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Abstract 

This paper shows that software pipelining is an effective 
and viable scheduling technique for VLIW processors. In 
software pipelining, iterations of a loop in the source program 
are continuously initiated at constant intervals, before the 
preceding iterations complete. The advantage of software 
pipelining is that optimal performance can be achieved with 
compact object code. 

This paper extends previous results of software pipelining 
in two ways: First, this paper shows that by using an im- 
proved algorithm, near-optimal performance can be obtained 
without specialized hardware. Second, we propose a 
hierarchical reduction scheme whereby entire control con- 
structs are reduced to an object similar to an operation in a 
basic block. With this scheme, all innermost loops, including 
those containing conditional statements, can be software 
pipelined. It also diminishes the start-up cost of loops with 
small number of iterations. Hierarchical reduction comple- 
ments the software pipelining technique, permitting a consis- 
tent performance improvement be obtained. 

The techniques proposed have been validated by an im- 
plementation of a compiler for Warp, a systolic array consist- 
ing of 10 VLIW processors. This compiler has been used for 
developing a large number of applications in the areas of 
image, signal and scientific processing. 
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1. Introduction 

A VLIW (very long instruction word) machine [5, 111, is 
simiiar to a horizontally microcoded machine in that the data 
path consists of multiple, possibly pipelined, functional units, 
each of which can be independently controlled through dedi- 
cated fields in a “very long” instruction. The distinctive 
feature of VLIW architectures is that these long instructions 
are the machine instructions. There is no additional layer of 
interpretation in which machine instructions are expanded 
into micro-instructions. While complex resource or field con- 
flicts often exist between functionally independent operations 
in a horizontal microcode engine, a VLIW machine generally 
has an orthogonal instruction set snd a higher degree of paral- 
lelism. The key to generating efficient code for the VLIW 
machine is global code compaction. that is, the compaction of 
code across basic blocks [ 121. In fact, the VLIW architecture 
is developed from the study of the global code compaction 
technique, trace scheduling [lo]. 

The thesis of this paper is that software 
pipelining [24,25,30] is a viable alternative technique for 
scheduling VLIW processors. In software pipelining, itera- 
tions of a loop in a source program are continuously initiated 
at constant intervals without having to wait for preceding 
iterations to complete. That is, multiple iterations, in different 
stages of their computations, are in progress simultaneously. 
The steady state of this pipeline constitutes the loop body of 

the object code. The advantage of software pipelining is that 
optimal performance can be achieved with compact object 

code. 

A drawback of software pipelining is its complexity; the 
problem of finding an optimal schedule is NP-complete. 
(This can be shown by transforming the problem of resource 
constrained scheduling problem [ 141 to the software pipelin- 

ing problem). There have been two approaches in response to 
the complexity of this problem: (1) change the architecture, 
and thus the characteristics of the constraints, so that the 
problem becomes tractable, and (2) use heuristics. The first 
approach is used in the polycyclic [25] and Cydrome’s Cydra 
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architecture; a specialized crossbar is used to make optimizing 
loops without data dependencies between iterations tractable. 
However, this hardware feature is expensive; and, when inter- 
iteration dependency is present in a loop, exhaustive search on 
the strongly connected components of the data flow graph is 
still necessary[16]. The second approach is used in the 
FPS-164 compiler [30]. Software pipelining is applied to a 
restricted set of loops, namely those containing a single 
Fortran statement. In other words, at most one inter-iteration 
data dependency relationship can be present in the flow graph. 
The results were that near-optimal results can be obtained 
cheaply without the specialized hardware. 

This paper shows that software pipelining is a practical, 
efficient, and general technique for scheduling the parallelism 
in a VLIW machine. We have extended previous results of 
software pipelining in two ways. First, we show that near- 
optimal results can often be obtained for loops containing 
both intra- and inter-iteration data dependency, using software 
heuristics. We have improved the scheduling heuristics and 
introduced a new optimization called modulo variable expan- 
sion. The latter implements part of the functionality of the 
specialized hardware proposed in the polycyclic machine, 
thus allowing us to achieve similar performance. 

Second, this paper proposes a hierarchical reduction 

scheme whereby entire control constructs are reduced to an 
object similar to an operation in a basic block. Scheduling 
techniques previously defined for basic blocks can be applied 
across basic blocks. The significance of hierarchical reduc- 
tion is threefold: Fist, conditional statements no longer con- 
stitute a barrier to code motion, code in innermost loops 
containing conditional statements can be compacted Second, 
and more importantly, software pipelining can be applied to 
arbitrarily complex loops, including those containing con- 
ditional statements. Third, hierarchical reduction dihes 
the penalty of short loops: scalar code can be scheduled with 
the prolog and epilog of a pipelined loop. We can even 
software pipeline the second level loop as well. The overall 
result is that a consistent speed up is obtained whenever 
parallelism is available across loop iterations. 

Software pipelining, as addressed here, is the problem of 
scheduling the operations within an iteration, such that the 
iterations can be pipelined to yield optimal throughput, 
Software pipelining has also been studied under different con- 
texts. The software pipelining algorithms proposed by Su et 
al. [27.28], and Aiken and Nicolau [l], assume that the 
schedules for the iterations are given and cannot be changed. 
Ebcioglu proposed a software pipelining algorithm to 
generate code for a hypothetical machine with infinitely many 
hardware resouruzs [7]. Lastly, Weiss and Smith compared 
the results of using loop unrolling and software pipelining to 
generate scalar code for the Cray-1s architecture [31]. 

