Code Movement is Never Speculative

Partial redundancy analysis has the attractive property that it never adds a computation to an execution path that doesn't use the computation. That is, we never *speculatively* add computations.

How do we know this is so?

Assume we are about to insert a computation of an expression at the end of block b, but there is a path from b that doesn't later compute and use the expression.

Say the path goes from b to c (a successor of b), and then eventually to an end node.
Looking at the rules for insertion of an expression:

\[\text{Insert}_b = \text{PPOut}_b \text{ AND } \ldots \]

\[\text{PPOut}_b = \text{PPI}_{\text{c}} \text{ AND } \ldots \]

\[\text{PPI}_{\text{c}} = \text{Const}_{\text{c}} \text{ AND } \ldots \]

\[\text{Const}_{\text{c}} = \text{AntIn}_{\text{c}} \text{ AND } \ldots \]

But if the expression isn't computed and used on the path through c, then \(\text{AntIn}_{\text{c}} = \text{False} \), forcing \(\text{Insert}_b = \text{false} \), a contradiction.
Can Computations Always be Moved Up?

Sometimes an attempt to move a computation earlier in the CFG can be blocked. Consider

We'd like to move $a+b$ into block 2, but this may be impossible if $a+b$ isn't anticipated on all paths out of block 2.

The solution to this difficulty is to notice that we really want $a+b$ computed on the edge from 2 to 3.
If we add an *artificial* block between blocks 2 and 3, movement of $a+b$ out of block 3 is no longer blocked:
Loop Invariant Code Motion

Partial redundancy elimination subsumes loop invariant code motion. Why?
The iteration of the loop makes the invariant expression partially redundant on a path from the expression to itself.
If we're guaranteed the loop will iterate at least once (do-while or repeat-until loops), then evaluation of the expression can be anticipated in the loop's preheader.
Consider

\[a = \text{val} \]
\[\text{do} \]
\[\ldots \]
\[a + b \]
\[\ldots \]
\[\text{while} \ (\ldots) \]
\[
\begin{align*}
PP\ln_B &= \text{Const}_B \ \text{AND} \\
&\quad (\text{AntLoc}_B \ \text{OR} \ ... \) \ \text{AND} \\
&\quad (\text{PPOut}_p \ \text{AND} \ \text{AvOut}_C) \\
\text{Const}_B &= \text{AntIn}_B \ \text{AND} \ [\text{PavIn}_B \ \text{OR} \ ...] \\
\text{AntIn}_B &= \text{true}, \quad \text{PavIn}_B = \text{true} \ \Rightarrow \\
\text{Const}_B &= \text{true} \\
\text{PPOut}_p &= PP\ln_B, \ \text{AntLoc}_B = \text{true}, \\
\text{AvOut}_C &= \text{true} \ \Rightarrow \ PP\ln_B = \text{true} \\
\text{Insert}_p &= \text{PPOut}_p \ \text{AND} \ (-\text{AvOut}_p) \\
&\quad \text{AND} \ (-\text{PPIp}_p \ \text{OR} \ -\text{Transp}_p) = \\
&\quad \text{true} \ \text{AND} \ (\text{true}) \ \text{AND} \\
&\quad (-\text{PPIp}_p \ \text{OR} \ \text{true}) = \text{true}, \\
&\quad \text{so we may insert a+b at the end of} \\
&\quad \text{the preheader.} \\
\text{Remove}_B &= \text{AntLoc}_B \ \text{and} \ PP\ln_B = \\
&\quad \text{true AND true}, \ \text{so we may remove} \\
&\quad \text{a+b from the loop body.}
\end{align*}
\]
What About While & For Loops?

The problem here is that the loop may iterate zero times, so the loop invariant isn't really very busy (anticipated) in the preheader.

We can, however, change a while (or for) into a do while:

```plaintext
while (expr) {
    if (expr)
        body ≡ do {body} ≈
} while (expr)

goto L:
do {body}
L:
while (expr)
```

After we know the loop will iterate once, we can evaluate the loop invariant.
Code Placement in Partial Redundancy Elimination

While partial redundancy elimination correctly places code to avoid unnecessary reevaluation of expressions along execution paths, its choice of code placement can sometimes be disappointing. It always moves an expression back as far as possible, as long as computations aren't added to unwanted execution paths. This may unnecessarily lengthen live ranges, making register allocation more difficult.
For example, in

\[
\begin{align*}
&\text{a} = \text{val} \\
&\vdots \\
&\text{a} + \text{b} \\
&\vdots \\
&\vdots
\end{align*}
\]

where will we insert \(a+b \)?

\[
\text{Insert}_P = \text{PPOut}_P \ \text{AND} \ (\neg \text{AvOut}_P) \ \text{AND} \ (\neg \text{PPIn}_P \ \text{OR} \ (\neg \text{Transp}_P))
\]

The last term will be true at the top block, but not elsewhere.
In “Lazy Code Motion” (PLDI 1992), Knoop, Ruething and Steffan show how to eliminate partial redundancies while minimizing register pressure. Their technique seeks to evaluate an expression as “late as possible” while still maintaining computational optimality (no redundant or unnecessary evaluations on any execution paths).

