
223CS 701 Fall 2007©

Finding Additional Independent
Instructions for Parallel Issue
We can extend the capabilities of
processors:
• Out of order execution allows a

processor to “search ahead” for
independent instructions to launch.

• But, since basic blocks are often quite
small, the processor may need to
accurately predict branches, issuing
instructions before the execution path is
fully resolved.

• But, since branch predictions may be
wrong, it will be necessary to “undo”
instructions executed speculatively.

224CS 701 Fall 2007©

Reading Assignment
• Read pp 367-386 of Allan et. al.’s paper,

“Software Pipelining.”
(Linked from the class Web page.)

225CS 701 Fall 2007©

Compiler Support for
Extended Scheduling
• Trace Scheduling

Gather sequences of basic blocks
together and schedule them as a unit.

• Global Scheduling
Analyze the control flow graph and
move instructions across basic block
boundaries to improve scheduling.

• Software Pipelining
Select instructions from several loop
iterations and schedule them
together.

226CS 701 Fall 2007©

Trace Scheduling
Reference:
J. Fisher, “Trace Scheduling: A
Technique for Global Microcode
Compaction,” IEEE Transactions on
Computers, July 1981.

Idea:
Since basic blocks are often too small
to allow effective code scheduling, we
will profile a program’s execution and
identify the most frequently executed
paths in a program.

Sequences of contiguous basic blocks
on frequently executed paths will be
gathered together into traces.

227CS 701 Fall 2007©

Trace
• A sequence of basic blocks (excluding

loops) executed together can form a
trace.

• A trace will be scheduled as a unit,
allowing a larger span of instructions for
scheduling.

• A loop can be unrolled or scheduled
individually.

• Compensation code may need to be
added when a branch into, or out of, a
trace occurs.

228CS 701 Fall 2007©

Example

Assume profiling shows that
B1→B3→B4+→B5→B7
is the most common execution path.
The traces extracted from this path are
B1→B3, B4, and B5→B7.

B1

B2 B3

B4

B5 B6 B7

229CS 701 Fall 2007©

Compensation Code
When we move instructions across
basic block boundaries within a trace,
we may need to add extra
instructions that preserve program
semantics on paths that enter or
leave the trace.

230CS 701 Fall 2007©

Example
In the previous example, basic block
B1 had B2 and B3 as successors, and
B1→B3 formed a trace.

x = x+1
y = x-y
x<5

z=x*z
x=x+1

y=2*y
x=x-2

1

2

3

x = x+1

z=x*z
x=x+1

y=2*y
x=x-2

1

2

3

Before Scheduling

y = x-y

x<5

y = x-y

After Scheduling

231CS 701 Fall 2007©

Advantages & Disadvantages
• Trace scheduling allows scheduling to

span multiple basic blocks. This can
significantly increase the effectiveness
of scheduling, especially in the context
of superscalar processors (which need ILP
to be effective).

• Trace Scheduling can also increase code
size (because of compensation code).
It is also sensitive to the accuracy of
trace estimates.

232CS 701 Fall 2007©

Global Code Scheduling
• Bernstein and Rodeh approach.

• A prepass scheduler
(does scheduling before register
allocation).

• Can move instructions across basic block
boundaries.

• Prefers to move instructions that must
eventually be executed.

• Can move Instructions speculatively,
possibly executing instructions
unnecessarily.

233CS 701 Fall 2007©

Data & Control Dependencies
When moving instructions across
basic block boundaries, we must
respect both data dependencies and
control dependencies.

Data dependencies specify necessary
orderings among instructions that
produce a value and instructions that
use that value.

Control dependencies determine when
(and if) various instructions are
executed. Thus an instruction is
control dependent on expressions
that affect flow of control to that
instruction.

234CS 701 Fall 2007©

Definitions used in Global
Scheduling
• Basic Block A dominates Basic Block B if

and only if A appears on all paths to B.

• Basic Block B postdominates Basic Block
A if and only if B appears on all paths
from A to an exit point.

• Basic Blocks A and B are equivalent if
and only if A dominates B and B
postdominates A.

• Moving an Instruction from Basic Block
B to Basic Block A is useful if and only if
A and B are equivalent.