However, their software pipeliig algorithm only overlaps 
the computation from at most two iterations. The unfavorable 
results obtained for software pipelining can be attributed to 
the particular algorithm rather than the software pipelining 
approach. 

The techniques described in this paper have been validated 
by the implementation of a compiler for the Warp machine. 
Warp [4] is a high-performance, programmable systolic array 
developed by Carnegie Mellon and General Electric, our in- 
dustrial partner. The Warp array is a linear array of VLIW 
processors, each capable of a peak computation rate of 10 
million floating-point operations per second (10 MFLGPS). 
A Warp array typically consists of ten processors, or cells, 
and thus has an aggregate bandwidth of 100 MFLGPS. 

Each Warp cell has its own sequencer and program 
memory. Its data path consists of a floating-point multiplier, 
a floating-point adder, an integer ALU, three register files 
(one for each arithmetic unit), a 512-word queue for each of 
the two inter-cell data communication channels, and a 32 
Kword data memory. All these components are connected 
through a crossbar, and can be programmed to operate con- 
cturently via wide instructions of over 200 bits. The mul- 
tiplier and adder are both 5-stage pipelined together with the 
2 cycle &lay through the register file, multiplications and 
additions take 7 cycles to complete. 

The machine is programmed using a language called W2. 
In W2, conventional Pascal-like control constructs are used to 
specie the cell programs, and asynchronous computation 
primitives are used to specify inter-cell communication. The 
Warp machine and the W2 compiler have been used exten- 
sively for about two years, in many applications such as 
low-level vision for robot vehicle navigation, image and sig- 
nal processing, and scientific computing [2,3]. Gur previous 
papers presented an overview of the compiler and described 
an array level optimization that supports efficient fme-grain 
parallelism among cells [ 15.201. This paper describes the 
scheduling techniques used to generate code for the parallel 
and pipelined functional units in each cell. 

This paper consists of three parts: Part I describes the 
software pipelining algorithm for loops containing straight- 
line loop bodies, focusing on the extensions and improve- 
ments. Part II describes the hierarchical reduction approach, 
and shows how software pipelining can be applied to all 
loops. Part III contains an evaluation and a comparison with 
the trace scheduling technique. 
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2. Simple loops 

The concept of software pipelining can be illustrated by the 

following example: Suppose we wish to add a constant to a 

vector of data. Assuming that the addition is one-stage 

pipelined, the most compact sequence of instructions for a 

single iteration is: 

1 Read 
2 Add 
3 
4 Write 

Different iterations can proceed in parallel to take advantage 

of the parallelism in the data path. In this example, an 

iteration can be initiated every cycle, and this optimal 

throughput can be obtained with the following piece of code: 

1 Raad 
2 Add Ftead 
3 Add Read 
4 L:Write Add Read CJumpL 
5 Write Add 
6 
7 Writr 

Instructions 1 to 3 are called the prolog: a new iteration is 

initiated every instruction cycle and execute concurrently with 

all previously initiated iterations. The steady state is reached 

in cycle 4. and this state is repeated until all iterations have 

been initiated. In the steady state, four iterations are in 

progress at the same time, with one iteration starting up and 

one fishing off every cycle. me operation CJump L 

branches back to label L unless all iterations have been 

initiated.) On leaving the steady state, the iterations currently 

in progress are completed in the epilog, instmctions 5 through 

7. The software pipelined loop in this example executes at the 

optimal throughput rate of one iteration per instruction cycle, 

which is four times the speed of the original program. The 

potential gain of the technique is even greater for data paths 

with higher degrees of pipelining and parallelism. In the case 

of the Warp cell, software pipelining speeds up this loop by 

nine times. 

2.1. Problem statement 
Software pipelining is unique in that pipeline stages in the 

functional units of the data path are not emptied at iteration 

boundaries; the pipelines are filled and drained only on enter- 

ing and exiting the loop. The significance is that optimal 

throughput is possible with this approach. 

The objective of software pipelining is to minimize the 

interval at which iterations are initiated, the initiation 
itierval[25] determines the throughput for the loop. The 

basic units of scheduling are minimally indivisible sequences 

of micro-instructions. h the example above, since the result 

of the addition must be written precisely two cycles after the 

computation is initiated, the add and the write operations me 

grouped as one indivisible sequence. While the sequence is 

indivisible, it can overlap with the execution of other se- 

quences. The minimally indivisible sequence-s that make up 

the computation of an iteration are modeled as nodes in a 

graph. Data dependencies between these sequences are 

mapped onto precedence constraints between the correspond- 

ing nodes; associated with each node is a resource reservation 

table indicating the resources used in each time step of the 

sequence. To ensure a compact steady state, two more con- 
straints are imposed: the initiation interval between all con- 

secutive iterations must be the same, and the schedule for 

each individual iteration must be identical. In other words, 

the problem is to schedule the operations within an iteration, 

such that the same schedule can be pipelined with the 

shortest, constant initiation interval. 

