
Global Instruction Scheduling for SuperScalar Machines

David Bernslein

Michael Rodeh

IBM Israel ScientKlc Center

Technion City

Haifa 32000

ISRAEL

Abstract

To improve the utilization of machine resources in

superscalar processors, the instructions have to be

carefully scheduled by the compiler. As internal

parallelism and pipelining increases, it becomes

evident that scheduling should be done beyond the

basic block level. A scheme for global (intra-loop)

scheduling is proposed, which uses the control and

data dependence information summarized in a

Program Dependence Graph, to move instructions

well beyond basic block boundaries. This novel

scheduling framework is based on the parametric

description of the machine architecture, which spans

a range of superscakis and VLIW machines, and

exploits speculative execution of instructions to

further enhance the performance of the general

code. We have implemented our algorithms in the

IBM XL family of compilers and have evaluated

them on the IBM RISC System/6000 machines.

Permission to copy without fee ell or part of this material is granted
provided that the copies are not made or distributed for direct commercial

advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to
republish, reauirea a fee end/or aDecific oermiasion.

@1991 ACM 0-89791-428-7/91/0005/0241 . ..$1.50

I i
Proceedings of the ACM SIGPLAN ’91 Conference on

Programming Language Design and Implementation.

Toronto, Ontario, Canada, June 26-28, 1991.

1. Introduction

Starting in the late seventies, a new approach for

building high speed processors emerged which

emphasizes streamlining of program instructions;

subsequently this direction in computer architecture

was called RISC [P85J It turned out that in order

to take advantage of pipelining so as to improve

performance, instructions have to be rearranged,

usually at the intermediate language or assembly

code level. The burden of such transformations,

called instruction scheduling, has been placed on

optimizing compilers.

Previously, scheduling algorithms at the instruction

level were suggested for processors with several

functional units [BJR89], pipelined machines

[BG89, BRG89, HG83, GM86, W90] and Very

Large Instruction Word (VLIW) machines [EIEJ

While for machines with n functional units the idea

is to be able to execute as many as n instructions

each cycle, for pipelined machines the goal is to

issue a new instruction every cycle, effectively

eliminating the so-called NOPS (No Operations).

However, for both types of machines, the common

feature required from the compiler is to discover in

the code instructions that are data independent,

allowing the generation of code that better utilizes

the machine resources.

It was a common view that such data independent

instructions can be found within basic blocks, and

there is no need to move instructions beyond basic

241

block boundaries. Virtually, all of the previous

work on the implementation of instruction

scheduling for pipelined machines concentrated on

scheduling within basic blocks [HG83, GM86,

W90]. Even for basic RISC architectures such

restricted type of scheduling may result in code with

many NOPS for certain Unixl -type programs that

include many small basic blocks terminated by

unpredictable branches. On the other hand, for

scientific programs the problem is not so severe,

since there, basic blocks tend to be larger.

Recently, a new type of architecture is evolving that

extends RISC by the ability to issue more than one

instruction per cycle [G089]. This type of high

speed processors, called superscalar or

superpipelined architecture, poses more serious

challenges to compilers, since instruction scheduling

at the basic block level is in many cases not

sufficient to allow generation of code that utilizes

machine resources to a desired extent [JW89].

One recent effort to pursue instruction scheduling

for superscalar machines was reported in [GR90],

where code ,replication techniques for scheduling

beyond the scope of basic blocks were investigated,

resulting in fair improvements of running time of

the compiled code, Also, one can view a

superscalar processor as a VLIW machine with a

small number of resources. There are two main

approaches for compiling code for the VLIW

machines that were reported in the literature: the

trace scheduling [F81, E851 and the enhanced

percolation scheduling [EN89].

In this paper, we present a technique for global

instruction scheduling which permits the movement

of instructions well beyond basic blocks boundaries

within the scope of the enclosed loop. The method

employs a novel data structure, called the Program

Dependence Graph (PDG), that was recently

proposed by Ferrante et. al [FOW87] to be used in

compilers to expose parallelism for the purposes of

vectorization and generation of code for

multiprocessors. We suggest combining the PDG

with the parametric description of a family of

superscalar machines, thereby providing a powerful

framework for global instruction scheduling by

optimizing compilers.

While trace scheduling assumes the existence of a

main trace in the program (which is likely in

scientific computations, but may not be true in

symbolic or Udx-t ype programs), global scheduling

(as well as enhanced percolation scheduling) does

not depend on such assumption. However, global

scheduling is capable of taking advantage of the

branch probabilities, whenever available (e.g.

computed by proffig). As for the enhanced

percolation scheduling, our opinion is that it is

more targeted towards a machine with a large

number of computational units, like VLIW

machines.

Using the information available in a PDG, we

distinguish between useful and speculative execution

of instructions. Also, we identify the cases where

instructions have to be duplicated in order to be

scheduled. Since we are currently interested in

machines with a small number of functional units

(like the RISC System/6000 machines), we

established a conservative approach to instruction

scheduling. First we try to exploit the machine

resources with useful instructions, next we consider

speculative instructions, whose effect on

performance depends on the probability ~f branches

to be taken, and scheduling with duplication, which

might increase the code size incurring additional

I Unix is a trademark of AT&T Bell Labs

242

costs in terms of instruction cache misses. Also, we

do not overlap the execution of instructions that

belong to different iterations of the loop. This

more aggressive type of instruction scheduling,

which is often called sofware pipelining [J-X8], is left

for future work.