Their technique places loop invariants in the loop preheader rather than in an earlier predecessor block as Morel & Renvoise do.
Partial Dead Code Elimination

Partial Redundancy Elimination aims to never reevaluate an expression on any path, and never to add an expression on any path where it isn’t needed.

These ideas suggest an interesting related optimization—eliminating expressions that are partially dead. Consider

\[
y = a + b
\]

\[
y = 0
\]

\[
\text{print}(y)
\]
On the left execution path, \(a+b \) is dead, and hence useless. We'd prefer to compute \(a+b \) only on paths where it is used, obtaining

\[
\begin{align*}
 y &= 0 \\
 y &= a+b \\
\end{align*}
\]

\[
\text{print}(y)
\]

This optimization is investigated in "Partial Dead Code Elimination" (PLDI 1994), Knoop, Ruething and Steffan. This optimization "sinks" computations onto paths where they are needed.
Procedure & Code Placement

We have seen many optimizations that aim to reduce the number of instructions executed by a program. Another important class of optimizations derives from the fact that programs often must be paged in virtual memory and almost always are far bigger than the I-cache.

Hence how procedures and basic blocks are placed in memory is important. Page faults and I-cache misses can be very costly.
In “Profile Guided Code Positioning,” Pettis and Hansen explore three kinds of code placement optimizations:

1. Procedure Positioning.
 Try to keep procedures that often call each other close together.

2. Basic Block Positioning.
 Try to place the most frequently executed series of basic blocks “in sequence.”

 Place infrequently executed “fluff” in a different memory area than heavily executed code.
Procedure Placement

Procedures (and classes in Java) are normally separately compiled. They are then placed in memory by a linker or loader in an arbitrary order.

This arbitrary ordering can be problematic:

If A calls B frequently, and A and B happen to be placed far apart in memory, the calls will cross page boundaries and perhaps cause I-cache conflicts (if code in A and B happen to map to common cache locations).

However, if A and B are placed close together in memory, they may both fit on the same page and fit into the I-cache without conflicts.
Pettis & Hansen suggest a “closest is best” procedure placement policy. That is, they recommend that we place procedures that often call each other as close together as possible. How? First, we must obtain dynamic call frequencies using a profiling tool like gprof or qpt. Given call frequencies, we create a call graph, with edges annotated with call frequencies:
Group Procedures by Call Frequency

We find the pair of procedures that call each other most often, and group them for contiguous positioning.

The notation \([A,D]\) means A and D will be adjacent (either in order A–D or D–A).

The two procedures chosen are combined in the call graph, which is simplified (much like move-related nodes in an interference graph):

```
C ------------ [A,D]
  |              |
  8              2
  |              |
F  ------------  E
  |    1    |
  7
```
Now C and F are grouped, without their relative order set (as yet):

Next [A,D] and [C,F] are to be joined, but in what exact order?

Four orderings are possible:

- A–D–C–F \equiv F–C–D–A
- A–D–F–C \equiv C–F–D–A
- D–A–C–F \equiv F–C–A–D
- D–A–F–C \equiv C–F–A–D

Are these four orderings equivalent?
No—Look at the original call graph. At the boundary between [A,D] and [C,F], which of the following is best:

- D–C (3 calls),
- D–F (0 calls)
- A–C (4 calls)
- A–F (0 calls)

A–C has the highest call frequency, so we choose D–A–C–F.

Finally, we have:

```
D–A–C–F  3  E
```

We place E near D (call frequency 2) rather than near F (call frequency 1). Our final ordering is E–D–A–C–F.
Basic Block Placement

We often see conditionals of the form

```
if (error-test)
  {Handle error case}
  {Rest of Program}
```

Since error tests rarely succeed (we hope!), the error handling code “pollutes” the I-cache.

In general, we’d like to order basic blocks not in their order of appearance in the source program, but rather in order of their execution along frequently executed paths.

Placing frequently executed basic blocks together in memory fills the I-cache nicely, leads to a smaller working set and makes branch prediction easier.
Pettis & Hansen suggest that we profile execution to determine the frequency of inter-block transitions. We then will group blocks together that execute in sequence most often.

At the start, all basic blocks are grouped into singleton chains of one block each.

Then, in decreasing order of transition frequency, we visit arcs in the CFG. If the blocks in the source and target can be linked into a longer chain then do so, else skip to the next transition.