The scheduling constraints in software pipelining are 

defined in terms of the initiation interval: 

1. Resource cmstrainls. Kf iterations in a software 
pipelined loop are initiated every sth cycle, then every 
s th inshuction in the schedule of an iteration is executed 
simultaneously, one born a different iteration. The total 
resource requirement of every sth instructions thus can- 
not exceed the available resources. A modulo resource 
reservation table can be used to represent the resource 
usage of the steady state by mapping the resource usage 
of time t to that of time tmods in the modulo resource 
reservation table. 

2. Precedence constraints. Consider the following ex- 
ample: 

FOR i := 1 !PO 100 DO 
BEGIN 

a := a + 1.0; 
END 

The value of a must first be accessed before the store 
operation, and the store operation must complete before 
the data is accessed in the second iteration. We model 
the dependency relationship by giving each edge in the 
graph two attributes: a minimum iteration difference and 
a delay. When we say that the minimum iteration dif- 
ference on an edge (u,v ) is p and the delay is d, that 
means node v must execute d cycles after node Y from 
the p th previous iteration. Let (T : V 3 N bc the schedule 
function of a node, then 

Q(V)-((T(U)-sp)Zd, or o(vh(u)Zd-pp, 

where s is the initiation interval. Since a node cannot 
depend on a value from a future iteration, the minimum 
iteration difference is always nonnegative. The iteration 
difference for an intra-iteration dependency is 0, mean- 
ing that the node v must follow node u in the same 
iteration. As illustrated by the example, inter-iteration 
data dependencies may introduce cycles into the 
precedence constraint graph. 
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2.2. Scheduling algorithm 
The definition of scheduling constraints in terms of the 

initiation interval makes fmding an approximate solution to 
this NP-complete problem difficult. Since computing the 
minimum initiation interval is NP-complete, an approach is to 
first schedule the code using heuristics, then determine the 
initiation interval permitted by the schedule. However, since 
the scheduling constraints are defined in terms of the initia- 
tion interval, if the initiation interval is not known at schedul- 
ing time, the schedule Produced is unliiely to permit a good 
initiation interval. 

To resolve this circularity, the FPS compiler uses an itera- 
tive approach [30]: first establish a lower and an upper bound 
on the initiation interval, then use binary search to find the 
smallest initiation interval for which a schedule can be found. 
(The length of a locally compacted iteration can serve as an 
upper bound, the calculation of a lower bound is described 
below). We also use an iterative approach, but we use a linear 
search instead. The rationale is as follows: Although the 
probability that a schedule can be found generally increases 
with the value of the initiation interval, schedulabiity is not 
monotonic [21]. Especially since empirical results show that 
in the case of Warp, a schedule meeting the lower bound can 
often be found, sequential search is preferred. 

2.2.1. Scheduling acyclic graphs 
The algorithm we use to schedule acyclic graphs for .a 

target initiation interval is the same as that used in the FPS 
compiler, which itself is derived from the list scheduling 
algorithm used in basic block scheduling [9]. List scheduling 
is a non-backtracking algorithm, nodes are scheduled in a 
topological ordering, and are placed in the earliest possible 
time slot that satisfies all scheduling constraints with the 
partial schedule constructed so far. The software pipelining 
algorithm differs from list scheduling in that the modulo 
resource reservation table is used in determining if there is a 
resource conflict. Also, by the definition of module resource 
usage, if we cannot schedule a node in s consecutive time 
slots due to resource conflicts, it will not fit in any slot with 
the current schedule. When this happens, the attempt to fiid a 
schedule for the given initiation interval is aborted and the 
scheduling process is repeated with a greater interval value. 

2.2.2. Scheduling cyclic graphs 
In adapting the scheduling algorithm for acyclic graphs to 

cyclic graphs, we face the following difficulties: a topological 
sort of the nodes does not exist in a cyclic graph; precedence 
constraints with nodes already scheduled cannot be satisfied 
by examining only those edges incident on those nodes; and 
the maximum height of a node, used as the priority function in 
list scheduling, is ill-defined. Experimentation with different 
schemes helped identify two desirable properties that a non- 
backtracking algorithm should have: 

1. Partial schedules constructed at each point of the 
scheduling process should not violate any of the 
precedence constraints in the graph. In other words, 
were there no resource conflicts with the remaining 
nodes, each partial schedule should be a partial solution. 

A lower bound on the initiation interval can be calculated 
from the scheduling constraints as follows: 

1. Resource constraints. If an iteration is initiated every s 
cycles, then the total number of resource units available 
in s cycles must at least cover the resource requirement 
of one iteration. Therefore, the bound on the initiation 
interval due to resource considerations is the maximum 
ratio between the total number of times each resource is 
used and the number of available units per instruction. 

2. Precedence constraints. Cycles in precedence con- 
straints impose delays between operations from different 
iterations that are represented by the same node in the 
graph. The initiation interval must be large enough for 
such delays to be observed. We define the delay and 
minimum iteration difference of a path to be the sum of 
the minimum delays and minimum iteration differences 
of the edges in the path, respectively. Let s be the 
initiation interval, and c be a cycle in the graph. Since 

o(v)-cr(u)Ld(e)-sp(e) 

we get: 

d (c) - sp (c) I 0. 

We note that if p (c)=0, then d(c) is necessarily less than 
0 by the definition of a legal computation. Therefore, the 
bound on the initiation interval due to precedence con- 
siderations is 

rd (c) 1 
maxcp(c) ’ 

V cycle c whosep (c) # 0. 