• Moving an Instruction from Basic Block
B to Basic Block A is speculative if B does
not postdominate A.

235CS 701 Fall 2007©

• Moving an Instruction from Basic Block
B to Basic Block A requires duplication if
A does not dominate B.

We prefer a move that does not require
duplication. (Why?)
The degree of speculation in moving an
instruction from one basic block to
another can be quantified:
• Moving an Instruction from Basic Block

B to Basic Block A is n-branch
speculative if n conditional branches
occur on a path from A to B.

236CS 701 Fall 2007©

Example
 d = a + b;
 if (d != 0)
 flag = 1;
 else flag = 0;
 f = d - g;

Blocks 1 and 4 are equivalent.
Moving an Instruction from B2 to B1
(or B3 to B1) is 1-branch speculative.
Moving an Instruction from B4 to B2
(or B4 to B3) requires duplication.

d = a + b
d != 0

flag = 1 flag = 0

f = d - g

T F

1

2 3

4

237CS 701 Fall 2007©

Limits on Code Motion
Assume that pseudo registers are used
in generated code (prior to register
allocation).
To respect data dependencies:
• A use of a Pseudo Register can’t be

moved above its definition.

• Memory loads can’t be moved ahead
of Stores to the same location.

• Stores can’t be moved ahead of either
loads or stores to the same location.

• A load of a memory location can be
moved ahead of another load of the
same location (such a load may often
be optimized away by equivalencing
the two pseudo registers).

238CS 701 Fall 2007©

Example (Revisited)
block1:
 ld [a],Pr1
 ld [b],Pr2

 add Pr1,Pr2,Pr3 ← Stall
 st Pr3,[d]
 cmp Pr3,0
 be block3
block2:
 mov 1,Pr4
 st Pr4,[flag]
 b block4
block3:
 st 0,[flag]
block4:
 ld [d],Pr5
 ld [g],Pr6

 sub Pr5,Pr6,Pr7 ← Stall
 st Pr7,[f]

In B1 and B4, the number of available
registers is irrelevant in avoiding
stalls. There are too few independent
instructions in each block.

239CS 701 Fall 2007©

Global Scheduling
Restrictions (in Bernstein/
Rodeh Heuristic)
1. Subprograms are divided into Regions.

A region is a loop body or the
subprogram body without enclosed
loops.

2. Regions are scheduled inside-out.
3. Instructions never cross region

boundaries.
4. All instructions move “upward” (to

earlier positions in the instruction
order).

5. The original order of branches is
preserved.

240CS 701 Fall 2007©

Lesser (temporary) restrictions Include:
6. No code duplication.
7. Only 1-branch speculation.
8. No new basic blocks are created or

added.

241CS 701 Fall 2007©

Scheduling Basic Blocks in a
CFG

Basic blocks are visited and scheduled
in Topological Order. Thus all of a
block’s predecessors are scheduled
before it is.
Two levels of scheduling are possible
(depending on whether speculative
execution is allowed or not):
1. When Basic Block A is scheduled,
 only Instructions in A and blocks
 equivalent to A that A dominates
 are considered.
 (Only “useful” instructions are
 considered.)

242CS 701 Fall 2007©

2. Blocks that are immediate
successors of those considered in

 (1) are also considered.
 (This allows 1-branch

speculation.)

243CS 701 Fall 2007©

Candidate Instructions
We first compute the set of basic
blocks that may contribute
instructions when block A is
scheduled. (Either blocks equivalent
to A or blocks at most 1-branch
speculative.)

244CS 701 Fall 2007©

An individual Instruction, Inst, in this
set of basic blocks may be scheduled
in A if:
1. It is located in A.
2. It is in a block equivalent to A and

may be moved across block
boundaries.

 (Some instructions, like calls, can’t
 be moved.)
3. It is not in a block equivalent to A,

but may be scheduled speculatively.
 (Some instructions, like stores,

can’t be executed speculatively.)

245CS 701 Fall 2007©

Selecting Instructions to Issue
• A list of “ready to issue” instructions in

block A and in bocks equivalent to A (or
1-branch distant from A) is maintained.

• All data dependencies must be satisfied
and stalls avoided (if possible).

• N independent instructions are selected,
where N is the processor’s issue-width.

