callahan, D., K. Kennedy, A. Porterfield,
“Software Prefetching,Proceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating SysteApsil 1991, pp. 40-52, and Mowry, T., M. Lam,
and A. Gupta, “Design and Evaluation of a Compiler Algorithm for PrefetchiRgiceedings of the
Fifth International Conference on Architectural Support for Programming Languages and Operating
SystemsOctober 1992, pp. 62-73.

H.1 Nonprivileged Software 313

K = ceiling(L/C";
for(i = 0;i<N;i++){
load Ali]
load BI[i]
prefetch Afi+K]
prefetch B[i+K]

}

This ensures that the loads will find their data in the cache, and will thus complete more
quickly. The first K iterations will not get any benefit from prefetching, so if the number of
iterations is small (see below), then prefetching will not help.

Note that in cases of contiguous access (like this one), many of the prefetch instructions
will in fact be unnecessary and may slow the program down. To avoid this, note that the
prefetch instruction always obtains at least 64 (cache-line-aligned) bytes.
/* Round up access to next cache line. */
K' = (ceiling(L/C") +7) & ~7;
for(i = 0;i<N;i++){
load Ali]
load BJi]
if (((in)(A+)) &63) = = 0){
prefetch A[i+K']
prefetch B[i+K']

}
or (unrolled eight times, assuming A and B are arrays of 8-byte values)
/* Be sure that we access the next cache line. */
K" = ceiling(L/C") + 7;
for(i = 0;i<N;i++){
load A[i]
load BJi]
prefetch Afi+K"]
prefetch B[i+K"]

load A[i+1]
load BJi+2]
... (no prefetching)

load A[i+7]
load BJi+7]

314 H Software Considerations

In the first case, the prefetching is performed exactly when needed, and thus the distance
need not be adjusted. However, the prefetching may not start on the first iteration, result-
ing in as many as K' + 7 iterations without prefetching.

In the second case, the prefetching occurs somewhere within a cache line, and thus, it is
not known exactly how long it will be until the next cache line is needed. However, by
prefetching seven further ahead, we ensure that the next cache line will be prefetched soon
enough. In the worst case, as many as XK(+ 7) iterations will execute without any
benefit from prefetching.

Table 48 illustrates the cost tradeoffs between no prefetching, naive prefetching, and smart
prefetching (the second choice) for a small loop (two cycles) with varying uncovered
latencies to memory. Some of the latency may be overlapped with execution of surround-
ing instructions; that which is not is uncovered.

Table 48—Prefetch Cost Tradeoffs

Limit cycles/iteration Smart startup costs
No pf Naive Smart Worst Worst
C c L K K" |C+L/8 c (7C+ChH/8 Misses Breakeven
2 4 8 4 11 3 4 2.25 2 N=21
2 4 16 8 15 4 4 2.25 2 N=18
2 4 32 16 23 6 4 2.25 3 N =26

Here, we treat the arrays accessed as if one were not in the cache. Thus, every eight itera-
tions, a cache line must be fetched from memory in the no-prefetch case; and thus, the
amortized cost of an iteration is C + L/8. The cost estimate for the smart case ignores any
benefits from unrolling, since it is reasonable to expect that the loop would be unrolled or
pipelined in this fashion, even if prefetching were not used. The startup costs assume an
alignment within the cache that maximizes the initial misses. The break-even cost was
chosen by solving the following equation for N.

N O(C+L/8)=WMOL+N O(7C + C)/8 {e.g., BN = 16 + 2.25) N = 21}
Of course, this is a simplified model.

Another possibility to consider is the worst-case cost of prefetching. If, in the example
provided, everything accessed is always cached, then the smart-prefetching loop takes
12.5% longer. For each memory latency, there is a break-even point (in terms of how often
one of the array operands is cached) at which the prefetching loop begins to run faster.
Table 49 illustrates this.

Table 49—Cache Break-Even Points

Break-even Break-even
% cached loop cache miss
L C-cached C-missed C-smart operands rate
8 2 3 2.25 75% 1.56%
16 2 4 2.25 88% 0.75%
32 2 6 2.25 94% 0.375%
64 2 10 2.25 97% 0.188%

H.1 Nonprivileged Software 315

Note that one uncached operand corresponds to one load out of sixteen missing the cache;
the operand miss rate is sixteen times higher than the load miss rate. Note that this is the
miss rate for this loop alone; extrapolation from whole-program miss rates is not advised.

Binaries that run efficiently across different SPARC-V9 implementations can be created
for cases like this (where memory accesses are regular, though not necessarily contiguous)
by parameterizing the prefetch distance by machine type. In privileged code the machine
type is available in the VER register; nonprivileged code should be able to obtain this from
the operating system or ABI. Based on information about known machines and estimated
loop execution times, a compiler could precalculate values for K" (assuming smart
prefetching) and store them in a table. At execution time, the proper value for K" would be
fetched from the table before entering the loop.

For regular but noncontiguous accesses, a prefetch would be issued for every load. If
cache blocking is used, the prefetching strategy must be adjusted accordingly, since there
is no point in prefetching data that is expected to be in the cache already.

The prefetch variant should be chosen based on what is known about the local and global
use of the data prefetched. If the data is not being written locally, then variant O (several
reads) should be used. If it is being written (and possibly also read), then variant 2 (several
writes) should be used. If, in addition, it is known that this is likely to be the last use of the
data for some time (for example, if the loop iteration count is one million and dependence
analysis reveals no reuse of data), then it is appropriate to use either variant 1 (one read) or
3 (one write). If reuse of data is expected to occur soon, then use of variants 1 or 3 is not
appropriate, because of the risk of increased bus and memory traffic on a multiprocessor.

If the hardware does not implement all variants, it is expected to provide a sensible over-
loading of the unimplemented variants. Thus, correct use of a specific variant need not be
tied to a particular SPARC-V9 implementation or multi/uniprocessor configuration.

H.1.10 Nonfaulting Load

The SPARC-V9 architecture includes a way to specify load instructions that do not gener-
ate visible faults, so that compilers can have more freedom in scheduling instructions.
Note that these are not speculative loads, which may fault if their results are later used;
these are normal load instructions, but tagged to indicate to the kernel and/or hardware
that a fault should not be delivered to the code executing the instruction.

Five important rules govern the use of nonfaulting loads:

(1) Volatile memory references in the source language should not use nonfaulting load
instructions.

(2) Code compiled for debugging should not use nonfaulting loads, because they
remove the ability to detect common errors.

(3) If nonfaulting loads are used, page zero should be a page of zero values, mapped
read-only. Compilers that routinely use negative offsets to register pointers should
map page “—1" similarly, if the operating software permits it.

316 H Software Considerations

(4) Any use of nonfaulting loads in privileged code must be aware of how they are
treated by the host SPARC-V9 implementation.

(5) Nonfaulting loads from unaligned addresses may be substantially more expensive
than nonfaulting loads from other addresses.

Nonfaulting loads can be used to solve three scheduling problems.

— On super-scalar machines, it is often desirable to obtain the right mix of instruc-
tions to avoid conflicts for any given execution unit. A nonfaulting load can be
moved (backwards) past a basic block boundary to even out the instruction mix.

— On pipelined machines, there may be latency between loads and uses. A nonfault-
ing load can be moved past a block boundary to place more instructions between a
load into a register and the next use of that register.

— Software pipelining improves the scheduling of loops, but if a loop iteration begins
with a load instruction and contains an early exit, it may not be eligible for pipelin-
ing. If the load is replaced with a nonfaulting load, then the loop can be pipelined.

In the branch-laden code shown in example 2, nonfaulting loads could be used to separate
loads from uses. The result also has a somewhat better mix of instructions and is some-
what pipelined. The basic blocks are separated.
Source Code

while (x! = 0&& x->key! = goal) X = X->next;

With Normal Loads:

entry:
brnz,a x,loop !
ldx [x],t1 I (pre)loadl (key)
loop:
cmp t1,goal lusel
bpe %xcc,out
nop I no filling from loop.
ldx [x+8],x !'load2 (next)
brnz,a x,loop luse2
ldx x],t1 I'loadl

out: ...

With Nonfaulting Loads:

entry:
mov x,t2
mov #ASI_PNF, %asi
ldxa [t2]%asi,t1 I (pre)loadl (nf-load for key)
loop:
mov t2,x ! begin loop body
brz,pn t2,out
ldxa [t2+8]%asi,t2 !load2 (nf-load for next)
cmp t1,goal lusel
bpne %xcc,loop
ldxa [t2],%asi,t1 I use2, loadl ! nf-load for x

out: ...
Example 2—Branch-Laden Code with Nonfaulting Loads

H.2 Supervisor Software 317

In the loop shown in example 3, nonfaulting loads allow pipelining. This loop might be

Source Code
d_ne_index (double * d1, double * d2) {

inti = 0;
while(d1[i] = = d2[i]) i++;
return i;

}

With Normal Loads:

mov 0.t
mov 0,i

loop:
lddf [d1+t],al
lddf [d2+t],a2 ! load
add t,8,t
fcmpd al,a2 luse
fbe,a loop I fcc use
add i,1,i

With Nonfaulting Loads:

lddf [d1],a1
lddf [d2],a2
mov 8.t
mov 0,i

loop:
fcmpd al,a2 l use, fcc def
lddfa [d1+t],%asi,al
lddfa [d2+t],%asi,a2 ! load
add t,8,t
fbe,a loop I fcc use
add i,1,i

Example 3—Loop with Nonfaulting Loads

improved further using unrolling, prefetching, and multiple FCCs, but that is beyond the
scope of this discussion.

H.2 Supervisor Software

This subsection discusses how supervisor software can use the SPARC-V9 privileged
architecture. It is intended to illustrate how the architecture can be used in an efficient
manner. An implementation may choose to utilize different strategies based on its require-
ments and implementation-specific aspects of the architecture.

H.2.1 Trap Handling

The SPARC-V9 privileged architecture provides support for efficient trap handling, espe-
cially for window traps. The following features of the SPARC-V9 privileged architecture
can be used to write efficient trap handlers:

Multiple Trap Levels:
The trap handlers for trap levels less than MAXTL — 1 can be written to ignore
exceptional conditions and execute the common case efficiently (without checks
and branches). For example, the fill/spill handlers can access pageable memory

318 H Software Considerations

without first checking if it is resident. If the memory is not resident, the access will
cause a trap that will be handled at the next trap level.

Vectoring of Fill/Spill Traps:

Supervisor software can set up the vectoring of fill/spill traps prior to executing
code that uses register windows and may cause spill/fill traps. This feature can be
used to support SPARC-V8 and SPARC-V7 binaries. These binaries create stack
frames with save areas for 32-bit registers. SPARC-V9 binaries create stack frames
with save areas for 64-bit registers. By setting up the spill/fill trap vector based on
the type of binary being executed, the trap handlers can avoid checking and
branching to use the appropriate load/store instructions.

Saved Trap State
Trap handlers need not save (restore) processor state that is automatically saved
(restored) on a trap (return from trap). For example, the fill/spill trap handlers can
load ASI_AS IF_USER_PRIMARY{ LITTLE} into the ASI register in order to
access the user’s address space without the overhead of having to save and restore
the ASI register.

SAVED and RESTORED Instructions:
The SAVED (RESTORED) instruction provides an efficient way to update the
state of the register windows after successfully spilling (filling) a register window.
They implement a default policy of spilling (filling) one register window at a time.
If desired, the supervisor software can implement a different policy by directly
updating the state registers.

Alternate Globals:
The alternate global registers can be used to avoid saving and restoring the normal
global registers. They can be used like the local registers of the trap window in
SPARC-VS8.

Large Trap Vectors for Spill/Fill :
The definition of the spill and fill trap vectors with reserved space between each
pair of vectors allows spill and fill trap handlers to be up to thirty-two instructions
long, thus avoiding a branch in the handler.

H.2.2 Example Code for Spill Handler

The code in example 4 shows a spill handler for a SPARC-V9 user binary. The handler is
located at the vector for trap typpill_0_normal (080,¢). It is assumed that supervisor soft-
ware has set the WSTATE register to O before executing the user binary. The handler is
invoked when user code executes a SAVE instruction that results in a window overflow.

H.2.3 Client-Server Model

SPARC-V9 provides mechanisms to support client-server computing efficiently. A call
from a client to a server (where the client and server have separate address spaces) can be
implemented efficiently using a software trap that switches the address space. This is often
referred to as aross-domain call A system call in most operating systems can be viewed

H.2 Supervisor Software 319

T_NORMAL_SPILL_O:
I1Set ASI to access user addr space

wWr #ASI_AIUP, %asi

stxa %I0, [Yosp+(8* 0)]%asi IStore window in memory stack
stxa %I1, [Yosp+(8* 1)]%asi

stxa %I2, [Yosp+(8* 2)]%asi

stxa %I3, [Yosp+(8* 3)]%asi

stxa %4, [Yosp+(8* 4)]|%asi

stxa %I5, [Yosp+(8* 5)]%asi

stxa %16, [Yosp+(8* 6)]%asi

stxa %I7, [Yosp+(8* 7)]%asi

stxa %i0, [Yosp+(8* 8)]%asi

stxa %il, [Yosp+(8* 9)]%asi

stxa %i2, [Yosp+(8*10)]%asi

stxa %i3, [Yosp+(8*11)]%asi

stxa %i4, [Yosp+(8*12)]%asi

stxa %i5, [Ybsp+(8*13)]%asi

stxa %i6, [Yosp+(8*14)]%asi

stxa %i7, [Yosp+(8*15)]%asi

saved ! Update state

retry ! Retry trapped instruction

! Restores old %asi

Example 4—Spill Handler

as a special case of a cross-domain call. The following features are useful in implementing
a cross-domain call:

Splitting the Register Windows

The register windows can be shared efficiently between multiple address spaces by using
the OTHERWIN register and providing additional trap handlers to handle spill/fill traps
for the other (not the current) address spaces. On a cross-domain call (a software trap), the
supervisor can set the OTHERWIN register to the number of register windows used by the
client (equal to CANRESTORE) and CANRESTORE to zero. At the same time the
WSTATE bit vectors can be set to vector the spill/fill traps appropriately for each address
space.

The sequence in example 5 shows a cross-domain call and return. The example assumes
the simple case, where only a single client-server pair can occupy the register windows.
More general schemes can be developed along the same lines.

ASI_SECONDARY{_LITTLE}

Supervisor software can use these unrestricted ASIs to support cross-address-space access
between clients and nonprivileged servers. For example, some services that are currently
provided as part of a large monolithic supervisor can be separated out as nonprivileged
servers (potentially occupying a separate address space). This is often referred to as the
microkernel approach.

H.2.4 User Trap Handlers

Supervisor software can provide efficient support for user (nonprivileged) trap handlers on
SPARC-V9. The RETURN instruction allows nonprivileged code to retry an instruction

320 H Software Considerations

cross_domain_call:
save I create a new register window for the server
! Switch to the execution environment for the server;
| Save trap state as necessary.

1 Set CWP for caller in TSTATE

rdpr %tstate, %gl

rdpr %cwp, %g2

belr TSTATE_CWP, %gl

wrpr %491, %g2, %tstate

rdpr %canrestore, %g1l

wrpr %490, 0, %canrestore

wrpr %g0, %g1, %otherwin

rdpr %wstate, %g1

sll %091, 3, %gl1 I Move WSTATE_NORMAL (client’s
I vector)to WSTATE_OTHER

or %gl, WSTATE_SERVER, %gl ! Set WSTATE_NORMAL to the
! vector for the server

wrpr %490, %g1l, %wstate

. I Load trap state for server

done | Execute server code

cross_domain_return:

rdpr %otherwin, %gl

wrpr %490, %g1, %canrestore

wrpr %g0, 0, %otherwin

rdpr %wstate, %g1

srl %91, 3, %gl

wrpr %40, %g1, %wstate I Reset WSTATE_NORMAL to

I client’s vector
! Restore saved trap state as necessary; this includes
! the return PC for the caller.
restore I Go back to the caller’s register window.

| Set CWP for caller in TSTATE

rdpr %tstate, %gl

rdpr %cwp, %g2

bclr TSTATE_CWP, %g1l
wrpr %491, %g2, %tstate
done I return to the caller

Example 5—Cross-Domain Call and Return

pointed to by the previous stack frame. This provides the semantics required for returning
from a user trap handler without any change in processor state. Supervisor software can
invoke the user trap handler by first creating a new register window (and stack frame) on
its behalf and passing the necessary arguments (including the PC and nPC for the trapped
instruction) in the local registers. The code in example 6 shows how a user trap handler
may be invoked and how it returns:

H.2 Supervisor Software 321

T_EXAMPLE_TRAP: I Supervisor trap handler for T_EXAMPLE_TRAP trap
save I Create a window for the user trap handler

1ISet CWP for new window in TSTATE

rdpr %tstate, %l6

rdpr %cwp, %I5

belr TSTATE_CWP, %I6

wrpr %I6, %I5, %tstate

rdpr %tpc,%I6 !Put PC for trapped instruction in local register
rdpr %tnpc,%I7 !'Put nPC for trapped instruction in local register

1Get the address of the user trap handler in %l5;
! for example, from a supervisor data structure.

wrpr %I5, %tnpc ! Put PC for user trap handler in %tnpc.
done ! Execute user trap handler.
USER_EXAMPLE_TRAP: IUser trap handler for T_EXAMPLE_TRAP trap

IExecute trap handler logic. Local registers
! can be used as scratch.

jmpl %I6 IReturn to retry the trapped instruction.
return %I7

Example 6—User Trap Handler

322 H Software Considerations

This appendix is informative only.

It is not part of the SPARC-V9 specification.

| Extending the SPARC-V9 Architecture

This appendix describes how extensions can be effectively added to the SPARC-V9 archi-
tecture. It describes how new instructions can be added through the use of read and write
ancillary state register (ASR) and implementation-dependent (IMPDEP1/IMPDEP2)
instructions.

— WARNING —
Programs that make use of SPARC-V9 architectural extension

may not be portable and likely will not conform to any current or
future SPARC-V9 binary standards.

%2}

.1 Addition of SPARC-V9 Extensions

There are two approved methods of adding extensions to an implementation of the
SPARC-V9 architecture. An implementor who wishes to define and implement a new
SPARC-V9 instruction should, if possible, use one of the following methods.

[.1.1 Read/Write Ancillary State Registers (ASRS)

The first method of adding instructions to SPARC-V9 is through the use of the implemen-
tation-dependent Write Ancillary State Register (WRASR) and Read Ancillary State Reg-
ister (RDASR) instructions operating on ASRs 16..31. Through a read/write instruction
pair, any instruction that requires &si, reg_or_immandrd field can be implemented. A
WRASR instruction can also perform an arbitrary operation on two register sources, or on
one register source and a signed immediate value, and place the result in an ASR. A subse-
guent RDASR instruction can read the result ASR and place its value in an integer destina-
tion register.

1.1.2 Implementation-Dependent and Reserved Opcodes

The meaning of “reserved” for SPARC-V9 opcodes differs from its meaning in SPARC-
V8. The SPARC-V9 definition of “reserved” allows implementations to use reserved

323

324 | Extending the SPARC-V9 Architecture

opcodes for implementation-specific purposes. While a hardware implementation that
uses reserved opcodes will be SPARC-V9-compliant, SPARC-V9 ABI-compliant pro-
grams cannot use these reserved opcodes and remain compliant. A SPARC-V9 platform
that implements instructions using reserved opcodes must provide software libraries that
provide the interface between SPARC-V9 ABI-compliant programs and these instructions.
Graphics libraries provide a good example of this. Hardware platforms have many diverse
implementations of graphics acceleration hardware, but graphics application programs are
insulated from this diversity through libraries.

There is no guarantee that a reserved opcode will not be used for additional instructions in
a future version of the SPARC architecture. Implementors who use reserved opcodes
should keep this in mind.

In some cases forward compatibility may not be an issue; for example, in an embedded
application, binary compatibility may not be an issue. These implementations can use any
reserved opcodes for extensions.

Even when forward compatibility is an issue, future SPARC revisions are likely to contain
few changes to opcode assignments, given that backward compatibility with previous ver-
sions must be maintained. It is recommended that implementations wishing to remain for-
ward-compatible use the new IMPDEP1 and IMPDEP2 reserved opcodes with
op3[5:0] =11 0119 and 11 0111

V8 Compatibility Note:
IMPDEP1 and IMPDEP2 replace the SPARC-V8 CPopl and CPop2 opcodes. SPARC-V9 includes
neither the SPARC-V8 coprocessor opcodes nor any other SPARC-V8 architectural support for
coprocessors. The coprocessor opcodes were eliminated because they have not been used in
SPARC-V7 and SPARC-V8, as witnessed by the lack of coprocessor implementations.

It is further recommended that SPARC International be notified of any use of IMPDEP1,
IMPDEPZ2, or other reserved opcodes. When and if future revisions to SPARC are contem-
plated, and if any SPARC-V9 implementations have made use of reserved opcodes,
SPARC International will make every effort not to use those opcodes. By going through
SPARC International, there can be feedback and coordination in the choice of opcodes
that maximizes the probability of forward compatibility. Given the historically small num-
ber of implementation-specific changes, coordinating through SPARC International
should be sufficient to ensure future compatibility.

This appendix is informative only.

It is not part of the SPARC-V9 specification.

J Programming With the Memory Models

This appendix describes how to program with the SPARC-V9 memory models. An intui-
tive description of the models is provided in Chapter 8, “Memory Models.” A complete
formal specification appears in Appendix D, “Formal Specification of the Memory Mod-
els.” In this subsection, general programming guidelines are given first, followed by spe-
cific examples showing how low-level synchronization can be implemented in TSO, PSO,
and RMO.

Note that code written for a weaker memory model will execute correctly in any of the
stronger memory models. Furthermore, the only possible difference between code written
for a weaker memory model and the corresponding code for a stronger memory model is
the presence of memory ordering instructions (MEMBARS) that are not needed for the
stronger memory model. Hence, transforming code from/to a stronger memory model to/
from a weaker memory model means adding/removing certain memory ordering instruc-
tions! The required memory ordering directives are monotonically ordered with respect to
the strength of the memory model, with the weakest memory model requiring the stron-
gest memory ordering instructions.

The code examples given below are written to run correctly using the RMO memory
model. The comments on the MEMBAR instructions indicate which ordering constraints
(if any) are required for the PSO and TSO memory models.

J.1 Memory Operations

Programs access memory via five types of operations, namely, load, store, LDSTUB,
SWAP, and compare-and-swap. Load copies a value from memory or an I/O location to a
register. Store copies a value from a register into memory or an |I/O location. LDSTUB,

SWAP, and compare-and-swap are atomic load-store instructions that store a value into

1. MEMBAR instructions specify seven independent ordering constraints; thus, there are cases where the
transition to a stronger memory model allows the use of a less restrictive MEMBAR instruction, but still
requires a MEMBAR instruction. To demonstrate this property, the code examples given in this subsec-
tion use multiple MEMBAR instructions if some of the ordering constraints are needed in some but not
all memory models. Multiple, adjacent MEMBAR instructions can always be replaced with a single
MEMBAR instruction byORIng the arguments.

325

326 J Programming With the Memory Models

memory or an I/O location and return the old value in a register. The value written by the
atomic instructions depends on the instruction. LDSTUB stores all ones in the accessed
byte, SWAP stores the supplied value, and compare-and-swap stores the supplied value
only if the old value equals the second supplied value.

Memory order and consistency are controlled by MEMBAR instructions. For example, a
MEMBAR #StoreStore (equivalent to a STBAR in SPARC-V8) ensures that all previ-

ous stores have been performed before subsequent stores and atomic load-stores are exe-
cuted by memory. This particular memory order is guaranteed implicitly in TSO, but PSO
and RMO require this instruction if the correctness of a program depends on the order in
which two store instructions can be observed by another prodessor.

FLUSH is not a memory operation, but it is relevant here in the context of synchronizing
stores with instruction execution. When a processor modifies an instruction at aféiditess
does a store té followed by a FLUSHA. The FLUSH ensures that the change made by
the store will become visible to the instruction fetch units of all processors in the system.

J.2 Memory Model Selection

Given that all SPARC-V9 systems are required to support TSO, programs written for any
memory model will be able to run on any SPARC-V9 system. However, a system running
with the TSO model generally will offer lower performance than PSO or RMO, because
less concurrency is exposed to the CPU and the memory system. The motivation for weak-
ening the memory model is to allow the CPU to issue multiple, concurrent memory refer-
ences in order to hide memory latency and increase access bandwidth. For example, PSO
and RMO allow the CPU to initiate new store operations before an outstanding store has
completed.

Using a weaker memory model for an MP (multiprocessor) application that exhibits a high
degree of read-write memory sharing with fine granularity and a high frequency of syn-
chronization operations may result in frequent MEMBAR instructions.

In general, it is expected that the weaker memory models offer a performance advantage
for multiprocessor SPARC-V9 implementations.

J.3 Processors and Processes

In the SPARC-V9 memory models, the term “processor” may be replaced systematically
by the term “process” or “thread,” as long as the code for switching processes or threads is
written properly. The correct process-switch sequence is given in J.8, “Process Switch
Sequence.” If an operating system implements this process-switch sequence, application
programmers may completely ignore the difference between a process/thread and a pro-
cessor.

2. Memory order is of concern only to programs containing multiple threads that share writable memory
and that may run on multiple processors, and to those programs which reference I/O locations. Note that
from the processor’s point of view, I/O devices behave like other processors.

J.4 Higher-Level Programming Languages and Memory Models 327

J.4 Higher-Level Programming Languages and Memory Models

The SPARC-V9 memory models are defined at the machine instruction level. Special
attention is required to write the critical parts of MP/MT (multi-threaded) applications in a
higher-level language. Current higher-level languages do not support memory ordering
instructions and atomic operations. As a result, MP/MT applications that are written in a
higher-level language generally will rely on a library of MP/MT support functions, for
example, theparmacslibrary from Argonne National LaboratofyThe details of con-
structing and using such libraries are beyond the scope of this document.

Compiler optimizations such as code motion and instruction scheduling generally do not
preserve the order in which memory is accessed but they do preserve the data dependen-
cies of a single thread. Compilers do not, in general, deal with the additional dependency
requirements to support sharing read-write data among multiple concurrent threads.
Hence, the memory semantics of a SPARC-V9 system in general are not preserved by
optimizing compilers. For this reason, and because memory ordering directives are not
available from higher-level languages, the examples presented in this subsection use
assembly language.

Future compilers may have the ability to present the programmer with a sequentially con-
sistent4memory model despite the underlying hardware’s providing a weaker memory
model

J.5 Portability And Recommended Programming Style

Whether a program is portable across various memory models depends on how it synchro-
nizes access to shared read-write data. Two aspects of a program’s style are relevant to
portability:

— Good semanticgrefers to whether the synchronization primitives chosen and the
way in which they are used are such that changing the memory model does not
involve making any changes to the code that uses the primitives.

— Good structure refers to whether the code for synchronization is encapsulated
through the use of primitives such that when the memory model is changed,
required changes to the code are confined to the primitives.

Good semantics are a prerequisite for portability, while good structure makes porting eas-
ier.

Programs that use single-writer/multiple-reader locks to protect all access to shared read-
write data are portable across all memory models. The code that implements the lock
primitives themselves is portable across all models only if it is written to run correctly on
RMO. If the lock primitives are collected into a library, then, at worst, only the library rou-

3. Lusk, E. L., R.A. Overbeek, “Use of Monitors in Fortran: A Tutorial on the Barrier, Self-scheduling Do-
Loop, and Askfor Monitors,” TR# ANL-84-51, Argonne National Laboratory, June 1987.

4. See Gharachorloo, K., S.V. Adve, A. Gupta, J.L. Hennessy, and M.D. Hill, “Programming for Different
Memory Consistency ModelsJournal of Parallel and Distributed Systemi$:4, August 1992.

328 J Programming With the Memory Models

tines must be changed. Note that mutual exclusion (mutex) locks are a degenerate type of
single-writer/multiple-readers lock.

Programs that use write locks to protect write accesses but read without locking are porta-
ble across all memory models only if writes to shared data are separated by MEMBAR
#StoreStore instructions, and if reading the lock is followed by a MEMBA#Road-

Load instruction. If the MEMBAR instructions are omitted, the code is portable only
across TSO and Strong ConsisteRdyt generally it will not work with PSO and RMO.

The code that implements the lock primitives is portable across all models only if it is
written to run correctly on RMO. If the lock routines are collected into a library, the only
possible changes not confined to the library routines are the MEMBAR instructions.

Programs that do synchronization without using single-writer/multiple-reader locks, write
locks, or their equivalent are, in general, not portable across different memory models.
More precisely, the memory models are ordered from RMO (which is the weakest, least
constrained, and most concurrent), PSO, TSO, to sequentially consistent (which is the
strongest, most constrained, and least concurrent). A program written to run correctly for
any particular memory model will also run correctly in any of the stronger memory mod-
els, but not vice versa. Thus, programs written for RMO are the most portable, those writ-
ten for TSO are less so, and those written for strong consistency are the least portable.
This general relationship between the memory models is shown graphically in figure 49.

Strong Consistency

TSO

PSO

Figure 49—Portability Relations among Memory Models

The style recommendations may be summarized as follows: Programs should use single-
writer/multiple-reader locks, or their equivalent, when possible. Other lower-level forms
of synchronization (such as Dekker’s algorithm for locking) should be avoided when pos-
sible. When use of such low-level primitives is unavoidable, it is recommended that the

5. Programs that assume a sequentially consistent memory are not guaranteed to run correctly on any
SPARC-V9-compliant system, since TSO is the strongest memory model required to be supported. How-
ever, sequential consistency is the most natural and intuitive programming model. This motivates the
development of compiler techniques that allow programs written for sequential consistency to be trans-
lated into code that runs correctly (and efficiently) on systems with weaker memory models.