2. The heuristics must be sensitive to the initiation interval. 
An increased initiation interval value relaxes the 
scheduling constraints, and the scheduling algorithm 
must take advantage of this opportunity. It would be 
futile if the scheduling algorithm simply retries the same 
schedule that failed. 

These properties are exhibited by the heuristics in the 
scheduling algorithm for acyclic graphs. A scheduling algo- 
ritlun for cyclic graphs that satisfies these properties is 
presented below. 

The following preprocessing step is fust performed: find 
the strongly con&ted components in the graph [29]. and 
compute the closure of the precedence constraints in each 
COnneCted component by solving the all-points longest path 
Problem for each component [6,13]. This information is used 
in the iterative scheduling step. To avoid the cost of recom- 
puting this information for each value of the initiation inter- 
val, we compute this information only once in the preprocess- 
ing step, using a symbolic value to stand for the initiation 
interval 2211. 
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As in the case of acyclic graphs, the main scheduling step is 
iterative. For each target initiation interval, the connected 
components are first scheduled individually, The original 
graph is then reduced by representing each connected com- 
ponent as a single vertex: the resource usage of the vertex 
represents the aggregate resource usage of its components. 
and edges connecting nodes from different connected com- 
ponents are represented by edges between the corresponding 
vertices. This reduced graph is acyclic, and the acyclic graph 
scheduling algorithm can then be applied. 

The scheduling algorithm for connected components also 
follows the framework of list scheduling. The nodes in a 
connected component are scheduled in a topological ordering 
by considering only the intra-iteration edges in the graph. By 
the definition of a connected component, assigning a schedule 
to a no& limits the schedule of all other nodes in the com- 
ponent, both from below and above. We define the 
precedence constrained range of a node for a given partial 
schedule as the legal time range in which the node can be 
scheduled, without violating the precedence constraints of the 
graph. As each node is scheduled, we use the precomputed 
longest path information to update the precedence constrained 
range of each remaining node, substituting the symbolic in- 
itiation interval value with the actual value. A node is 
scheduled in the earliest possible time slot within its con- 
strained range. If a no& cannot be scheduled within the 
precedence constrained range, the scheduling attempt is con- 
sidered unsuccessful. This algorithm possesses the first 
property described above: precedence constraints are 
satisfied by all partial schedules. 

As nodes are scheduled in a topological ordering of the 
intra-iteration edges, the precedence constrained range of a 
node is bounded from above only by inter-iteration edges. As 
the initiation interval increases, so does the upper bound of 
the range in which a node is scheduled. Together with the 
strategy of scheduling a node as early as possible, the range in 
which a node can be scheduled increases as the initiation 
interval increases, and so does the likelihood of success. The 
scheduling problem approaches that of an acyclic graph as the 
value of the initiation interval increases. Therefore, the ap- 
proach also satisfies the second property: the algorithm takes 
advantage of increased initiation interval values. 

2.3. Modulo variable expansion 
The i&a of modulo variable expansion can be illustrated by 

the following code fragment, where a value is written into a 
register and used two cycles later: 

Def(Rl) 
OP 
use (Rl) 

If the same register is used by all iterations, then the write 
operation of an iteration cannot execute before the read opera- 

tion in the preceding iteration. Therefore, the optimal 
throughput is limited to one iteration every two cycles. This 
code can be sped up by using different registers in alternating 
iterations: 

Def (Rl) 
OP Def (R2) 

L : u*r (Rl) op Def (Rl) 
Uae(R2) op Def(R2) CJ'ump L 

Ues(R1) op 
Use (R2) 

We call this optimization of allocating multiple registers to 
a variable in the loop module variable eqansion. This op 
timization is a variation of the variable expansion technique 
used in vectorizing compilers [18]. The variable expansion 
transformation identifies those variables that are redefmed at 
the beginning of every iteration of a loop, and expands the 
variable into a higher dimension variable, so that each itera- 
tion can refer to a different location. Consequently, the use of 
the variable in different iterations is thus independent, and the 
loop can be vector&d. Modulo variable expansion takes 
advantage of the flexibility of VLJW machines in scalar com- 
putation, and reduces the number of locations allocated to a 
variable by reusing the same location in non-overlapping 
iterations. The small set of values can even reside in register 
files, cutting down on both the memory traffic and the latency 
of the computation. 

Without modulo variable expansion, the length of the 
steady state of a pipelined loop is simply the initiation inter- 
val. #en modulo variable expansion is applied, code se- 
quences for consecutive iterations differ in the registers used, 
thus lengthening the steady state. If there are n repeating code 
sequences, the steady state needs to be unrofled n times. 

The algorithm of modulo variable expansion is as follows. 
First, we identify those variables that are redefined at the 
beginning of every iteration. Next, we pretend that every 
iteration of the loop has a dedicated register location for each 
qualified variable, and remove all inter-iteration precedence 
constraints between operations on these variables. Scheduling 
then proceeds as normal. The resulting schedule is then used 
to determine the actual number of registers that must be 
allocated to each variable. The lifetime of a register variable 
is defied as the duration between the fist assignment into the 
variable and ita last use. If the lifetime of a variable is l, and 

rf i 
an iteration is initiated every s cycles, then at least s number 
of values must be kept alive concurrently, in that many loca- 
ti0ll.S. 