• But what if more than N instructions are
ready to issue?

• Selection is by Priority, using two
Scheduling Heuristics.

246CS 701 Fall 2007©

Delay Heuristic
This value is computed on a per-basic
block basis.
It estimates the worst-case delay
(stalls) from an Instruction to the end
of the basic block.

D(I) = 0 if I is a leaf.

Let d(I,J) be the delay if instruction J
follows instruction I in the code
schedule.

D(I) = Max (D(Ji)+d(I,Ji))
Ji ∈ Succ(I)

247CS 701 Fall 2007©

Example of Delay Values
block1:
1. ld [a],Pr1
2. ld [b],Pr2
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]
5. cmp Pr3,0
6. be block3

(Assume only loads can stall.)

1 2

3

4 5

6

0

0 0

0

1 1

248CS 701 Fall 2007©

Critical Path Heuristic
This value is also computed on a per-
basic block basis.
It estimates how long it will take to
execute Instruction I, and all I’s
successors, assuming unlimited
parallelism.

E(I) = Execution time for instruction I
 (normally 1 for pipelined

machines)
CP(I) = E(I) if I is a leaf.

CP(I) = E(I) + Max (CP(Ji)+d(I,Ji))
∈ Succ(I)Ji

249CS 701 Fall 2007©

Example of Critical Path
Values

block1:
1. ld [a],Pr1
2. ld [b],Pr2
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]
5. cmp Pr3,0
6. be block3

1 2

3

4 5

6

1

2 2

3

5 5

250CS 701 Fall 2007©

Selecting Instructions to Issue
From the Ready Set (instructions with all
dependencies satisfied, and which will
not stall) use the following priority rules:

1. Instructions in block A and blocks
 equivalent to A have priority over
 other (speculative) blocks.
2. Instructions with the highest D

values have priority.
3. Instructions with the highest CP

values have priority.
These rules imply that we schedule
useful instructions before speculative
ones, instructions on paths with
potentially many stalls over those with
fewer stalls, and instructions on critical
paths over those on non-critical paths.

251CS 701 Fall 2007©

Example
block1:
1. ld [a],Pr1
2. ld [b],Pr2
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]
5. cmp Pr3,0
6. be block3
block2:
7. mov 1,Pr4
8. st Pr4,[flag]
9. b block4
block3:
10. st 0,[flag]
block4:
11. ld [d],Pr5
12. ld [g],Pr6
13. sub Pr5,Pr6,Pr7
14. st Pr7,[f]

1 2

3

4 5

6

0,1

0,2 0,2

0,3

1,5 1,5

8 9
0,2 0,1

7
0,3

10
0,1

11 12

13
0,2

1,4 1,4

14
0,1

252CS 701 Fall 2007©

We’ll schedule without speculation;
highest D values first, then highest CP
values.

block1:
1. ld [a],Pr1
2. ld [b],Pr2

1 2

3

4 5

6

0,1

0,2 0,2

0,3

1,5 1,5

8 9
0,2 0,1

7
0,3

10
0,1

11 12

13
0,2

1,4 1,4

14
0,1

12. ld [g],Pr6

253CS 701 Fall 2007©

Next, come Instructions 3 and 4.
block1:
1. ld [a],Pr1
2. ld [b],Pr2

3

4 5

6

0,1

0,2 0,2

0,3

8 9
0,2 0,1

7
0,3

10
0,1

11

13
0,2

1,4

14
0,1

12. ld [g],Pr6
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]

254CS 701 Fall 2007©

Now 11 can issue (D=1), followed by 5,
13, 6 and 14. Block B4 is now empty, so
B2 and B3 are scheduled.

There are no stalls. In fact, if we
equivalence Pr3 and Pr5, Instruction 11
can be removed.

block1:
1. ld [a],Pr1
2. ld [b],Pr2

5

6

0,1

0,2

8 9
0,2 0,1

7
0,3

10
0,1

11

13
0,2

1,4

14
0,1

12. ld [g],Pr6
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]

5. cmp Pr3,0
11. ld [d],Pr5

14. st Pr7,[f]
block2:
7. mov 1,Pr4
8. st Pr4,[flag]
9. b block4
block3:
10. st 0,[flag]
block4:

13. sub Pr5,Pr6,Pr7
6. be block3

255CS 701 Fall 2007©

Hardware Support for Global
Code Motion

We want to be aggressive in
scheduling loads, which incur high
latencies when a cache miss occurs.
In many cases, control and data
dependencies may force us to restrict
how far we may move a critical load.
Consider

p = Lookup(Id);
 ...
if (p != null)

print(p.a);

It may well be that the object
returned by Lookup is not in the L1
cache. Thus we’d like to schedule the
load generated by p.a as soon as
possible; ideally right after the
lookup.