J.6 Spin Locks 329

code be written to work on the RMO model to ensure portability. Additionally, lock prim-
itives should be collected together into a library and written for RMO to ensure portability.

Appendix D, “Formal Specification of the Memory Models,” describes a tool and method
that allows short code sequences to be formally verified for correctness.

J.6 Spin Locks

A spin lock is a lock for which the “lock held” condition is handled by busy waiting. The
code in example 7 shows how spin locks can be implemented using LDSTUB. A nonzero
value for the lock represents the locked condition, while a zero value means that the lock
is free. Note that the code busy waits by doing loads to avoid generating expensive stores
to a potentially shared location. TRMEMBAR #StoreStore in UnLockWithLD-
STUBensures that pending stores are completed before the store that frees the lock.

LockWithLDSTUB (lock)

retry:
Idstub [lock 1,%I0
tst %I0
be out
nop
loop:
Idub [lock 1,%I0
tst %I0
bne loop
nop
ba,a retry
out:

membar #lLoadLoad | #LoadStore

UnLockWithLDSTUB (lock)

membar #StoreStore IRMO and PSO only
membar #LoadStore IRMO only
stub %qg0,[lock]

Example 7—Lock and Unlock Using LDSTUB

The code in example 8 shows how spin locks can be implemented using CASA. Again, a
nonzero value for the lock represents the locked condition, while a zero value means the
lock is free. The nonzero lock value (ID) is supplied by the caller and may be used to iden-
tify the current owner of the lock. This value is available while spinning and could be used
to maintain a time-out or to verify that the thread holding the lock is still running. As in
the previous case, the code busy-waits by doing loads, not stores.

J.7 Producer-Consumer Relationship

In a producer-consumer relationship,the producer process generates data and puts it into a
buffer, while the consumer process takes data from the buffer and uses it. If the buffer is
full, the producer process stalls when trying to put data into the buffer. If the buffer is
empty, the consumer process stalls when trying to remove data.

330

J Programming With the Memory Models

LockWithCAS (lock , ID)

retry:

loop:

out:

mov [ID],%I0

cas [lock 1,%90,%I0
tst %I0

be out

nop

Id [lock 1,%I0

tst %I0

bne loop

nop

ba,a retry

membar #LoadLoad | #LoadStore

UnLockWithCAS (lock)

ISee example 7

membar #StoreStore IRMO and PSO only
membar #LoadStore IRMO only
st %g0,[lock]

Example 8—Lock and Unlock Using CAS

Figure 50 shows the buffer data structure and register usage. Example 9 shows the pro-
ducer and consumer code. The code assumes the existence of two prodedctesd

andIncrTail

, Which increment the head and tail pointers of the buffer in a wraparound

manner and return the incremented value, but do not modify the pointers in the buffer.

Buffer Data Structure:

Register Usage:

Buffer Empty Condition:
bufhead == buftall

Buffer Full Condition:
IncrTail (buffer) == bufhead

buffer —» bufhead

(= %i0)

buffer+4 —» buftail
bufdata

%i0 and%il

parameters

%I0 and%l1

local values

%00

result

Figure 50—Data Structures for Producer-Consumer Code

J.8 Process Switch Sequence 331

Produce (buffer , data)

call IncrTail
full:
Id [%6i0],%I0
cmp %I0,%00
be full
Id [%6i0+4],%I0
st %i1,[%I0]
membar #StoreStore IRMO and PSO only
st %00,[%i0+4]

Consume(buffer)

Id [%6i0],%I0
empty:
Id [%0i0+4],%I1
cmp %I10,%I1
be empty
call IncrHead
Id [%610],%I0
membar #lLoadStore IRMO only
st %00,[%:i0]
mov %I10,%00

Example 9—Producer and Consumer Code

J.8 Process Switch Sequence

This subsection provides code that must be used during process or thread switching to
ensure that the memory model seen by a process or thread is the one seen by a processor.
The HeadSequence must be inserted at the beginning of a process or thread when it
starts executing on a processor. Ti@lSequence must be inserted at the end of a pro-

cess or thread when it relinquishes a processor.

Example 10 shows the head and tail sequences. The two sequences refer to a per-process
variabletailDone The value O fortailDone means that the process is running, while the
value —1 (all ones) means that the process has completed its tail sequence and may be
migrated to another processor if the process is runnable. When a new process is created,
tailDoneis initialized to —1.

The MEMBAR in HeadSequence is required to be able to provide a switching
sequence that ensures that the state observed by a process in its source processor will also
be seen by the process in its destination processor. Since FLUSHes and stores are totally
ordered, the head sequence need not do anything special to ensure that FLUSHes per-
formed prior to the switch are visible by the new processor.

Programming Note:
A conservative implementation may simply use a MEMBAR with all barriers set.

332 J Programming With the Memory Models

HeadSequence (tailDone)

nrdy:
Id [tailDone],%I0
cmp %I0,-1
bne nrdy
st %90, [tailDone]

membar #StoreLoad

TailSequence (tailDone)

mov -1,%I0

membar #StoreStore IRMO and PSO only

membar #LoadStore IRMO only (combine with above)
st %I0,[tailDone]

Example 10—Process or Thread Switch Sequence

J.9 Dekker’s Algorithm

Dekker’s algorithm is the classical sequence for synchronizing entry into a critical section
using loads and stores only. The reason for showing this example here is to illustrate how
one may ensure that a store followed by a load in issuing order will be executed by the
memory system in that order. Dekker’s algorithrm@ a valid synchronization primitive

for SPARC-V9, because it requires a sequentially consistent (SC) memory model in order
to work. Dekker’s algorithm (and similar synchronization sequences) can be coded on
RMO, PSO, and TSO by adding appropriate MEMBAR instructions. This example also
illustrates how future compilers can provide the equivalent of sequential consistency on
systems with weaker memory models.

Example 11 shows the entry and exit sequences for Dekker’s algorithm. The locations
andB are used for synchronizatioA;= 0 means that process P1 is outside its critical sec-
tion, while any other value means that P1 is inside it; simildly, 0 means that P2 is out-
side its critical section, and any other value means that P2 is inside it.

Dekker’s algorithm guarantees mutual exclusion, but it does not guarantee freedom from
deadlock. In this case, it is possible that both processors end up trying to enter the critical
region without success. The code above tries to address this problem by briefly releasing
the lock in each retry loop. However, both stores are likely to be combined in a store
buffer, so the release has no chance of success. A more realistic implementation would use
a probabilistic back-off strategy that increases the released period exponentially while
waiting. If any randomization is used, such an algorithm will avoid deadlock with arbi-
trarily high probability.

J.10 Code Patching

The code patching example illustrates how to modify code that is potentially being exe-
cuted at the time of modification. Two common uses of code patching are in debuggers
and dynamic linking.

J.10 Code Patching

333

P1lEntry ()
mov
busy:
st
membar
Id
tst
bne,a
st

P1Exit ()
membar
membar
st

P2Entry ()
mov
busy:
st
membar
Id
tst
bne,a
st

P2Exit ()
membar
membar
st

-1,%I0

%I0,[A]
#StoreLoad
[B],%I1
%I1
busy
%g0,[A

#StoreStore
#LoadStore
%g0,[Al

-1,%I0

%I0,[B]
#StoreLoad

[A,%I1

%I1

busy

%g0,[B

#StoreStore
#LoadStore

%g0,[B

IRMO and PSO only
IRMO only

IRMO and PSO only
IRMO only

Example 11—Dekker’s Algorithm

Code patching involves a modifying proceBsy) and one or more target procesgesFor
simplicity, assume that the sequence to be modified is four instructions long: the old
sequence is@ldl, Old2, Old3, Old4), and the new sequence iNewl, New2, News,
Newd). There are two examplesoncooperativemodification, in which the changes are
made without cooperation fromt; and cooperative modification, in which the changes
require explicit cooperation fromt.

In noncooperative modification, illustrated in example 12, changes are made in reverse
execution order. The three partially modified sequen€dgl(, Old2, Old3, New4), (Old1,

Old2, News, New4), and QId1, New2, NewB, New4) must be legal sequences fex, in

that Pt must do the right thing if it executes any of them. Additionally, none of the loca-
tions to be modified, except the first, may be the target of a branch. The code assumes that
%i0 contains the starting address of the area to be patche#ben®6i2, %i3, and%i4
containNewl, New2, New3, andNew4.

The constraint that all partially modified sequences must be legal is quite restrictive. When
this constraint cannot be satisfied, noncooperative code patching may require the target
processor to execute FLUSH instructions. One method of triggering such a non-local
FLUSH would be to send an interrupt to the target processor.

334 J Programming With the Memory Models

NonCoopPatch (addr , instructions)
st %i4,[%i0+12]
flush %i0+12
membar #StoreStore IRMO and PSO only
st %:i3,[%i0+8]
flush %i0+8
membar #StoreStore IRMO and PSO only
st %:i2,[%i0+4]
flush %i0+4
membar #StoreStore IRMO and PSO only
st %i1,[%:i0]
flush %i0

Example 12—Nonxooperative Code Patching

In cooperative code patching, illustrated in example 13, changes to instructions can be
made in any order. WhdPmis finished with the changes, it writes into the shared variable
doneto notify Pt. Pt waits fordoneto change from 0 to some other value as a signal that
the changes have been completed. The code assume$sibatontains the starting
address of the area to be patch&gdl , %i2, %i3, and%i4 containNewl, New2, News3,
andNew4, and%g1 contains the address dbne The FLUSH instructions irPt ensure

that the instruction buffer oPt's processor is flushed so that the old instructions are not
executed.

CoopPatch (addr , instructions) 196i0 = addr , %il..%i4 = instruction s
st %i1,[%i0]
st %:i2,[%i0+4]
st %:i3,[%i0+8]
st %i4,[%i0+12]
mov -1,%I0
membar #StoreStore IRMO and PSO only
st %I0,[%g1]
TargetCode ()
wait:
Id [%6g1],%I0
cmp %I0,0
be wait
flush A
flush A+4
flush A+8
flush A+12
A:
Old1
Old2
Old3
Old4

Example 13—Cooperative Code Patching

J.11 Fetch_and_Add 335

J.11 Fetch_and_Add

Fetch_and_Addperforms the sequenca=a + b atomically with respect to other
Fetch_and_Adsl to locationa. Two versions offFetch_and_Addare shown. The first
(example 14) uses the routih®ckWithLDSTUBdJescribed above. This approach uses a
lock to guard the value. Since the memory model dependency is embodied in the lock
access routines, the code does not depend on the memory®model.

[*Fetch and Add using LDSTUB?*/
int Fetch_And_Add(Index, Increment, Lock)

int *Index;

int Increment;

int *Lock;

{
int old_value;
LockWithLDSTUB(Lock);
old_value = *Index;
*Index = old_value + Increment;
UnlockWithLDSTUB(Lock);

return(old_value);
Example 14—Fetch and Add Using LDSTUB

Fetch_and_Addariginally was invented to avoid lock contention and to provide an effi-
cient means to maintain queues and buffers without cumbersome locks. Hence, using a
lock is inefficient and contrary to the intentions of thetch_and_AddThe CAS synthetic
instruction allows a more efficient version, as shown in example 15.

FetchAndAddCAS(address , increment) %i0 = address ,%il = increment
retry:

Id [%i0],%I0

add %I0,%:i1,%I1

cas [%6i0],%010,%I1

cmp %I0,%I1

bne retry

mov %I1,%00 Ireturn old value

Example 15—Fetch and Add Using CAS

J.12 Barrier Synchronization

Barrier synchronization ensures that eaciNgirocesses is blocked until all of them reach

a given state. The point in the flow of control at which this state is reached is called the
barrier; hence the name. The code uses the var@@mtinitialized toN. As each process
reaches its desired state, it decremé&usintand waits fortCountto reach zero before pro-
ceeding further.

6. Inlining of the lock-access functions with subsequent optimization may break this code.

336 J Programming With the Memory Models

Similar to the fetch and add operation, barrier synchronization is easily implemented
using a lock to guard the counter variable, as shown in example 16.

[*Barrier Synchronization using LDSTUB*/
Barrier(Count,Lock)
int *Count;
int *Lock;
{
LockWithLdstUB(Lock);
*Count = *Count- 1;
UnlockWithLdstUB(Lock);
while(*Count > 0) {; /*busy-wait*/ }

Example 16—Barrier Synchronization Using LDSTUB

The CAS implementation of barrier synchronization, shown in example 17, avoids the
extra lock access.

BarrierCAS (Count) 1%i0 = address of counter variable
retry:
Id [%i0],%I0
add %I0,-1,%I1
cas [%0i0],%010,%I1
cmp %I0,%I1
bne retry
nop
wait:
Id [%i0],%I0
tst %I0
bne wait
nop

Example 17—Barrier Synchronization Using CAS

A practical barrier synchronization must be reusable because it is typically used once per

iteration in applications that require many iterations. Barriers that are based on counters

must have means to reset the counter. One solution to this problem is to alternate between
two complementary versions of the barrier: one that counts down to 0 and the other that

counts up to N. In this case, passing one barrier also initializes the counter for the next bar-

rier.

Passing a barrier can also signal that the results of one iteration are ready for processing by
the next iteration. In this case, RMO and PSO requiMEMBAR #StoreStore instruc-

tion prior to the barrier code to ensure that all local results become globally visible prior to
passing the barrier.

Barrier synchronization among a large number of processors will lead to access contention
on the counter variable, which may degrade performance. This problem can be solved by
using multiple counters. The butterfly barrier uses a divide-and-conquer technique to
avoid any contention and can be implemented without atomic operétions.

J.13 Linked List Insertion and Deletion 337

J.13 Linked List Insertion and Deletion

Linked lists are dynamic data structures that might be used by a multi-threaded applica-
tion. As in the previous examples, a lock can be used to guard access to the entire data
structure. However, single locks guarding large and frequently shared data structures can
be inefficient.

In example 18, the CAS synthetic instruction is used to operate on a linked list without
explicit locking. Each list element starts with an address field that contains either the
address of the next list element or zero. The head of the list is the address of a variable that
holds the address of the first list element. The head is zero for empty lists.

ListInsert (Head, Element) 1%i0 = Head addr, %il = Element addr
retry:
Id [%0],%I0
st %I0, [%il]
mov %il, %l1
cas [96i0],%010,%I1
cmp %I0,%I1
bne retry
nop
ListRemove (Head) 1%i0 = Head addr
retry:
Id [%0i0],%00
tst %00
be empty
nop
Id [%000],%I0
cas [%610],%00,%I0
cmp %00,%I0
bne retry
empty:
nop

Example 18—List Insertion and Removal

In the example, there is little difference in performance between the CAS and lock

approaches, however, more complex data structures can allow more concurrency. For
example, a binary tree allows the concurrent insertion and removal of nodes in different
branches.

J.14 Communicating With I/O Devices

I/O accesses may be reordered just as other memory reference are reordered. Because of
this, the programmer must take special care to meet the constraint requirements of physi-
cal devices, in both the uniprocessor and multiprocessor cases.

7. Brooks, E. D., “The Butterfly Barrier[nternational Journal of Parallel Programmin@5(4), pp. 295-
307, 1986.

338 J Programming With the Memory Models

Accesses to 1/O locations require sequencing MEMBARS under certain circumstances to
properly manage the order of accesses arriving at the device, and the order of device
accesses with respect to memory accesses. The following rules describe the use of MEM-
BARs in these situations. Maintaining the order of accesses to multiple devices will
require higher-level software constructs, which are beyond the scope of this discussion.

(1) Accesses to the same I/O location address:
— A store followed by a store is ordered in all memory models.

— A load followed by a load requires a MEMBAR.oadLoad in RMO only..

V8 Compatibility Note:
This MEMBAR is not needed in implementations that provide SPARC-V8 compati-
bility for I/O accesses in RMO.

— A load followed by a store is ordered in all memory models.

— A store followed by a load requires MEMBARLookaside between the
accesses for all memory models; however, implementations that provide
SPARC-V8 compatiblity for I/O accesses in any of TSO, PSO, and RMO do
not need the MEMBAR in any model that provides this compatibility.

(2) Accesses to different 1/0 location addresses:

— The appropriate ordering MEMBAR is required to guarantee order within a
range of addresses assigned to a device.

— Device-specific synchronization of completion, such as reading back from an
address after a store, may be required to coordinate accesses to multiple
devices. This is beyond the scope of this discussion.

(3) Accesses to an I/O location address and a memory address.

— A MEMBAR #Memlssue is required between an 1/0O access and a memory
access if it is required that the I/O access reaches global visibility before the
memory access reaches global visibility. For example, if the memory location
is a lock that controls access to an I/O address, then MEMBRRmMIssue
is required between the last access to the 1/O location and the store that clears
the lock.

(4) Accesses to different 1/0O location addresses within an implementation-dependent
range of addresses are strongly ordered once they reach global visiblity. Beyond
the point of global visibility there is no guarantee of global order of accesses arriv-
ing at different devices having disjoint implementation-dependent address ranges
defining the device. Programmers can rely on this behavior from implementations.

(5) Accesses to I/O locations protected by a lock in shared memory that is subse-
quently released, with attention to the above barrier rules, are strongly ordered
with respect to any subsequent accesses to those locations that respect the lock.

J.14 Communicating With 1/O Devices 339

J.14.1 1/O Registers With Side Effects

I/O registers with side effects are commonly used in hardware devices such as UARTS.
One register is used to address an internal register of the I1/O device, and a second register
is used to transfer data to or from the selected internal register.

In examples 19 and 20, let X be the address of a device with two such registeris X
port register, and X is a data register. The address of an internal register is stored into
X.P; that internal register can then be read or written by loading into or storing fiam X

st %il, [X+P]
membar #StoreStore ! PSO and RMO only
st %i2, [X+D]

Example 19—I/O Registers With Side-Effects: Store Followed by Store

st %il, [X+P]
membar #StoreLoad |[#Memlssue I RMO only
Id [X+D], %i2

Example 20—I/O Registers With Side-Effects: Store Followed by Load

Access to these registers, of course, must be protected by a mutual-exclusion lock to
ensure that multiple threads accessing the registers do not interfere. The sequencing
MEMBAR is required to ensure that the store actually completes before the load is issued.

J.14.2 The Control and Status Register (CSR)

A control and status register is an 1/O location which is updated by an 1/O device indepen-

dent of access by the processor. For example, such a register might contain the current sec-
tor under the head of a disk drive.

In example 21, let Y be the address of a control and status register that is read to obtain
status and written to assert control. Bits read differ from the last data that was stored to
them.

Id [Y], %il | obtain status

st %i2, [Y] ! write a command

membar #Lookaside I make sure we really read the register
Id [Y], %i3 I obtain new status

Example 21—Accessing a Control/Status Register

Access to these registers, of course, must be protected by a mutual-exclusion lock to
ensure that multiple threads accessing the registers do not interfere. The sequencing
MEMBAR is needed to ensure the value produced by the load comes from the register and
not from the write buffer since the write has side-effects. No MEMBAR is needed

between the load and the store, because of the anti-dependency on the memory address.

340 J Programming With the Memory Models

J.14.3 The Descriptor

In example 22, let A be the address of a descriptor in memory. After initializing the
descriptor with information, the address of the descriptor is stored into device register D or
made available to some other portion of the program that will make decisions based upon
the value(s) in the descriptor. It is important to ensure that the stores of the data have com-
pleted before making the address (and hence the data in the descriptor) visible to the
device or program component.

st %il, [A]

st %i2, [A+4]

I more stores
membar #StoreStore ! PSO and RMO only
st A, [D]

Example 22—Accessing a Memory Descriptor

Access must be protected by a mutual-exclusion lock to ensure that multiple threads

accessing the registers do not interfere. In addition, the agent reading the descriptor must
use a load-barrier MEMBAR after reading D to ensure that the most recent values are

read.

J.14.4 Lock-Controlled Access to a Device Register

Let A be a lock in memory that is used to control access to a device register D. The code
that accesses the device might look like that show in example 23.

set A, %l1 I address of lock
set D, %I2 I address of device register
call lock !'lock(A);
mov %l1, %00
Id [%12], %il ! read the register
I do some computation
st %i2, [%I12] ! write the register
membar #Memlissue ! all memory models
call unlock I'unlock(A);

mov %Il1, %00

Example 23—Accessing a Device Register

The sequencing MEMBAR is needed to ensure that another CPU which grabs the lock and
loads from the device register will actually see any changes in the device induced by the
store. The ordering MEMBARS in the lock and unlock code (see J.6, “Spin Locks”), while

ensuring correctness when protecting ordinary memory, are insufficient for this purpose
when accessing device registers. Compare with J.14.1, “I/O Registers With Side Effects.”

This appendix is informative only.

It is not part of the SPARC-V9 specification.

K Changes From SPARC-V8 to SPARC-V9

SPARC-V9 is complimentary to the SPARC-V8 architecture; it does not replace it.
SPARC-V9 was designed to be a higher-performance peer to SPARC-V8.

Application software for the 32-bit SPARC-V8 (Version 8) microprocessor architecture
can execute, unchanged, on SPARC-V9 systems. SPARC-V8 software executes natively
on SPARC-V9-conformant processors; no special compatibility mode is required.

Changes to the SPARC-V9 architecture since SPARC-V8 are in six main areas: the trap
model, data formats, the registers, alternate address space access, the instruction set, and
the memory model.

K.1 Trap Model
The trap model, visible only to privileged software, has changed substantially.

— Instead of one level of traps, four or more levels are now supported. This allows
first-level trap handlers, notably register window spill and fill (formerly called
overflow and underflow) traps, to execute much faster. This is because such trap
handlers can now execute without costly run-time checks for lower-level trap con-
ditions, such as page faults or a misaligned stack pointer. Also, multiple trap levels
support more robust fault-tolerance mechanisms.

— Most traps no longer change the CWP. Instead, the trap state (including the CWP
register) is saved in register stacks called TSTATE, TT, TPC, and TNPC.

— New instructions (DONE and RETRY) are used to return from a trap handler,
instead of RETT.

— A new instruction (RETURN) is provided for returning from a trap handler run-
ning in nonprivileged mode, providing support for user trap handlers.

— Terminology about privileged-mode execution has changed, from “supervisor/
user” to “privileged/nonprivileged.”

— A new processor state, RED_state, has been added to facilitate processing resets
and nested traps that would exceed MAXTL.

341

342 K Changes From SPARC-V8 to SPARC-V9

K.2 Data Formats

Data formats for extended (64-bit) integers have been added.

K.3 Little-Endian Support

Data accesses can be either big-endian or little-endian. Bits in the PSTATE register control
the implicit endianness of data accesses. Special ASI values are provided to allow specific
data accesses to be in a specific endianness.

K.4 Registers

These privileged SPARC-V8 registers have been deleted:
— PSR: Processor State Register
— TBR: Trap Base Register
— WIM: Window Invalid Mask

These registers have been widened from 32 to 64 bits:
— All integer registers
— All state registers: FSR, PC, nPC, Y

The contents of the following register has changed:

— FSR: Floating-Point State Registéccl, fcc2, andfcc3 (additional floating-point
condition code) bits have been added and the register widened to 64-bits..

These SPARC-V9 registers are fields within a register in SPARC-V8:
— PIL: Processor Interrupt Level register
— CWP: Current Window Pointer register
— TT[MAXTL]: Trap Type register
— TBA: Trap Base Address register
— VER: Version register
— CCR: Condition Codes Register
These registers have been added:

— Sixteen additional double-precision floating-point registd82]..f[62], which are
aliased with and overlap eight additional quad-precision floating-point registers,
f[32]..f[60]

— FPRS: Floating-Point Register State register
— ASI: ASlI register

K.5 Alternate Space Access 343

— PSTATE: Processor State register

— TL: Trap Level register

— TPC[MAXTL]: Trap Program Counter register
— TNPC[MAXTL]: Trap Next Program Counter register
— TSTATE[MAXTL]: Trap State register

— TICK: Hardware clock-tick counter

— CANSAVE: Savable windows register

— CANRESTORE: Restorable windows register
— OTHERWIN: Other windows register

— CLEANWIN: Clean windows register

— WSTATE: Window State register

The SPARC-V9 CWP register is incremented during a SAVE instruction and decremented
during a RESTORE instruction. Although this is the opposite of PSR.CWP’s behavior in

SPARC-V8, the only software it should affect is a few trap handlers that operate in privi-

leged mode, and that must be rewritten for SPARC-V9 anyway. This change will have no
effect on nonprivileged software.

K.5 Alternate Space Access

In SPARC-V8, access to all alternate address spaces is privileged. In SPARC-V9, loads
and stores to ASlIs Q.. 7f,¢ are privileged; those to ASls 80.FF,; are nonprivileged.

That is, load- and store-alternate instructions to one-half of the alternate spaces can now
be used in user code.

K.6 Little-Endian Byte Order

In SPARC-V8, all instruction and data accesses were performed in big-endian byte order.
SPARC-V9 supports both big- and little-endian byte orders for data accesses only; instruc-
tion accesses in SPARC-V9 are always performed using big-endian order.

K.7 Instruction Set

All changes to the instruction set were made such that application software written for
SPARC-V8 can run unchanged on a SPARC-V9 processor. Application software written

344

K Changes From SPARC-V8 to SPARC-V9

for SPARC-V8 should not even be able to detect that its instructions now process 64 bit
values.

The definitions of the following instructions were extended or modified to work with the
64-bit model:

FCMP, FCMPE: Floating-Point Compare—can set any of the four floating-point
condition codes

LDUW, LDUWA(same as “LD, LDA” in SPARC-V8)

LDFSR, STFSR: Load/Store FSR: only affect low-order 32 bits of FSR
RDASR/WRASR: Read/Write State Registers: access additional registers
SAVE/RESTORE

SETHI

SRA, SRL, SLL: Shifts: split into 32-bit and 64-bit versions

Tcc: (was Ticc) operates with either the 32-bit integer condition cadey 6r the
64-bit integer condition codezdo

All other arithmetic operations now operate on 64-bit operands and produce 64-bit
results. Application software written for SPARC-V8 cannot detect that arithmetic
operations are now 64 bits wide. This is due to retention of the 32-bit integer con-
dition codes icc), addition of 64-bit integer condition codesc), and the carry-
propagation rules of 2’'s-complement arithmetic.

The following instructions have been added to provide support for 64-bit operations and/
or addressing:

F[sdq]TOx: Convert floating point to 64-bit word
FxTO[sdq]: Convert 64-bit word to floating point
FMOV[dq]: Floating-point Move, double and quad
FNEG[dq]: Floating-point Negate, double and quad
FABS[dq]: Floating-point Absolute Value, double and quad

LDDFA, STDFA, LDFA, STFA: Alternate address space forms of LDDF, STDF,
LDF, and STF

LDSW: Load a signed word

LDSWA: Load a signed word from an alternate space
LDX: Load an extended word

LDXA: Load an extended word from an alternate space
LDXFSR: Load all 64 bits of the FSR register

STX: Store an extended word

K.7 Instruction Set 345

— STXA: Store an extended word into an alternate space
— STXFSR: Store all 64 bits of the FSR register
The following instructions have been added to support the new trap model:
— DONE: Return from trap and skip instruction that trapped
— RDPR and WRPR: Read and Write privileged registers
— RESTORED: Adjust state of register windows after RESTORE
— RETRY: Return from trap and reexecute instruction that trapped
— RETURN: Return
— SAVED: Adjust state of register windows after SAVE
— SIR: Signal Monitor (generate Software Initiated Reset)

The following instructions have been added to support implementation of higher-perfor-
mance systems:

— BPcc: Branch on integer condition code with prediction
— BPr: Branch on integer register contents with prediction
— CASA, CASXA: Compare and Swap from an alternate space
— FBPfcc: Branch on floating-point condition code with prediction
— FLUSHW: Flush windows
— FMOVcc: Move floating-point register if condition code is satisfied
— FMOVr: Move floating-point register if integer register contents satisfy condition
— LDQF(A), STQF(A): Load/Store Quad Floating-point (in an alternate space)
— MOVcc: Move integer register if condition code is satisfied
— MOVr: Move integer register if register contents satisfy condition
— MULX: Generic 64-bit multiply
— POPC: Population Count
— PREFETCH, PREFETCHA: Prefetch Data
— SDIVX, UDIVX: Signed and Unsigned 64-bit divide
The definitions of the following instructions have changed:

— IMPDEP: Implementation-Dependent instructions (replace SPARC-V8 CPop
instructions)

The following instruction was added to support memory synchronization:

— MEMBAR: Memory barrier

346

K Changes From SPARC-V8 to SPARC-V9

The following instructions have been deleted:

Coprocessor loads and stores

RDTBR and WRTBR: TBR no longer exists. It has been replaced by TBA, which
can be read/written with RDPR/WRPR instructions.

RDWIM and WRWIM: WIM no longer exists. WIM has been subsumed by sev-
eral register-window state registers.

RDPSR and WRPSR: PSR no longer exists. It has been replaced by several sepa-
rate registers which are read/written with other instructions.

RETT: Return from trap (replaced by DONE/RETRY).

STDFQ: Store Double from Floating-point Queue (replaced by the RDPR FQ
instruction).

K.8 Memory Model

SPARC-V9 defines a new memory model called Relaxed Memory Order (RMO). This
very weak model allows the CPU hardware to schedule memory accesses such as loads
and stores in nearly any order, as long as the program computes the correct answer. Hence,
the hardware can instantaneously adjust to resource contentions and schedule accesses in
the most efficient order, leading to much faster memory operations and better perfor-
mance.

This bibliography is informative only.

It is not part of the SPARC-V9 specification.

Bibliography

General References

For general information, see the following:
----- . The SPARC Architecture Manual, VersigrP8entice-Hall, Inc., 1992.