If each variable Vi is allocated its minimum number of 
locations, q? the degree of unrolling is given by the lowest 
common multiple of (qi). Even for small values of Q;. the 
least common multiple can be quite large and can lead to an 
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intolerable increase in code size. The code size can be 
reduced by trading off register space. We observe that the 
minimum degree of unrolling, u, to implement the same 
schedule is Simply max i Qi. This minimum degree Of Unroll- 
ing can be achieved by setting the number of registers al- 
located to variable vi to be the smallest factor of Y that is no 
smaller than qi, i.e., 

minn,wherenZqiandumodn=O. 

The increase in register space is much more tolerable than the 
increase in code size of the first scheme for a machine like 

warp. 

Since we cannot determine the number of registers al- 
located to each variable until all uses of registers have been 
scheduled, we cannot determine if the register requirement of 
a partial schedule can be satisfied. Moreover, once given a 
schedule. it is very difficult to reduce its register requirement. 
Indivisible micro-operation sequences make it hard to insert 
code in a software pipelined loop to spill excess register data 
into memory. 

ln practice, we can assume that the target machine has a 
large number of registers; otherwise, the resulting data 
memory bottleneck would render the use of any global com- 
paction techniques meaningless. The Warp machine has two 
31-word register files for the floating-point units, and one 
64-word register for the ALU. Empirical results show that 
they are large enough for almost all the user programs 
developed [21]. Register shortage is a problem for a small 
fraction of the programs; however, these programs invariably 
have loops that contain a large number of independent opera- 
tions per iteration. In other words, these programs are amen- 
able to other simpler scheduling techniques that only exploit 
parallelism within an iteration. Thus, when register allocation 
becomes a problem, software pipelining is not as crucial. The 
best approach is therefore to use software pipelining aggres- 
sively, by assuming that there are enough registers. When we 
run out of registers, we then resort to simple techniques that 
serializes the execution of loop iterations. Simpler scheduling 
techniques are more amenable to register spilling techniques. 

2.4. Code size 
The code size increase due to software pipelining is reason- 

able considering the speed up that can be achieved. If the 
number of iterations is known at compile time, the code size 
of a pipelined loop is within three times the code size for one 
iteration of the loop 1211. If the number of iterations is not 
known at compile time, then additional code must be 
generated to handle the cases when there are so few iterations 
in the loop that the steady state is never reached, and when 
there are no more iterations to initiate in the middle of an 
unrolled steady state. 

To handle these cases, we generate two loops: a pipelined 

version to execute most of the iterations, and an unpipelined 
version to handle the rest. Let k be the number of iterations 
started in the prolog of the pipelined loop, u be the degree of 
unrolling, and n be the number of iterations to be executed. 
Before the loop is executed, the values of n and k are com- 
pared. If II c k. then all n iterations are executed using the 
unpipelined code. Otherwise, we execute n-kmodu itera- 
tions using the un 

r4 
@lined code, and the rest on the pipelined 

loop. At most 5 iterations are executed in the unpipelined 
mode, where 1 is the length of an iteration and s is the 
initiation interval. Using this scheme, the total code size is at 
most four times the size of the unpipelined loop. 

A more important metric than the total code length is the 
length of the innermost loop. An increase in coXde length by a 
factor of four typically does not pose a problem for the 
machine storage system. However. in machines with instruc- 
tion buffers and caches. it is most important that the steady 
state of a pipelined loop fits into the buffers or caches. Al- 
though software pipelining increases the total co& size, the 
steady state of the loop is typically much shorter than the 
length of an unpipelined loop. Thus, we can conclude that the 
increase in code size due to software pipelining is not an 
issue. 

3. Hierarchical reduction 

The motivation for the hierarchical reduction technique is 
to make software pipelining applicable to all innermost loops, 
including those containing conditional statements. The 
proposed approach schedules the program hierarchically, 
starting with the innermost control constructs. As each con- 
struct is schedkd, the entire construct is reduced to a simple 
node representing all the scheduling constraints of its com- 
ponents with other constructs. This node can then be 
scheduled just like a simple node withm the surrounding 
control construct. The scheduling process is complete when 
the entire program is reduced to a single node. 

The hierarchical reduction technique is derived from the 
scheduling scheme previously proposed by Wood [32]. In 
Wood’s approach, scheduled constructs are modeled BS black 
boxes taking unit time. Operations outside the construct can 
move around it but cannot execute concurrently with it. Here, 
the resource utilization and precedence constraints of the 
reduced constxuct are visible, permitting it to be scheduled in 
parallel with other operations. This is essential to software 
pipelining loops with conditional statements effectively. 
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3.1. Conditional statements 
The procedure for scheduling conditional statements is as 

follows: The THEN and ELSE branches of a conditional state- 

ment are first scheduled independently. The entire con- 

ditional statement is then reduced to a single node whose 

scheduling constraints represent the union of the scheduling 

constraints of the two branches. The length of the new node 

is the maximum of that of the two branches; the value of each 

entry in the resource reservation table is the maximum of the 

corresponding entries in the tables of the two branches. 

Precedence constrainta between operations inside the 

branches and those outside must now be replaced by con- 

straints between the node representing the entire construct and 

those outside. The attributes of the constraints remain the 
same. 