256CS 701 Fall 2007©

But moving the load above the p !=
null check is clearly unsafe.
A number of modern machine
architectures, including Intel’s
Itanium, have proposed a speculative
load to allow freer code motion when
scheduling.
A speculative load,
ld.s [adr],%reg

acts like an ordinary load as long as
the load does not force an interrupt.
If it does, the interrupt is suppressed
and a special NaT (not a thing) bit is
set in the register (a hidden 65th bit).
A NaT bit can be propagated through
instructions before being tested.
In some cases (like our table lookup
example), a register containing a NaT
bit may simply not be used because

257CS 701 Fall 2007©

control doesn’t reach its intended
uses.
However a NaT bit need not indicate
an outright error. A load may force a
TLB (translation lookaside buffer)
fault or a page fault. These interrupts
are probably too costly to do
speculatively, but if we decide the
loaded value is really needed, we will
want to allow them.
A special check instruction, of the
form,
chk.s %reg,adr

checks whether %reg has its NaT bit
set. If it does, control passes to adr,
where user-supplied “fixup” code is
placed. This code can redo the load
non-speculatively, allowing necessary
interrupts to occur.

258CS 701 Fall 2007©

Hardware Support for Data
Speculation

In addition to supporting control
speculation (moving instructions
above conditional branches), it is
useful to have hardware support for
data speculation.
In data speculation, we may move a
load above a store if we believe the
chance of the load and store
conflicting is slim.
Consider a variant of our earlier
lookup example,

p = Lookup(Id);
 ...
q.a = init();
print(p.a);

259CS 701 Fall 2007©

We’d like to move the load implied by
p.a above the assignment to q.a. This
allows p to miss in the L1 cache, using
the execution of init() to cover the
miss latency.
But, we need to be sure that q and p
don’t reference the same object and that
init() doesn’t indirectly change p.a.
Both possibilities may be remote, but
proving non-interference may be
difficult.
The Intel Itanium provides a special
“advanced load” that supports this sort
of load motion.
The instruction
ld.a [adr],%reg

loads the contents of memory location
adr into %reg. It also stores adr into

260CS 701 Fall 2007©

special ALAT (Advanced Load Address
Table) hardware.
When a store to address X occurs, an
ALAT entry corresponding to address X is
removed (if one exists).
When we wish to use the contents of
%reg, we execute a
ld.c [adr],%reg

instruction (a checked load).
If an ALAT entry for adr is present, this
instruction does nothing; %reg contains
the correct value. If there is no
corresponding ALAT entry, the ld.c
simply acts like an ordinary load.
(Two versions of ld.c exist; one
preserves an ALAT entry while the other
purges it).

261CS 701 Fall 2007©

And yes, a speculative load (ld.s) and
an advanced load (ld.a) may be
combined to form a speculative
advanced load (ld.sa).

262CS 701 Fall 2007©

Speculative Multi-threaded
Processors
The problem of moving a load above a
store that may conflict with it also
appears in multi-threaded processors.
How do we know that two threads don’t
interfere with one another by writing
into locations both use?
Proofs of non-interference can be
difficult or impossible. Rather than
severely restrict what independent
threads can do, researchers have
proposed speculative multi-threaded
processors.
In such processors, one thread is primary,
while all other threads are secondary and
speculative. Using hardware tables to
remember locations read and written, a
secondary thread can commit (make its

263CS 701 Fall 2007©

updates permanent) only if it hasn’t read
locations the primary thread later wrote
and hasn’t written locations the primary
thread read or wrote. Access conflicts are
automatically detected, and secondary
threads are automatically restarted as
necessary to preserve the illusion of
serial memory accesses.