Boney, Joel [1992]. “SPARC Version 9 Points the Way to the Next Generation RISC/”
SunWorld October 1992, pp. 100-105.

Catanzaro, Ben, edhe SPARC Technical Pape&pringer-Verlag, 1991.

Cmelik, R. F., S. I. Kong, D. R. Ditzel, and E. J. Kelly, “An Analysis of MIPS and SPARC
Instruction Set Utilization on the SPEC Benchmarl&bceedings of the Fourth Interna-
tional Symposium on Architectural Support for Programming Languages and Operating
SystemgsApril 8-11, 1991.

Dewar, R. B. K. and M. Smosnicroprocessors: A Programmer’s VieWcGraw-Hill,
Inc., 1990.

Ditzel, David R. [1993]. “SPARC Version 9: Adding 64-Bit Addressing and Robustness to
an Existing RISC Architecture.” Videotape available from University Video Communica-
tions, P. O. Box 5129, Stanford, CA, 94309.

Garner, R. B. [1988]. “SPARC: The Scalable Processor Architect8t;mTechnologyol.
1, no. 3, Summer, 1988; also appeared in M. Hall and J. Barry (ddge)SunTechnology
Papers Springer-Verlag, 1990, pp. 75-99.

Garner, R. B., A. Agrawal, F. Briggs, E. W. Brown, D. Hough, W. N. Joy, S. Kleiman, S.
Muchnick, M. Namjoo, D. Patterson, J. Pendleton, K. G. Tan, and R. Tuck [1988]. “The
Scalable Processor Architectur6PARQ,” 33rd Annual IEEE Computer Conference
(COMPCON, February, 1988, San Francisco, CA.

Hennessy, J. and D. Patters@omputer Architecture: A Quantitative Approadfiorgan
Kaufman Publishers, Inc., San Mateo, CA. 1990.

347

348 Bibliography

IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985, IEEE, New
York, NY, 1985.

Katevenis, M. [1983]. Reduced Instruction Set Computer Architecture¥lst, Ph.D.
dissertation, Computer Science Div., Univ. of California, Berkeley, 1983; also published
by M.I.T. Press, Cambridge, MA, 1985.

Kleiman, S. and D. Williams [1988]. “SunOS on SPARB3rd AnnuallEEE Comp. Conf.
(COMPCON, February, 1988, San Francisco, CA,; also appeared in M. Hall and J. Barry
(eds.),The SunTechnology Pape&pringer-Verlag, 1990, pp. 13-27.

Muchnick, S. [1988]. “Optimizing Compilers for SPARCSunTechnologysummer 1988,

pp. 64-71; also appeared in W. Stallings (e®Rgduced Instruction Set Computé2nd
edition), IEEE Computer Society Press, 1990, pp. 160-173, and in M. Hall and J. Barry
(eds.),The SunTechnology Pape&pringer-Verlag, 1990, pp. 41-68.

Patterson, D. [1985]. “Reduced Instruction Set Comput&srhmunications of thaCMm,
vol. 28, no. 1, January, 1985.

Patterson, D., and D. R. Ditzel, “The Case for the Reduced Instruction Set Computer,”
Computer Architecture Newsol 8, no. 7, 1980.

Memory Model References

The concept of a memory model has become a significant one as shared memory multipro-
cessors are more widely used. The issues are complex and interesting, and have created an
active and extensive literature. A partial annotated list of references is as follows:

Collier, W. W.Reasoning About Parallel Architecturdzrentice Hall, 1992.

Provides a mathematical framework for the study of parallel processors and their inter-
action with memory.

Dill, David, Seungjoon Park, and Andreas G. Nowatzyk, “Formal Specification of
Abstract Memory Models” irResearch on Integrated Systems: Proceedings of the 1993
SymposiumEd. Gaetano Borriello and Carl Ebeling, MIT Press, 1993.

Describes an application of software tools to the verification of the TSO and PSO
memory models.

Gharachorloo, K., D. Lenoski, J. Laudon, P. Gibbon, A. Gupta, and J. Hennessy. “Memory
Consistency and Event Ordering in Scalable Shared-Memory MultiprocesBarsged-

ings of the 17th Annual International Symposium on Computer Architediag 1990,

pp. 15-29.

Provides an overview of contemporary research in memory models.

Gharachorloo, K., S. Adve, A. Gupta, J. Hennessy, and M. Hill. “Programming for Differ-
ent Memory Consistency ModelsJournal of Parallel and Distributed Processini5:4,
August 1992.

Prefetching 349

This paper proposes a new programming model which allows programmers to reason
about programs that have not been reduced to sequential consistency.

Gharachorloo, K., A. Gupta, and J. Hennessy, “Performance Evaluation of Memory Con-
sistency Models for Shared Memory MultiprocessoRbceedings of the 4th Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systemspp. 245-257, ACM, New York, 1991.

This paper discusses the performance benefits that can be obtained when a relaxed
memory model is used in a shared-memory model processor.

Lamport, Leslie. “How to Make a Multiprocessor Computer That Correctly Executes Mul-
tiprocess ProgramislEEE Transactions on Computer<-28, 9, September 1979, pp.
690-691.

Defines sequential consistency and shows how it can be used in simple shared-mem-
ory systems.

Reynal, M.Algorithms for Mutual ExclusigrMIT Press, 1986.

Provides an overview of the mutual exclusion problem and the extensive literature
associated with it.

Scheurich, C., and M. Dubois. “Dependency and Hazard Resolution in Multiprocessors,”
Proceedings of the 14th International Symposium on Computer Architepiur@34-243,
IEEE CS Press, Los Alamitos, CA, 1987.

Sindhu, Predeep, Jean-Marc Frailong, and Michel Ceklov. “Formal Specification of Mem-
ory Models,” Xerox Palo Alto Research Center Report CSL-91-11, December 1991

Introduces the formal framework used to define the SPARC-V8 TSO and PSO mem-
ory models.

Treiber, R. Kent. “Systems Programming: Coping with Parallelism,” IBM Research
Report RJ5118 (53162), 1986.

Provides an overview of the operational issues for systems programming in a multi-
processing environment.

Prefetching

Callahan, D., K. Kennedy, A. Porterfield. “Software Prefetchingrdbceedings of the
Fourth International Conference on Architectural Support for Programming Languages
and Operating System&pril 1991, pp. 40-52.

Mowry, T., M. Lam, and A. Gupta. “Design and Evaluation of a Compiler Algorithm for
Prefetching.”"Proceedings of the Fifth International Conference on Architectural Support
for Programming Languages and Operating Sysiédtsober 1992, pp. 62-73.

350 Bibliography

Index

A

a field of instructions 66, 138, 141, 144, 147,
148, 152

ABI, seeSPARC-V9 Application Binary Interface
(ABI)

accrued exceptioraéxqg field of FSR register46,
48, 100, 247, 256

activation record, sestack frame

ADD instruction 137, 301

ADDC instruction 137

ADDcc instruction 137, 223, 301

ADDCcc instruction 137

address 120
aliased 120
physical 120, 283
virtual, 120, 283

address 297

address aliase283

address mask (AM) field of PSTATE registé#,
151, 172 216

address spacd, 283, 284

address space identifier (ASH, 16, 17, 51, 63,
67, 69, 73, 120, 121, 174, 179, 207, 228,
256, 285, 319, 343
architecturally specifigd122
restricted 74, 122, 256
unrestricteq 74, 122, 256

address space identifier (ASI) registés, 21, 51,
57, 73, 89, 122, 157, 176, 181, 183, 207,
228, 233, 236, 246, 318

addressing convention4?7, 70

addressing modeg

ADDX instruction (SPARC-V8) 137

ADDXcc instruction (SPARC-V8)137

aexg seeaccrued exception (aexc) field of FSR reg-

ister
AG, seealternate globals enable (AG) field of
PSTATE register
aggregate data values, sk#a aggregates
alias
address 120
floating-point register,s36
alignment 306
data (load/storg)17, 69, 121
doubleword 17, 69, 121
extended-word69

halfword, 17, 69, 121
instructions 17, 69, 121
integer registers179, 181
memory, 121
quadword 17, 69, 121
stack pointer 306
word, 17, 69, 121
alternate address spa@9d7
alternate globakegisters 15, 30, 30, 318
alternate globals enable (AG) field of PSTATE reg-
ister, 30, 31, 55
alternate space instructignkg, 51, 343
AM, seeaddress mask (AM) field of PSTATE regis-
ter
ancillary state registers (ASR<)8, 35, 36, 61,
215, 216, 245, 246, 254, 255, 294, 323
AND instruction 184
ANDcc instruction 184, 301
ANDN instruction 184, 301
ANDNCcc instruction 184
annul bit 35, 138
in conditional branchesl41
annulled branchgsl 38
application progran9, 14, 16, 30, 46, 47, 51, 62,
104, 343
architectural extensiong, 323
arguments to a subroutingdo4
arithmetic overflow 41
ASI register 73
ASI register, seaddress space identifier (ASI) reg-
ister
ASI, seeaddress space identifier (ASI)
ASI_AS_IF_USER_PRIMARY 74, 123, 256,
289, 318
ASI_AS_IF_USER_PRIMARY_LITTLE 74,
123, 256, 289, 318
ASI_AS_IF_USER_SECONDARY74, 123, 256,
289
ASI_AS_IF_USER_SECONDARY_LITTLE74,
123, 256, 289
ASI_NUCLEUS 73, 74, 74, 122, 256, 289
ASI_NUCLEUS_LITTLE, 73, 74, 122, 256, 289
ASI_PRIMARY, 73, 74, 74, 122, 123, 256, 289
AS|_PRIMARY_LITTLE, 73, 74, 122, 256, 289
AS|_PRIMARY_NOFAULT, 74, 74, 123, 256,
286, 289

351

352

ASI_PRIMARY_NOFAULT_LITTLE, 74, 256
ASI_SECONDARY, 74, 74, 123, 256, 289, 319
ASI_SECONDARY_LITTLE, 74, 256, 289, 319
ASI_SECONDARY_NOFAULT 74, 74, 123,
256, 286, 289
ASI_SECONDARY_NOFAULT_LITTLE 74,
256, 289
asr_reg 294
assembler
synthetic instructions299
assigned value
implementation-dependen254
async_data_error exception 113, 133, 153, 174,
177, 179, 181, 182, 183, 227, 229, 231, 233,
235, 237
atomig 130, 231, 233
memory operationsl27, 130
atomic load-store instruction§9, 152
compare and swa®8, 152
load-store unsigned bytd82, 235, 236
load-store unsigned byte to alternate spd@&3
swapr register with alternate space memory
236
swapr register with memory152, 235
atomicity, 121, 225, 260
automatic variables304

B

BA instruction 147, 280

BCC instruction 146, 280

BCLR synthetic instruction301

BCS instruction 146, 280

BE instruction 146, 280

Berkeley RISCsxiv, 5

BG instruction 146, 280

BGE instruction 146, 280

BGU instruction 146, 280
bibliography 347

Bicc instructions 35, 42, 146, 275, 280
big-endian btye orde

big-endian byte orderl7, 53, 70
binary compatibility 6

bit vector concatenatiqor8

BL instruction 280

BLE instruction 146, 280

BLEU instruction 146, 280

BN instruction 146, 147, 209, 280, 299
BNE instruction 146, 280

BNEG instruction 146, 280

BPA instruction 148, 280

BPCC instruction 148, 280

BPcc instructions35, 42, 66, 67, 148, 209
BPCS instruction148, 280

BPE instruction 148, 280

BPG instruction 148, 280

BPGE instruction 148, 280
BPGU instruction 148, 280
BPL instructiony 148, 280
BPLE instruction 148, 280
BPLEU instruction 148, 280
BPN instruction 148, 280
BPNE instruction 148, 280
BPNEG instruction 148, 280
BPOS instruction146, 280
BPPOS instruction148, 280
BPr instructions 35, 66, 67, 138, 275, 280
BPVC instruction 148, 280
BPVS instruction 148, 280
branch
annulled 138
delayed 63
elimination, 80
fcc-conditional 141, 144
icc-conditional 147
prediction bit 138
unconditional 141, 144, 147, 149
with prediction 5
branch if contents of integer register match condi-
tion instructions 138
branch on floating-point condition codes instruc-
tions, 140
branch on floating-point condition codes with pre-
diction instructions 143
branch on integer condition codes instructjoh46
branch on integer condition codes with prediction
instructions 148
BRGEZ instruction 138
BRGZ instruction 138
BRLEZ instruction 138
BRLZ instruction 138
BRNZ instruction 138
BRZ instruction 138
BSET synthetic instructigr301
BTOG synthetic instructign301
BTST synthetic instructign301
BVC instruction 146, 280
BVS instruction 146, 280
byte, 9
addressing70, 71
data format 23
order, 17, 70
order, big-endian17, 53
order, implicit 53
order, little-endian17, 53

C

C condition code bit, sezarry (C) bit of condition
fields of CCR

cache
coherence in RED_stgté2

353

datg 125
in RED_state 92
instruction 125
memory 255
miss 210
non-consistent instruction caghkE25
system 6
call chain
walking, 305
CALL instruction, 19, 33, 34, 35, 151, 172, 304,
306
CALL synthetic instruction299
CANRESTORE, seeestorable windows (CANRE-
STORE) register

CANSAVE, seesavable windows (CANSAVE) reg-

ister

carry (C) bit of condition fields of CCR41

CAS synthetic instructign127, 301

CASA instruction 98, 130, 152, 182, 183, 235,
236, 301

CASX synthetic instruction127, 130, 301

CASXA instruction 98, 130, 152, 182, 183, 235,
236, 301

catastrophic_error exception 89, 91, 98, 99, 113
114, 115

ccOfield of instructions 66, 144, 148, 159, 195

cclfield of instructions 66, 144, 148, 159, 195

cc2field of instructions 66, 195

CCR, seeondition codes (CCR) register

certificate of compliange3

cexg seecurrent exception (cexc) field of FSR reg-

ister

CLE, seecurrent_little-endian (CLE) field of
PSTATE register

clean register window9, 33, 59, 61, 81, 85, 86,
87, 114, 218

clean windows (CLEANWIN) registels9, 61, 81,
82, 85, 86, 88, 212, 243, 261

clean_windowexception 61, 81, 86, 98, 101, 114,
219, 258

clock cycle 52

clock-tick register (TICK) 52, 116, 212, 243, 259

CLR synthetic instruction301

CMP synthetic instructign234, 299

coherencg120, 260
memory, 121, 225
unit, memory 122

compare and swap instructiqQrég, 152

comparison instructign75, 234

compatibility note 4

compatibility with SPARC-V8 4, 19, 30, 40, 43,
56, 59, 75, 77, 84, 104, 114, 115, 116, 121,
142, 145, 160, 170, 171, 174, 179, 181, 187,
216, 225, 227, 231, 233, 234, 238, 240, 242,
246, 324, 338

compatibility with SPARC-V9 137

compliance 8
certificate of 8
certification process8
Level I, 7
Level I, 8
compliant SPARC-V9 implementatip@
concatenation of bit vectar8
concurrency 15
condfield of instructions 66, 141, 144, 147, 148,
189, 195
condition codes153
floating-point 141
integer 41
condition codes (CCR) registe2l, 89, 137, 157,
202, 246
conditional branchesl41, 144, 147
conditional move instruction0
conforming SPARC-V9 implementatip@
const22field of instructions 170
constants
generating 221
contexts
Nucleus 122, 289
control and status register3s
control-transfer instructions (CTIs)9, 157
conventions
software 303
convert between floating-point formats instructipns
162, 248
convert floating-point to integer instructignk61,
250
convert integer to floating-point instructigns63
coprocessqr324
counterfield of TICK register 52
CPom instructions (SPARC-V8)171, 324
cross-domain cgll318
CTI, seecontrol-transfer instructions (CTIS)
current exceptioncexq field of FSR register44,
46, 47, 48, 83, 115, 247, 256
current exception (cexc) field of fsr registet8, 49
current window 9
current window pointer (CWP) registe®, 15, 21,
33, 57, 59, 59, 61, 81, 86, 87, 89, 157, 169,
212, 218, 219, 243 261
current_little_endian (CLE) field of PSTATE regis-
ter, 53, 53, 73, 122
CWP, seeurrent window pointer (CWP) register

D

di6hifield of instructions 66, 138
di16lofield of instructions 66, 138
data access

RED_state 92
data aggregate

argument passed by valug04

354

examples qf 304
data alignment, sesdignment
data cachel25
data flow order constraints
memory reference instruction$24
register reference instruction¥24
data formats
byte, 23
doubleword 23
extended word23
halfword, 23
guadword 23
tagged word 23
word, 23
data memory131
data types23
floating-point 23
signed integer23
unsigned integer23
data_access_error exception 114, 153, 174, 177,
179, 181, 182, 183, 227, 229, 231, 233, 235,
237
data_access_exception exception 114, 153 174,
177,179, 181, 182, 183, 227, 229, 231, 233,
235, 237
data_access MMU_miss exception 114, 153,
174, 177, 179, 181, 182, 183, 211, 227, 229,
231, 233, 235, 237, 258
data_access_protection exception 114, 153, 175,
177, 179, 181, 182, 183, 227, 229, 231, 233
data_protection exception 235, 237
DEC synthetic instructign301
DECcc synthetic instructiqr801
deferred trap95, 95, 96, 99, 256
avoiding 96
floating-point 213
deferred-trap quey®5
floating-point (FQ) 47, 62, 96, 212, 244
integer unif 62
Dekker's algorithm328
delay instruction19, 35, 138, 141, 144, 150, 157,
217, 304, 308
delayed branch63
delayed control transfeB5, 138
deprecated instructions
BCC, 146
BCS, 146
BE, 146
BG, 146
BGE, 146
BGU, 146
Bicc, 146
BLE, 146
BLEU, 146
BN, 146
BNE, 146

BNEG, 146
BPOS 146
BVC, 146
BVS, 146
FBE, 140
FBfcc, 140
FBG, 140
FBGE, 140
FBL, 140
FBLE, 140
FBLG, 140
FBN, 140
FBNE, 140
FBO, 140
FBU, 140
FBUE, 140
FBUGE, 140
FBUL, 140
FBULE, 140
LDDA, 180
LDFSR, 173
MULScc, 202
SDIV, 154
SDIVcce, 154
SMULcc, 200
STFSR 226
SWAP, 235
SWAPA, 236
TSUBccTYV, 238, 239
UDIVcc, 154
UMULcc, 200
destination registerl3
dirty bits, sedower and upper registers dirty (DL
and DU) fields of FPRS register
displ19field of instructions 66, 144, 148
disp22field of instructions 66, 141, 147
disp30field of instructions 66, 151
disrupting traps 95, 96, 97, 98, 256
divide instructions 19, 154, 199
divide-by-zero maski¥ZM) bit of TEM field of
FSR register50
division_by_zeroexception 76, 98, 104, 114, 156,
199
division-by-zero accruedl¢g bit of aexcfield of
FSR register50
division-by-zero currentdzg bit of cexcfield of
FSR register50
DL, seelower registers dirty (DL) field of FPRS
register
DONE instruction 20, 42, 89, 91, 95
doublet 9
doubleword 9, 17, 69, 121
addressing70, 72
in memory 35
doubleword data forma®3

355

DU, seeupper registers dirty (DU) field of FPRS
register

dza seedivision-by-zero accrued (dza) bit of aexc
field of FSR register

dzg seedivision-by-zero current (dzc) bit of cexc
field of FSR register

DZM, seedivide-by-zero mask (DZM) bit of TEM
field of FSR register

E

emulating multiple unsigned condition cod&§
enable floating-point (FEF) field of FPRS register
42,54, 83, 99, 114, 142, 145, 174, 176, 227,
228, 244
enable floating-point (PEF) field of PSTATE regis-
ter, 42, 54, 83, 99, 114, 142, 145, 174, 176,
227, 228, 311
enable RED_state (RED) field of PSTATE register
91
error_state processor state, 90, 91, 94, 105
106, 109, 110, 111, 112 117, 257
exceptions 21, 89
async_data_error, 113, 133, 153, 174, 177,
179, 181, 182, 183, 227, 229, 231, 233,
235, 237
catastrophic 98
catastrophic_error, 89, 91, 99, 113, 114, 115
clean_window, 61, 81, 86, 98, 101, 114, 219,
258
data_access_error, 114, 153, 174, 177, 179,
181, 182, 183 227, 229, 231, 233, 235,
237
data_access_exception, 114, 153, 174, 177,
179, 181, 182, 183, 227, 229, 231, 233,
235, 237
data_access MMU_mis§14, 153, 174, 177,
179, 181, 182, 183, 211, 227, 229, 231,
233, 235, 237, 258
data_access_protection, 114, 153, 175, 177,
179, 181, 227, 229, 231, 233
data_protection, 235, 237
division_by zero, 76, 98, 104, 114, 156, 199
externally_initiated_reset (XIR), 57, 108, 110
fill_n_normal, 98, 114, 217, 219
fill_n_other, 98, 114, 217, 219
floating-point 10, 99
fo_disabled, 16, 42, 83, 98, 114, 142, 145,
158, 160, 161, 162, 163, 164, 165, 166,
174, 176, 177, 191, 193, 197, 227, 228,
229 311
fo_exception, 45
fp_exception_ieee_754£250, 251
fp_exception_ieee_75418, 49

fo_exception_ieee_75444, 48, 99, 100, 104,
115, 158, 160, 161, 162, 163, 165, 166,
247

fo_exception_other 41, 47, 62, 104, 115,
158, 160, 161, 162, 163, 164, 165, 166,
174, 177, 191, 193 214, 227, 229, 247

fo_exception_other, 84

illegal _instruction, 35, 47, 60, 84, 115, 133
139, 150, 157, 168, 170, 171, 174, 179,
181, 197, 198, 205, 213, 214, 216, 220,
227, 230, 231, 232, 233, 242, 244, 246,
256, 257, 258

implementation_dependent_n, 91, 104, 257

instruction_access, 97

instruction_access_error, 98, 115, 133

instruction_access_exception 115 133

instruction_access_ MMU_miss 115, 133

internal_processor_error, 91, 115, 133

invalid_exception, 161

LDDF _mem_address_not_aligned, 69, 98,
115, 174, 177, 227, 229, 259

LDQF_mem_address_not_aligned, 70, 116,
174, 177, 259

mem_address_not_aligned, 69, 98, 116, 153
172, 174, 177, 179, 181, 217, 227, 229,
231, 233, 235, 237

persistence100

power_on_reset (POR) 108, 116

privileged_action, 52, 73, 97, 116, 153, 176,
177, 181, 183, 216, 228, 229, 233 237

privileged_instruction (SPARC-V8) 116

privileged_opcode, 98, 116, 157, 213, 216,
220, 244, 246

r_register_access_error (SPARC-V8) 115

software_initiated reset (SIR), 105

software_initiated_reset, 97

software_initiated_reset (SIR), 97, 111, 116,
224

spill_n_normal, 98, 116, 169, 219

spill_n_other, 116, 169, 219

STDF_mem_address _not_aligned, 69, 98,
116, 227, 229, 259

STQF_mem_address_not_aligned, 70, 116,
227, 229, 260

tag overflow, 76, 98, 104, 117, 238, 240

trap_instruction, 98, 117, 242

unimplemented_LDD, 98, 117, 179, 181, 259

unimplemented_STD, 98, 117, 231, 233, 259

watchdog_reset (WDR), 108

window _fill, 59, 60, 61, 81, 217, 307

window_overflow, 303

window_spill, 59, 61, 307

exceptions, also semp types

execute protectiqrn284

execute unjt123

execute_state90, 105, 106, 110, 111, 117

356

extended word10

extended word addressing0, 72

extended word data forma23

extensions
architectural 7, 323

externally initiated_reset (XIR), 57, 91, 93, 97,
108, 110, 111

F

f registers 16, 36, 100, 247, 257
FABSd instruction 164, 277, 278, 279
FABSq instruction 164, 277, 278, 279
FABSs instruction 164, 277
FADDd instruction 158, 277
FADDq instruction 158, 277
FADDs instruction 158, 277
FBA instruction 141, 280
FBE instruction 140, 280
FBfcc instructions 35, 44, 83, 99, 114, 140, 142,
275, 280
FBG instruction 140, 280
FBGE instruction 140, 280
FBL instruction 140, 280
FBLE instruction 140, 280
FBLG instruction 140, 280
FBN instruction 140, 141, 280
FBNE instruction 140, 280
FBO instruction 140, 280
FBPA instruction 143, 144, 280
FBPcc instructions66
FBPE instruction 143, 280
FBPfcc instructions35, 44, 66, 67, 83, 99, 142,
143, 275, 280
FBPG instruction 143, 280
FBPGE instruction143, 280
FBPL instruction 143, 280
FBPLE instruction 143, 280
FBPLG instruction 143, 280
FBPN instruction 143, 144, 280
FBPNE instruction 143, 280
FBPO instruction 143, 280
FBPU instruction 143, 280
FBPUE instruction 143, 280
FBPUG instruction 143, 280
FBPUGE instruction143, 280
FBPUL instruction 143, 280
FBPULE instruction 143, 280
FBU instruction 140, 280
FBUE instruction 140, 280
FBUG instruction 140, 280
FBUGE instruction 140, 280
FBUL instruction 140, 280
FBULE instruction 140, 280

fce, seefloating-point condition codes (fcc) fields of

FSR register

fcc-conditional branchesl41, 144

fccN, 10

FCMP* instructions 44, 159

FCMPd instruction 159, 248, 279

FCMPE?* instructions 44, 159

FCMPEd instruction159, 248, 279

FCMPE(q instruction159, 248 279

FCMPEs instruction159, 248, 279

FCMPq instruction 159, 248 279

FCMPs instruction159, 248, 279

fcnfield of instructions 157, 206

FDIVd instruction 165, 277

FDIVq instruction 165, 277

FDIVs instruction 165, 277

FdMULq instruction 165, 277

FdTOi instruction 161, 250, 277

FdTOq instruction 162, 248, 277

FdTOs instruction162, 248, 277

FdTOx instruction 161, 277, 278, 279

FEF, seeenable floating-point (FEF) field of FPRS
register

fill register window 33, 59, 60, 81, 82, 85, 86,
87, 114, 218, 219, 220, 318

fill_n_normal exception 98, 114, 217, 219

fill_n_other exception 98, 114, 217, 219

FiTOd instruction 163, 277

FiTOq instruction 163, 277

FiTOs instruction 163, 277

floating-point add and subtract instructipri$8

floating-point compare instructiongd4, 159, 159,
248

floating-point condition code bitsl41

floating-point condition codeddg) fields of FSR
register 43, 46, 47, 100, 141, 144, 159, 247,
294

floating-point data type23

floating-point deferred-trap queue (F@Y, 62, 96,
212, 213 244, 256

floating-point enable (FEF) field of FPRS register
311

floating-point exception10, 99

floating-point move instructionsl64

floating-point multiply and divide instructiond65

floating-point operate (FPop) instructiqrid, 20,
36, 45, 48, 67, 83, 99, 114, 115, 174

floating-point queue, sdating-point deferred-
trap queue (FQ)

floating-point registers40, 247, 257, 306

floating-point registers state (FPRS) regist,
216, 246

floating-point square root instruction$66

floating-point state (FSR) registet3, 48, 51, 174,
226, 227, 247, 250, 251, 256

floating-point trap typeftt) field of FSR register
10, 43, 45, 48, 62, 83, 115, 213, 227, 247,
250, 251

357

floating-point trap types
fp_disabled, 54
FPop_unfinished, 84
FPop_unimplemented, 84
hardware_error, 10, 46, 47
IEEE_754_exceptign250, 251
IEEE_754 exception, 10, 46, 46, 48, 51, 100,
115, 247
invalid_fp_register, 10, 41, 46, 158, 160, 161,
162 163, 164, 165, 166, 174, 177, 191,
193, 227, 229
numeric values46
sequence_error, 46, 47, 62, 213, 214
unfinished_FPop, 10, 46, 47, 51, 247, 255
unimplemented_FPop, 10, 46, 47, 51, 191,
213, 247, 255
floating-point traps
deferred 213
precise 213
floating-point unit (FPU) 10, 16
FLUSH instruction 131, 167, 255, 260, 310, 326
in multiprocess environmeni.32
flush instruction memory instructiori67, 326
FLUSH latency 260
flush register windows instructiori69
FLUSHW instruction 20, 82, 86, 87, 116, 169,
305
FMOVA instruction 188
FMOVCC instruction 188
FMOVcc instructions42, 44, 66, 67, 79, 83, 188,
191, 196, 197, 280
FMOVccd instruction 279
FMOVccq instruction 279
FMOVccs instruction 279
FMOVCS instruction 188
FMOVd instruction 164, 277, 278, 279
FMOVE instruction; 188
FMOVFA instruction 188
FMOVFE instructior) 188
FMOVFG instruction 188
FMOVFGE instruction 188
FMOVFL instruction 188
FMOVFLE instruction 188
FMOVFLG instruction 188
FMOVEN instruction 188
FMOVFENE instructior 188
FMOVFO instruction 188
FMOVFU instruction 188
FMOVFUE instructior 188
FMOVFUG instruction 188
FMOVFUGE instruction 188
FMOVFUL instruction 188
FMOVFULE instruction 188
FMOVG instruction 188
FMOVGE instruction 188
FMOVGU instruction 188