The node representing the conditional construct can be 

treated like any other simple node within the surrounding 

construct. A schedule that satisfies the union of the con- 

straints of both branches must also satisfy those of either 

branch. At code emission time, two sets of code, correspond- 

ing to the two branches, are generated. Any code scheduled 

in parallel with the conditional statement is duplicated in both 

branches. Although the two branches are padded to the same 

length at code scheduling time, it is not necessary that the 

lengths of the emitted code for the two branches be identical. 

lf a machine instruction does not contain any operations for a 

particular branch then the instruction simply can be omitted 

for that branch. The simple representation of conditional 
statements as straight-line sequences in the scheduling 

process makes it easy to overlap conditional statements with 

any other control constructs. 

The above strategy is optimized for handling short con- 

ditional statements in innermost loops executing on highly 

parallel hardware. The assumption is that there are more 
unused than used resources in an unpipehned schedule, and 

that it is more profitable to satisfy the union of the scheduling 

constraints of both branches all the time, so as not to reduce 

the opportunity for parallelism among operations outside the 

conditional statement. For those cases that violate this as- 

sumption, we can simply mark all resources in the node 

representing the conditional statements as used. By omitting 

empty machine instructions at code emission time, the short 

conditional branch will remain short Although this scheme 

disallows overlap between the conditional statement and all 

other operations, all other forms of code motion around the 

construct can still take place. 

3.2. Loops 
The prolog and epilog of a software pipelined loop can be 

overlapped with other operations outside the loop. This op- 

timization can again be achieved by reducing a looping con- 

struct to a simple node that represents the resource and 

precedence constraints for the entire loop. only one iteration 

of the steady state is represented. The steady state of the loop, 

however, should not be overlapped with other operations. To 

prevent this, all resources in the steady state are marked as 

consumed. 

3.3. Global code motions 
Gnce conditional statements and loops are represented as 

straight-line sequences of code, scheduling techniques, 

formerly applicable only to basic blocks, such as software 

pipelining and list scheduling, can be applied to compound 

control constructs. Global code motions automatically take 

place as the enclosing construct is scheduled according to the 

objective of the scheduling technique. 

The significance of hierarchical reduction is to permit a 

consistent performance improvement be obtained for all 

programs, not just those programs that have long innermost 

loops with straight-line loop bodies. More precisely, hierar- 

chical reduction has three major effects: 

1. The most important benefit of hierarchical reduction is 
that software pipelining can be applied to loops with 
conditional statements. This allows software pipelining 
to be applied to all innermost loops. Overlapping dii- 
ferent iterations in a loop is an important source of paral- 
lelism. 

2. Hierarchical reduction is also important in compacting 
long loop bodies containing conditional statements. In 
these long loop bodies, there is often much parallelism to 
be exploited within an iteration. Operations outside a 
conditional statement can move around and into the 
branches of the statement. Even branches of different 
conditional statements can be overlapped. 

3. Hierarchical reduction also minimizes the penalty of 
short vectors, or loops with small number of iterations. 
The prolog and epilog of a loop can be overlapped with 
scalar operations outside the loop; the epilog of a loop 
can be overlapped with the prolog of the next loop; and 
lastly, software pipelining can be applied even to an 
outer loop. 

4. Evaluation 
To provide and overall picture of the compiler’s perfor- 

mance, we first give the statistics collected from a large 

sample of user programs. These performance figures show 

the effect of the software pipelining and hierarchical reduction 

techniques on complete programs. To provide more detailed 

information on the performance of software pipelining. we 

also include the performance of Livermore loops on a single 

warp cell. 
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4.1. Performance of users’ programs 
The compiler for the Warp machine has been in use for 

about two years, and a large number of programs in robot 

navigation, low-level vision, and signal processing and scien- 

tific computing have been developed [2,3]. Of these, a 

sample of 72 programs have been collected and analyzed [2 11. 

Table 4-l lists the performance of some representative 

programs, and the Performance of all 72 programs is graphi- 

cally presented in Figure 4-l. 

Task 
All images are 512x512 

100X100 matrix multiplication 
512~512 complex FFT (1 dimension) 
3x3 convolution 
Hough transform 
Local selective averaging 
Shortest path Warshall’s algorithm 
(350 nodes, 10 iterations) 
Roberts operator 

Time 
(m) 

I% 

2:!3 
406 
104 

M flOpS 

79.4 
71.9 
65.7 
42.2 
39.2 
24.3 

192 15.2 

Table 4-1: Performance on Warp array 

All application programs in the experiment have compile- 

time loop bounds, and their execution speeds were determined 

statically by assuming that half of the data dependent 

branches in conditional statement were taken. All the 

programs in the sample are homogeneous code, that is, the 

same cell program is executed by all cells. Except for a short 

setup time at the beginning, these programs never stall on 

input or output. Therefore, the computation rate. for each cell 
is simply one-tenth of the reported rate for the array. 

25 T 

Figure 4-l: Performance of 72 users’ programs 

To study the significance of software pipelining and hierar- 

chical reduction, we compare the performance obtained 

against that obtained by only compacting individual basic 

blocks. The speed up is shown in Figure 4-2. The average 

factor of increase in speed is three. Programs are classified 

according to whether they contain conditional statements. 42 

of the 72 programs contain conditional statements. We ob- 

serve that programs containing conditional statements are 

sped up more. The reason is that conditional statements break 

up the computation into small basic blocks, making code 

motions across basic blocks even more important. 