For speculative instructions, previously-it was

suggested that they have to be supported by the

machine architecture [ESS, SLH90]. Since

architectural support for speculative execution

carries a si~lcant run-time overhead, we are

evaluating techniques for replacing such support

with compile-time analysis of the code, still

retaining most of the performance effect promised

by speculative execution.

We have implemented our scheme in the context of

the IBM XL family of compilers for the IBM RISC

System/6000 (RS/6K for short) computers. The

preliminary performance results for our scheduling

prototype were based on a set of SPEC benchmarks

[ss9].

The rest of the paper is organized as follows. In

Section 2 we describe our generic machine model

and show how it is applicable to the RS/6K

machines. Then, in Section 3 we bring a small

program that will serve as a running example. In

Section 4 we discuss the usefulness of the PDG,

while in Section 5 several levels of scheduling,

including speculative execution, are presented.

Finally, in Section 6 we bring some performance

results and conclude in Section 7.

2. Parametric machine description

Our model of a superscalar machine is based on the

description of a typical RISC processor whose only

instructions that reference memory are load and

store instructions, while all the computations are

done in registers. We view a superscalar machine as

a collection of functional units of m types, where

the machine has nl, nz,n~ units of each type.

Each instruction in the code can be potentially

executed by any of the units of a speci.tied type.

For the instruction scheduling purposes, we assume

that there is an unbounded number of symbolic

registers in the machine. Subsequently, during the

register allocation phase of the compiler, the

symbolic registers are mapped onto the real

machine registers, using one of the standard

(coloring) algorithms. Throughout this paper we

will not deal with register allocation at all. For the

discussion on the relationships between instruction

scheduling and register allocation see [BEH89].

A program instruction requires an integral number

of machine cycles to be executed by one of the

functional units of its type. Also, there are

pipelined constraints imposed on the execution of

instructions which are modelled by the integer

delays assigned to the data dependence edges of the

computational graph.

Let 11 and L be two instructions such that the edge

(11,12) is a data dependence edge. Let I (t > 1) be

the execution time of 11 and d (d z O) be the delay

assigned to (11,14. For performance purposes, if 11 is

scheduled to start at time k, then L should be

scheduled to start no earlier than k + t+ d. Notice,

however, that if Zz is scheduled (by the compiler) to

start earlier than mentioned above, this would not

affect the correctness of the program, since we

assume that the machine implements hardware

interlocks to guarantee the delays at run time.

More info~ation about the notion of delays due to

pipelined constraints can be found in [BG8!J,

BRG89].

243

2.1 The RS/6K model

Here we show how our generic model of a

superscalar machine is cotilgured to fit the RS/6K

machine. The RS/6K processor is modelled as

follows:

● m = 3, there are three types of functional units:

fixed point, floating point and branch types.

“ ni= 1, nz= l,n3= l,there isa single fixed

point unit, a single floating point unit and a

single branch unit.

● Most of the instructions are executed in one

cycle, however, there are also multi-cycle

instructions, like multiplication, division, etc.

s There are four main types of delays:

– a delay of one cycle between a load

instruction and the instruction that uses its

result register (delayed Zoad);

– a delay of three cycles between a fixed point

compare instruction and the branch

instruction that uses the result of that

compare2 ;

– a delay of one cycle between a floating

point instruction and the instruction that

uses its result;

— a delay of five cycles between a floating

point compare instruction and the branch

instruction that uses the result of that

compare.

There are a few additional delays in the

machine whose effect is secondary.

In this paper we concentrate on fixed point

computations only. Therefore, only the first and

the second types of the above mentioned delays will

be considered.

3. A program example

Next, we present a small program (written in C)

that computes the minimum and the maximum of

an array. This program is shown in Figure 1 and

will serve us as a running example.

In this program, concentrating on the loop which is

marked in Figure 1, we notice that two elements of

the array a are fetched every iteration of the loop.

Next, these elements of a are compared one to

another (zfiu > v)) , and subsequently they are

compared to the max and mi n variables, updating the

maximum and the minimum, if needed. The

RS/6K pseudo-code for the loop, that corresponds

to the real code created by the IBM XL-C

compiler3 , is presented in Figure 2.

For convenience, we number the instructions in the

code of Figure 2 (I 1-120) and annotate them with

the corresponding statements of the program of

Figure 1. Also, we mark the ten basic blocks

(BL1-BL1O) of which the code of Figure 2

comprises for the purposes of future discussion.

For simplicity of notation, the registers mentioned

in the code are real. However, as was mentioned in

Section 2, we prefer to invoke the global scheduling

algorithm before the register allocation is done (at

this stage there is an unbounded number of registers

in the code), even though conceptually there is no

problem to activate the instruction scheduling after

the register allocation is completed.

2

3

More precisely, usually the three cycle delay between a fixed point compare and the respective branch instruction is

encountered only when the branch is taken. However, here for simplicity we assume that such delay exists whether

the branch is taken or not.

The only feature of the machine that was disabled in this example is that of keeping the iteration variable of the loop

in a special counter register. Keeping the iteration variable in this register allows it to be decremented and tested for

zero in a single instruction, effectively reducing the overhead for loop control instructions.

244

~ find the largest and the smal lest number

in a given array ‘/
minmax(a,n) {

int i,u,v,min,max,n,a[SIZE];

min=a[O]; max=min; i=l;
/****************** LOOP STARTS ************* /
while (i <n) {

u=a[i]; v=a[i+l];

if (u>v) {

if (u>max) max=u;

if (v<min) min=v;

}
else {

if (v>max) max=v;

if (u<min) min=u;

}
j= i+p.