FMOVL instruction 188

FMOVLE instruction 188

FMOVLEU instruction 188

FMOVWN instruction 188

FMOVNE instruction; 188

FMOVNEG instruction 188

FMOVPOS instruction188

FMOV(q instruction 164, 277, 278, 279

FMOVTr instructions 67, 83, 192

FMOVRGEZ instruction 192

FMOVRGZ instruction 192

FMOVRLEZ instruction 192

FMOVRLZ instruction 192

FMOVRNZ instruction 192

FMOVRZ instruction 192

FMOVs instruction 164, 277

FMOVVC instruction 188

FMOVVS instruction 188

FMULA instruction 165, 277

FMULq instruction 165, 277

FMULSs instruction 165, 277

FNEGd instruction 164, 277, 278, 279

FNEGq instruction 164, 277, 278, 279

FNEGs instruction164, 277

formats
instruction 63

fo_disabledfloating-point trap typel6, 42, 54, 83,
98, 114, 142, 145, 158, 160, 161, 162, 163,
164, 165, 166, 174, 176, 177, 191, 193, 197,
227, 228, 229, 311

fp_exception exceptiqr250, 251

fo_exception exception 45, 48

fp_exception_ieee_754 exceptjdtb0, 251

fp_exception_ieee_754 exceptjofB, 49

fo_exception_ieee_754 exception 44, 48, 99, 100,
104, 115, 158, 160, 161, 162, 163, 165, 166,
247

fo_exception_otherexception 41, 47, 62, 84, 104,
115, 158, 160, 161, 162, 163, 164, 165, 166,
174, 177, 191, 193, 213, 214, 227, 229, 247

FPop instructions, sdmating-point operate (FPop)
instructions

FPop_unimplemented floating-point trap type84

FPopl instructions10

FPop2 instructions10

FPRS, se#loating-point register state (FPRS) reg-
ister

FPU, sedloating-point unit

FQ, sedloating-point deferred-trap queue (FQ)

FgTOd instruction 162, 248, 277

FgTOi instruction 161, 250, 277

FgTOs instruction162, 248 277

FgTOx instruction 161, 277, 278, 279

frame pointer register304

freg, 294

FsMULd instruction 165, 277

358

FSQRTd instruction166, 277
FSQRTq instruction166, 277
FSQRTs instruction166, 277

FsTOd instruction162, 248, 277
FsTOi instruction 161, 250, 277
FsTOq instruction162, 248, 277
FsTOx instruction 161, 277, 278, 279
FSUBd instruction 158, 277

FSUB(instruction 158, 277

FSUBSs instruction158, 277

ftt, seefloating-point trap type (ftt) field of FSR reg-

ister
function return valug304
functional choice
implementation-dependen254
FxTOd instruction 163, 277, 278, 279
FxTOq instruction 163, 277, 278, 279
FxTOs instruction 163, 277, 278, 279

G

generating constant221
globalregisters 4, 15, 30, 30, 30, 305

H

halfword, 10, 17, 69, 121
addressing70, 71, 72
data format 23
halt, 105
hardware
dependency253
traps 101
hardware_error floating-point trap typel0, 46, 47
has 7
hexlet 10

i field of instructions 66, 137, 154, 167, 169, 172,
173,176, 178, 180, 182, 183, 184, 195, 198,
199, 200, 202, 205, 206, 215, 217

I/O, seeinput/output (I/O)

i_or_x_cG 294

icc field of CCR reqisterdl, 42, 137, 147, 149,
155, 156, 184, 196, 200, 202, 203, 234, 238,
242

icc-conditional branchesl47

IE, seenterrupt enable (IE) field of PSTATE regis-

ter
IEEE Std 754-198510, 15, 44, 46, 47, 50, 51,
84, 247, 249, 251, 255, 256
IEEE_754_exception floating-point trap ty,i250,
251

IEEE_754_exception floating-point trap typgl0,
46, 46, 48, 51, 100, 115, 247

IER register (SPARC-V8)246

illegal_instruction exception 35, 47, 60, 84, 115
133 139, 150, 157, 168, 170, 171, 174, 179,
181, 197, 198, 205, 211, 213, 214, 216, 220,
227, 230, 231, 232, 233, 242, 244, 246, 256,
257, 258

ILLTRAP instruction 115, 170, 275

imm_asifield of instructions 67, 73, 152, 173,
176, 178, 180, 182, 183 206

imm22field of instructions 66

IMPDEP instructions, seenplementation-depen-
dent (IMPDEPN) instructions

IMPL, 171

impl field of VER registey 45

impl_dep (PID) fields of PSTATE registes3

implementation 10

implementation dependency, 253

implementation note4

implementation numbeiripl) field of VER regis-
ter, 58

implementation_dependent_n exception 91, 104,
115, 257

implementation-dependent0
assigned value (ap54
functional choice (g)254
total unit (t) 254
trap, 108
value (v) 254

implementation-dependent (IMPDBFnstruc-
tions, 84, 171, 259, 323

implicit
ASI, 73
byte ordey 53

in registers 15, 30, 33, 218, 303

INC synthetic instruction301

INCcc synthetic instructign301

inexact accruednxa) bit of aexcfield of FSR regis-
ter, 51, 250

inexact currentr{xc bit of cexcfield of FSR regis-
ter, 51, 250

inexact maskNXM) bit of TEM field of FSR regis-
ter, 50

inexact quotient154, 155

infinity,, 250, 251

initiated, 11

input/output (1/O) 6, 18

input/output (1/O) locations120, 121, 130, 255,
260
order, 121
value semantigsl21

instruction
access in RED_stat&2
alignment 17, 69, 121
cache 125

359

dispatch 98

execution 98

fetch, 69

formats 4, 63

memory 131

reordering 124

instruction fields 11

a, 66, 138, 141, 147, 148, 152

ccO, 66, 144, 148, 159, 195

ccl, 66, 144, 148, 159, 195

cc2, 66, 195

cond 66, 141, 144, 147, 148, 189, 195

const22 170

di6hi, 66, 138

di6lo, 66, 138

displ9 66, 144, 148

disp22 66, 141, 147

disp3Q 66, 151

fcn, 157, 206

i, 66, 137, 154, 167, 169, 172, 173,176, 178,
180, 182, 183, 184, 195, 198, 199, 200,
202, 205, 206, 215, 217

imm_asj 67, 73, 152, 173, 176, 178, 180,
206

imm22 66

mmask 67, 225

op3, 67, 137, 152, 154, 157, 167, 169, 172
173, 176, 178, 180, 182, 183, 184, 199,
200, 202, 206, 212, 215, 217

opf, 67, 158, 159, 161, 162 163 164, 165,
166

opf_cg 67, 189

opf_low, 67, 189, 192

p, 67, 138 139, 144, 148

rcond, 67, 138, 192, 198

rd, 13, 67, 137, 152, 154, 158, 161, 162
163, 164, 165, 166, 172, 173, 176, 178,
180, 182, 183, 184, 189, 192, 195, 198,
199, 200, 202, 205, 212, 215, 323

reg_or_imm 323

reserved 133

rsl, 13, 67, 137, 138, 152, 154, 158, 159,
165, 167, 172, 173, 176, 178, 180, 182,
183, 184, 192, 198, 199, 200, 202, 206,
212, 215, 217, 323

rs2, 13, 68, 137, 152, 154, 158, 159, 161,
162, 163, 164, 165, 166, 167, 172, 173,
176, 178, 180, 182, 183, 184, 189, 192,
195, 198, 199, 200, 202, 205, 206, 217

simm1Q 68, 198

simm1] 68, 195

simm13 68, 137, 154, 167, 172, 173, 176,
178, 180, 182, 183, 184, 199, 200, 202,
205, 206, 217

Sw_trap# 68

undefineq 171

instruction set architectur®, 10, 11
instruction_access exception 97
instruction_access_error exception 98, 115, 133
instruction_access_exception exception 115, 133
instruction_access_MMU_miss exception, 115, 133
instructions
atomig 152
atomic load-storg69, 98, 152, 182, 183, 235,
236
branch if contents of integer register match con-
dition, 138
branch on floating-point condition codes40
branch on floating-point condition codes with
prediction 143
branch on integer condition codeist6
branch on integer condition codes with predic-
tion, 148
compare and swa®8, 152
comparison 75, 234
conditional move 20
control-transfer (CTIs)19, 157
convert between floating-point formats62,
248
convert floating-point to integed 61, 250
convert integer to floating-poini.63
divide, 19, 154, 199
floating-point add and subtract58
floating-point comparg44, 159, 159, 248
floating-point move 164
floating-point multiply and divide165
floating-point operate (FPopRO0, 45, 48, 99,
174
floating-point square roptl66
flush instruction memoryl67, 326
flush register windows169
implementation-dependent (IMPDRER 84,
171
jump and link 19, 172
load, 325
load floating-point 69, 173
load floating-point from alternate spackr6
load integer 69, 178
load integer from alternate spade30
load-store unsigned byt®8, 152, 182, 235,
236
load-store unsigned byte to alternate spd@&3
logical, 184
move floating-point register if condition is true
188
move floating-point register if contents of inte-
ger register satisfy conditiori92
move integer register if condition is satisfjed
194
move integer register if contents of integer reg-
ister satisfies conditign1 98
move on condition5

360

multiply, 19, 199, 200, 200
multiply step 19, 202
prefetch data206
read privileged registe212
read state registeR0, 215
register window managemerzO
reserved 84
reserved fields133
shift, 19, 222
software-initiated resef24
store 325
store floating point69
store floating-point 226
store floating-point into alternate spa@&28
store integer69, 230, 232
subtract 234
swapr register with alternate space memory
236
swapr register with memory235
synthetig 299
tagged add238
tagged arithmetic19
test-and-set131
timing, 133
trap on integer condition code241
write privileged register243
write state register245
integer condition codes, sax field of CCR register
integer divide instructions, sekvide instructions
integer multiply instructions, sewaultiply instruc-
tions
integer unit (IU) 11, 11, 15
integer unit deferred-trap queué?
internal_processor_error exception 91, 115, 133
and RED_state93
interrupt enable (IE) field of PSTATE registes5,
96, 99, 115
interrupt leve] 56
interrupt requestll, 21, 89, 133
interrupts 56
invalid accruedrfva) bit of aexcfield of FSR regis-
ter, 50
invalid current (v bit of cexcfield of FSR regis-
ter, 50, 250, 251
invalid mask NVM) bit of TEM field of FSR regis-
ter, 50
invalid_exception exception 161
invalid_fp_register floating-point trap type 10, 41,
46, 158 160, 161, 162 163 164, 165, 166,
174, 177, 191, 193 227, 229
IPREFETCH synthetic instructior299
ISA, seeinstruction set architecture
issue unif 123, 124
issued 11
italic font
in assembly language syn{a393

IU, seeinteger unit

J

JMP synthetic instructigr299

JMPL instruction 19, 33, 35, 116, 172, 217, 299,
306

jump and link instruction19, 172

L

LD instruction (SPARC-V8)179

LDA instruction (SPARC-V8) 181

LDD instruction 35, 98, 117, 178, 259

LDDA instruction, 35, 62, 98, 180, 259

LDDF instruction 69, 98, 115, 173

LDDF_mem_address_not_aligned exception 69,
98, 115, 174, 177, 229, 259

LDDFA instruction 69, 98, 176

LDF instruction 173

LDFSR instruction 43, 44, 45, 48, 51, 173

LDQF instruction 70, 116, 173

LDQF_mem_address_not_aligned exception 70,
116, 174, 177, 259

LDQFA instruction 70, 176

LDSB instruction 178

LDSBA instruction 180

LDSH instruction 178

LDSHA instruction 180

LDSTUB insruction 69

LDSTUB instruction 98, 127, 131, 182, 329

LDSTUBA instruction 98, 183

LDSW instruction 178

LDSWA instruction 180

LDUB instruction 178

LDUBA instruction, 180

LDUH instruction 178

LDUHA instruction, 180

LDUW instruction 178

LDUWA instruction, 180

LDX instruction, 98, 178

LDXA instruction, 98, 180

LDXFSR instruction 43, 44, 45, 48, 51, 173

leaf procedurgll, 81, 306, 306
optimization 307, 308

Level | compliance 7

Level Il compliance 8

little-endian byte orderll, 17, 53

load floating-point from alternate space instruc-
tions, 176

load floating-point instructionsl 73

load instructions 69, 325

load integer from alternate space instructjd0

load integer instructionsl78

LoadLoad MEMBAR relationshipl127, 187

loads

361

non-faulting 123, 123
loads from alternate space8, 51, 73, 343
load-store alignmentl?7, 69, 121
load-store instructionsl?7, 98
compare and swa®8, 152
load-store unsigned bytd52, 182, 235, 236
load-store unsigned byte to alternate spd@&3
swapr register with alternate space memory
236
swapr register with memory152, 235
LoadStore MEMBAR relationshjpl27, 128 187
local registers 15, 30, 33, 218, 304, 309
logical instructions 184
Lookaside MEMBAR relationshipl87
lower registers dirty (DL) field of FPRS registet3

M

manual
audience 1
fonts, 3
where to startl
manufacturerrfanuj field of VER register 58,
259
mask numbermash field of VER register 59
maximum trap levelsnfaxt) field of VER registey
59
MAXTL , 55, 90, 106, 224
maxtl seemaximum trap levels (maxtl) field of VER
register
may, 11
mem_address_not_aligned exception 69, 98, 116,
153 172, 174, 177, 179, 181, 217, 227, 229,
231, 233 235, 237
MEMBAR instruction 67, 75, 121, 125, 126—
128, 129, 131, 167, 186, 215, 225, 326
membar_mask297
Memlssue MEMBAR relationshjpl87
memory
alignment 121
atomicity, 260
coherencel120, 121, 260
coherency unjt122
datg 131
instruction 131
ordering unit 121
page 283
real 120, 121
stack layout 306
memory access instructigns7
memory management unit (MMUB, 114, 115
255, 293
address translatiQr288
ASl input, 285
atomic input 285
context 283

Data / Instr input 285

diagram 285

disabled 207

disabling 284

fault address290

fault status 290

in RED_state 92

memory protection288

modified statistics 284, 290
NF-Load_violation outpyt287
No_translation output286
Non-faultable attribute286
Nucleus Context289

Prefetch input 285
Prefetch_violation output287
Prefetchable attribute286

Primary Context288

Privilege inpuf 285
Privilege_violation outpyt287, 288
Protection_violation output287, 288
Read / Write inpyt285

Read, Write, and Execute attribut@86
RED_state 92, 290

RED_state inpyt285

referenced statistic284, 290
Restricted attribute286
Secondary Contex288
Translation_error outpuf86
Translation_not_valid outpu286
Translation_successful outpu87

memory model 119-132

barrier synchronizatign335, 336

Dekker's algorithm 328

issuing order 332

mode contrgl 129

mutex (mutual exclusion) lock$28

operations 325

overview, 119

partial store order (PSQ)119, 128, 130, 260,
325

portability and recommended programming
style, 326

processors and process826

programming with 325-337

relaxed memory order (RMQ)L19, 128, 130,
260, 325

sequential consistency 20

SPARC-V9 128

spin lock 329

strong 120

strong consistengyl20, 327, 332

total store order (TSQP2, 119, 129, 130, 325

weak 120

memory operations

atomig 130

memory order 125

362

program order124
memory reference instructions
data flow order constraint424
memory_model (MM) field of PSTATE register
54, 92, 125, 129, 130, 260
microkerne) 319
MM, seememory_model (MM) field of PSTATE
register
mmaskield of instructions 67, 225
MMU, seememory management unit (MMU)
mode
nonprivileged 6, 15, 74
privileged 15, 52, 84, 122
uset 30, 51, 305
MOV synthetic instruction301
MOVA instruction, 194
MOVCC instruction 194
MOVcc instructions 42, 44, 66, 68, 79, 191, 194,
196, 197, 280
MOVCS instruction 194
move floating-point register if condition is tru&88

move floating-point register if contents of integer

register satisfy conditignl92

MOVE instruction 194

move integer register if condition is satisfied in-
structions 194

MOVTr instructions 68, 80, 198

MOVRGEZ instruction 198

MOVRGZ instruction 198

MOVRLEZ instruction 198

MOVRLZ instruction 198

MOVRNZ instruction 198

MOVRZ instruction 198

MOVVC instruction 194

MOVVS instruction 194

MULScc (multiply step) instruction19, 202

multiple unsigned condition codes
emulating 80

multiply instructions 19, 199, 200, 200

multiply step instruction, sedULScc (multiply
step) instruction

multiply/divide register, se¥ register

multiprocessor synchronization instructiomis
152, 235, 236

multiprocessor systen®d, 125 167, 209, 210,
235, 236, 260

MULX instruction, 199

must 11

mutex (mutual exclusion) lock$28

N

move integer register if contents of integer register N condition code bit, sesegative (N) bit of condi-

satisfies condition instructiond 98
move on condition instruction®
MOVFA instruction 194
MOVFE instruction 194
MOVFG instruction 194
MOVFGE instruction 194
MOVFL instruction 194
MOVFLE instruction 194
MOVFLG instruction 194
MOVEN instruction 194
MOVENE instruction 194
MOVFO instruction 194
MOVFU instruction 194
MOVFUE instruction 194
MOVFUG instruction 194
MOVFUGE instruction 194
MOVFUL instruction 194
MOVFULE instruction 194
MOVG instruction 194
MOVGE instruction 194
MOVGU instruction 194
MOVL instruction, 194
MOVLE instruction 194
MOVLEU instruction 194
MOVN instruction 194
MOVNE instruction 194
MOVNESG instruction 194
MOVPOS instruction 194
MOVTr instruction 67

tion fields of CCR
NaN (not-a-number)161, 248 250
quiet 159, 160, 248
signaling 44, 159, 160, 162, 248
NEG synthetic instructign301
negative) bit of condition fields of CCR41
negative infinity 250, 251
nested trapsb
next program counter (nPC) 1, 21, 35, 35, 57,
63, 95, 97, 157, 204, 320
non-faulting loag 11, 123 123 123
non-leaf routing 172
nonprivileged
mode 6, 9, 12, 15, 45, 74
registers 30
software 42
nonprivileged trap (NPT) field of TICK register
52, 216
nonstandard floating-point (NS) field of FSR regis-
ter, 44, 45, 251, 256
nonstandard modes
in FPU, 44
non-virtual memory 209
NOP instruction 141, 144, 147, 204, 206, 221,
242
normal traps 90, 101, 106, 106, 108
NOT synthetic instruction301
note
compatibility, 4

363

implementation 4
programming 4

nPC, seaext program counter (nPC)

NPT, seenonprivileged trap (NPT) field of TICK
register)

NS, seenonstandard floating-point (NS) field of
FSR register

Nucleus Context122, 289

number of windowsriaxwin field of VER register
59, 87

nva, seenvalid accrued (nva) bit of aexc field of
FSR register

nvg seeanvalid current (nvc) bit of cexc field of FSR
register

NVM, seeinvalid mask (NVM) bit of TEM field of
FSR register

NWINDOWS, 12, 15, 32, 33, 59, 218, 219, 255,
261

nxa, seeinexact accrued (nxa) bit of aexc field of
FSR register

nxg sedanexact current (nxc) bit of cexc field of FSR
register

NXM, seeinexact mask (NXM) bit of TEM field of
FSR register

O

object-oriented programming

octlet, 12

ofa, seeoverflow accrued (ofa) bit of aexc field of
FSR register

ofc, seeoverflow current (ofc) bit of cexc field of
FSR register

OFM, seeoverflow mask (OFM) bit of TEM field of
FSR register

op3field of instructions 67, 137, 152, 154, 157,
167, 169, 172, 173, 176, 178, 180, 182, 183,
184, 199, 200, 202, 206, 212, 215, 217

opcode 12
reserveg 323

opffield of instructions 67, 158, 159, 161, 162,
163, 164, 165, 166

opf_ccfield of instructions 67, 189

opf_lowfield of instructions 67, 189, 192

optimized leaf procedure, skmf procedure (opti-
mized)

OR instruction 184, 301

ORcc instruction 184, 299

ordering unit
memory, 121

ORN instruction 184

ORNCcc instruction 184

other windows (OTHERWIN) registeb9, 60, 61,
82, 85, 86, 87, 169, 212, 219, 243 261, 319

outregister #7 34, 151, 172, 216

outregisters 15, 30, 33, 218 303

overflow, 86
window, 318

overflow (V) bit of condition fields of CCR41, 76

overflow accrueddfa) bit of aexcfield of FSR reg-
ister, 50

overflow current ¢fc) bit of cexcfield of FSR regis-
ter, 50

overflow mask QFM) bit of TEM field of FSR reg-
ister, 50

P

p field of instructions 67, 138, 139, 144, 148
page attributes283
page descriptor cache (PQQ)14, 115
page faulf 209
page-level protection84
parameters to a subroutjng04
parity errof 115
partial store order (PSO) memory maded, 119,
120, 128, 130, 260, 325
PC, seg@rogram counter (PC)
PDC, segage descriptor cache (PDC)
PEF, seenable floating-point (PEF) field of
PSTATE register
physical addressl20, 283, 284
PIDO, PID1 fields of PSTATE registeb3
PIL, seeprocessor interrupt level (PIL) register
POPC instruction205
positive infinity, 250, 251
power failure 97, 110
power-on reset52, 92, 93, 97, 109
power-on reset (POR) traft08
power-on_reset9l
precise floating-point trap213
precise trap94, 95, 95, 96, 256
predict bit 139
prefetch
for one rea@d 208
for one write 209
for several read208
for several writes208
implementation depender209
instruction 209
page 209
prefetch data instructior206
PREFETCH instruction69, 149, 206, 258
prefetch_fcn 297
PREFETCHA instruction206, 258
prefetchable 12
PRIV, seeprivileged (PRIV) field of PSTATE regis-
ter
privileged 11, 12
mode 12, 15, 52, 84, 122, 224
registers 52

364

software 6, 33, 45, 54, 73, 101, 169, 258,
290
privileged (PRIV) field of PSTATE registed 4,
55, 116, 122, 153, 176, 183, 216, 228, 233,
236
privileged_action exception 52, 73, 97, 116, 153,
176, 177, 181, 183, 216, 228, 229, 233, 237
privileged_instruction exception (SPARC-V§)116
privileged_opcode exception 98, 116, 157, 213,
216, 220, 244, 246
processqrl2, 15
execute unjt123
halt, 94, 105
issue unif 123, 124
model 123
reorder unif 123
self-consistency124
state diagram90
processor interrupt level (PIL) registes6, 96, 99,
100, 115, 212, 243
processor state (PSTATE) registéd, 30, 53, 53,
57, 89, 91, 157, 212, 243
CLE field and implicit ASIs 73
processor states
error_state57, 91, 94, 105, 106, 109, 110,
111, 112, 117, 257
execute_statel05, 106, 110, 111, 117
RED_state 90, 91, 94, 101, 105, 106, 108,
109, 110, 111, 112, 117, 130, 260
program counter (PCY12, 21, 35, 35, 56, 63, 89,
95, 97, 151, 157, 172, 204, 320
program order124, 124
programming note4
protection
execute 284
read 284
write, 284
PSO, segartial store ordering (PSO) memory mod-
el
PSR register (SPARC-VB8P46
PTD, seepage table descriptor (PTD)
PTE, segage table entry (PTE)

Q

gne seequeue not empty (gne) field of FSR register

quadlet 12

quadword 12, 17, 69, 121
addressing71, 72
data format 23

gueue not emptygne field of FSR register47, 48,
62, 213, 214, 244, 247

quiet NaN (not-a-numberj4, 159, 160, 248

R

r register 30
#15, 34, 151, 172
alignment 179, 181

r registers 255

r_register_access_error exception (SPARC-V8)
115

rcondfield of instructions 67, 138, 192, 198

rd field of instructions 13, 67, 137, 152, 154, 158,
161, 162 163, 164, 165, 166, 172, 173 176,
178, 180, 182, 183 184, 189, 192, 195, 198
199, 200, 202, 205, 212, 215, 323

RD, seerounding direction (RD) field of FSR regis-
ter

RDASI instruction 215

RDASR instruction 18, 62, 215, 225, 258, 301,
323

RDCCR instruction 215

RDFPRS instruction215

RDPC instruction 35, 215

RDPR instruction47, 48, 52, 53, 59, 62, 85, 212,
216

RDTICK instruction 215, 216

RDY instruction 36, 215, 301

read privileged register instructipf12

read protection284

read state register instructiqriz), 215

read-after-write memory hazaril24

real memory 120, 121

real-time softwarge310

RED, seeenable RED_state (RED) field of PSTATE
register

RED_state 13, 90, 91, 94, 101, 105, 106, 108,
109, 110, 111, 112, 117, 284
andinternal_processor_error exception 93
cache behavigro2
cache coherence,i92
data acces92
instruction accesH?2
memory management unit (MMU),i®2
restricted environmen®2

RED_state (RED) field of PSTATE registéi4,
91, 93

RED_state processor state30, 260

RED_state trap tabjel01

RED_state trap vectp®1, 92, 260

RED_state trap vector address (RSTVada60

reference MMU 6, 293

references347

reg, 293

reg_or_imm 298

reg_or_immfield of instructions 298 323

reg_plus_imm297

regaddr, 297

register

365

allocation within a window309
destination 13
renaming mechanisni24
sets 29, 33
window usage models310
register reference instructions
data flow order constraint424
register window management instructip@¢
register windows4, 5, 15, 33, 303 305
clean 9, 59, 61, 81, 85, 86, 87, 114
fill, 33, 59, 60, 81, 82, 85, 86, 87, 114, 219,
220
spill, 33, 59, 60, 81, 82, 85, 86, 87, 116, 219,
220
registers
address space identifier (ASB9, 122, 157,
176, 181, 183, 207, 228, 233, 236, 246,
318
alternate global 15, 30, 30, 318
ancillary state registers (ASR<)8, 36, 61,
254, 323
ASI, 51, 57, 73
clean windows (CLEANWIN) 59, 61, 81, 82,
85, 86, 88, 212, 243, 261
clock-tick (TICK), 116
condition codes register (CCR)7, 89, 137,
157, 202, 246
control and statys29, 35
current window pointer (CWRL5, 33, 57,
59, 59, 61, 86, 87, 89, 157, 169, 212,
218, 219, 243 261
f, 36, 100, 247, 257
floating-point 16, 40, 257, 306
floating-point deferred-trap queue (F@13
floating-point registers state (FPRS3)2, 216,
246
floating-point state (FSR$¥3, 48, 51, 174,
226, 247, 250, 251, 256
frame pointey 304
global, 4, 15, 30, 30, 30, 305
IER (SPARC-V8) 246
in, 15, 30, 33, 218, 303
input/output (1/0) 18, 254
local, 15, 30, 33, 218, 304, 309
nonprivileged 30
other windows (OTHERWIN)59, 60, 61, 82,
85, 86, 87, 169, 212, 219, 243 261, 319
out, 15, 30, 33, 218, 303
out#7, 34, 151, 172, 216
privileged 52
processor interrupt level (PILb6, 212, 243
processor state (PSTATE3O, 53, 53, 57, 89,
157, 212, 243
PSR (SPARC-V8)246
PSTATE 91
r, 30, 255

r register
#15, 34, 151, 172, 216
restorable windows (CANRESTOREL6, 33,
59, 60, 61, 81, 82, 85, 86, 212, 219, 220,
243 261, 319
savable windows (CANSAVE)6, 33, 59,
60, 81, 82, 86, 87, 169, 212, 219, 220,
243 261
stack pointer 303, 305
TBR (SPARC-V8) 246
TICK, 52, 212, 243
trap base address (TBA}4, 58, 89, 100, 212,
243
trap level (TL) 55, 55, 56, 57, 58, 59, 61, 89,
94, 157, 212, 213 220, 224, 243, 244
trap next program counter (TNPG7, 95,
113 212 243
trap program counter (TPC%6, 95, 113, 212,
213, 243
trap state (TSTATE)53, 57, 157, 212, 243
trap type (TT) 57, 58, 61, 101, 105, 110,
111, 212, 242, 243, 257
version register (VER)58, 212
WIM (SPARC-V8), 246
window state (WSTATE)59, 61, 86, 169,
212, 219, 243, 318, 319
working, 29
Y, 35, 36, 154, 200, 202, 246
relaxed memory order (RMO) memory madgj
54, 119 128 130, 260, 325
renaming mechanism
register 124
reorder unif 123
reordering
instruction 124
reserved 13
fields in instructions 133
opcodes 323
reset
externally initiated (XIR) 91, 93, 97, 111
externally_initiated (XIR), 91
externally _initiated_reset (XIR), 57, 110
power_on_reset (POR) trap 116
power-on 52, 91, 92, 93, 97, 109
processing91
request 91, 116
reset
trap, 52, 57, 96, 97
software_initiated (SIR), 91
software_initiated_reset (SIR), 97, 111, 116
software-initiateg 93, 97, 105
trap, 13, 52, 95, 97, 105, 257
trap table 13
watchdog 57, 91, 93, 94, 97, 109, 110, 111
Reset, Error, and Debug sta8

366

restorable windows (CANRESTORE) registés,
33,59, 60, 61, 81, 82, 85, 86, 212, 219, 220,
243, 261, 319

RESTORE instruction6, 20, 33, 35, 59, 60, 81,
85, 86, 114, 218, 305, 307, 308, 310

RESTORE synthetic instructior299

RESTORED instruction20, 82, 87, 219, 220, 318

restricted 13

restricted address space identifiéB, 74, 256

RET synthetic instructign299, 308

RETL synthetic instruction299, 308

RETRY instruction 20, 42, 87, 89, 91, 95, 96,
97, 157, 219

return address304, 307

return from trap (DONE) instruction, S&ONE in-
struction

return from trap (RETRY) instruction, sB&TRY
instruction

RETURN instruction 19, 35, 114, 116, 217, 319

RMO, seeelaxed memory ordering (RMO) memo-

ry model

rounding
in signed division 155

rounding direction (RD) field of FSR registet4,
158, 161, 162, 163 165, 166

routine
non-leaf 172

rsl field of instructions 13, 67, 137, 138, 152,
154, 158, 159, 165, 167, 172, 173, 176, 178,
180, 182, 183, 184, 192, 198, 199, 200, 202,
206, 212, 215, 217, 323

rs2 field of instructions 13, 68, 137, 152, 154,
158, 159, 161, 162, 163, 164, 165, 166, 167,
172,173,176, 178, 180, 184, 189, 192, 195,
198, 199, 200, 202, 205, 206