When we are done, we have linked together blocks in paths in the CFG that are most frequently executed.
Linked basic blocks are allocated together in memory, in the sequence listed in the chain.
Example
Initially, each bock is in its own chain.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>7000</td>
<td>Form B–C</td>
</tr>
<tr>
<td>6500</td>
<td>Form B–C–D</td>
</tr>
<tr>
<td>6500</td>
<td>Form H–B–C–D</td>
</tr>
<tr>
<td>4000</td>
<td>Form H–B–C–D–F</td>
</tr>
<tr>
<td>4000</td>
<td>H is already placed</td>
</tr>
<tr>
<td>2500</td>
<td>E can't be placed after D, leave it alone</td>
</tr>
<tr>
<td>2500</td>
<td>H is already placed</td>
</tr>
<tr>
<td>1000</td>
<td>A can't be placed before B, leave it alone</td>
</tr>
<tr>
<td>900</td>
<td>I can't be placed after B, leave it alone</td>
</tr>
<tr>
<td>500</td>
<td>G can't be placed after C, leave it alone</td>
</tr>
<tr>
<td>500</td>
<td>Form G–I</td>
</tr>
</tbody>
</table>
We will place in memory the following chains of basic blocks:

H–B–C–D–F, E, A, G–I

On some computers, the direction of a conditional branch predicts whether the branch is expected to be taken or not (e.g., the HP PA–RISC). On such machines, a backwards branch (forming a loop) is assumed taken; a forward branch is assumed not taken.

If the target architecture makes such assumptions regarding conditional branches, we place chains to (where possible) correctly predict the branch outcome.

Thus E and G–I are placed after H–B–C–D–F since D→E and C→G normally aren't taken.
On the SPARC (V 9) you can set a bit in each conditional branch indicating expected taken/not taken status.

On many machines internal branch prediction hardware can over-rule poorly made (or absent) static predictions.
Procedure Splitting

When we profile the basic blocks within a procedure, we'll see some that are frequently executed, and others that are executed rarely or never.

If we allocate all the blocks of a procedure contiguously, we'll intermix frequently executed blocks with infrequently executed ones.

An alternative is “fluff removal.” We can split a procedure’s body into two sets of basic blocks: these executed frequently and those executed infrequently (the dividing line is, of course, somewhat arbitrary).
Now when procedure bodies are placed in memory, frequently executed basic blocks will be placed near each other, and infrequently executed blocks will be placed elsewhere (though infrequently executed blocks are still placed near each other). In this way be expect to make better use of page frames and I-cache space, filling them with mostly active basic blocks.
Points-To Analysis

All compiler analyses and optimizations are limited by the potential effects of assignments through pointers and references.

Thus in C:

\[
\begin{align*}
&b = 1; \\
&*p = 0; \\
&\text{print}(b);
\end{align*}
\]

is 1 or 0 printed?

Similarly, in Java:

\[
\begin{align*}
&a[1] = 1; \\
&b[1] = 0; \\
&\text{print}(a[1]);
\end{align*}
\]

is 1 or 0 printed?
Points-to analysis aims to determine what variables or heap objects a pointer or reference may access.

To simplify points-to analysis, a number of reasonable assumptions are commonly made:

• Points to analysis is usually flow-insensitive. We don't analyze flow of control within a subprogram, but rather gather points-to information for the subprogram as a whole.

Thus in

\[
\begin{align*}
\text{if (b)} & \quad \text{p} = \&a; \\
\text{else} & \quad \text{p} = \&c; \\
\end{align*}
\]

we conclude \text{p} may point to either \text{a} or \text{c}.
Points to analysis is usually *context-insensitive* (with respect to calls). This means individual call sites for the same subprogram are not differentiated. Therefore in

```c
*int echo (*int r) {
    return r; }

p = echo (&a);
q = echo (&b);
```

we determine that \(r \) may point to either \(a \) or \(b \) and therefore \(p \) can point to either \(a \) or \(b \).
• Heap objects are named by the call site at which they are created. In:
 \[p = \text{new int}; \ //\text{Site 1} \]
 \[q = \text{new int}; \ //\text{Site 2} \]
we know \(p \) and \(q \) can't interfere since each references a distinct call site.

• Aggregates (arrays, structs, classes) are **collapsed**. Pointers or references to individual components are not distinguished. Given
 \[p = \&a[1]; \]
 \[q = \&a[2]; \]
pointers \(p \) and \(q \) are assumed to interfere. Similarly in
 \[p = \text{Obj.a}; \]
 \[q = \text{Obj.b}; \]
pointers \(p \) and \(q \) are assumed to interfere.
• Complex pointer expressions are assumed to be simplified prior to points-to analysis. For example,

```c
**p = 1;
```

is transformed into

```c
temp = *p;
*temp = 1;
```