}’p***************Loop ENDS ***************
/

printf(’’min=%d max=%d\n’’,min,max);

}

Figure 1. A program computing the minimum and the

maximum of an array

Every instruction in the code ofFigure 2, except for

branches, requires one cycle inthetixed point unit,

while the branches take one cycle in the branch

unit. There is a one cycle delay between instruction

12and13, dueto the delayed load feature of the

RS/6K. Notice the special form of a load with

update instruction in 12: in addition to assigning to

rO the value of the memory locational address

(r31) + 8, it also increments r31 by 8

(post-increment). Also, there is a three cycle delay

between each compare instruction and the

corresponding branch instruction. Taking into

consideration that the fixed point unit and the

branch unit run in parallel, we estimate that the

code executes in 20, 21 or 22 cycles, depending on if

O, 1 or 2 updates of max and mi n variables (LR

instructions) are done, respectively.

max is kept in r30

min is kept in r28

i is kept in r29
n is kept in r27

address of a[i] is kept in r31
. . . more instructions here . . .

*************** LfjOfJ STARTS *******************

CL.0:

(11) L r12=a(r31,4) 1oad u

(12) LU rO, r31=a(r31,8) load v and
increment index

(13) C cr7=r12, r0 U>v
(14) BF CL.4, cr7,0x2/gt
--------------------------------------- END BL1

(15) C cr6=r12, r30 u > max

(16) BF CL.6,cr6,0x2/gt
--------------------------------------- END BL2

(17) LR r30=r12 max = u
--------------------------------------- END BL3

CL.6:
(18) c cr7=r0,r28 v < min
(19) BF CL.9,cr7,0xl/lt
--------------------------------------- END BL4

(110) LR r28=r0 min = v

(Ill) B CL.9

--------------------------------------- END BL5

CL.4:
(112) C cr6=r0,r30 v > max

(113) BF CL.ll,cr6,0x2/gt
--------------------------------------- END BL6

(114) LR r30=r0 max = v
~-------------------------------------- END BL7

CL. 11:
(115) C cr7=r12,r28 u < min

(116) BF CL.9,cr7,0xl/lt
--------------------------------------- END BL8

(117) LR r28=r12 min = u
--------------------------------------- END BL9

CL.9:
(118) AI r29=r29,2 i =i+2
(119) C cr4=r29,r27 i<n

(120) BT CL.0,cr4,0xl/lt
--------------------------------------- END BL1O
*************** LOfjp ENDS **********************

. . . more instructions here . . .

Figure 2. The RS/6Kpseudo-code forthe program of

Figure 1

245

4. The Program Dependence Graph

The program dependence graph is a convenient way

to summarize both the control dependence and

data dependence among the code instructions,

While the concept of data dependence, that carries

the basic idea of one instruction computing a data

value and another instruction using this value, was

employed in compilers a long time ago, the notion

of control dependence was introduced quite

recently [FOW87]. In what follows we discuss the

notions of control and data dependence separately.

4.1. Control dependence

We describe the idea of control dependence using

the program example of Figure 1. In Figure 3 the

control flow graph of the loop of Figure 2 is

described, where each node corresponds to a single

basic block in the loop. The numbers inside the

circles denote the indices of the ten basic blocks

BL1-BL1O. We augment the graph of Figure 3

with unique ENTRY and EXIT nodes for

convenience. Throughout this discussion we

assume a single entry node in the control flow

graph, i.e., there is a single node (in our case BL1)

which is connected to ENTRY. However several

exit nodes that have the edges leading to EXIT may

exist. In our case BL1O is a (single) exit node. For

the strongIy connected regions (that represent loops

in this context), the assumption of a control flow

graph having a single entry corresponds to the

assumption that the control flow graph is reducible.

The meaning of an edge from a node A to a node B

in a control flow graph is that the control of the

program may flow from the basic block A to the

basic block B. (UsuaUy, edges are annotated with

the conditions that control the flow of the program

from one basic block to another.) From the graph

of Figure 3 however, it is not apparent which basic

block will be executed under which condition.

The control subgraph of the PDG (CSPDG) of the

loop of Figure 2 is shown in Figure 4. As in Figure

3, each node of the graph corresponds to a basic

ENTRY

Figure 3. The control flow graph of the loop of Figure 2

block of the program. Here, a solid edge from a

node A to a node B has the following meaning:

1. there is a condition COND in the end of A that

is evaluated to either TRUE or FALSE, and

2. if COND is evaluated to TRUE, B will

definitely be executed, othenvise B will not be

executed.

The control dependence edges are annotated with

the corresponding conditions as for the control flow

graph. In Figure 4 solid edges designate control

dependence edges, while dashed edges will be

discussed below. For example, in Figure 4 the

edges emanating from BL 1 indicate that BL2 and

BL4 will be executed if the condition at the end of

BLl will be evaluated to TRUE, while BL6 and

BL8 will be executed while the same condition is

FALSE.