RSTVaddy 92, 101, 260

S

savable windows (CANSAVE) registet6, 33, 59,
60, 81, 82, 86, 87, 169, 212, 219, 220, 243,
261

SAVE instruction 6, 20, 33, 35, 59, 60, 61, 81,
85, 86, 87, 114, 116, 172, 217, 218, 304,
305, 307, 308, 310

SAVE synthetic instruction299

SAVED instruction 20, 82, 87, 219, 220, 318

SDIV instruction 36, 154

SDIVcc instruction 36, 154

SDIVX instruction 199

self-consistency
processagr124

self-modifying code 167, 310

sequence_error floating-point trap typge10, 46,
47, 62, 115, 213, 214

sequential consistency memory mqde20

SET synthetic instructiqr299

SETHI instruction 19, 66, 76, 204, 221, 275,
299 306

shall (special term)13

shared memoryl19, 327, 328, 329, 334

shift instructions 19, 75, 222

should (special term)13

side effects 13, 120, 121, 123

signal handler, seteap handler

signal monitor instruction224

signaling NaN (not-a-numberf4, 159, 160, 162,
248

signed integer data typ@3

sign-extended 64-bit constar@8

sign-extension301

SIGNX synthetic instruction301

simm210field of instructions 68, 198

simm2l1field of instructions 68, 195

simm213field of instructions 68, 137, 154, 167,
172,173,176, 178, 180, 182, 183, 184, 199,
200, 202, 205, 206, 217

SIR instruction 89, 97, 111, 116, 224

SIR, seesoftware_initiated_reset (SIR)

SIR_enable control flag224, 260

SLL instruction 222

SLLX instruction 222, 299

SMUL instruction 36, 200

SMULcc instruction 36, 200

software conventions303

software trap 101, 101, 242

software_initiated_reset (SIR), 91, 97, 105, 108,
111, 116, 224

software_trap_number298

software-initiated_reseg®3, 97

SPARC Architecture Committed

SPARC-V8 compatibility 4, 19, 30, 40, 43, 56,
59, 75, 77, 84, 104, 114, 115, 116, 121, 137,
142, 145, 160, 170, 171, 174, 179, 181, 187,
216, 225, 227, 231, 233, 234, 238, 240, 242,
246, 324, 338

SPARC-V9 Application Binary Interface (ABJ),
7, 74

SPARC-V9 features4

SPARC-V9 memory models 28

SPARC-V9-NR 7

special terms
shall, 13
should 13

special traps90, 101

speculative load13

spill register window 33, 59, 60, 81, 82, 85, 86,
87, 116, 219, 220, 318

spill windows 218

spill_n_normal exception98, 116, 169, 219

spill_n_other exception116, 169, 219

spin lock 329

367

SRA instruction 222, 301

SRAX instruction 222

SRL instruction 222

SRLX instruction 222

ST instruction 301

stack frame 218

stack pointer alignmenB06

stack pointer registe303, 305

STB instruction 230, 232, 301

STBA instruction 230, 232

STBAR instruction 75, 125, 127, 187, 215, 225

STD instruction 35, 98, 117, 230, 232, 259

STDA instruction 35, 62, 98, 230, 232, 259

STDF instruction 69, 116, 226

STDF_mem_address_not_aligned exception 69,
98, 116, 227, 229, 259

STDFA instruction 69, 98, 228

STF instruction 226

STFSR instruction43, 44, 45, 48, 51, 226

STH instruction 230, 232, 301

STHA instruction 230, 232

store floating-point instruction®226

store floating-point into alternate space instructjons
228

store instructions69, 325

store integer instruction®30, 232

StoreLoad MEMBAR relationshjpl27, 187

stores to alternate spachks, 51, 73, 343

StoreStore MEMBAR relationshjil27, 187

STQF instruction 70, 116, 226

STQF_mem_address_not_aligned exception 70,
116, 227, 229, 260

STQFA instruction 70, 228

strong consistency memory modé&R0, 327, 332

strong ordering, sestrong consistency memory
model

STW instruction 230, 232

STWA instruction 230, 232

STX instruction 98, 230, 232

STXA instruction 98, 230, 232

STXFSR instruction43, 44, 45, 48, 51, 226

SUB instruction 234, 301

SUBC instruction 234

SUBcc instruction 75, 234, 299

SUBCcc instruction234

subtract instructions234

SUBX instruction (SPARC-V8§)234

SUBXcc instruction (SPARC-V8)234

supervisor softwarel3, 18, 30, 31, 46, 47, 48,
62, 89, 95, 105, 111, 244, 249, 255, 303,
317, 318, 319

supervisor-mode trap hand|er01

sw_trap#field of instructions 68

SWAP instruction 69, 127, 131, 182, 183, 235,
329

swapr register with alternate space memory instruc-
tions, 236
swapr register with memory instructiond 52, 235
SWAPA instruction 182, 183, 236
Sync MEMBAR relationship187
synthetic instructions2
BCLR, 301
BSET, 301
BTOG, 301
BTST, 301
CALL, 299
CAS, 301
CASX, 301
CLR, 301
CMP, 234, 299
DEC, 301
DECcq 301
INC, 301
INCcc, 301
IPREFETCH 299
JMP, 299
MOV, 301
NEG, 301
NOT, 301
RESTORE 299
RET, 299, 308
RETL, 299, 308
SAVE, 299
SET, 299
SIGNX, 301
TST, 299
synthetic instructions in assemhl&; 299
system call 318
system softwarell6, 122, 123, 132, 168, 257,
305, 306, 310, 311, 318, 319

T

TA instruction 280

TADDcc instruction 76, 238

TADDccTV instruction 76, 117, 238

tag overflow 76

tag_overflow exception 76, 98, 104, 117, 238, 240

tagged add instruction238

tagged arithmetic76

tagged arithmetic instruction49

tagged word data formaR3

task switching, seeontext switching

TBR register (SPARC-V§)246

Tcc instructions 21, 42, 66, 89, 101, 117, 241,
280

TCS instruction 280

TE instruction 280

TEM, seetrap enable mask (TEM) field of FSR reg-
ister

test-and-set instructiori31

368

TG instruction 280

TGE instruction 280

TGU instruction 280

threads, semultithreaded software

Ticc instruction (SPARC-V8)242

TICK, seeclock-tick register (TICK)

timing
instruction 133

tininess (floating-point) 50, 249, 258

TL instruction 280

TLB, seepage descriptor cache (PDC)

TLE instruction 280

TLE, seetrap_little_endian (TLE) field of PSTATE
register

TLEU instruction 280

TN instruction 280

TNE instruction 280

TNEG instruction 280

total order 126

total store order (TSO) memory mogdéH, 92,
119, 129, 130, 325

total unit
implementation-dependen254

TPOS instruction280

Translation Lookaside Buffer (TLB), seage de-
scriptor cache (PDC)

trap, 14, 21, 21, 89, 304

trap base address (TBA) registdd, 58, 89, 100,
212, 243

trap categories
deferred 95, 96, 99
disrupting 96, 97, 98
precise 95, 95, 96
reset 97

trap enable mask (TEM) field of FSR registé4,
48, 50, 99, 100, 115, 256

trap handler 157
supervisor-model01
uset 46, 249, 319

trap leve] 55

trap level (TL) register55, 55, 56, 57, 58, 59, 61,
89, 94, 157, 212, 213, 220, 224, 243, 244
and implicit ASIs 73

trap mode| 97

trap next program counter (TNPC) registéi, 95,
113, 212, 243

trap on integer condition codes instructipB41

trap priorities 104

trap processing91, 105

trap program counter (TPC) regist®6, 95, 113
212, 213, 243

trap stack 5, 106

trap state (TSTATE) registeb3, 57, 157, 212,
243

trap type (TT) registers7, 58, 61, 90, 101, 105,
110, 111, 212, 242, 243, 257

trap types, also sexceptions
trap vector
RED_state 91
trap_instruction exception 98, 117, 242
trap_little_endian (TLE) field of PSTATE register
53, 53
traps
also seexceptions
causes?1
deferred 95, 256
disrupting 95, 256
hardware 101
implementation-dependent08
nested 5
normal 90, 101, 106, 106, 108
precise 94, 95, 256
resef 57, 95, 96, 97, 105, 257
software 101, 242
software-initiated reset (SIR108
specia) 90, 101
window fill, 101
window spill, 101
TSO, sedotal store ordering (TSO) memory model
TST synthetic instruction299
TSUBcc instruction 76
TSUBccTV instruction 76, 117
TVC instruction 280
TVS instruction 280
typewriter font
in assembly language synta293

U

UDIV instruction, 36

UDIVcc instruction 36, 154

UDIVX instruction, 199

ufa, seeunderflow accrued (ufa) bit of aexc field of
FSR register

ufc, seeunderflow current (ufc) bit of cexc field of
FSR register

UFM, seeunderflow mask (UFM) bit of TEM field
of FSR register

UMUL instruction, 36, 200

UMULcc instruction 36, 200

unassigned14

unconditional branched41, 144, 147, 149

undefined 14

underflow; 86

underflow accruedufa) bit of aexcfield of FSR reg-
ister, 50, 250

underflow currentyfc) bit of cexcfield of FSR reg-
ister, 50, 250

underflow maskFM) bit of TEM field of FSR
register 50, 50, 249

unfinished_FPop floating-point trap typel0, 46,
47, 51, 84, 247, 255

\%

369

UNIMP instruction (SPARC-V8)170
unimplemented_FPop floating-point trap typgl0,
46, 47, 51, 191, 213 247, 255
unimplemented_LDD exception 98, 117, 179, 181,
259
unimplemented_STD exception 98, 117, 231, 233,
259
unrestricted 14
unrestricted address space identjfie4, 256, 319
unsigned integer data typ23
upper registers dirty (DU) field of FPRS registdi3
user
mode 30, 48, 51, 224, 305
program 255
software 310
trap handler 46, 249, 319
user application program, sapplication program

V

V condition code bit, seeverflow (V) bit of condi-
tion fields of CCR
value
implementation-dependen254
value semantics of input/output (I/0) locatigri1
variables
automatic 304
ver, seeversion (ver) field of FSR register
version yer) field of FSR register45, 256
version register (VER)58, 212
virtual address120, 283, 284
virtual address aliasin@90
virtual memory 209

W

walking the call chain305
watchdog resets7, 91, 93, 94, 97, 109, 110, 111
watchdog timer 109
watchdog_reset91
watchdog_reset (WDR), 108
WIM register (SPARC-V8) 246
window
clean 218
window fill exception 59, 61
window fill trap, 101
window fill trap handler 20
window overflow 33, 86, 318
window spill trap 101
window spill trap handler20
window state (WSTATE) registeb9, 61, 86, 169,
212, 219, 243, 318, 319
window underflow 33, 86
window _fill exception 60, 81, 217, 307
window_overflow exception 303
window_spill exception 59, 61

windows

register 305
windows, seeegister windows
word, 14, 17, 69, 121
word data format23
WRASI instruction 245
WRASR instruction 18, 62, 245, 258, 301, 323
WRCCR instruction 42, 245
WRFPRS instruction244, 245
WRIER instruction (SPARC-V8)246
write privileged register instructior243
write protection 284
write state register instruction245
write-after-read memory hazardi24
write-after-write memory hazayd 24
WRPR instruction 52, 53, 59, 85, 91, 243
WRPSR instruction (SPARC-V8P46
WRTBR instruction (SPARC-V8)246
WRWIM instruction (SPARC-V8) 246
WRY instruction 36, 245, 301
WTYPE subfield field of trap type fie|d104

X

xccfield of CCR register42, 137, 149, 155, 156,
184, 196, 200, 203, 234, 238

XIR, seeexternally_initiated_reset (XIR)

XNOR instruction 184, 301

XNORCcc instruction 184

XOR instruction 184, 301

XORcc instruction 184

Y

Y register 35, 36, 154, 200, 202, 246

Z

Z condition code bit, sezero (Z) bit of condition
fields of CCR
zero) bit of condition fields of CCR41

370

	Contents
	Introduction xiii
	Editors’ Notes xxi
	1 Overview 1
	2 Definitions 9
	3 Architectural Overview 15
	4 Data Formats 23
	5 Registers 29
	6 Instructions 63
	7 Traps 89
	8 Memory Models 119
	A Instruction Definitions (Normative) 133
	B IEEE Std 754-1985 Requirements for SPARC-V9 (Normative) 247
	C SPARC-V9 Implementation Dependencies (Normative) 253
	D Formal Specification of the Memory Models (Normative) 263
	E Opcode Maps (Normative) 275
	F SPARC-V9 MMU Requirements (Informative) 283
	G Suggested Assembly Language Syntax (Informative) 293
	H Software Considerations (Informative) 303
	I Extending the SPARC-V9 Architecture (Informative) 323
	J Programming With the Memory Models (Informative) 325
	K Changes From SPARC-V8 to SPARC-V9 (Informative) 341

	Bibliography 347
	Index 351
	Introduction
	0.1 SPARC
	0.2 Processor Needs for the 90s and Beyond
	0.3 SPARC-V9: A Robust RISC for the Next Century
	0.3.1 64-bit Data and Addresses
	0.3.2 Improved System Performance
	0.3.3 Advanced Optimizing Compilers
	0.3.4 Advanced Superscalar Processors
	0.3.5 Advanced Operating Systems
	0.3.6 Fault Tolerance
	0.3.7 Fast Traps and Context Switching
	0.3.8 Big- and Little-Endian Byte Orders

	0.4 Summary
	Editors’ Notes
	Acknowledgments
	Personal Notes

	1 Overview
	1.1 Notes About this Book
	1.1.1 Audience
	1.1.2 Where to Start
	1.1.3 Contents
	1.1.4 Editorial Conventions
	1.1.4.1 Fonts and Notational Conventions

	(X, Y, Z) ¨ 0 T
	1.1.4.2 Implementation Dependencies
	1.1.4.3 Notation for Numbers
	1.1.4.4 Informational Notes
	Programming Note:
	Implementation Note:
	V8 Compatibility Note:

	1.2 The SPARC-V9 Architecture
	1.2.1 Features
	1.2.2 Attributes
	1.2.2.1 Design Goals
	1.2.2.2 Register Windows

	1.2.3 System Components
	1.2.3.1 Reference MMU
	1.2.3.2 Privileged Software

	1.2.4 Binary Compatibility
	1.2.5 Architectural Definition
	(1) Certain elements of the architecture are defined to be implementation-dependent. These elemen...
	(2) Functional extensions are permitted, insofar as they do not change the behavior of any define...

	1.2.6 SPARC-V9 Compliance
	Level 1:
	Level 2:
	(1) Submitted to SPARC International for testing, and
	(2) Issued a Certificate of Compliance by S. I.

	2 Definitions
	2.1 address space identifier: An eight-bit value that identifies an address space. For each instr...
	2.2 ASI: Abbreviation for address space identifier.
	2.3 application program: A program executed with the processor in nonprivileged mode. Note that s...
	2.4 big-endian: An addressing convention. Within a multiple-byte integer, the byte with the small...
	2.5 byte: Eight consecutive bits of data.
	2.6 clean window: A register window in which all of the registers contain either zero, a valid ad...
	2.7 completed: A memory transaction is said to be completed when an idealized memory has executed...
	2.8 current window: The block of 24 r registers that is currently in use. The Current Window Poin...
	2.9 dispatch: Issue a fetched instruction to one or more functional units for execution.
	2.10 doublet: Two bytes (16 bits) of data.
	2.11 doubleword: An aligned octlet. Note that the definition of this term is architecture-depende...
	2.12 exception: A condition that makes it impossible for the processor to continue executing the ...
	2.13 extended word: An aligned octlet, nominally containing integer data. Note that the definitio...
	2.14 f register: A floating-point register. SPARC-V9 includes single- double- and quad- precision...
	2.15 fccn: One of the floating-point condition code fields: fcc0, fcc1, fcc2, or fcc3.
	2.16 floating-point exception: An exception that occurs during the execution of a floating-point ...
	2.17 floating-point IEEE-754 exception: A floating-point exception, as specified by IEEE Std 754-...
	2.18 floating-point trap type: The specific type of floating-point exception, encoded in the FSR....
	2.19 floating-point operate (FPop) instructions: Instructions that perform floating- point calcul...
	2.20 floating-point unit: A processing unit that contains the floating-point registers and perfor...
	2.21 FPU: Abbreviation for floating-point unit.
	2.22 halfword: An aligned doublet. Note that the definition of this term is architecture- depende...
	2.23 hexlet: Sixteen bytes (128 bits) of data.
	2.24 implementation: Hardware and/or software that conforms to all of the specifications of an ISA.
	2.25 implementation-dependent: An aspect of the architecture that may legitimately vary among imp...
	2.26 implicit ASI: The address space identifier that is supplied by the hardware on all instructi...
	2.27 informative appendix: An appendix containing information that is useful but not required to ...
	2.28 initiated. See issued.
	2.29 instruction field: A bit field within an instruction word.
	2.30 instruction set architecture (ISA): An ISA defines instructions, registers, instruction and ...
	2.31 integer unit: A processing unit that performs integer and control-flow operations and contai...
	2.32 interrupt request: A request for service presented to the processor by an external device.
	2.33 IU: Abbreviation for integer unit.
	2.34 ISA: Abbreviation for instruction set architecture.
	2.35 issued: In reference to memory transaction, a load, store, or atomic load-store is said to b...
	2.36 leaf procedure: A procedure that is a leaf in the program’s call graph; that is, one that do...
	2.37 little-endian: An addressing convention. Within a multiple-byte integer, the byte with the s...
	2.38 may: A key word indicating flexibility of choice with no implied preference. Note: “may” ind...
	2.39 must: Synonym: shall.
	2.40 next program counter (nPC): A register that contains the address of the instruction to be ex...
	2.41 non-faulting load: A load operation that behaves identically to a normal load operation, exc...
	2.42 nonprivileged: An adjective that describes (1) the state of the processor when PSTATE.PRIV�=...
	2.43 nonprivileged mode: The processor mode when PSTATE.PRIV�=�0. See also: nonprivileged.
	2.44 normative appendix: An appendix containing specifications that must be met by an implementat...
	2.45 NWINDOWS: The number of register windows present in an implementation.
	2.46 octlet: Eight bytes (64 bits) of data. Not to be confused with an “octet,” which has been co...
	2.47 opcode: A bit pattern that identifies a particular instruction.
	2.48 prefetchable: An attribute of a memory location which indicates to an MMU that PREFETCH oper...
	2.49 privileged: An adjective that describes (1) the state of the processor when PSTATE.PRIV �=�1...
	2.50 privileged mode: The processor mode when PSTATE.PRIV�=�1. See also: nonprivileged.
	2.51 processor: The combination of the integer unit and the floating-point unit.
	2.52 program counter (PC): A register that contains the address of the instruction currently bein...
	2.53 quadlet: Four bytes (32 bits) of data.
	2.54 quadword: An aligned hexlet. Note that the definition of this term is architecture- dependen...
	2.55 r register: An integer register. Also called a general purpose register or working register.
	2.56 RED_state: Reset, Error, and Debug state. The processor state when PSTATE.RED�=�1. A restric...
	2.57 reserved: Used to describe an instruction field, certain bit combinations within an instruct...
	2.58 reset trap: A vectored transfer of control to privileged software through a fixed- address r...
	2.59 restricted: An adjective used to describe an address space identifier (ASI) that may be acce...
	2.60 rs1, rs2, rd: The integer register operands of an instruction, where rs1 and rs2 are the sou...
	2.61 shall: A key word indicating a mandatory requirement. Designers shall implement all such man...
	2.62 should: A key word indicating flexibility of choice with a strongly preferred implementation...
	2.63 side effect: An operation has a side effect if it induces a secondary effect as well as its ...
	2.64 speculative load: A load operation that is issued by the processor speculatively, that is, b...
	2.65 supervisor software: Software that executes when the processor is in privileged mode.
	2.66 trap: The action taken by the processor when it changes the instruction flow in response to ...
	2.67 unassigned: A value (for example, an address space identifier), the semantics of which are n...
	2.68 undefined: An aspect of the architecture that has deliberately been left unspecified. Softwa...
	2.69 unrestricted: An adjective used to describe an address space identifier that may be used reg...
	2.70 user application program: Synonym: application program.
	2.71 word: An aligned quadlet. Note that the definition of this term is architecture- dependent a...

	3 Architectural Overview
	3.1 SPARC-V9 Processor
	3.1.1 Integer Unit (IU)
	3.1.2 Floating-Point Unit (FPU)

	3.2 Instructions
	3.2.1 Memory Access
	3.2.1.1 Memory Alignment Restrictions
	3.2.1.2 Addressing Conventions
	3.2.1.3 Load/Store Alternate
	3.2.1.4 Separate I and D Memories
	3.2.1.5 Input/Output
	3.2.1.6 Memory Synchronization

	3.2.2 Arithmetic/Logical/Shift Instructions
	3.2.3 Control Transfer
	V8 Compatibility Note:

	3.2.4 State Register Access
	3.2.5 Floating-Point Operate
	3.2.6 Conditional Move
	3.2.7 Register Window Management

	3.3 Traps

	4 Data Formats
	4.1 Signed Integer Byte
	4.2 Signed Integer Halfword
	4.3 Signed Integer Word
	4.4 Signed Integer Double
	4.5 Signed Extended Integer
	SX
	4.6 Unsigned Integer Byte
	4.7 Unsigned Integer Halfword
	4.8 Unsigned Integer Word
	4.9 Unsigned Integer Double
	4.10 Unsigned Extended Integer

	UX
	4.11 Tagged Word
	4.12 Floating-Point Single Precision
	4.13 Floating-Point Double Precision
	4.14 Floating-Point Quad Precision
	Table 1— Double- and Quadwords in Memory & Registers

	0 mod 8
	0 mod 2
	4 mod 8
	1 mod 2
	0 mod 8
	—
	0 mod 8
	0 mod 2
	4 mod 8
	1 mod 2
	0 mod 8
	—
	0 mod 4 †
	0 mod 2
	0 mod 4 †
	1 mod 2
	0 mod 4 ‡
	0 mod 4
	0 mod 4 ‡
	1 mod 4
	0 mod 4 ‡
	2 mod 4
	0 mod 4 ‡
	3 mod 4
	Table 2— Signed Integer, Unsigned Integer, and Tagged Format Ranges

	8
	-27 to 27 - 1
	16
	-215 to 215 - 1
	32
	-231 to 231 - 1
	32
	-229 to 229 - 1
	64
	-263 to 263 - 1
	64
	-263 to 263 - 1
	8
	0 to 28 - 1
	16
	0 to 216 - 1
	32
	0 to 232 - 1
	32
	0 to 230 - 1
	64
	0 to 264 - 1
	64
	0 to 264 - 1
	Table 3— Floating-Point Single-Precision Format Definition
	Table 4— Floating-Point Double-Precision Format Definition
	Table 5— Floating-Point Quad-Precision Format Definition
	5 Registers
	5.1 Nonprivileged Registers
	5.1.1 General Purpose r Registers
	5.1.1.1 Global r Registers
	V8 Compatibility Note:
	Figure 1— General-Purpose Registers (Nonprivileged View)

	Programming Note:

	5.1.1.2 Windowed r Registers
	Figure 2— Three Overlapping Windows and the Eight Global Registers
	Table 6— Window Addressing

	r[24] – r[31]
	r[16] – r[23]
	r[�8] – r[15]
	r[�0] – r[�7]
	5.1.1.3 Overlapping Windows
	Programming Note:

	CANSAVE + CANRESTORE + OTHERWIN�=�NWINDOWS – 2
	Figure 3— The Windowed r Registers for NWINDOWS�=�8
	5.1.2 Special r Registers
	5.1.2.1 Register-Pair Operands
	5.1.2.2 Register Usage

	5.1.3 IU Control/Status Registers
	5.1.3.1 Program Counters (PC, nPC)
	5.1.3.2 32-Bit Multiply/Divide Register (Y)
	Figure 4— Y Register

	5.1.3.3 Ancillary State Registers (ASRs)

	5.1.4 Floating-Point Registers
	Figure 5— Single-Precision Floating-Point Registers, with Aliasing
	Figure 6— Double-Precision Floating-Point Registers, with Aliasing
	Figure 7— Quad-Precision Floating-Point Registers, with Aliasing
	5.1.4.1 Floating-Point Register Number Encoding
	Table 7— Floating-Point Register Number Encoding

	 0
	b<4>
	b<3>
	b<2>
	b<1>
	b<0>
	b<4>
	b<3>
	b<2>
	b<1>
	b<0>
	b<5>
	b<4>
	b<3>
	b<2>
	b<1>
	 0
	b<4>
	b<3>
	b<2>
	b<1>
	b<5>
	b<5>
	b<4>
	b<3>
	b<2>
	 0
	 0
	b<4>
	b<3>
	b<2>
	 0
	b<5>
	V8 Compatibility Note:
	5.1.4.2 Double and Quad Floating-Point Operands
	Programming Note:
	Programming Note:

	5.1.5 Condition Codes Register (CCR)
	Figure 8— Condition Codes Register
	5.1.5.1 CCR Condition Code Fields (xcc and icc)
	Figure 9— Integer Condition Codes (CCR_icc and CCR_xcc)
	5.1.5.1.1 CCR_extended_integer_cond_codes (xcc)
	5.1.5.1.2 CCR_integer_cond_codes (icc)

	5.1.6 Floating-Point Registers State (FPRS) Register
	Figure 10— Floating-Point Registers State Register
	5.1.6.1 FPRS_enable_fp (FEF)
	5.1.6.2 FPRS_dirty_upper (DU)
	5.1.6.3 FPRS_dirty_lower (DL)
	Implementation Note:

	5.1.7 Floating-Point State Register (FSR)
	Figure 11— FSR Fields
	5.1.7.1 FSR_fp_condition_codes (fcc0, fcc1, fcc2, fcc3)
	V8 Compatibility Note:
	Table 8— Floating-Point Condition Codes (fccn) Fields of FSR

	0
	1
	2
	3
	5.1.7.2 FSR_rounding_direction (RD)
	Table 9— Rounding Direction (RD) Field of FSR

	0
	1
	2
	3
	5.1.7.3 FSR_trap_enable_mask (TEM)
	5.1.7.4 FSR_nonstandard_fp (NS)
	5.1.7.5 FSR_version (ver)
	5.1.7.6 FSR_floating-point_trap_type (ftt)
	Programming Note:
	Table 10— Floating-Point Trap Type (ftt) Field of FSR

	0
	1
	2
	3
	4
	5
	6
	7
	(1) The value of aexc is unchanged.
	(2) The value of cexc is unchanged, except that for an IEEE_754_exception a bit corresponding to ...
	(3) The source registers are unchanged (usually implemented by leaving the destination registers ...
	(4) The value of fccn is unchanged.
	5.1.7.6.1 ftt�=�IEEE_754_exception
	5.1.7.6.2 ftt�=�unfinished_FPop
	5.1.7.6.3 ftt�=�unimplemented_FPop
	Programming Note:

	5.1.7.6.4 ftt�=�sequence_error
	Implementation Note:
	Programming Note:

	5.1.7.6.5 ftt�=�hardware_error
	Programming Note:

	5.1.7.6.6 ftt�=�invalid_fp_register
	5.1.7.7 FSR_FQ_not_empty (qne)
	5.1.7.8 FSR_accrued_exception (aexc)
	5.1.7.9 FSR_current_exception (cexc)
	Table 11— Setting of fsr.cexc Bits �

	-
	-
	-
	4
	-
	-
	-
	-
	4
	4
	-
	-
	4
	-
	-
	4
	4
	4
	-
	-
	-
	4
	4
	4
	4
	4
	-
	4
	4
	4
	x
	x
	x
	0
	x
	x
	x
	x
	1
	0
	x
	x
	0
	x
	x
	0
	1
	1
	x
	x
	x
	0
	0
	0
	1
	1
	x
	x
	x
	1
	no
	no
	no
	no
	yes
	yes
	yes
	yes
	yes
	yes
	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0
	0
	1
	0
	0
	0
	1
	1
	0
	0
	0
	1
	1
	1
	1
	1
	0
	0
	0
	1
	(1)
	(2)
	(1)
	(2)
	(2)
	5.1.7.10 Floating-Point Exception Fields
	Figure 12— Trap Enable Mask (TEM) Fields of FSR
	Figure 13— Accrued Exception Bits (aexc) Fields of FSR
	Figure 14— Current Exception Bits (cexc) Fields of FSR
	5.1.7.10.1 FSR_invalid (nvc, nva)
	5.1.7.10.2 FSR_overflow (ofc, ofa)
	5.1.7.10.3 FSR_underflow (ufc, ufa)
	If UFM�=�0: Underflow occurs if a nonzero result is tiny and a loss of accuracy occurs. Tininess ...
	If UFM�=�1: Underflow occurs if a nonzero result is tiny. Tininess may be detected before or afte...

	5.1.7.10.4 FSR_division-by-zero (dzc, dza)
	5.1.7.10.5 FSR_inexact (nxc, nxa)

	5.1.7.11 FSR Conformance
	(1) Implement all three fields conformant to IEEE Std 754-1985.
	(2) Implement the NXM, nxa, and nxc bits of these fields conformant to IEEE Std 754-1985. Impleme...
	(a) Conformant to IEEE Std 754-1985, or
	(b) As a state bit that may be set by software that calculates the IEEE Std 754- 1985 value of th...
	[1] The IEEE exception corresponding to the state bit must always cause an exception (specificall...
	[2] The state bit must be implemented in such a way that if it is written to a particular value b...