15 

Programs 10 

5 

" 
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 1.5 

Factcn 

Figure 4-2: Speed up over locally compacted code 

In this sample of programs, 75% of all the loops are 

scheduled with an initiation interval matching the theoretical 

lower bound. 93% of the loops containing no conditional 

statements or connected components are pipelined perfectly. 

The presence of conditional statements and connected com- 

ponents make calculating a tight lower bound for the initiation 

interval and finding an optimal schedule difficult. In par- 

ticular, branches of a conditional statement are first com- 

pacted as much as possible, with no regard to the initiation 

interval of the loop. Software pipelining is then applied to the 

node representing the conditional statement, treating its opera- 

tions as indivisible. This approach minimizes the length of 

the branches to avoid code explosion, but increases the nun- 

imum initiation interval of the loop. Of the 25% of the loops 

for which the achieved initiation interval is greater than the 

lower bound the average efficiency is 75% [21]. 

4.2. Livermore loops 
The performance of Livermore loops [23] on a single Warp 

cell is presented in Table 4-2. The Fortran programs were 

translated manually into the W2 syntax. (The control con- 

structs of W2 are similar to those of Pascal.) The translation 

was straightforward except for kernels 15 and 16, which re- 

quired the code be completely restructured. The INVERSE and 

SQRT functions expanded into 7 and 19 floating-point opera- 

tions, respectively. The EXP function in loop 22 expanded 

into a calculation containing 19 conditional statements. The 

large numbers of conditional statements made the loop not 

pipelinable. In fact, the scheduler did not even attempt to 

pipeline this loop because the length of the loop (331 

instructions) was beyond the threshold that it used to decide if 

pipelining was feasible. Loops 16 and 20 were also not 

pipelined, because the calculated lower bound on the initia- 

tion interval were within 99% of the length of the unpipelined 

loop. 
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Kernel 

;* 

i* 

z* 

;* 
9 
10 
11 

:: 
14** 
15 

:; 

if 

;: 
22*** 

ii 
H-Mean 

Efficiency 
(lower 
bound) 

FE 

:*z 
0194 

::: 

E 
ok 
0.90 

::i 

iti 

:t 
0:97 
1.00 
0.99 
1.00 
0.56 

::: 

speed’tp 

f-E 
2:71 
2.71 
1.12 
2.86 

4.: 
4:27 
5.31 
1.30 
4.00 
2.63 
3.32 
5.50 

:fz 
3:70 

E 
6:00 
1.00 
1.10 
1.33 

* Compiler directives to diiambiguate array references used 
** Multiple loops were merged into one 
***EXP function expanded into 19 r statements 

Table 4-2: Performance of Livermore loops 

The MFLOPS rates given in the second column are for 
single-precision floating-point arithmetic. The third column 
contains lower bound figures on the efficiency of the software 
pipelining technique. As they were obtained by dividing the 
lower bound on the initiation interval by the achieved interval 
value, they represent a lower bound on the achieved ef- 
ficiency. If a kernel contains multiple loops, the figure given 
is the mean calculated by weighing each loop by its execution 
time. The speed up factors in the fourth column are the ratios 
of the execution time between an unpipelined and a pipelined 
kernel. All branches of conditional statements were assumed 
to be taken half the time. 

The perfomumce of the Livermore loops is consistent with 
that of the users’ programs, Except for kernel 22, which has 
an extraordinary amount of conditional branching due to the 
particular EXP library function, near-optimal, and often times, 
optimal code is obtained. The MFLOPS rates achieved for 
the different loops, however, vary greatly. This is due to the 
difference in the available parallelism within the iterations of 
a loop. 

There are two major factors that determine the maximum 
achievable MFWPS rate: data dependency and the critical 
resource bottleneck. 

1. Dutu dependency. Consider the following loop: 

IOR i :- 0 TO n DO BEGIN 
a:-r*b+c; 

END; 

Because of data dependency, each multiplication and 
addition must be performed serially. As additions and 
multiplications are seven-stage pipelined, the maximum 
computation rate achievable by the machine for this loop 
is only 0.7 MFLOPS. 

2. Critical resource bottleneck. A program that does not 
contain any multiplication operations can at most sustain 
a 5 MFWPS execution rate on a Warp cell, since the 
multiplier is idle all the time. In general, the MFLOPS 
achievable for a particular program is limited by the ratio 
of the total number of additions and multiplications in 
the computation to the use count of the most heavily 
used resource. 

Inter-iteration data dependency, or recurrences, do not 
necessarily mean that the code is serialized. This is one 
important advantage that VLIW architectures have over vec- 
tor machines. As long as there are other operations that can 
execute in parallel with the serial computation, a high com- 
putation rate can still be obtained. 

5. Comparison with trace scheduling 

The primary idea in trace scheduling [lo] is to optimize the 
more frequently executed traces. The procedure is as follows: 
fist, identify the most likely execution trace, then compact 
the instructions in the trace as if they belong to one big basic 
block. The large block size means that there is plenty of 
opportunity to find independent activities that can be executed 
in parallel. The second step is to add compensation code at 
the entrances and exits of the trace to restore the semantics of 
the original program for other traces. This process is then 
repeated until all traces whose probabilities of execution are 
above some threshold are scheduled. A straightforward 
scheduling technique is used for the rest of the traces. 