246

1 _— — --@
T F

TF

2 --+4

*O

6
-- 8

T T T T

3 5 7 9

Figure 4. The forward control subgraph of the PDG of

the loop of Figure 2

As was mentioned in the introduction, currently we

schedule instructions within a single iteration of a

loop. So, for the purposes of this type of

instruction scheduling, we follow [CHH89] and

build the for-war-d control dependence graph only,

i.e. we do not compute the control dependence

that result from or propagate through the back

edges in the control flow graph. The CSPDG of

Figure 4 is a forward control dependence graph. In

the following we discuss forward control

dependence graphs only. Notice that forward

control dependence graphs are acyclic.

The usefulness of the control subgraph of PDG

stems from the fact that basic blocks that have the

same set of control dependence (like BL 1 and

BL1O, or BL2 and BL4, or BL6 and BL8 in Figure

4) can be executed in parallel up to the existing data

dependence. For our purposes, the instructions of

such basic blocks can be scheduled together.

Now let us introduce several deffitions that are

required to understand our scheduling framework.

Let A and B be two nodes of a control flow graph

such that B is reachable from A, i.e., there is a path

in the control flow graph from A to B.

Definition 1. A dominates B if and only if A appears

on every path fi-om ENTRY to B.

Definition 2. B postdominates A if and only if B

appears on every path from A to EXIT.

Definition 3. A and B are equivalent if and only if A

dominates B and B postdorninates A.

Definition 4. We say that moving an instruction

from B to A is useful if and only if.4 and B are

equivalent.

Definition 5. We say that moving an instruction

from B to A is speculative if B does not

postdorninate A.

Definition 6. We say that moving an instruction

from B to A requires duplication if A does not

dominate B.

It turns out that CSPDGS are helpful while doing

useful scheduling. To fmd equivalent nodes, we

search a CSPDG for nodes that are identically

control dependent, i.e. they depend of “the same set

of nodes under the same conditions. For example,

in Figure 4, BL 1 and B L 10 are equivalent, since

they do not depend on any node. Also, BL2 and

BL4 are equivalent, since both of them depend on

BL1 under the TRUE condition. In Figure 4 we

mark the equivalent nodes with dashed edges, the

diiection of these edges provides the dominance

relation between the nodes. For example, for

equivalent nodes BL 1 and BLI O, we conclude that

BLI dominates BL1O.

CSPDG is useful also for speculative scheduling. It

provides “the degree of speculativeness” for moving

instructions from one block to another. When

scheduling a speculative instruction, we always

“gamble” on the outcome of one or more branches;

only when we guess the direction of these branches

correctly, the moved instruction becomes profitable.

CSPDG provides for every pair of nodes the

247

number of branches we gamble on (in case of

speculative scheduling). For example, when

moving instructions from BL8 to BL 1, we gamble

on the outcome of a single branch, since when

moving from BL8 to BL1 in Figure 4, we cross a

single edge. (This is not obvious from the control

flow graph of Figure 3.) Similarly, moving from

BL5 to BL 1 gambles on the outcome of two

branches, since we cross two edges of Figure 4.

Definition % We say that moving instructions from

B to A is n-branch specula~ive if there exists a path

in CSPDG from A to B of length n.

Notice that useful scheduling is O-branch

speculative.

4.2. Data dependence

While control dependence are computed at a basic

block level, data dependencies are computed on an

instruction by instruction basis. We compute both

intrablock and interlock data dependencies. A

data dependence may be caused by the usage of

registers or by accessing memory locations.

Let a and b be two instructions in the code. A data

dependence edge from a to b is inserted into PDG

in one of the following cases:

●

✎

✎

✎

A register defined in a is used in b (’jlow

dependence);

A register used in a is defined in b

(anti-dependence);

A register defined in a is defined in b (output

dependence);

Both a and b we instructions that touch

memory (loads, stores, calls to subroutines) and

it is not proven that they address different

locations (memory di.rarnbiguation).

Ordy the data dependence edges leading from a

deftition of a register to its use carry a (potentially

non-zero) delay, which is a characteristic of the

underlying machine, as was mentioned in Section 2.

The rest of the data dependence edges carry zero

delays. To minimize the number of anti and output

data dependence, which may unnecessarily

constrain the scheduling process, the XL compiler

does certain renaming of registers, which is si.rnih

to the effect of the static single assignment form

[CFRWZ].

To compute all the data dependence in a basic

block, essentially every pair of instructions there has

to be considered. However, to reduce the

compilation time, we take advantage of the

following observation. Let a, b and c be three

instructions in the code. Then, if we discover that

there is a data dependence edge from a to b and

from b to c, there is no need to compute the edge

from a to c. To use this observation, the basic

block instructions are traversed in an order such

that when we come to determine the dependency

between a and c, we have already considered the

pairs (a,b) and (b,c), for every possible b in a basic

block. (Actually, we compute the transitive closure

for the data dependence relation in a basic block.)

Next for each pair A and B of basic blocks such

that B is reachable from A in the control flow

graph, the intrablock data dependence are

computed. The observation in the previous

paragraph helps to reduce the number of pairs of

instructions that are considered during the

computation of the intrablock data dependence as

well.

Let us demonstrate the computation of data

dependence for BL1; we will reference the

instructions by their numbers from Figure 2. There

is an anti-dependence from (I 1) to (12), since (I 1)

uses r31 and (12) defines a new value for r31. There

is a flow data dependence from both (I 1) and (12)

to (13), since (13) uses r12 and rO defined in (I 1) and

(12), respectively. The edge ((12),(13)) carries a one

cycle delay, since (12) is a load instruction (delayed

248

load), while ((I 1),(13)) is not computed since it is

transitive. There is a flow data dependence edge

from (13) to (14), since (13) sets cr7 which is used in

(14). This edge has a three cycle delay, since (13) is

a compare instruction and (14) is the corresponding

branch instruction. Finally, both of ((I 1),(14)) and

((12),(14)) are transitive edges.