	Programming Note:

	5.1.8 Address Space Identifier Register (ASI)
	Figure 15— ASI Register

	5.1.9 TICK Register (TICK)
	Figure 16— TICK Register
	Programming Note:

	5.2 Privileged Registers
	5.2.1 Processor State Register (PSTATE)
	Figure 17— PSTATE Fields
	Implementation Note:
	5.2.1.1 PSTATE_impldep (PID1, PID0)
	5.2.1.2 PSTATE_current_little_endian (CLE)
	5.2.1.3 PSTATE_trap_little_endian (TLE)
	5.2.1.4 PSTATE_mem_model (MM)

	00
	01
	10
	11
	5.2.1.5 PSTATE_RED_state (RED)
	(1) Execute a DONE or RETRY instruction, which restores the stacked copy of PSTATE and clears PST...
	(2) Write a 0 to PSTATE.RED with a WRPR instruction.
	Programming Note:

	5.2.1.6 PSTATE_enable_floating-point (PEF)
	5.2.1.7 PSTATE_address_mask (AM)
	5.2.1.8 PSTATE_privileged_mode (PRIV)
	5.2.1.9 PSTATE_interrupt_enable (IE)
	5.2.1.10 PSTATE_alternate_globals (AG)
	5.2.2 Trap Level Register (TL)
	Figure 18— Trap Level Register
	Programming Note:

	5.2.3 Processor Interrupt Level (PIL)
	Figure 19— Processor Interrupt Level Register
	V8 Compatibility Note:

	5.2.4 Trap Program Counter (TPC)
	Figure 20— Trap Program Counter Register

	5.2.5 Trap Next Program Counter (TNPC)
	Figure 21— Trap Next Program Counter Register

	5.2.6 Trap State (TSTATE)
	Figure 22— Trap State Register

	5.2.7 Trap Type Register (TT)
	Figure 23— Trap Type Register

	5.2.8 Trap Base Address (TBA)
	Figure 24— Trap Base Address Register
	Figure 25— Trap Vector Address

	5.2.9 Version Register (VER)
	Figure 26— Version Register

	5.2.10 Register-Window State Registers
	5.2.10.1 Current Window Pointer (CWP)
	Figure 27— Current Window Pointer Register
	V8 Compatibility Note:
	1) In SPARC-V9, SAVE increments CWP and RESTORE decrements CWP. In SPARC-V8, the opposite is true...
	2) PSR.CWP in SPARC-V8 is changed on each trap. In SPARC-V9, CWP is affected only by a trap cause...
	3) In SPARC-V8, writing a value into PSR.CWP that is greater than or equal to the number of imple...

	5.2.10.2 Savable Windows (CANSAVE) Register
	Figure 28— CANSAVE Register

	5.2.10.3 Restorable Windows (CANRESTORE) Register
	Figure 29— CANRESTORE Register

	5.2.10.4 Other Windows (OTHERWIN) Register
	Figure 30— OTHERWIN Register

	5.2.10.5 Window State (WSTATE) Register
	Figure 31— WSTATE Register

	5.2.10.6 Clean Windows (CLEANWIN) Register
	Figure 32— CLEANWIN Register

	5.2.11 Ancillary State Registers (ASRs)
	5.2.12 Floating-Point Deferred-Trap Queue (FQ)
	5.2.13 IU Deferred-Trap Queue
	6 Instructions
	6.1 Instruction Execution
	Implementation Note:

	6.2 Instruction Formats
	Figure 33— Summary of Instruction Formats: Formats 1, 2, and 3
	Figure 34— Summary of Instruction Formats: Formats 3 and 4
	6.2.1 Instruction Fields
	a:
	cc0, cc1, and cc2:
	cmask:
	cond:
	d16hi and d16lo:
	disp19:
	disp22 and disp30:
	fcn:
	i:
	imm22:
	imm_asi:
	impl-dep:
	mmask:
	op and op2:
	op3:
	opf:
	opf_cc:
	opf_low:
	p:

	0
	1
	rcond:
	rd:
	rs1:
	rs2:
	shcnt32:
	shcnt64:
	simm10:
	simm11:
	simm13:
	sw_trap#:
	x:
	6.3 Instruction Categories
	6.3.1 Memory Access Instructions
	Programming Note:
	6.3.1.1 Memory Alignment Restrictions
	6.3.1.2 Addressing Conventions
	6.3.1.2.1 Big-Endian Addressing Convention
	byte:
	halfword:
	word:
	doubleword or extended word:
	quadword:
	Figure 35— Big-Endian Addressing Conventions

	6.3.1.2.2 Little-Endian Addressing Convention
	byte:
	halfword:
	word:
	doubleword or extended word:
	quadword:
	Figure 36— Little-Endian Addressing Conventions

	6.3.1.3 Address Space Identifiers (ASIs)
	Table 12— ASI Used for Data Accesses and Instruction Fetches

	= 0
	> 0
	= 0
	> 0
	any
	Table 13— Allowed Accesses to ASIs

	0016�..�7F16
	Restricted
	Nonprivileged (0)
	Privileged (1)
	8016�..�FF16�
	Unrestricted
	Nonprivileged (0)
	Privileged (1)
	Table 14— Address Space Identifiers (ASIs)

	0016��..�0316�
	—
	R
	0416�
	ASI_NUCLEUS
	R
	0516��..�0B16�
	—
	R
	0C16
	ASI_NUCLEUS_LITTLE
	R
	0D16��..�0F16�
	—
	R
	1016�
	ASI_AS_IF_USER_PRIMARY
	R
	1116�
	ASI_AS_IF_USER_SECONDARY
	R
	1216� ..�1716�
	—
	R
	1816�
	ASI_AS_IF_USER_PRIMARY_LITTLE
	R
	1916�
	ASI_AS_IF_USER_SECONDARY_LITTLE
	R
	1A16��..�7F16�
	—
	R
	8016�
	ASI_PRIMARY
	U
	8116�
	ASI_SECONDARY
	U
	8216�
	ASI_PRIMARY_NOFAULT
	U
	8316�
	ASI_SECONDARY_NOFAULT
	U
	8416��..�8716�
	—
	U
	8816�
	ASI_PRIMARY_LITTLE
	U
	8916�
	ASI_SECONDARY_LITTLE
	U
	8A16�
	ASI_PRIMARY_NOFAULT_LITTLE
	U
	8B16�
	ASI_SECONDARY_NOFAULT_LITTLE
	U
	8C16��..�BF16
	—
	U
	C016��..�FF16�
	—
	U
	6.3.1.4 Separate Instruction Memory
	6.3.2 Memory Synchronization Instructions
	V8 Compatibility Note:

	6.3.3 Integer Arithmetic Instructions
	6.3.3.1 Setting Condition Codes
	6.3.3.2 Shift Instructions
	6.3.3.3 Set High 22 Bits of Low Word
	6.3.3.4 Integer Multiply/Divide
	6.3.3.5 Tagged Add/Subtract

	6.3.4 Control-Transfer Instructions (CTIs)
	Programming Note:
	PC-relative Effective Address:
	Register-Indirect Effective Address:
	Trap Vector Effective Address:
	Trap State Effective Address:
	V8 Compatibility Note:
	V8 Compatibility Note:

	
	Table 15— Control Transfer Characteristics

	—
	—
	—
	—
	Yes
	Yes
	0
	Yes
	No
	0
	Yes
	Yes
	1
	Yes
	No
	1
	Yes
	Yes
	0
	Yes
	No
	0
	Yes
	Yes
	1
	Yes
	No
	1
	Yes
	—
	—
	Yes
	—
	—
	No
	—
	—
	No
	—
	—
	No
	Yes
	—
	No
	No
	—
	6.3.4.1 Conditional Branches
	6.3.4.2 Unconditional Branches
	6.3.4.3 CALL and JMPL instructions
	6.3.4.4 RETURN Instruction
	6.3.4.5 DONE and RETRY Instructions
	6.3.4.6 Trap Instruction (Tcc)
	Programming Note:

	6.3.5 Conditional Move Instructions
	6.3.5.1 MOVcc and FMOVcc Instructions
	6.3.5.2 MOVr and FMOVr Instructions

	6.3.6 Register Window Management Instructions
	6.3.6.1 SAVE Instruction

	(CLEANWIN�–�CANRESTORE)�=�0
	6.3.6.2 RESTORE Instruction
	Programming Note:

	6.3.6.3 SAVED Instruction

	CANSAVE ¨ (CANSAVE + 1)
	OTHERWIN ¨ (OTHERWIN – 1)
	CANRESTORE ¨ (CANRESTORE – 1)
	6.3.6.4 RESTORED Instruction

	CANRESTORE ¨ (CANRESTORE + 1)
	OTHERWIN ¨ (OTHERWIN – 1)
	CANSAVE ¨ (CANSAVE – 1)
	if (CLEANWIN < (NWINDOWS-1)) then CLEANWIN ¨ (CLEANWIN + 1)
	6.3.6.5 Flush Windows Instruction

	NWINDOWS – 2 – CANSAVE
	6.3.7 State Register Access
	6.3.8 Privileged Register Access
	6.3.9 Floating-Point Operate (FPop) Instructions
	6.3.10 Implementation-Dependent Instructions
	V8 Compatibility Note:

	6.3.11 Reserved Opcodes and Instruction Fields
	Implementation Note
	Programming Note:

	6.4 Register Window Management
	6.4.1 Register Window State Definition

	CANSAVE�+�CANRESTORE�+�OTHERWIN�=�NWINDOWS�–�2
	CLEANWIN�³�CANRESTORE
	6.4.2 Register Window Traps
	6.4.2.1 Window Spill and Fill Traps
	6.4.2.2 Clean-Window Trap

	CLEANWIN – CANRESTORE
	6.4.2.3 Vectoring of Fill/Spill Traps
	6.4.2.4 CWP on Window Traps

	CWP ¨ (CWP + 2) mod NWINDOWS
	CWP ¨ (CWP + CANSAVE + 2) mod NWINDOWS
	Implementation Note:

	CWP ¨ (CWP – 1) mod NWINDOWS
	CWP ¨ (CWP + 1) mod NWINDOWS
	6.4.2.5 Window Trap Handlers

	CLEANWIN ¨ (CLEANWIN + 1)
	7 Traps
	7.1 Overview
	A trap is a vectored transfer of control to supervisor software through a trap table that contain...
	A trap behaves like an unexpected procedure call. It causes the hardware to
	(1) Save certain processor state (program counters, CWP, ASI, CCR, PSTATE, and the trap type) on ...
	(2) Enter privileged execution mode with a predefined PSTATE
	(3) Begin executing trap handler code in the trap vector

	When the trap handler has finished, it uses either a DONE or RETRY instruction to return.
	A trap may be caused by a Tcc instruction, an SIR instruction, an instruction-induced exception, ...
	Thus, an exception is a condition that makes it impossible for the processor to continue executin...
	A catastrophic error exception is due to the detection of a hardware malfunction from which, due ...
	IMPL. DEP. #31: The causes and effects of catastrophic errors are implementation-dependent. They ...

	7.2 Processor States, Normal and Special Traps
	The processor is always in one of three discrete states:
	— execute_state, which is the normal execution state of the processor
	— RED_state (Reset, Error, and Debug state), which is a restricted execution state reserved for p...
	— error_state, which is a halted state that is entered as a result of a trap when TL�=�MAXTL, or ...

	Traps processed in execute_state are called normal traps. Traps processed in RED_state are called...
	Figure 37 shows the processor state diagram.
	Figure 37— Processor State Diagram

	7.2.1 RED_state
	RED_state is an acronym for Reset, Error, and Debug state. The processor enters RED_ state under ...
	— A trap is taken when TL =�MAXTL�–�1.
	— Any of the four reset requests occurs (POR, WDR, XIR, SIR).
	— An implementation-dependent trap, internal_processor_error exception, or catastrophic_error exc...
	— System software sets PSTATE.RED�=�1.

	RED_state serves two mutually exclusive purposes:
	— During trap processing, it indicates that there are no more available trap levels; that is, if ...
	— It provides the execution environment for all reset processing.

	RED_state is indicated by PSTATE.RED. When this bit is set, the processor is in RED_ state; when ...
	Programming Note:

	7.2.1.1 RED_state Trap Table
	Traps occurring in RED_state or traps that cause the processor to enter RED_state use an abbrevia...

	0016
	0
	2016
	1
	4016
	2†
	6016
	3‡
	8016
	4
	A016
	*
	Figure 38— RED_state Trap Vector Layout
	IMPL. DEP. #114: The RED_state trap vector is located at an implementation-dependent address refe...
	Implementation Note:

	7.2.1.2 RED_state Execution Environment
	In RED_state the processor is forced to execute in a restricted environment by overriding the val...
	Programming Note:

	IMPL. DEP. #115: A processor’s behavior in RED_state is implementation-dependent.
	The following are recommended:
	(1) Instruction address translation is a straight-through physical map; that is, the MMU is alway...
	(2) Data address translation is handled normally; that is, the MMU is used if it is enabled. Howe...
	(3) All references are uncached.
	(4) Cache coherence in RED_state is the problem of the system designer and system programmer. Nor...
	(5) Unessential functional units (for example, the floating-point unit) and capabilities (for exa...
	(6) If a store buffer is present, it should be emptied, if possible, before entering RED_ state.
	(7) PSTATE.MM is set to TSO.
	Programming Note:

	7.2.1.3 RED_state Entry Traps
	The following traps are processed in RED_state in all cases
	— POR (Power-on reset)
	— WDR (Watchdog reset)
	— XIR (Externally initiated reset)

	In addition, the following trap is processed in RED_state if TL�<�MAXTL when the trap is taken. O...
	— SIR (Software-initiated Reset)

	An implementation also may elect to set PSTATE.RED�=�1 after an internal_processor_ error trap (i...
	Implementation-dependent traps may force additional state changes, such as disabling failing comp...
	Traps that occur when TL�=�MAXTL�–�1 also set PSTATE.RED�=�1; that is, any trap handler entered w...
	Any nonreset trap that sets PSTATE.RED�=�1 or that occurs when PSTATE.RED�=�1, branches to a spec...
	In systems in which it is desired that traps not enter RED_state, the RED_�state handler may tran...

	7.2.1.4 RED_state Software Considerations
	In effect, RED_state reserves one level of the trap stack for recovery and reset processing. Soft...
	Since the minimum value for MAXTL is 4, typical usage of the trap levels is as follows:

	0
	1
	2
	3
	4
	Programming Note:
	7.2.2 Error_state
	The processor enters error_state when a trap occurs while the processor is already at its maximum...
	IMPL.�DEP. #39: The processor may enter error_state when an implementation-dependent error condit...
	IMPL. DEP. #40: Effects when error_state is entered are implementation-dependent, but it is recom...
	In particular:
	(1) The processor should present an external indication that it has entered error_state.
	(2) The processor should halt, that is, make no further changes to system state.
	(3) The processor should be restarted by a watchdog reset (WDR). Alternatively, it may be restart...

	After a reset that brings the processor out of error_state, the processor enters RED_state with T...

	7.3 Trap Categories
	An exception or interrupt request can cause any of the following trap types:
	— A precise trap
	— A deferred trap
	— A disrupting trap
	— A reset trap

	7.3.1 Precise Traps
	A precise trap is induced by a particular instruction and occurs before any program-visible state...
	— The PC saved in TPC[TL] points to the instruction that induced the trap, and the nPC saved in N...
	— All instructions issued before the one that induced the trap have completed execution.
	— Any instructions issued after the one that induced the trap remain unexecuted.
	Programming Note:

	7.3.2 Deferred Traps
	A deferred trap is also induced by a particular instruction, but unlike a precise trap, a deferre...
	If an instruction induces a deferred trap and a precise trap occurs simultaneously, the deferred ...
	Associated with a particular deferred-trap implementation, there must exist:
	— An instruction that causes a potentially outstanding deferred-trap exception to be taken as a t...
	— Privileged instructions that access the deferred-trap queues. This queue contains the state inf...

	Note that resuming execution may require the emulation of instructions that had not completed exe...
	IMPL. DEP. #32: Whether any deferred traps (and associated deferred-trap queues) are present is i...
	Note that to avoid deferred traps entirely, an implementation would need to execute all implement...
	Programming Note:

	7.3.3 Disrupting Traps
	A disrupting trap is neither a precise trap nor a deferred trap. A disrupting trap is caused by a...
	Disrupting traps are controlled by a combination of the Processor Interrupt Level (PIL) register ...
	A disrupting trap may be due to either an interrupt request not directly related to a previously ...
	A disrupting trap related to an earlier instruction causing an exception is similar to a deferred...
	Disrupting trap conditions should persist until the corresponding trap is taken.
	Programming Note:

	7.3.4 Reset Traps
	A reset trap occurs when supervisor software or the implementation’s hardware determines that the...
	IMPL. DEP. #37: Some of a processor’s behavior during a reset trap is implementation-dependent. S...
	The following reset traps are defined for SPARC-V9:
	Software-initiated reset (SIR):
	Power-on reset (POR):
	Watchdog reset (WDR):
	Externally initiated reset (XIR):

	7.3.5 Uses of the Trap Categories
	The SPARC-V9 trap model stipulates that:
	(1) Reset traps, except software_initiated_reset traps, occur asynchronously to program execution.
	(2) When recovery from an exception can affect the interpretation of subsequent instructions, suc...
	(3) IMPL. DEP. #33: Exceptions that occur as the result of program execution may be precise or de...
	(4) An exception caused after the initial access of a multiple-access load or store instruction (...
	(5) Implementation-dependent catastrophic exceptions may cause precise, deferred, or disrupting t...
	(6) Exceptions caused by external events unrelated to the instruction stream, such as interrupts,...

	For the purposes of this subsection, we must distinguish between the dispatch of an instruction a...
	For most instructions, dispatch and execution appear to occur simultaneously; when the PC has adv...
	A deferred trap may occur one or more instructions after the trap-inducing instruction is dispatc...
	In the case of floating-point instructions, if a floating-point exception is currently deferred, ...
	Implementation Note:

	7.4 Trap Control
	Several registers control how any given trap is processed:
	— The interrupt enable (IE) field in PSTATE and the processor interrupt level (PIL) register cont...
	— The enable floating-point unit (FEF) field in FPRS, the floating-point unit enable (PEF) field ...
	— The TL register, which contains the current level of trap nesting, controls whether a trap caus...
	— PSTATE.TLE determines whether implicit data accesses in the trap routine will be performed usin...

	7.4.1 PIL Control
	Between the execution of instructions, the IU prioritizes the outstanding exceptions and interrup...
	For interrupt requests, the IU compares the interrupt request level against the processor interru...
	IMPL. DEP. #34: How quickly a processor responds to an interrupt request and the method by which ...

	7.4.2 TEM Control
	The occurrence of floating-point traps of type IEEE_754_exception can be controlled with the user...
	If a particular bit of TEM is 0, the associated IEEE_754_exception does not cause an fp_ exceptio...
	If an IEEE_754_exception results in an fp_exception_ieee_754 trap, then the destination f registe...

	7.5 Trap-Table Entry Addresses
	Privileged software initializes the trap base address (TBA) register to the upper 49 bits of the ...
	Figure 39— Trap Vector Address

	7.5.1 Trap Table Organization
	The trap table layout is as illustrated in figure�40.
	Figure 40— Trap Table Layout

	The trap table for TL�=�0 comprises 512 32-byte entries; the trap table for TL�>�0 comprises 512 ...

	7.5.2 Trap Type (TT)
	When a normal trap occurs, a value that uniquely identifies the trap is written into the current ...
	Programming Note:

	When a special trap occurs, the TT register is set as described in 7.2.1, “RED_state.” Control is...
	TT values 00016�..�0FF16 are reserved for hardware traps. TT values 10016�..�17F16 are reserved f...
	The trap type for the clean_window exception is 02416. Three subsequent trap vectors (02516�..�02...
	Table 16— Exception and Interrupt Requests, Sorted by TT Value

	TT
	Priority
	l
	00016
	n/a
	l
	00116
	0
	m
	00216
	1
	m
	00316
	1
	l
	00416
	1
	l
	00516
	1
	l
	00616�..�00716
	n/a
	l
	00816
	5
	m
	00916
	2
	m
	00A16
	3
	l
	00B16�..�00F16
	n/a
	l
	01016
	7
	l
	01116
	6
	m
	01216
	6
	m
	01316
	6
	l
	01416�..�01F16
	n/a
	l
	02016
	8
	m
	02116
	11
	m
	02216
	11
	l
	02316
	14
	m
	02416�..�02716
	10
	l
	02816
	15
	m
	02916
	4
	l
	02A16�..�02F16
	n/a
	l
	03016
	12
	m
	03116
	12
	m
	03216
	12
	m
	03316
	12
	l
	03416
	10
	m
	03516
	10
	m
	03616
	10
	l
	03716
	11
	m
	03816
	10
	m
	03916
	10
	l
	03A16�..�03F16
	n/a
	m
	04016
	2
	l
	04116�..�04F16
	32�–�n
	l
	05016�..�05F16
	n/a
	m
	06016�..�07F16
	impl.-dep.
	l
	08016�..�09F16
	9
	l
	0A016�..�0BF16
	9
	l
	0C016�..�0DF16
	9
	l
	0E016�..�0FF16
	9
	l
	10016�..�17F16
	16
	l
	18016�..�1FF16
	n/a
	Table 17— Exception and Interrupt Requests, Sorted by Priority (0 = Highest)

	l
	00116
	0
	m
	00216
	1
	m
	00316
	1
	l
	00416
	1
	l
	00516
	1
	m
	00916
	2
	m
	04016
	2
	m
	00A16
	3
	m
	02916
	4
	l
	00816
	5
	l
	01116
	6
	m
	01216
	6
	m
	01316
	6
	l
	01016
	7
	l
	02016
	8
	l
	08016�..�09F16
	9
	l
	0A016�..�0BF16
	9
	l
	0C016�..�0DF16
	9
	l
	0E016�..�0FF16
	9
	m
	02416�..�02716
	10
	l
	03416
	10
	m
	03516
	10
	m
	03616
	10
	m
	03816
	10
	m
	03916
	10
	m
	02116
	11
	m
	02216
	11
	l
	03716
	11
	l
	03016
	12
	m
	03116
	12
	m
	03216
	12
	m
	03316
	12
	l
	02316
	14
	l
	02816
	15
	l
	10016�..�17F16
	16
	l
	04116�..�04F16
	32�–�n
	m
	06016�..�07F16
	impl.-dep.
	V8 Compatibility Note:
	Since the assignment of exceptions and interrupt requests to particular trap vector addresses and...
	IMPL. DEP. #35: TT values 06016 TO 07F16 are reserved for implementation-dependent exceptions. Th...
	Trap Type values marked “Reserved” in table�16 are reserved for future versions of the architecture.
	7.5.2.1 Trap Type for Spill/Fill Traps
	The trap type for window spill/fill traps is determined based on the contents of the OTHERWIN and...
	The fields have the following values:
	SPILL_OR_FILL:
	OTHER:
	WTYPE:

	7.5.3 Trap Priorities
	Table 16 shows the assignment of traps to TT values and the relative priority of traps and interr...
	IMPL. DEP. #36: The priorities of particular traps are relative and are implementation-dependent,...
	However, the TT values for the exceptions and interrupt requests shown in table�16 must remain th...

	7.6 Trap Processing
	The processor’s action during trap processing depends on the trap type, the current level of trap...
	During normal operation, the processor is in execute_state. It processes traps in execute_ state ...
	When a normal trap or software-initiated reset (SIR) occurs with TL�=�MAXTL, there are no more le...
	Traps that occur with TL�=�MAXTL�–�1 are processed in RED_state. In addition, reset traps are als...
	Once the processor has entered RED_state, no matter how it got there, all subsequent traps are pr...
	Table 18— Trap Received While in execute_state

	execute_state
	TL < MAXTL�–�1
	execute_state
	TL�+�1
	RED_state
	MAXTL
	RED_state
	TL�+�1
	RED_state
	TL�+�1
	execute_state
	TL �=�MAXTL�–�1
	RED_state
	MAXTL
	RED_state
	MAXTL
	RED_state
	MAXTL
	RED_state
	MAXTL
	execute_state†
	TL �=�MAXTL
	error_state
	MAXTL
	RED_state
	MAXTL
	RED_state
	MAXTL
	error_state
	MAXTL
	Table 19— Trap Received While in RED_state

	RED_state
	TL < MAXTL�–�1
	RED_state
	TL�+�1
	RED_state
	MAXTL
	RED_state
	TL�+�1
	RED_state
	TL�+�1
	RED_state
	TL �=�MAXTL�–�1
	RED_state
	MAXTL
	RED_state
	MAXTL
	RED_state
	MAXTL
	RED_state
	MAXTL
	RED_state
	TL �=�MAXTL
	error_state
	MAXTL
	RED_state
	MAXTL
	RED_state
	MAXTL
	error_state
	MAXTL
	Table 20— Reset Received While in error_state

	error_state
	TL < MAXTL�–�1
	—
	RED_state
	MAXTL
	RED_state
	TL�+�1
	—
	error_state
	TL �=�MAXTL�–�1
	—
	RED_state
	MAXTL
	RED_state
	MAXTL
	—
	error_state
	TL �=�MAXTL
	—
	RED_state
	MAXTL
	RED_state
	MAXTL
	—
	Implementation Note:
	7.6.1 Normal Trap Processing
	A normal trap causes the following state changes to occur:
	— If the processor is already in RED_state, the new trap is processed in RED_�state unless TL�=�M...
	— If the processor is in execute_state and the trap level is one less than its maximum value, tha...
	— If the processor is in either execute_state or RED_state, and the trap level is already at its ...

	Otherwise, the trap uses normal trap processing, and the following state changes occur:
	— The trap level is set. This provides access to a fresh set of privileged trap-state registers u...
	— Existing state is preserved
	— The trap type is preserved.
	— The PSTATE register is updated to a predefined state
	— For a register-window trap only, CWP is set to point to the register window that must be access...
	— Control is transferred into the trap table:

	Interrupts are ignored as long as PSTATE.IE�=�0.
	Programming Note:

	7.6.2 Special Trap Processing
	The following conditions invoke special trap processing:
	— Traps taken with TL�=�MAXTL�–�1
	— Power-on reset traps
	— Watchdog reset traps
	— Externally initiated reset traps
	— Software-initiated reset traps
	— Traps taken when the processor is already in RED_state
	— Implementation-dependent traps

	IMPL. DEP. #38: Implementation-dependent registers may or may not be affected by the various rese...
	7.6.2.1 Normal Traps with TL��=�MAXTL�–�1
	Normal traps that occur when TL�=�MAXTL�–�1 are processed in RED_state. The following state chang...
	— The trap level is advanced.
	— Existing state is preserved
	— The trap type is preserved.
	— The PSTATE register is set as follows:
	— For a register-window trap only, CWP is set to point to the register window that must be access...
	— Implementation-specific state changes; for example, disabling an MMU
	— Control is transferred into the RED_state trap table

	7.6.2.2 Power-On Reset (POR) Traps
	Initiated when power is applied to the processor. If the processor is in error_state, a power- on...
	— The trap level is set.
	— The trap type is set.
	— The PSTATE register is set as follows:
	— The TICK register is protected.
	— Implementation-specific state changes; for example, disabling an MMU
	— Control is transferred into the RED_state trap table

	For any reset when TL�=�MAXTL, for all n�<�MAXTL, the values in TPC[n], TNPC[n], and TSTATE[n] ar...

	7.6.2.3 Watchdog Reset (WDR) Traps
	WDR traps are initiated by an external signal. Typically, this is generated in response to error_...
	The following state changes occur:
	— The trap level is set.
	— Existing state is preserved.
	— TT[TL] is set as described below.
	— The PSTATE register is set as follows:
	— Implementation-specific state changes; for example, disabling an MMU.
	— Control is transferred into the RED_state trap table .

	If a watchdog reset occurs when the processor is in error_state, the TT field gives the type of t...
	For any reset when TL�=�MAXTL, for all n�<�MAXTL, the values in TPC[n], TNPC[n], and TSTATE[n] ar...

	7.6.2.4 Externally Initiated Reset (XIR) Traps
	XIR traps are initiated by an external signal. They behave like an interrupt that cannot be maske...
	The following state changes occur:
	— The trap level is set.
	— Existing state is preserved.
	— TT[TL] is set as described below.
	— The PSTATE register is set as follows:
	— Implementation-specific state changes; for example, disabling an MMU.
	— Control is transferred into the RED_state trap table.

	TT is set in the same manner as for watchdog reset. If the processor is in execute_state when the...
	For any reset when TL�=�MAXTL, for all n�<�MAXTL, the values in TPC[n], TNPC[n], and TSTATE[n] ar...

	7.6.2.5 Software-Initiated Reset (SIR) Traps
	SIR traps are initiated by executing an SIR instruction. This is used by supervisor software as a...
	The following state changes occur:
	— If TL �=�MAXTL, then enter error_state. Otherwise, do the following:
	— The trap level is set.
	— Existing state is preserved
	— The trap type is set.
	— The PSTATE register is set as follows:
	— Implementation-specific state changes; for example, disabling an MMU.
	— Control is transferred into the RED_state trap table

	For any reset when TL�=�MAXTL, for all n�<�MAXTL, the values in TPC[n], TNPC[n], and TSTATE[n] ar...

	7.6.2.6 Normal Traps When the Processor is in RED_state
	Normal traps taken when the processor is already in RED_state are also processed in RED_state, un...
	The processor state shall be set as follows:
	— The trap level is set.
	— Existing state is preserved.
	— The trap type is preserved.
	— The PSTATE register is set as follows:
	— For a register-window trap only, CWP is set to point to the register window that must be access...
	— Implementation-specific state changes; for example, disabling an MMU
	— Control is transferred into the RED_state trap table

	7.6.2.7 Implementation-Dependent Traps
	The operation of the processor for implementation_dependent_exception_n traps is implementation-d...