The strength of trace scheduling is that all operations for 
the entire trace are scheduled together, and all legal code 
motions are permitted. In fact, all other forms of optimiza- 
tion, such as common subexpression elimination across all 
operations in the trace can be performed. On the other hand, 
major execution traces must exist for this scheduling tech- 
nique to succeed. In trace scheduling, the more frequently 
executed traces are scheduled first. The code motions per- 
formed optimize the more frequently executed traces, at the 
expense of the less frequently executed ones. This may be a 
problem in data dependent conditional statements. Also, one 
major criticism of trace scheduling is the possibility of ex- 
ponential code explosion [17, 19,22.26]. 

The major difference between our approach and trace 
scheduling is that we retain the control structure of the wm- 
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putation. By retaining information on the control structure of 
the program, we can exploit the semantics of the different 
control constructs better, control the code motion and hence 
the code explosion. Another difference is that our scheduling 
algorithm is designed for block-structured constructs, whereas 
trace scheduling does not have similar restrictions. The fol- 
lowing compares the two techniques in scheduling loop and 
conditional branching separately. 

5.1. Loop branches 
Trace scheduling is applied only to the body of a loop, that 

is. a major trace does not extend beyond the loop body bound- 
ary. To get enough parallelism in the trace, trace scheduling 
relies primarily on source code unrolling. At the end of each 
iteration in the original source is an exit out of the loop; the 
major trace is constructed by assuming that the exits off the 
loop are not taken. If the number of iterations is known at 
compile-time, then all but one exit off the loop are removed. 

Software pipelining is more attractive than source code 
unrolling for two reasons. First, software pipelining offers the 
possibility of achieving optimal throughput. In unrolling, 
filling and draining the hardware pipelines at the beginning 
and the end of each iteration make optimal performance im- 
possible. The second reason, a practical concern, is perhaps 
more important. In trace scheduling, the performance almost 
always improves as more iterations are unrolled. The degree 
of unrolling for a particular application often requires ex- 
perimentation. As the degree of unrolling increases, so do the 
problem size and the fmal code size. 

In software pipelining, the object code is sometimes un- 
rolled at code emission time to implement modulo variable 
expansion. Therefore, the compilation time is unaffected. 
Furthermore, unlike source unrolling, there is an optimal de- 
gree of unrolling for each schedule, and can easily be deter- 
mined when the schedule is complete. 

5.2. Conditional statements 
In the case of data dependent conditional statements, the 

premise that there is a most frequently executed trace is ques- 
tionable. While it is easy to predict the outcome of a con- 
ditional branch at the end of an iteration in a loop, outcomes 
for all other branches are difficult to predict. 

The generality of trace scheduling makes code explosion 
difficult to control. Some global code motions require opera- 
tions scheduled in the main trace be duplicated in the less 
frequently executed traces. Since basic block boundaries are 
not visible when compacting a trace. code motions that re- 
quire large amounts of copying, and may not even be sig- 
nificant in reducing the execution time, may be introduced. 

Ellis showed that exponential code explosion can occur by 

reordering conditional statements that are data independent of 
each other [S]. Massive loop unrolling has a tendency to 
increase the number of possibly data independent conditional 
statements. Code explosion can be controlled by inserting 
additional constraints between branching operations. For ex- 
ample. Su et al. suggested restricting the motions of opera- 
tions that are not on the critical path of the trace [26]. 

In our approach to scheduling conditional statements, the 
objective is to minimize the effect of conditional statements 
on parallel execution of other constructs. By modeling the 
conditional statement as one unit, we can software pipeline all 
innermost loops. The resources taken to execute the con- 
ditional statement may be as much as the sum of both 
branches. However, the amount of wasted cycles is bounded 
by the operations within the conditional statement. 

6. Concluding remarks 

This paper shows that near-optimal, and sometimes op- 
timal, code can be generated for VLIW machines. We use a 
combination of two techniques: (1) software pipelining. a 
specialized scheduling technique for iterative constructs, and 
(2) hierarchical reduction, a simple, unified approach that 
allows multiple basic blocks to be manipulated like operations 
within a basic block. While software pipelining is the main 
reason for the speed up in programs, hierarchical reduction 
makes it possible to attain consistently good results on even 
programs containing conditional statements in innermost 
loops and innermost loops with small numbers of iterations. 
Our experience with the Warp compiler is that the generated 
code is comparable to, if not better than, handcrafted 
microcode. 

The Warp processors do not have any specialized hardware 
support for software pipelining. Therefore. the results 
reported here are likely to apply to other data paths with 
similar degrees of parallelism. But what kind of performance 
can be obtained if we scale up the degree of parallelism and 
pipelining in the architecture? We observe that the limiting 
factor in the performance of Warp is the available parallelism 
among iterations in a loop. For those loops whose iterations 
are independent, scaling up the hardware is likely to give a 
similar factor of increase in performance. However, the speed 
of all other loops are limited by the cycle length in their 
precedence constraint graph. The control of all functional 
units by a central sequencer makes it difficult for VLIW 
architectures to exploit other forms of parallelism other than 
the parallelism within a loop. Thii suggests that there is a 
limit to the scalability of the VLIW architecture. Further 
experimentation is necessary to determine this limit. 
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