It is important to notice that, since both the control

and data dependence we compute are acyclic, the

resultant PDG is acyclic as well. This facilitates

convenient scheduling of instructions which is

discussed next.

5. The scheduling framework

The global scheduling framework consists of the

top-level process, which tries to schedule

instructions cycle by cycle, and of a set of heuristics

which decide what instruction will be scheduled

next, in case there is a choice. While the top-level

process is suitable for a range of machines dkcussed

here, it is suggested that the set of heuristics and

their relative ordering should be tuned for a specflc

machine at hand. We present the top-level process

in Section S,1, while the heuristics are discussed in

Section 5.2.

5.1. The top-level process

We schedule instructions in the program on a

region by region basis. In our terminology a region

represents either a strongly connected component

that corresponds to a loop (which has at least one

back edge) or a body of a subroutine without the

enclosed loops (which has no back edges at all).

Since currently we do not overlap the execution of

difkent iterations of a loop, there is no difference

in the process of scheduling the body of a loop and

the body of a subroutine.

Innermost regions are scheduled f~st. There are a

few principles that govern our scheduling process:

●

✎

✎

Instructions are never moved out or into a

region.

All the instructions are moved in the upward

duection, i.e, they are moved against the

direction of the control flow edges.

The original order of branches in the program is

preserved.

Also, there are several limitations that characterize

the current status of our implementation for global

scheduling. This includes:

“ NO duplication of code is allowed (see

Deftition 6 in Section 4.1).

● Only l-branch speculative instructions are

supported (see Deftition 7 in Section 4.1).

s No new basic blocks are created in the control

flow graph during the scheduling process.

These limitations will be removed in future work.

We schedule instructions in a region by processing

its basic blocks one at a time. The basic blocks are

visited in the topological order, i.e., if there is a path

in the control flow graph from A to B, A is

processed before B.

LetA be the basic block to be scheduled next, and

let EQUZV(A) be the set of blocks that are

equivalent to A and are dominated by A (see

Deftition 3). We maintain a set C(A) of candidate

blocks for A, i.e., a set of basic blocks which can

contribute instructions to A. Currently there are

two levels of scheduling:

1. Useful instructions only: C(A)= EQUIV(A);

2. l-branch speculative: C(A) includes the

following blocks:

a.

b.

c.

the blocks of EQUIV(A);

AU the immediate successors of A in

CSPDG;

All the immediate successors of blocks in

EQUW(A) in CSPDG.

249

Once we initialize the set of candidate blocks, we

compute the set of candidate instructions for A. An

instruction I is a candidate for scheduling in block

A if it belongs to one of the following categories:

● 1 belonged to A in the fust place.

~ 1 belongs to one of the blocks in C(A) and:

1. f belongs to one of the blocks in

EQUIV(A) and it may be moved beyond its

basic block boundaries. (There are

instructions that are never moved beyond

basic block boundaries, like calls to

subroutines.)

2. 1 does not belong to one of the blocks in

EQUIV(XI) and it is allowed to schedule it

speculatively. (There are instructions that

are never scheduled speculatively, like store

to memory instructions.)

During the scheduling process we maintain a list of

ready instructions, i.e., candidate instructions whose

data dependence are fulfilled. Every cycle we pick

from the ready list as many instructions to be

scheduled next as required by the machine

architecture, by consulting the parametric machine

description. If there are too many ready

instructions, we choose the %est” ones based on

priority criteria. Once an instruction is picked up to

be scheduled, it is moved to the proper place in the

code, and its data dependence to the following

instructions are marked as fulfilled, potentiality

enabling new instructions to become ready. Once

all the instructions of A are scheduled, we move to

the next basic block. The net result is that the

instructions in A are reordered and there might be

instructions external to A that are physically moved

into A.

It turns out that the global scheduler does not

always create the best schedule for each individual

basic block. It is mainly due to the two following

reasons:

9

●

To

The parametric machine description of Section

2 does not cover all the secondary features of

the machine;

The global decisions are not necessarily optimal

in a local context.

solve this problem, the basic block scheduler is

applied to every single basic block of a program

after the global scheduling is completed. The basic

block scheduler has a more detailed model of the

machine which allows more precise decisions for

reordering the instructions within the basic blocks.

5.2. Scheduling heuristics

The heart of the scheduling scheme is a set of

heuristics that provide the relative priority of an

instruction to be scheduled next. There are two

integer-valued functions that are computed locally

(within a basic block) for every instruction in the

code, these functions are used to set the priority of

instructions in the program.

Let 1 be an instruction in a block B. The fust

function D(l), called delay heuristic, provides a

measure of how many delay slots may occur on a

path from 1 to the end of B. Initially, D(l) is set to

O for every K in B. Assume that .Jl,JZ, ... are the

immediate data dependence successors of Z in B,

and let the delays on those edges be

d(lJ1), d(l,Jz), Then, by visiting I after visiting

its data dependence successors, D(I) is computed as

follows:

D(l) = max((D(J1) + d(Z,J1)),(D(JJ + d(l,JJ), ...)