	7.7 Exception and Interrupt Descriptions
	The following paragraphs describe the various exceptions and interrupt requests and the condition...
	m async_data_error [tt�=�04016] (Disrupting)
	V8 Compatibility Note:

	m clean_window [tt�=�02416�..�02716] (Precise)
	m data_access_error [tt�=�03216] (Precise, Deferred, or Disrupting)
	l data_access_exception [tt�=�03016] (Precise or Deferred)
	m data_access_MMU_miss [tt�=�03116] (Precise or Deferred)
	m data_access_protection [tt�=�03316] (Precise or Deferred)
	l division_by_zero [tt�=�02816] (Precise or Deferred)
	m externally_initiated_reset [tt�=�00316] (Reset)
	l fill_n_normal [tt�=�0C016�..�0DF16] (Precise)
	l fill_n_other [tt�=�0E016�..�0FF16] (Precise)
	V8 Compatibility Note:

	l fp_disabled [tt�=�02016] (Precise)
	m fp_exception_ieee_754 [tt�=�02116] (Precise or Deferred (impl. dep. #23))
	m fp_exception_other [tt�=�02216] (Precise or Deferred�(impl. dep. #23))
	l illegal_instruction [tt�=�01016] (Precise or Deferred)
	m implementation_dependent_exception_n [tt�=�06016�..�07F16] (Pre, Def, or Dis)
	m instruction_access_error [tt�=�00A16] (Precise, Deferred, or Disrupting)
	l instruction_access_exception [tt�=�00816] (Precise)
	m instruction_access_MMU_miss [tt�=�00916] (Precise, Deferred, or Disrupting)
	m internal_processor_error [tt�=�02916] (Precise, Deferred, or Disrupting)
	V8 Compatibility Note:

	l interrupt_level_n [tt�=�04116�..�04F16] (Disrupting)
	m LDDF_mem_address_not_aligned [tt�=�03516] (Precise)
	m LDQF_mem_address_not_aligned [tt�=�03816] (Precise)
	l mem_address_not_aligned [tt�=�03416] (Precise or Deferred)
	l power_on_reset [tt�=�00116] (Reset)
	l privileged_action [tt�=�03716] (Precise)
	l privileged_opcode [tt�=�01116] (Precise)
	V8 Compatibility Note:

	l software_initiated_reset [tt�=�00416] (Reset)
	l spill_n_normal [tt�=�08016�..�09F16] (Precise)
	l spill_n_other [tt�=�0A016�..�0BF16] (Precise)
	V8 Compatibility Note:

	m STDF_mem_address_not_aligned [tt�=�03616] (Precise)
	m STQF_mem_address_not_aligned [tt�=�03916] (Precise)
	l tag_overflow [tt�=�02316] (Precise)
	l trap_instruction [tt�=�10016�..�17F16] (Precise)
	m unimplemented_LDD [tt�=�01216] (Precise)
	m unimplemented_STD [tt�=�01316] (Precise)
	l watchdog_reset [tt�=�00216] (Precise)

	All other trap types are reserved.

	8 Memory Models
	8.1 Introduction
	Figure 41— Memory Models from Least Restrictive (RMO) to Most Restrictive (TSO)

	8.2 Memory, Real Memory, and I/O Locations
	V8 Compatibility Note:

	8.3 Addressing and Alternate Address Spaces
	Programming Note:
	Implementation Note:
	Programming Note:
	Implementation Note:

	8.4 The SPARC-V9 Memory Model
	8.4.1 The SPARC-V9 Program Execution Model
	Figure 42— Processor Model: Uniprocessor System
	(1) A memory-reference instruction that sets (stores to) a location cannot be performed until all...
	(2) A memory-reference instruction that uses (loads) the value at a location cannot be performed ...

	8.4.2 The Processor/Memory Interface Model
	Figure 43— Data Memory Paths: Multiprocessor System

	8.4.3 The MEMBAR Instruction
	8.4.3.1 Ordering MEMBAR Instructions
	Table 21— Ordering Relationships Selected by Mask

	0116
	0
	0216
	1
	0416
	2
	0816
	3
	8.4.3.2 Sequencing MEMBAR Instructions
	Lookaside Barrier:
	Memory Issue Barrier:
	Synchronization Barrier:
	Table 22— Sequencing Barrier Selected by Mask

	1016
	0
	2016
	1
	4016
	2
	8.4.4 Memory Models
	8.4.4.1 Relaxed Memory Order (RMO)
	8.4.4.2 Partial Store Order (PSO)
	8.4.4.3 Total Store Order (TSO)

	8.4.5 Mode Control
	Implementation Note:

	8.4.6 Hardware Primitives for Mutual Exclusion
	8.4.6.1 Compare and Swap (CASA, CASXA)
	8.4.6.2 Swap (SWAP)
	8.4.6.3 Load Store Unsigned Byte (LDSTUB)

	8.4.7 Synchronizing Instruction and Data Memory
	Programming Note:

	A Instruction Definitions

	A.1 Overview
	(1) A table of the opcodes defined in the subsection with the values of the field(s) that uniquel...
	(2) An illustration of the applicable instruction format(s). In these illustrations, a dash ‘—’ i...
	(3) A list of the suggested assembly language syntax; the syntax notation is described in Appendi...
	(4) A description of the features, restrictions, and exception-causing conditions.
	(5) A list of the exceptions that can occur as a consequence of attempting to execute the instruc...
	Table 23— Opcode Superscripts
	Table 24— Instruction Set �

	137
	137
	184
	184
	148
	146
	138
	151
	152
	152
	157
	164
	158
	140
	143
	159
	159
	165
	165
	163
	167
	169
	164
	188
	192
	165
	164
	165
	166
	161
	162
	161
	158
	163
	170
	171
	171
	172
	178
	180
	173
	176
	173
	176
	173
	173
	176
	178
	180
	178
	180
	182
	183
	178
	180
	178
	180
	178
	180
	178
	180
	178
	180
	173
	186
	194
	198
	202
	199
	204
	184
	184
	205
	206
	206
	215
	215
	215
	215
	215
	212
	215
	215
	218
	220
	157
	217
	218
	220
	154
	199
	221
	224
	222
	222
	200
	222
	222
	222
	222
	230
	232
	225
	230
	230
	226
	228
	226
	228
	226
	230
	232
	226
	228
	230
	232
	230
	232
	226
	234
	234
	235
	236
	238
	241
	239
	154
	199
	200
	245
	245
	245
	245
	243
	245
	184
	184

	A.2 Add
	00�0000
	01�0000
	00�1000
	01�1000
	Programming Note:
	V8 Compatibility Note:

	A.3 Branch on Integer Register with Prediction (BPr)
	—
	000
	—
	001
	r[rs1] �=�0
	010
	r[rs1]�£�0
	011
	r[rs1]�<�0
	—
	100
	—
	101
	r[rs1]�¹�0
	110
	r[rs1]�>�0
	111
	r[rs1] ³�0
	Programming Note:
	Implementation Note:

	A.4 Branch on Floating-Point Condition Codes (FBfcc)
	1000
	0000
	0111
	0110
	0101
	0100
	0011
	0010
	0001
	1001
	1010
	1011
	1100
	1101
	1110
	1111
	Programming Note:
	Unconditional Branches (FBA, FBN):
	Fcc-Conditional Branches:
	V8 Compatibility Note:

	A.5 Branch on Floating-Point Condition Codes with Prediction (FBPfcc)
	1000
	0000
	0111
	0110
	0101
	0100
	0011
	0010
	0001
	1001
	1010
	1011
	1100
	1101
	1110
	1111
	00
	fcc0
	01
	fcc1
	10
	fcc2
	11
	fcc3
	Programming Note:
	Unconditional Branches (FBPA, FBPN):
	Fcc-Conditional Branches:
	V8 Compatibility Note:

	A.6 Branch on Integer Condition Codes (Bicc)
	1000
	0000
	1001
	0001
	1010
	0010
	1011
	0011
	1100
	0100
	1101
	0101
	1110
	0110
	1111
	0111
	Programming Note:
	Unconditional Branches (BA, BN):
	Icc-Conditional Branches:

	A.7 Branch on Integer Condition Codes with Prediction (BPcc)
	1000
	0000
	1001
	0001
	1010
	0010
	1011
	0011
	1100
	0100
	1101
	0101
	1110
	0110
	1111
	0111
	00
	icc
	01
	—
	10
	xcc
	11
	—
	Programming Note:
	Unconditional Branches (BPA, BPN):
	Conditional Branches:

	A.8 Call and Link
	01

	A.9 Compare and Swap
	11�1100
	11�1110
	Implementation Note:
	Programming Note:

	A.10 Divide (64-bit / 32-bit)
	00�1110
	00�1111
	01�1110
	01�1111
	Programming Note:
	Table 25— UDIV / UDIVcc Overflow Detection and Value Returned

	Rational quotient ³ 232
	232�-�1 (0000�0000�FFFF�FFFF16)
	icc.N
	icc.Z
	icc.V
	icc.C
	xcc.N
	xcc.Z
	xcc.V
	xcc.C
	Table 26— SDIV / SDIVcc Overflow Detection and Value Returned

	Rational quotient ³ 231
	231�-�1 (0000�0000�7FFF�FFFF16)
	Rational quotient £ -231-1
	-231 (FFFF�FFFF�8000�000016)
	icc.N
	icc.Z
	icc.V
	icc.C
	xcc.N
	xcc.Z
	xcc.V
	xcc.C

	A.11 DONE and RETRY
	11�1110
	0
	11�1110
	1
	—
	11�1110
	2�..�31
	Programming Note:

	A.12 Floating-Point Add and Subtract
	11�0100
	0�0100�0001
	11�0100
	0�0100�0010
	11�0100
	0�0100�0011
	11�0100
	0�0100�0101
	11�0100
	0�0100�0110
	11�0100
	0�0100�0111

	A.13 Floating-Point Compare
	11�0101
	0�0101�0001
	11�0101
	0�0101�0010
	11�0101
	0�0101�0011
	11�0101
	0�0101�0101
	11�0101
	0�0101�0110
	11�0101
	0�0101�0111
	00
	fcc0
	01
	fcc1
	10
	fcc2
	11
	fcc3
	0
	1
	2
	3
	V8 Compatibility Note:
	V8 Compatibility Note:

	A.14 Convert Floating-Point to Integer
	11�0100
	0�1000�0001
	11�0100
	0�1000�0010
	11�0100
	0�1000�0011
	11�0100
	0�1101�0001
	11�0100
	0�1101�0010
	11�0100
	0�1101�0011

	A.15 Convert Between Floating-Point Formats
	0�1100�1001
	0�1100�1101
	0�1100�0110
	0�1100�1110
	0�1100�0111
	0�1100�1011

	A.16 Convert Integer to Floating-Point
	11�0100
	0�1000�0100
	11�0100
	0�1000�1000
	11�0100
	0�1000�1100
	11�0100
	0�1100�0100
	11�0100
	0�1100�1000
	11�0100
	0�1100�1100

	A.17 Floating-Point Move, Negate, and Absolute Value
	11�0100
	0�0000�0001
	11�0100
	0�0000�0010
	11�0100
	0�0000�0011
	11�0100
	0�0000�0101
	11�0100
	0�0000�0110
	11�0100
	0�0000�0111
	11�0100
	0�0000�1001
	11�0100
	0�0000�1010
	11�0100
	0�0000�1011

	A.18 Floating-Point Multiply and Divide
	11�0100
	0�0100�1001
	11�0100
	0�0100�1010
	11�0100
	0�0100�1011
	11�0100
	0�0110�1001
	11�0100
	0�0110�1110
	11�0100
	0�0100�1101
	11�0100
	0�0100�1110
	11�0100
	0�0100�1111

	A.19 Floating-Point Square Root
	11�0100
	0�0010�1001
	11�0100
	0�0010�1010
	11�0100
	0�0010�1011
	Implementation Note:

	A.20 Flush Instruction Memory
	11�1011
	Programming Notes:
	(1) Typically, FLUSH is used in self-modifying code. See H.1.6, “Self-Modifying Code,” for inform...
	(2) The order in which memory is modified can be controlled by using FLUSH and MEMBAR instruction...
	(3) The memory model guarantees in a uniprocessor that data loads observe the results of the most...
	(4) FLUSH may be time-consuming. Some implementations may trap rather than implement FLUSH in har...
	(5) In a multiprocessor system, the time it takes for a FLUSH to take effect is implementation-de...
	(6) Because FLUSH is designed to act on a doubleword, and because, on some implementations, FLUSH...

	Implementation Notes:
	(1) IMPL. DEP. #42: If FLUSH is not implemented in hardware, it causes an illegal_instruction exc...
	(2) The effect of a FLUSH instruction as observed from PFLUSH is immediate. Other processors in a...

	A.21 Flush Register Windows
	10�1011
	Programming Note:
	Programming Note:

	A.22 Illegal Instruction Trap
	00
	000
	V8 Compatibility Note:

	A.23 Implementation-Dependent Instructions
	11�0110
	11�0111
	V8 Compatibility Note:

	A.24 Jump and Link
	11�1000
	Programming Note:

	A.25 Load Floating-Point
	10�000 0
	0�..�31
	10�001 1
	†
	10�001 0
	†
	10�000 1
	0
	10�000 1
	1
	—
	10�000 1
	2�..�31
	V8 Compatibility Note:
	Programming Note:
	Implementation Note:

	A.26 Load Floating-Point from Alternate Space
	11�000 0
	0�..�31
	11�001 1
	†
	11�001 0
	†
	Programming Note:
	Implementation Note:

	A.27 Load Integer
	00�1001
	00�1010
	00�1000
	00�0001
	00�0010
	00�0000
	00�1011
	00�0011
	Programming Note:
	V8 Compatibility Note:

	A.28 Load Integer from Alternate Space
	01�1001
	01�1010
	01�1000
	01�0001
	01�0010
	01�0000
	01�1011
	01�0011
	Programming Note:
	V8 Compatibility Note:

	A.29 Load-Store Unsigned Byte
	00�1101

	A.30 Load-Store Unsigned Byte to Alternate Space
	01�1101

	A.31 Logical Operations
	00�0001
	01�0001
	00�0101
	01�0101
	00�0010
	01�0010
	00�0110
	01�0110
	00�0011
	01�0011
	00�0111
	01�0111
	Programming Note:

	A.32 Memory Barrier
	10�1000
	Table 27— MEMBAR mmask Encodings

	#StoreStore
	#LoadStore
	#StoreLoad
	#LoadLoad
	Table 28— MEMBAR cmask Encodings

	Synchronization barrier
	#Sync
	Memory issue barrier
	#MemIssue
	Lookaside barrier
	#Lookaside
	V8 Compatibility Note:

	A.33 Move Floating-Point Register on Condition (FMOVcc)
	11�0101
	1000
	11�0101
	0000
	11�0101
	1001
	11�0101
	0001
	11�0101
	1010
	11�0101
	0010
	11�0101
	1011
	11�0101
	0011
	11�0101
	1100
	11�0101
	0100
	11�0101
	1101
	11�0101
	0101
	11�0101
	1110
	11�0101
	0110
	11�0101
	1111
	11�0101
	0111
	11�0101
	1000
	11�0101
	0000
	11�0101
	0111
	11�0101
	0110
	11�0101
	0101
	11�0101
	0100
	11�0101
	0011
	11�0101
	0010
	11�0101
	0001
	11�0101
	1001
	11�0101
	1010
	11�0101
	1011
	11�0101
	1100
	11�0101
	1101
	11�0101
	1110
	11�0101
	1111
	000
	001
	010
	011
	100
	101
	110
	111
	0nn
	00�0001
	0�nn00�0001
	0nn
	00�0010
	0�nn00�0010
	0nn
	00�0011
	0�nn00�0011
	100
	00�0001
	1�0000�0001
	100
	00�0010
	1�0000�0010
	100
	00�0011
	1�0000�0011
	110
	00�0001
	1�1000�0001
	110
	00�0010
	1�1000�0010
	110
	00�0011
	1�1000�0011
	Programming Note:
	Programming Note:

	A.34 Move F-P Register on Integer Register Condition (FMOVr)
	000
	—
	001
	r[rs1] �=�0
	010
	r[rs1] £ 0
	011
	r[rs1] < 0
	100
	—
	101
	r[rs1] ¹ 0
	110
	r[rs1] > 0
	111
	r[rs1] ³ 0
	0�0101
	0�0110
	0�0111
	Implementation Note:

	A.35 Move Integer Register on Condition (MOVcc)
	10�1100
	1000
	10�1100
	0000
	10�1100
	1001
	10�1100
	0001
	10�1100
	1010
	10�1100
	0010
	10�1100
	1011
	10�1100
	0011
	10�1100
	1100
	10�1100
	0100
	10�1100
	1101
	10�1100
	0101
	10�1100
	1110
	10�1100
	0110
	10�1100
	1111
	10�1100
	0111
	10�1100
	1000
	10�1100
	0000
	10�1100
	0111
	10�1100
	0110
	10�1100
	0101
	10�1100
	0100
	10�1100
	0011
	10�1100
	0010
	10�1100
	0001
	10�1100
	1001
	10�1100
	1010
	10�1100
	1011
	10�1100
	1100
	10�1100
	1101
	10�1100
	1110
	10�1100
	1111
	000
	001
	010
	011
	100
	101
	110
	111
	Programming Note:
	Programming Note:
	Programming Note:

	A.36 Move Integer Register on Register Condition (MOVR)
	000
	001
	r[rs1]�=�0
	010
	r[rs1]�£�0
	011
	r[rs1]�<�0
	100
	—
	101
	r[rs1]�¹�0
	110
	r[rs1]�>�0
	111
	r[rs1]�³�0
	Implementation Note:

	A.37 Multiply and Divide (64-bit)
	00�1001
	10�1101
	00�1101
	8000�0000�0000�000016�¸�FFFF�FFFF�FFFF�FFFF16�=�8000�0000�0000�000016.

	A.38 Multiply (32-bit)
	00�1010
	00�1011
	01�1010
	01�1011
	icc.N
	icc.Z
	icc.V
	icc.C
	xcc.N
	xcc.Z
	xcc.V
	xcc.C
	Programming Note:
	Implementation Note:
	Implementation Note:

	A.39 Multiply Step
	10�0100
	(1) The multiplicand is r[rs2] if i�=�0, or sign_ext(simm13) if i�=�1.
	(2) A 32-bit value is computed by shifting r[rs1] right by one bit with “CCR.icc.n�xor�CCR.icc.v”...
	(3) If the least significant bit of Y�=�1, the shifted value from step (2) and the multiplicand a...
	(4) The sum from step (3) is written into r[rd]. The upper 32-bits of r[rd] are undefined. The in...
	(5) The Y register is shifted right by one bit, with the least significant bit of the unshifted r...

	A.40 No Operation
	00
	100

	A.41 Population Count
	10�1110
	Implementation Note:
	Programming Note:

	A.42 Prefetch Data
	10�1101
	11�1101
	0
	1
	2
	3
	4
	5�–�15
	16�–�31
	Implementation Note:
	Programming Note:
	Implementation Note:
	A.42.1 Prefetch Variants
	A.42.1.1 Prefetch for Several Reads (fcn�=�0)
	Implementation Note:

	A.42.1.2 Prefetch for One Read (fcn�=�1)
	Programming Note:

	A.42.1.3 Prefetch for Several Writes (and Possibly Reads) (fcn�=�2)
	Programming Note:
	Implementation Note:
	Implementation Note:

	A.42.1.4 Prefetch for One Write (fcn�=�3)
	A.42.1.5 Prefetch Page (fcn�=�4)
	Programming Note:
	Implementation Note:
	Implementation Note:

	A.42.1.6 Implementation-Dependent Prefetch (fcn�=�16�..�31)

	A.42.2 General Comments
	Implementation Note:

	Uniprocessor
	Low
	Uniprocessor
	High
	Multiprocessor
	Low
	Multiprocessor
	High
	Programming Note:
	Implementation Note:

	A.43 Read Privileged Register
	10�1010
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16�..�30
	31
	Programming Note:

	A.44 Read State Register
	10�1000
	0
	—
	10�1000
	1
	10�1000
	2
	10�1000
	3
	10�1000
	4
	10�1000
	5
	10�1000
	6
	10�1000
	 7�-�14
	10�1000
	15
	10�1000
	16�-�31
	Implementation Note:
	V8 Compatibility Note:

	A.45 RETURN
	11�1001
	Programming Note:
	Programming Note:

	A.46 SAVE and RESTORE
	11�1100
	11�1101
	Programming Note:
	Programming Note:
	Programming Note:
	Programming Note:
	Programming Note:

	A.47 SAVED and RESTORED
	11�0001
	0
	11�0001
	1
	—
	11�0001
	2�..�31
	Programming Note:
	Programming Note:
	Programming Note:

	A.48 SETHI
	00
	100
	Programming Note:

	A.49 Shift
	10�0101
	0
	10�0110
	0
	10�0111
	0
	10�0101
	1
	10�0110
	1
	10�0111
	1
	0
	0
	0
	1
	1
	0
	1
	1
	Programming Note:
	Programming Note:

	A.50 Software-Initiated Reset
	11�0000
	15
	Programming Note:

	A.51 Store Barrier
	10�1000
	V8 Compatibility Note:
	Implementation Note:

	A.52 Store Floating-Point
	10�0100
	0�..�31
	10�0111
	†
	10�0110
	†
	10�0101
	0
	10�0101
	1
	—
	10�0101
	2�..�31
	V8 Compatibility Note:
	Implementation Note:
	Programming Note:

	A.53 Store Floating-Point into Alternate Space
	11�0100
	0�..�31
	11�0111
	†
	11�0110
	†
	Programming Note:

	A.54 Store Integer
	00�0101
	00�0110
	00�0100
	00�1110
	00�0111
	Programming Note:
	V8 Compatibility Note:

	A.55 Store Integer into Alternate Space
	01�0101
	01�0110
	01�0100
	01�1110
	01�0111
	Programming Note:
	V8 Compatibility Note:

	A.56 Subtract
	00�0100
	01�0100
	00�1100
	01�1100
	Programming Note:
	Programming Note:
	V8 Compatibility Note:

	A.57 Swap Register with Memory
	00�1111
	Implementation Note:

	A.58 Swap Register with Alternate Space Memory
	01�1111
	Implementation Note:

	A.59 Tagged Add
	10�0000
	10�0010
	V8 Compatibility Note:

	A.60 Tagged Subtract
	10�0001
	10�0011
	V8 Compatibility Note:

	A.61 Trap on Integer Condition Codes (Tcc)
	1000
	0000
	1001
	0001
	1010
	0010
	1011
	0011
	1100
	0100
	1101
	0101
	1110
	0110
	1111
	0111
	00
	icc
	01
	—
	10
	xcc
	11
	—
	Programming Note:
	V8 Compatibility Note:

	A.62 Write Privileged Register
	11�0010
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15�..�31
	Programming Note:
	Programming Note:

	A.63 Write State Register
	11�0000
	0
	—
	11�0000
	1
	11�0000
	2
	11�0000
	3
	11�0000
	 4, 5
	11�0000
	6
	11�0000
	7�..�14
	11�0000
	15
	11�0000
	16��..��31
	Implementation Note:
	V8 Compatibility Note:

	B IEEE Std 754-1985 Requirements for SPARC-V9
	B.1 Traps Inhibit Results
	B.2 NaN Operand and Result Definitions
	B.2.1 Untrapped Result in Different Format from Operands
	F[sdq]TO[sdq] with a quiet NaN operand:
	F[sdq]TO[sdq] with a signaling NaN operand:
	FCMPE[sdq] with any NaN operand:
	FCMP[sdq] with any signaling NaN operand:
	FCMP[sdq] with any quiet NaN operand but no signaling NaN operand:

	B.2.2 Untrapped Result in Same Format as Operands
	No NaN operand:
	One operand, a quiet NaN:
	One operand, a signaling NaN:
	Two operands, both quiet NaNs:
	Two operands, both signaling NaNs:
	Two operands, only one a signaling NaN:
	Two operands, neither a signaling NaN, only one a quiet NaN:
	Table 29— Untrapped Floating-Point Results

	Number
	QNaN2
	SNaN2
	rs1 operand
	None
	IEEE 754
	QNaN2
	QSNaN2
	Number
	IEEE 754
	QNaN2
	QSNaN2
	QNaN1
	QNaN1
	QNaN2
	QSNaN2
	SNaN1
	QSNaN1
	QSNaN1
	QSNaN2
	B.3 Trapped Underflow Definition (UFM�=�1)
	B.4 Untrapped Underflow Definition (UFM�=�0)

	0�£�|u|�£�smallest normalized number
	Table 30— Untrapped Floating-Point Underflow (Tininess Detected Before Rounding)
	None
	None
	None
	UF
	None
	None
	None
	None
	None
	UF
	NX
	uf� nx
	UF
	NX
	uf nx
	UF
	NX
	uf nx
	Table 31— Bounds on u in Table 30, if Tininess is Detected After Rounding

	0
	Nearest (even, if tie)
	|u| < m(1 - e/4)
	1
	0
	|u| < m
	2
	+ •
	-m < u £ u(1 - e/2)
	3
	- •
	-m(1 - e/2) £ u < m
	B.5 Integer Overflow Definition
	F[sdq]TOi:
	F[sdq]TOx:

	B.6 Floating-Point Nonstandard Mode
	C SPARC-V9 Implementation Dependencies

	SPARC International
	535 Middlefield Rd, Suite 210
	Menlo Park, CA 94025
	(415) 321-8692
	C.1 Definition of an Implementation Dependency
	C.2 Hardware Characteristics
	C.3 Implementation Dependency Categories
	Value (v):
	Assigned Value (a):
	Functional Choice (f):
	Total Unit (t):

	C.4 List of Implementation Dependencies
	Table 32— Implementation Dependencies �

	1
	f
	8, 253
	2
	v
	15, 30, 32, 59
	3
	f
	84
	4-5
	—
	—
	6
	f
	18, 121
	7
	t
	18, 121
	8
	t
	20, 30, 35, 61, 215, 216, 246, 258, 258
	9
	f
	20, 36, 61, 246, 258, 258
	10-12
	—
	—
	13
	a
	58
	14-15
	—
	—
	16
	t
	30
	17
	—
	—
	18
	f
	44, 251
	19
	a
	45
	20-21
	—
	—
	22
	f
	51
	23
	f
	62, 115, 115
	24
	t
	30, 213
	25
	f
	47, 213, 214, 214
	26-28
	—
	—
	29
	t
	18, 74, 74
	30
	f
	74
	31
	f
	90, 93, 114, 115, 115
	32
	t
	96
	33
	f
	98, 114, 114, 114, 114, 115, 116
	34
	f
	100
	35
	t
	93, 102, 103, 104, 113, 115
	36
	f
	104
	37
	f
	97
	38
	f
	108
	39
	f
	94
	40
	f
	94
	41
	—
	—
	42
	t,f,v
	168
	43
	—
	—
	44
	f
	174, 177
	45 - 46
	—
	—
	47
	t
	215, 216, 216, 216
	48
	t
	245, 245, 246, 246, 246
	49-54
	—
	—
	55
	f
	50, 50, 249, 247
	56-100
	—
	—
	101
	v
	21, 55, 56, 57, 58, 59
	102
	f
	114
	103
	f
	206, 206, 207, 207, 208, 209, 211, 207
	104
	a
	58
	105
	f
	52
	106
	f
	84, 171
	107
	f
	179, 179, 181, 181
	108
	f
	117, 230, 231, 233, 233
	109
	f
	115, 174, 174, 177
	110
	f
	116, 227, 227, 229, 229
	111
	f
	116, 174, 174, 177
	112
	f
	117, 227, 227, 229, 229
	113
	f
	54, 119
	114
	f
	92
	115
	f
	92
	116
	f
	224
	117
	f
	207, 284
	118
	f
	121
	119
	f
	54,129
	120
	f
	121, 130, 153, 182, 187, 225, 235, 236
	121
	f
	121
	122
	f
	131, 168, 168
	123
	f
	18, 121, 130
	124
	v
	74, 74, 122, 256
	125
	f
	55, 79, 151, 172, 216
	126
	v
	59, 59, 60, 60, 60, 61
	127
	f
	53, 57
	D Formal Specification of the Memory Models
	D.1 Processors and Memory
	D.2 An Overview of the Memory Model Specification
	D.3 Memory Transactions
	D.3.1 Memory Transactions
	Store:
	Load:
	Atomic:
	Flush:

	D.3.2 Program Order
	D.3.3 Dependence Order
	(1) The execution of Y is conditional on X, and S(Y) is true.
	(2) Y reads a register that is written by X.
	(3) X and Y access the same memory location and S(X) and L(Y) are both true.