The second function CP(l), called critical path

heuristic, provides a measure of how long it will

take to complete the execution of instructions that

depend on 1 in B, including 1 itself, and assuming

an unbounded number of computational units. Let

E(l) be the execution time of 1. First, CP(Z) is

initialized to E(l) for every 1 in B. Then, again by

250

visiting 1 after visiting its data dependence

successors, CP(l) is computed as follows:

CT(l) = max((CP(J1) i- d(l,J1)),

(CP(J2) + d(l,JJ), ...) + l?(f)

During the decision process, we schedule useful

instructions before speculative ones. For the same

class of instructions (useful or speculative) we pick

an instruction with has the. biggest delay heuristic (

D). For the instructions of the same class and delay

we pick one that has a biggest critical path heuristic

(CP). Finally, we try to preserve the original order

of instructions.

To make it formally, let A be a block that is

currently scheduled, and let 1 and J be two

instructions that (should be executed by a

functional unit of the same type and) are ready at

the same time in the scheduling process, and one of

them has to be scheduled next. Also, let

U(A) = A lJ EQUIV(A), and let B(l) and B(J) be

the basic blocks to which 1 and J belong. Then,

the decision is made in the following orden

1. If B(l) e U(A) and B(J)# U(A), then pick ~

2. If B(J) e U(A) and 13(1)# U(A), then pick J

3. If D(Z)> D(J), then pick ~

4, If D(J)> D(f), then pick<

5. If CP(l) > CP(J), then pick L

6. If CP(J) > Cl’(l), then pick %

7. Pick an instruction that occurred in the code

frost,

Notice that the current ordering of the heuristic

functions is tuned towards a machine with a small

number of resources. This is the reason for always

preferring to schedule a useful instmction before a

speculative one, even though a speculative

instruction may cause longer delay. In any case,

experimentation and tuning are needed for better

results.

5.3, Speculative scheduling

In the global scheduling framework, while doing

non-speculative scheduling, to preserve the

correctness of the program it is sufficient to respect

the data dependence as they were defined in

Section 4.2. It turns out that for speculative

scheduling this is not true, and a new type of

information has to be maintained. Examine the

following excerpt of a C program:

. . .
i f (cond) x=5;

else x=3;

print. f(’’x=%d”, x);

. . .

The control flow graph of this piece of code looks

as follows:

Instruction x=5 belongs to B2, while x=3 belongs to

B3. Each of them can be (speculatively) moved

into B 1, but it is apparent that both of them are

not allowed to move there, since a wrong value may

be printed in B4. Data dependence do not prevent

the movement of these instructions into B 1.

To solve this problem, we maintain the information

about the (symbolic) registers that are Ibe on exit

from a basic block. If an instruction that is being

considered to be moved speculatively to a block B

computes a new value for a register that is live on

exit from B, such speculative movement is

dka.llowed. Notice that this type of information has

to be updated dynamically, i.e., after each

speculative motion this information has to be

updated. Thus, let us say, x=5 is fwst moved to B 1.

Then, x (or actually a symbolic register that

251

. . . more instructions here . . .
********** LOOp STARTS ************

CL.0:

(11) L r12=a(r31,4)
(12) LU r0,r31=a(r31,8)

(118) AI r29=r29,2

(13) C cr7=r12,r0

(119) C cr4=r29,r27

(14) ;F CL.4,cr7,0x2/gt
(15) cr6=r12,r30
(18) c cr7=r0,r28

(16) BF CL.6,cr6,0x2/gt
(17) LR r30=r12

CL.6:
(19) BF CL.9,cr7,0xl/lt
(110) LR r28=r0

(Ill) B CL.9
CL.4:

(112) C cr6=r0,r30
(115) C cr7=r12,r28
(113) BF CL.ll,cr6,0x2/gt
(114) LR r30=r0

CL.11:

(116) BF CL.9,cr7,0xl/lt
(117) LR r28=r12

CL.9:
(120) BT CL.0,cr4,(3xl/lt
********** Loop ENDS **************

. . . more instructions here . . .

. . . more instructions here . . .
*********** Loop STARTS *************

CL.0:

(11) L r12=a(r31,4)
(12) LU r0,r31=a(r31,8)

(118) AI r29=r29,2

(13) C cr7=r12,r13

(119) C cr4=r29,r27

(15) C cr6=r12,r30

(112) C cr5=r0,r3Cl
(14) BF CL.4,cr7,0x2/gt

(18) c cr7=r0,r28
(16) BF CL.6,cr6,EJx2/gt
(17) LR r30=r12

CL.6:

(19) BF CL.9,cr7,(3xl/lt
(110) LR r28=r0

(Ill) B CL.9
CL.4:

(115) C cr7=r12,r28
(113) BF CL.ll,cr5,(3x2/gt
(114) LR r30=r0

CL.11:
(116) BF CL.9,cr7,0xl/lt
(117) LR r28=r12

CL.9:
(120) BT CL.13,cr4,0xl/lt
********** Loop ENDS ***************

. . . more instructions here . . .

Figure 5. The results of applying the useful scheduling Figure 6. The results of applying the useful and specula-

to the program of Figure 2 tive schedulingto the programof Figure2

correspondsto x) becomes live onexitfrom B 1,

and the movement ofx=3to B1 will be prevented.

More detailed description ofthe speculative

scheduling and its relationship to the PDG-based

global scheduling is out of the scope of this paper.

5.4. Scheduling examples

Letus demonstrate the effect of useful and

speculative scheduling on the example of Figure 2.

The result ofscheduling useful instructions onlyto

this program is presented in Figure 5. During the

scheduling ofBLl, the ordyinstmctions that were

considered tobe moved there were those ofBLIO,

since only BLIO~EQUIV(BLl). Theresultisthat

two instructions ofBL10(118 and 119) were moved

into BL1, ftiginthe delay slots of the

instructions there. Similarly, 18was moved from

BL4toBL2,andI 15wasmovedfrom BL8toBL6,

Theresultantprogram inFigure5takes 12- 13

cycles per iteration, while the original program of

Figure 2 was executing in 20-22 cycles per iteration.

Figure 6 shows the result ofapplying both the

useful a.ndthe (l-branch) speculative schedulingto

the same program. In addition to the motions that

were described above, two additional instructions

(15 and 112) were moved speculatively to BL1, to

ffl in the three cycle delay between 13 and 14.

Interestingly enough, since 15and 112 belong to

basic blocks that are never executed together in any

252

single execution of the program, only one of these

two instructions will carry a useful result. All in all,

the program in Figure 6 takes 11-12 cycles per

iteration, a one cycle improvement over the

program in Figure 5.

6. Performance results

A preliminary evaluation of the global scheduling

scheme was done on the IBM RS/6K machine

whose abstract model is presented in Section 2.1.

For experimentation purposes, the global

scheduling has been embedded into the IBM XL

family of compilers. These compilers support

several high-level languages, like C, Fortran, Pascal,

etc.; however, we concentrate only on the C

programs.

The evaluation was done on the four C programs in

the SPEC benchmark suite [SS9]. In the following

discussion LI denotes the Lisp Interpreter

benchmark, GCC stands for the GNU C Compiler,

while EQNTOTT and ESPRESSO are two

programs that are related to minimization and

manipulation of Boolean functions and equations.

The basis for all the following comparisons

(denoted by BASE in the sequel) is the performance

results of the same IBM XL C compiler in which

the global scheduling was disabled. Please notice

that the base compiler includes two types of

instruction scheduling on its own (aside of all the

possible machine independent and peephole

optimization) as follows:

●

●

a sophisticated basic block scheduler similar to

that of [W90], and

a set of code replication techniques that solve

certain loop-closing delay problems [GR90].

So, in some sense certain improvements due to the

global scheduling overlap those of the scheduling

techniques that were already part of the base

compiler.

Next we describe how the global scheduling scheme

was cor@ured so as to exploit the trade-off of the

compile-time overhead and the run-time

improvement to a maximum extent. The following

design decisions characterize the current status of

the global scheduling prototype:

9

●

●

.

.

Only two inner levels of regions are scheduled.

So, we distinguish between inner regions (i.e.,

regions that do not include other regions) and

outer regions (i.e. regions that include only

inner regions).

Only “small” reducible regions are scheduled.

“Small” regions are those that have at most 64

basic blocks and 256 instructions.

In a preparation step, before the global

scheduling is applied, the inner regions that

represent loops with up to 4 basic blocks are

unrolled once (i.e., after unrolling they include

two iterations of a loop instead of one).

After the global scheduling is applied to the

inner regions, such regions that represent loops

with up to 4 basic blocks are rotated, by

copying their fust basic block after the end of

the loop. By applying the global scheduling the

second time to the rotated inner loops, we

achieve the partial effect of the software

pipelining, i.e., some of the instructions of the

next iteration of the loop are executed within

the body of the previous iteration.

The general flow of the global scheduling is as

follows:

1.

2.

3.

4.

certain inner loops are unrolled;

the global scheduling is applied the fust

time to the inner regions only;

certain inner loops are rotated;

the global scheduling is applied the second

time to the rotated inner loops and the

outer regions.

The compile-time overhead of the above described

scheme is shown in Figure 7. The column marked

253

BASE gives the compilation times of the programs

in seconds as measured on the IBM RS/6K

machine, model 530 whose cycle time is 40ns. The

column marked CTO (Compile-Time Overhead)

provides the increase in the compilation times in

percents. This increase in the compilation time

includes the time required to perform all of the

above mentioned steps (including loop unrolling,

loop rotation, etc.).

PROGRAM BASE CTO

LI 206 13%

EQNTOTT 78 17%
ESPRESSO 465 12%
GCC 2457 13%

Figure 7. Compile-time overheads for the global sched-

uling

There are two levels of scheduling that we

distinguish at the moment, namely usefid only and

useful and speculative scheduling. The run-time

improvement (RTI) for both types of scheduling is

presented in Figure 8 in percents relative to the

running time of the code compiled with the base

compiler which is shown in seconds. The accuracy

of the measurements is about 0.5 0/0 - 10/0.

PROGRAM BASE RTI
USEFUL SPECULATIVE

LI 312 2.0% 6.9%

EQNTOTT 45 7.1% 7.3%
ESPRESSO 1(36 -0.5% 0%
GCC 76 -1.5% (3%

Figure 8. Run-time improvements for the global sched-

uling

We notice in Figure 8 that for EQNTOTT most of

the improvement comes from the useful scheduling

only, while for LI, the speculative scheduling is

dominant. On the other hand, for both

ESPRESSO and GCC, no improvement is

observed. (Actually, there is a slight degradation in

performance for both benchmarks, when the global

scheduling is restricted to useful scheduling only.)