	D.3.4 Memory Order

	D.4 Specification of Relaxed Memory Order (RMO)
	D.4.1 Value Atomicity
	D.4.2 Store Atomicity
	D.4.3 Atomic Memory Transactions
	D.4.4 Memory Order Constraints
	(1) X <d Y & L(X) ﬁ X <m Y
	(2) M(X,Y) ﬁ X <m Y
	(3) Xa <p Ya & S(Y) ﬁ X <m Y

	D.4.5 Value of Memory Transactions
	D.4.6 Termination of Memory Transactions
	D.4.7 Flush Memory Transaction

	D.5 Specification of Partial Store Order (PSO)
	D.6 Specification of Total Store Order (TSO)
	D.7 Examples Of Program Executions
	D.7.1 Observation of Store Atomicity
	Figure 44— Store Atomicity Example

	D.7.2 Dekker’s Algorithm
	Figure 45— Dekker’s Algorithm

	D.7.3 Indirection Through Processors
	Figure 46— Indirection Through Processors

	D.7.4 PSO Behavior
	Figure 47— PSO Behavior

	D.7.5 Application to Compilers
	D.7.6 Verifying Memory Models

	E Opcode Maps
	E.1 Overview
	E.2 Tables
	Table 33— op[1:0]

	0
	1
	2
	3
	Branches & SETHI See table�34
	CALL
	Arithmetic & Misc. See table�35
	Loads/Stores See table�36
	Table 34— op2[2:0]�(op�=�0)

	0
	1
	2
	3
	4
	5
	6
	7
	ILLTRAP
	BPcc See table�39
	BiccD See table�39
	BPr (bit 28�=�0) See table�40 (bit 28�=�1)
	SETHI NOP†
	FBPfcc See table�39
	FBfccD See table�39
	—
	Table 35— op3[5:0]�(op�=�2)

	0
	1
	2
	3
	op3 [3:0]
	0
	ADD
	ADDcc
	TADDcc
	WRYD�(rd�=�0) — �(rd�=��1) WRCCR�(rd�=�2) WRASI�(rd�=�3) WRASRPASR�(see A.63) WRFPRS�(rd�=�6) SIR...
	1
	AND
	ANDcc
	TSUBcc
	SAVEDP (fcn �=�0), RESTOREDP (fcn �=�1)
	2
	OR
	ORcc
	TADDccTVD
	WRPRP
	3
	XOR
	XORcc
	TSUBccTVD
	—
	4
	SUB
	SUBcc
	MULSccD
	FPop1 See table�37
	5
	ANDN
	ANDNcc
	SLL (x�=�0), SLLX (x�=�1)
	FPop2 See table�38
	6
	ORN
	ORNcc
	SRL (x�=�0), SRLX (x�=�1)
	IMPDEP1
	7
	XNOR
	XNORcc
	SRA (x�=�0), SRAX (x�=�1)
	IMPDEP2
	8
	ADDC
	ADDCcc
	RDYD�(rs1�=�0) — �(rs1�=��1) RDCCR�(rs1�=��2) RDASI�(rs1�=��3) RDTICKPNPT�(rs1�=��4) RDPC�(rs1�=�...
	JMPL
	9
	MULX
	—
	—
	RETURN
	A
	UMULD
	UMULccD
	RDPRP
	Tcc See table�39
	(bit 29�=�1)
	B
	SMULD
	SMULccD
	FLUSHW
	FLUSH
	C
	SUBC
	SUBCcc
	MOVcc
	SAVE
	D
	UDIVX
	—
	SDIVX
	RESTORE
	E
	UDIVD
	UDIVccD
	POPC (rs1�=�0) — (rs1�>�0)
	DONEP (fcn �=�0) RETRYP (fcn �=�1)
	F
	SDIVD
	SDIVccD
	MOVr See table�40
	—
	Table 36— op3[5:0]�(op�=�3)

	0
	1
	2
	3
	op3 [3:0]
	0
	LDUW
	LDUWAPASI
	LDF
	LDFAPASI
	1
	LDUB
	LDUBAPASI
	LDFSRD, LDXFSR
	—
	2
	LDUH
	LDUHAPASI
	LDQF
	LDQFAPASI
	3
	LDDD
	LDDAD, PASI
	LDDF
	LDDFAPASI
	4
	STW
	STWAPASI
	STF
	STFAPASI
	5
	STB
	STBAPASI
	STFSRD, STXFSR
	—
	6
	STH
	STHAPASI
	STQF
	STQFAPASI
	7
	STDD
	STDAPASI
	STDF
	STDFAPASI
	8
	LDSW
	LDSWAPASI
	—
	—
	9
	LDSB
	LDSBAPASI
	—
	—
	A
	LDSH
	LDSHAPASI
	—
	—
	B
	LDX
	LDXAPASI
	—
	—
	C
	—
	—
	—
	CASAPASI
	D
	LDSTUB
	LDSTUBAPASI
	PREFETCH
	PREFETCHAPASI
	E
	STX
	STXAPASI
	—
	CASXAPASI
	F
	SWAPD
	SWAPAD, PASI
	—
	—
	Table 37— opf[8:0]�(op�=�2,�op3�=�3416�=�FPop1)

	opf [8:4]
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	A
	B
	C
	D
	E
	F
	00
	—
	FMOVs
	FMOVd
	FMOVq
	—
	FNEGs
	FNEGd
	FNEGq
	—
	FABSs
	FABSd
	FABSq
	—
	—
	—
	—
	01
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	02
	—
	—
	—
	—
	—
	—
	—
	—
	—
	FSQRTs
	FSQRTd
	FSQRTq
	—
	—
	—
	—
	03
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	04
	—
	FADDs
	FADDd
	FADDq
	—
	FSUBs
	FSUBd
	FSUBq
	—
	FMULs
	FMULd
	FMULq
	—
	FDIVs
	FDIVd
	FDIVq
	05
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	06
	—
	—
	—
	—
	—
	—
	—
	—
	—
	FsMULd
	—
	—
	—
	—
	FdMULq
	—
	07
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	08
	—
	FsTOx
	FdTOx
	FqTOx
	FxTOs
	—
	—
	—
	FxTOd
	—
	—
	—
	FxTOq
	—
	—
	—
	09
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	0A
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	0B
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	0C
	—
	—
	—
	—
	FiTOs
	—
	FdTOs
	FqTOs
	FiTOd
	FsTOd
	—
	FqTOd
	FiTOq
	FsTOq
	FdTOq
	—
	0D
	—
	FsTOi
	FdTOi
	FqTOi
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	0E�..�1F
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	—
	Table 38— opf[8:0]�(op�=�2, op3�=�3516�=�FPop2)

	opf [8:4]
	0
	1
	2
	3
	4
	5
	6
	7
	8..F
	01
	—
	—
	—
	—
	—
	—
	—
	—
	—
	02
	—
	—
	—
	—
	—
	FMOVRsZ
	FMOVRdZ
	FMOVRqZ
	—
	03
	—
	—
	—
	—
	—
	—
	—
	—
	—
	04
	—
	FMOVs (fcc1)
	FMOVd (fcc1)
	FMOVq (fcc1)
	—
	FMOVRsLEZ
	FMOVRdLEZ
	FMOVRqLEZ
	—
	05
	—
	FCMPs
	FCMPd
	FCMPq
	—
	FCMPEs
	FCMPEd
	FCMPEq
	—
	06
	—
	—
	—
	—
	—
	FMOVRsLZ
	FMOVRdLZ
	FMOVRqLZ
	—
	07
	—
	—
	—
	—
	—
	—
	—
	—
	—
	08
	—
	FMOVs (fcc2)
	FMOVd (fcc2)
	FMOVq (fcc2)
	—
	†
	†
	†
	—
	09
	—
	—
	—
	—
	—
	—
	—
	—
	—
	0A
	—
	—
	—
	—
	—
	FMOVRsNZ
	FMOVRdNZ
	FMOVRqNZ
	—
	0B
	—
	—
	—
	—
	—
	—
	—
	—
	—
	0C
	—
	FMOVs (fcc3)
	FMOVd (fcc3)
	FMOVq (fcc3)
	—
	FMOVRsGZ
	FMOVRdGZ
	FMOVRqGZ
	—
	0D
	—
	—
	—
	—
	—
	—
	—
	—
	—
	0E
	—
	—
	—
	—
	—
	FMOVRsGEZ
	FMOVRdGEZ
	FMOVRqGEZ
	—
	0F
	—
	—
	—
	—
	—
	—
	—
	—
	—
	10
	—
	FMOVs (icc)
	FMOVd (icc)
	FMOVq (icc)
	—
	—
	—
	—
	—
	11�..�17
	—
	—
	—
	—
	—
	—
	—
	—
	—
	18
	—
	FMOVs (xcc)
	FMOVd (xcc)
	FMOVq (xcc)
	—
	—
	—
	—
	—
	19�..�1F
	—
	—
	—
	—
	—
	—
	—
	—
	—
	Table 39— cond[3:0]

	op�=�0 op2�=�1
	op�=�0 op2�=�2
	op�=�0 op2�=�5
	op�=�0 op2�=���6
	op�=�2 op3�=�3A16
	cond [3:0]
	0
	BPN
	BND
	FBPN
	FBND
	TN
	1
	BPE
	BED
	FBPNE
	FBNED
	TE
	2
	BPLE
	BLED
	FBPLG
	FBLGD
	TLE
	3
	BPL
	BLD
	FBPUL
	FBULD
	TL
	4
	BPLEU
	BLEUD
	FBPL
	FBLD
	TLEU
	5
	BPCS
	BCSD
	FBPUG
	FBUGD
	TCS
	6
	BPNEG
	BNEGD
	FBPG
	FBGD
	TNEG
	7
	BPVS
	BVSD
	FBPU
	FBUD
	TVS
	8
	BPA
	BAD
	FBPA
	FBAD
	TA
	9
	BPNE
	BNED
	FBPE
	FBED
	TNE
	A
	BPG
	BGD
	FBPUE
	FBUED
	TG
	B
	BPGE
	BGED
	FBPGE
	FBGED
	TGE
	C
	BPGU
	BGUD
	FBPUGE
	FBUGED
	TGU
	D
	BPCC
	BCCD
	FBPLE
	FBLED
	TCC
	E
	BPPOS
	BPOSD
	FBPULE
	FBULED
	TPOS
	F
	BPVC
	BVCD
	FBPO
	FBOD
	TVC
	Table 40— Encoding of rcond[2:0] Instruction Field

	op�=�0 op2�=�3
	op�=�2 op3�=�2F16
	op�=�2 op3�=�3516
	 rcond [2:0]
	
	0
	—
	—
	—
	1
	BRZ
	MOVRZ
	FMOVZ
	2
	BRLEZ
	MOVRLEZ
	FMOVLEZ
	3
	BRLZ
	MOVRLZ
	FMOVLZ
	4
	—
	—
	—
	5
	BRNZ
	MOVRNZ
	FMOVNZ
	6
	BRGZ
	MOVRGZ
	FMOVGZ
	7
	BRGEZ
	MOVRGEZ
	FMOVGEZ
	Table 41— cc/opf_cc Fields (MOVcc and FMOVcc)

	opf_cc
	cc2
	cc1
	cc0
	0
	0
	0
	fcc0
	0
	0
	1
	fcc1
	0
	1
	0
	fcc2
	0
	1
	1
	fcc3
	1
	0
	0
	icc
	1
	0
	1
	—
	1
	1
	0
	xcc
	1
	1
	1
	—
	Table 42— cc Fields (FBPfcc, FCMP and FCMPE)

	Condition code selected
	0
	0
	fcc0
	0
	1
	fcc1
	1
	0
	fcc2
	1
	1
	fcc3
	Table 43— cc Fields (BPcc and Tcc)

	Condition code selected
	0
	0
	icc
	0
	1
	—
	1
	0
	xcc
	1
	1
	—
	F SPARC-V9 MMU Requirements

	This appendix is informative only.
	It is not part of the SPARC-V9 specification.
	F.1 Introduction
	F.1.1 Definitions
	address space:
	aliases:
	context:
	page:
	translation element:

	F.2 Overview
	F.3 The Processor-MMU Interface
	(1) Virtual Addresses, which map all system-wide, program-visible memory. A SPARC-V9 MMU may choo...
	(2) Physical Addresses, which map real physical memory and I/O device space. There is no minimum ...
	Figure 48— Logical Diagram of a SPARC-V9 System with an MMU

	F.3.1 Information the MMU Expects from the Processor
	RED_state:
	Data / Instruction:
	Prefetch:
	Privileged:
	Read / Write:
	Atomic:
	ASI:

	F.3.2 Attributes the MMU Associates with Each Mapping
	Restricted:
	Read, Write, and Execute Permissions:
	Prefetchable:
	Non-faultable:

	F.3.3 Information the MMU Sends to the Processor
	Translation_error:
	No_translation:
	Translation_not_valid:
	Privilege_violation:
	Protection_violation:
	Prefetch_violation:
	NF-Load_violation:
	Translation_successful:

	F.4 Components of the SPARC-V9 MMU Architecture
	F.4.1 Virtual-to-Physical Address Translation
	F.4.2 Memory Protection
	F.4.3 Prefetch and Non-Faulting Load Violation
	F.4.4 Contexts
	(1) Primary Context
	(2) Secondary Context
	(3) Nucleus Context
	Table 44— Context Used for Data Access

	Either
	Primary
	Either
	Primary
	Either
	Primary
	Either
	Primary
	Privileged
	Primary
	Privileged
	Primary
	Either
	Secondary
	Either
	Secondary
	Either
	Secondary
	Either
	Secondary
	Privileged
	Secondary
	Privileged
	Secondary
	Privileged
	Nucleus
	Privileged
	Nucleus
	Table 45— Context Used for Instruction Access

	Either
	Primary
	Privileged ‡
	Nucleus
	F.4.5 Fault Status and Fault Address
	F.4.6 Referenced and Modified Statistics
	F.5 RED_state Processing
	F.6 Virtual Address Aliasing
	F.7 MMU Demap Operation
	F.8 SPARC-V9 Systems without an MMU
	G Suggested Assembly Language Syntax

	This appendix is informative only.
	It is not part of the SPARC-V9 specification.
	G.1 Notation Used
	G.1.1 Register Names
	reg:
	freg:
	asr_reg:
	i_or_x_cc:
	fccn:

	G.1.2 Special Symbol Names
	G.1.3 Values
	G.1.4 Labels
	G.1.5 Other Operand Syntax
	reg_plus_imm may be any of the following:
	address may be any of the following:
	membar_mask is the following:
	prefetch_fcn (prefetch function) may be any of the following:
	regaddr (register-only address) may be any of the following:
	reg_or_imm (register or immediate value) may be either of:
	reg_or_imm10 (register or immediate value) may be either of:
	reg_or_imm11 (register or immediate value) may be either of:
	reg_or_shcnt (register or shift count value) may be any of:
	software_trap_number may be any of the following:

	G.1.6 Comments

	G.2 Syntax Design
	G.3 Synthetic Instructions
	Table 46— Mapping Synthetic to SPARC-V9 Instructions �

	H Software Considerations

	This appendix is informative only.
	It is not part of the SPARC-V9 specification.
	This appendix describes how software can use the SPARC-V9 architecture effectively. Examples do n...
	H.1 Nonprivileged Software
	This subsection describes software conventions that have proven or may prove useful, assumptions ...
	The following are the primary goals for many of the software conventions described in this subsec...
	H.1.1 Registers
	Register usage is a critical resource allocation issue for compilers. The SPARC-V9 architecture p...
	H.1.1.1 In and Out Registers
	The in and out registers are used primarily for passing parameters to and receiving results from ...
	One of a procedure’s out registers (%o6) is used as its stack pointer, %sp. It points to an area ...
	A procedure may store temporary values in its out registers (except %sp) with the understanding t...
	Up to six parameters may be passed by placing them in out registers %o0�..�%o5; additional parame...
	After a callee is entered and its SAVE instruction has been executed, the caller’s out registers ...
	The caller’s stack pointer %sp (%o6) automatically becomes the current procedure’s frame pointer ...
	The callee finds its first six integer parameters in %i0�..�%i5, and the remainder (if any) on th...
	A function returns a scalar integer value by writing it into its ins (which are the caller’s outs...
	A procedure’s return address, normally the address of the instruction just after the CALL’s delay...

	H.1.1.2 Local Registers
	The locals are used for automatic variables and for most temporary values. For access efficiency,...
	See H.1.4, “Register Allocation within a Window,” for methods of allocating more or fewer than ei...

	H.1.1.3 Register Windows and %sp
	Some caveats about the use of %sp and the SAVE and RESTORE instructions are appropriate. If the o...
	To avoid such problems, consider all data memory at addresses just less than %sp to be volatile, ...

	H.1.1.4 Global Registers
	Unlike the ins, locals, and outs, the globals are not part of any register window. The globals ar...
	Global register %g0 has a hardwired value of zero; it always reads as zero, and writes to it have...
	Typically, the global registers other than %g0 are used for temporaries, global variables, or glo...
	sethi %uhi(address),tmp
	or tmp, %ulo(address), tmp
	sllx tmp, 32, tmp
	sethi %hi(address), reg
	or reg, %lo(address), reg
	ld [reg+tmp], reg

	Use of a global base register for frequently accessed global values would provide faster (single-...
	ld [%gn+offset], reg

	Additional global registers could be used to provide single-instruction access to correspondingly...

	H.1.1.5 Floating-Point Registers
	There are sixteen quad-precision floating-point registers. The registers can also be accessed as ...
	Like the global registers, the floating-point registers must be managed by software. Compilers us...

	H.1.1.6 The Memory Stack
	A stack is maintained to hold automatic variables, temporary variables, and return information fo...
	Under certain conditions, optimization can allow a leaf procedure to use its caller’s stack frame...
	The stack pointer %sp must always maintain the alignment required by the operating system’s ABI. ...

	H.1.2 Leaf-Procedure Optimization
	A leaf procedure is one that is a “leaf” in the program’s call graph; that is, one that does not ...
	Each procedure, including leaf procedures, normally uses a SAVE instruction to allocate a stack f...
	There are also space costs associated with this convention, the cumulative cache effects of which...
	Of the above costs, the trap-processing cycles typically are the most significant.
	Some leaf procedures can be made to operate without their own register window or stack frame, usi...
	If a procedure conforms to the above conditions, it can be made to operate using its caller’s sta...
	The optimization can be performed at the assembly language level using the following steps:
	(1) Change all references to registers in the procedure to registers that the caller assumes vola...
	(a) Leave references to %o7 unchanged.
	(b) Leave any references to %g0�..�%g7 unchanged.
	(c) Change %i0�..�%i5 to %o0�..�%o5, respectively. If an in register is changed to an out registe...
	(d) Change references to each local register into references to any unused register that is assum...

	(2) Delete the SAVE instruction. If it was in a delay slot, replace it with a NOP instruction. If...
	(3) If the RESTORE’s implicit addition operation is used for a productive purpose (such as settin...
	(4) Change the RET (return) synthetic instruction to RETL (return-from-leaf-procedure synthetic i...
	(5) Perform any optimizations newly made possible, such as combining instructions or filling the ...

	After the above changes, there should be no SAVE or RESTORE instructions, and no references to in...
	Costs of optimizing leaf procedures in this way include

	H.1.3 Example Code for a Procedure Call
	This subsection illustrates common parameter-passing conventions and gives a simple example of le...
	The code fragment in example�1 shows a simple procedure call with a value returned, and the proce...
	Example 1— Simple Procedure Call with Value Returned

	Since sum3 does not call any other procedures (i.e., it is a leaf procedure), it can be optimized...
	sum3:
	add %o0, %o1, %o0
	retl ! (must use RETL, not RET,
	add %o0, %o2, %o0 ! �to return from leaf procedure)

	H.1.4 Register Allocation within a Window
	The usual SPARC-V9 software convention is to allocate eight registers (%l0��..��%l7) for local va...
	Table 47— Register Allocation within a Window

	8
	10
	n
	1
	1
	1
	1
	1
	1
	6
	4
	14 - n
	8
	6
	16 - n
	H.1.5 Other Register-Window-Usage Models
	So far, this appendix has described SPARC-V9 software conventions that are appropriate for use in...
	One possibility is to avoid using the normal register-window mechanism by not using SAVE and REST...
	Effective use of this software convention would require compilers to generate different code (dir...
	It would be awkward, at best, to attempt to mix (link) code that uses the SAVE/RESTORE convention...
	It would be possible to run user code with one register-usage convention and supervisor code with...

	H.1.6 Self-Modifying Code
	If a program includes self-modifying code, it must issue a FLUSH instruction for each modified do...
	Note that self-modifying code intended to be portable must use FLUSH instruction(s) (or a call to...
	All SPARC-V9 instruction accesses are big-endian. If a program is running in little-endian mode a...

	H.1.7 Thread Management
	SPARC-V9 provides support for the efficient management of user-level threads. The cost of thread ...
	User Management of FPU:
	FLUSHW Instruction:

	H.1.8 Minimizing Branch Latency
	The SPARC-V9 architecture contains several instructions that can be used to minimize branch laten...
	Conditional Moves:
	double x,y;
	int i;
	...
	i �=�(x > y) ? 1 : 2;
	fcmp %fcc1, x, y ! x and y are double regs
	mov 1, i ! i is int; assume x > y
	movfle %fcc1, 2, i ! fix i if wrong

	Branch or Move Based on Register Contents:
	if (A[i] > max)
	max �=�A[i];
	ldx [addr_of_Ai], Ai
	sub Ai, max, tmp
	movrgz tmp, Ai, max

	H.1.9 Prefetch
	The SPARC-V9 architecture includes a prefetch instruction intended to help hide the latency of ac...
	As a general rule, given a loop of the following form (using C for assembly language, and assumin...
	for (i �=�0; i < N; i++) {
	load A[i]
	load B[i]
	...
	}

	which takes C cycles per iteration (assuming all loads hit in cache) and given L cycles of latenc...
	K �=�ceiling(L/C');
	for (i �=�0; i < N; i++) {
	load A[i]
	load B[i]
	prefetch A[i+K]
	prefetch B[i+K]
	...
	}

	This ensures that the loads will find their data in the cache, and will thus complete more quickl...
	Note that in cases of contiguous access (like this one), many of the prefetch instructions will i...
	/* Round up access to next cache line. */
	K' �=�(ceiling(L/C') + 7) & ~7;
	for (i �=�0; i < N; i++) {
	load A[i]
	load B[i]
	if (((int)(A+i) & 63) �=��=�0) {
	prefetch A[i+K']
	prefetch B[i+K']
	}
	...
	}

	or (unrolled eight times, assuming A and B are arrays of 8-byte values)
	/* Be sure that we access the next cache line. */
	K'' �=�ceiling(L/C') + 7;
	for (i �=�0; i < N; i++) {
	load A[i]
	load B[i]
	prefetch A[i+K'']
	prefetch B[i+K'']
	...
	load A[i+1]
	load B[i+2]
	... (no prefetching)
	...
	load A[i+7]
	load B[i+7]
	...
	}

	In the first case, the prefetching is performed exactly when needed, and thus the distance need n...
	In the second case, the prefetching occurs somewhere within a cache line, and thus, it is not kno...
	Table 48 illustrates the cost tradeoffs between no prefetching, naive prefetching, and smart pref...
	Table 48— Prefetch Cost Tradeoffs

	Here, we treat the arrays accessed as if one were not in the cache. Thus, every eight iterations,...
	Of course, this is a simplified model.
	Another possibility to consider is the worst-case cost of prefetching. If, in the example provide...
	Table 49— Cache Break-Even Points

	Note that one uncached operand corresponds to one load out of sixteen missing the cache; the oper...
	Binaries that run efficiently across different SPARC-V9 implementations can be created for cases ...
	For regular but noncontiguous accesses, a prefetch would be issued for every load. If cache block...
	The prefetch variant should be chosen based on what is known about the local and global use of th...
	If the hardware does not implement all variants, it is expected to provide a sensible overloading...

	H.1.10 Nonfaulting Load
	The SPARC-V9 architecture includes a way to specify load instructions that do not generate visibl...
	Five important rules govern the use of nonfaulting loads:
	(1) Volatile memory references in the source language should not use nonfaulting load instructions.
	(2) Code compiled for debugging should not use nonfaulting loads, because they remove the ability...
	(3) If nonfaulting loads are used, page zero should be a page of zero values, mapped read-only. C...
	(4) Any use of nonfaulting loads in privileged code must be aware of how they are treated by the ...
	(5) Nonfaulting loads from unaligned addresses may be substantially more expensive than nonfaulti...

	Nonfaulting loads can be used to solve three scheduling problems.
	In the branch-laden code shown in example�2, nonfaulting loads could be used to separate loads fr...
	Example 2— Branch-Laden Code with Nonfaulting Loads

	In the loop shown in example�3, nonfaulting loads allow pipelining. This loop might be improved f...
	Example 3— Loop with Nonfaulting Loads

	H.2 Supervisor Software
	This subsection discusses how supervisor software can use the SPARC-V9 privileged architecture. I...
	H.2.1 Trap Handling
	The SPARC-V9 privileged architecture provides support for efficient trap handling, especially for...
	Multiple Trap Levels:
	Vectoring of Fill/Spill Traps:
	Saved Trap State:
	SAVED and RESTORED Instructions:
	Alternate Globals:
	Large Trap Vectors for Spill/Fill:

	H.2.2 Example Code for Spill Handler
	The code in example�4 shows a spill handler for a SPARC-V9 user binary. The handler is located at...
	Example 4— Spill Handler

	H.2.3 Client-Server Model
	SPARC-V9 provides mechanisms to support client-server computing efficiently. A call from a client...
	Splitting the Register Windows
	The register windows can be shared efficiently between multiple address spaces by using the OTHER...
	The sequence in example�5 shows a cross-domain call and return. The example assumes the simple ca...
	Example 5— Cross-Domain Call and Return

	ASI_SECONDARY{_LITTLE}
	Supervisor software can use these unrestricted ASIs to support cross-address-space access between...

	H.2.4 User Trap Handlers
	Supervisor software can provide efficient support for user (nonprivileged) trap handlers on SPARC...
	Example 6— User Trap Handler

	I Extending the SPARC-V9 Architecture

	This appendix is informative only.
	It is not part of the SPARC-V9 specification.
	I.1 Addition of SPARC-V9 Extensions
	I.1.1 Read/Write Ancillary State Registers (ASRs)
	I.1.2 Implementation-Dependent and Reserved Opcodes
	V8 Compatibility Note:

	J Programming With the Memory Models

	This appendix is informative only.
	It is not part of the SPARC-V9 specification.
	J.1 Memory Operations
	J.2 Memory Model Selection
	J.3 Processors and Processes
	J.4 Higher-Level Programming Languages and Memory Models
	J.5 Portability And Recommended Programming Style
	Figure 49— Portability Relations among Memory Models

	J.6 Spin Locks
	Example 7— Lock and Unlock Using LDSTUB
	Example 8— Lock and Unlock Using CAS

	J.7 Producer-Consumer Relationship
	Figure 50— Data Structures for Producer-Consumer Code
	Example 9— Producer and Consumer Code

	J.8 Process Switch Sequence
	Example 10— Process or Thread Switch Sequence
	Programming Note:

	J.9 Dekker’s Algorithm
	Example 11— Dekker’s Algorithm

	J.10 Code Patching
	Example 12— Nonxooperative Code Patching
	Example 13— Cooperative Code Patching

	J.11 Fetch_and_Add
	Example 14— Fetch and Add Using LDSTUB
	Example 15— Fetch and Add Using CAS

	J.12 Barrier Synchronization
	Example 16— Barrier Synchronization Using LDSTUB
	Example 17— Barrier Synchronization Using CAS

	J.13 Linked List Insertion and Deletion
	Example 18— List Insertion and Removal

	J.14 Communicating With I/O Devices
	(1) Accesses to the same I/O location address:
	V8 Compatibility Note:
	(2) Accesses to different I/O location addresses:
	(3) Accesses to an I/O location address and a memory address.
	(4) Accesses to different I/O location addresses within an implementation-dependent range of addr...
	(5) Accesses to I/O locations protected by a lock in shared memory that is subsequently released,...

	J.14.1 I/O Registers With Side Effects
	Example 19— I/O Registers With Side-Effects: Store Followed by Store
	Example 20— I/O Registers With Side-Effects: Store Followed by Load

	J.14.2 The Control and Status Register (CSR)
	Example 21— Accessing a Control/Status Register

	J.14.3 The Descriptor
	Example 22— Accessing a Memory Descriptor

	J.14.4 Lock-Controlled Access to a Device Register
	Example 23— Accessing a Device Register

	K Changes From SPARC-V8 to SPARC-V9

	This appendix is informative only.
	It is not part of the SPARC-V9 specification.
	SPARC-V9 is complimentary to the SPARC-V8 architecture; it does not replace it. SPARC-V9 was desi...
	Application software for the 32-bit SPARC-V8 (Version 8) microprocessor architecture can execute,...
	Changes to the SPARC-V9 architecture since SPARC-V8 are in six main areas: the trap model, data f...
	K.1 Trap Model
	The trap model, visible only to privileged software, has changed substantially.

	K.2 Data Formats
	Data formats for extended (64-bit) integers have been added.

	K.3 Little-Endian Support
	Data accesses can be either big-endian or little-endian. Bits in the PSTATE register control the ...

	K.4 Registers
	These privileged SPARC-V8 registers have been deleted:
	These registers have been widened from 32 to 64 bits:
	The contents of the following register has changed:
	These SPARC-V9 registers are fields within a register in SPARC-V8:
	These registers have been added:
	The SPARC-V9 CWP register is incremented during a SAVE instruction and decremented during a RESTO...

	K.5 Alternate Space Access
	In SPARC-V8, access to all alternate address spaces is privileged. In SPARC-V9, loads and stores ...

	K.6 Little-Endian Byte Order
	In SPARC-V8, all instruction and data accesses were performed in big-endian byte order. SPARC-V9 ...

	K.7 Instruction Set
	All changes to the instruction set were made such that application software written for SPARC-V8 ...
	The definitions of the following instructions were extended or modified to work with the 64-bit m...
	The following instructions have been added to provide support for 64-bit operations and/ or addre...
	The following instructions have been added to support the new trap model:
	The following instructions have been added to support implementation of higher-performance systems:
	The definitions of the following instructions have changed:
	The following instruction was added to support memory synchronization:
	The following instructions have been deleted:

	K.8 Memory Model
	SPARC-V9 defines a new memory model called Relaxed Memory Order (RMO). This very weak model allow...

	Bibliography

	This bibliography is informative only.
	It is not part of the SPARC-V9 specification.
	General References
	Memory Model References
	Prefetching

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Index