To summarize our short experience with the global

scheduling, we notice that the achieved

improvement in run-time is modest due to the fact

that the base compiler has already been optimized

towards the existing architecture. We may expect

even bigger payoffs in machines with a larger

number of computational units. As for the

compile-time overhead, we consider it as

reasonable, especially since no major steps were

taken to reduce it except of the control over the size

of the regions that are being scheduled.

7. Summary

The proposed scheme allows the global scheduling

of instructions by an opt imizing compiler for better

utilization of machine resources for a range of

superscalar processors, It is based on a data

structure proposed for parallel/parallelizing

compilers (PDG), a parametric machine description

and a flexible scheduling framework that employs a

set of useful heuristics. The results of evaluating

the scheduling scheme on the IBM RS/6K machine

are quite encouraging. We are going to extend our

work by supporting more aggressive speculative

scheduling, and scheduling with duplication of code.

Acknowledgements.We would like to thank Kemal

Ebcioglu, Hugo Krawczyk and Ron Y. Pinter for

many helpful discussions, and Irit Boldo and

Vladimir Rainish for their help in the

implementation.

254

References

[BG89]

[BRG89]

[BJR89j

[BEH89]

[CHH89]

[CFRWZ]

[E88]

[EN89]

[E851

[FOW87]

Bernstein, D., and Gertner, I.,
“Scheduling expressions on a pipelined

processor with a maximal delay of one

cycle”, ACM Transactions on Prog.

Lang. and Systems, Vol. 11, Num. 1

(Jan. 1989), 57-66,

Bernstein, D., Rodeh, M., and Gertner,
I., “Approximation algorithms for

scheduling arithmetic expressions on
pipelined machines”, Journa[of

AZgorit/vns, 10 (Mar. 1989), 120-139.

Bernstein, D., Jaffe, J. M., and Rodeh,

M,, “Scheduling arithmetic and load

operations in parallel with no spilling”,
SIAM Journa[of Computing, (Dec.
1989), 1098-1127.

Bradlee, D. G., Eggers, S.J., and Henry,
R. R., “Integrating register allocation and
instruction scheduling for RISCS”, to

appear in Proc. of the Fourth ASPLOS
Conference, (April 199 1).

Cytron, R., Hind, M., and Wilson, H.,

“Automatic generation of DAG
parallelism”, Proc. of the SIGPLAN

Annual Symposium, (June 1989), 54-68,

Cytron, R., Ferrante, J., Rosen, B. K.,
Wegman, M. N., and Zadeck, F. K., “An

efficient method for computing static
single assignment form”, Proc, of the
Annual ACM Symposium on Principles
of Programming Languages, (Jan. 1989),

25-35.

Ebcioglu, K., “Some design ideas for a
VLIW architecture for

sequential-natured software”, Proc. of
the IFIP Conference on Paral!el
Processing, (April 1988), Italy.

Ebcioglu, K., and Nakatani, T., “A new

compilation technique for paralleliziig
regions with unpredictable branches on
a VLIW architecture”, Proc. of the
Workshop on Languages and Compilers

fm-bm-aalle[Computing, (August 1989),

Ellis, J. R., “Bulldog: A compiler for
VLIW architectures”, Ph.D. thesis, Yale
U/DCS/RR-364, Yale University, Feb.
1985.

Ferrante, J., Ottenstein, K.J., and
Warren, J. D., “The program dependence

graph and its use in optimization”, ACM

[F81]

[GM$6]

[GR90]

[G089]

[HG83]

[JW89]

[L881

[P851

[SLH90]

[s89]

p-v!xy

Transactions on Prog. Lang. and

Systems, Vol. 9, Nurn. 3 (July 1987),

319-349.

Fisher, J., “Trace scheduling: A
technique for global microcode

compaction”, IEEE Trans. on

Computers, C-30, No. 7 (July 1981),
478-490.

Gibbons, P.B. and Muchnick, S.S.,
“Efficient instruction scheduling for a

pipelined architecture”, Proc. of the

SIGPLAN Annual Symposium, (June
1986), 11-16.

Golumblc, lM.C. and Rainish, V.,

“Instruction scheduling beyond basic

blocks”, IBM J, Res. Dev.,(Jan. 1990),
93-98.

Groves, R. D., and Oehler, R., “An IBM

second generation RISC processor
architecture”, Proc. of the IEEE
Conference on Computer Design,
(October 1989), 134-137.

Hennessy, J,L. and Gross, T., “Postpass
code optimization of pipeline

constraints”, ACM Trans. on
Programming Languages and Systems 5
(July 1983), 422-448.

Jouppi, N. P., and Wall, D.W.,
“Available instruction-level parallelism

for superscalar and superpipelined
machines”, Proc. of the Third A SPLOS
Conference, (April 1989), 272-282.

Lam M, “Software Pipelining: An
effective scheduling technique for VLIW

machines”, Proc. of the SIGPLAN
Annual Symposium, (June 1988),

318-328.

Patterson, D. A., “Reduced instruction

set computers”, Comm. of A CM, (Jan.
1985), 8-21.

Smith, M.D, Lam M. S., and Horowitz
M.A., “Boosting beyond static

scheduling in a superscalar processor”,

Proc. of the Computer Architecture
Conference, (May 1990), 344-354.

“SPEC Newsletter”, Systems
Performance Evaluation Cooperative,
Vol. 1, Issue 1, (Sep. 1989).

Warren, H., “Instruction scheduling for
the IBM RISC System/6K processor”,

IBit4 J. Res. Z)W., (J~. 1990), 85-92.

255

