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1. INTRODUCTION

In both the architecture and compiler domains, conditional branch instructions are
a barrier to higher levels of performance. Branches change the program counter
based on run-time information. Hardware techniques such as pipelining and multi-
ple issue increase the cost of changing the program counter, making it difficult
to resolve the target of a branch instruction in time to keep an execution en-
gine employing these techniques full of instructions. Branch prediction, whether
dynamic (hardware-based) or static (software-based), makes good guesses about
likely branch targets and allows the instruction unit to fetch instructions early.
When predictions are accurate, the execution engine can operate at full speed and
performance improves.

Accurately predicting the likely target of conditional branches is also critical for
the success of compile-time optimizations, optimizations such as branch alignment
[Calder and Grunwald 1994; Pettis and Hansen 1990; Young et al. 1997], global
instruction scheduling [Bernstein and Rodeh 1991; Fisher 1981; Hwu et al. 1993;
Lowney et al. 1993; Moon and Ebcioglu 1992; Smith 1992; Young and Smith 1998],
partial dead-code elimination [Gupta et al. 1997], and partial redundancy elimina-
tion [Gupta et al. 1998]. Unlike the execution engine which makes a prediction for
each dynamic instance of a static branch in an application, the compiler makes but
a single static prediction for each static branch. As before, however, when predic-
tions are accurate, these optimizations are beneficial, and performance improves.
In this article, we present a compile-time code transformation that improves the
static predictability of conditional branches.

Perhaps the most promising branch-related discovery of the last 10 years is that
branches exhibit correlation: the outcome of a conditional branch is often deter-
mined by the branch’s historical pattern of outcomes or the historical pattern of
outcomes of its neighboring branches. Due perhaps to the logical structure of the
program or aspects of realistic data sets, programs behave in patterns that can be
observed, recorded, and exploited. The most successful application of branch corre-
lation has been in dynamic branch prediction, where architects have built predictors
that remember patterns in the stream of branch executions [McFarling 1993; Pan
et al. 1992; Yeh and Patt 1991; 1993; Yeh 1993; Young et al. 1995].

Our work is related to the recent work in dynamic global predictors, predictors
that identify and exploit repetitive behavior in the trace of all conditional branches
executed by the program. If a branch always goes the same way when reached by
a particular pattern of prior branches, we can improve the predictability of this
branch by recognizing when the pattern of prior branches occurs. For example,
Figure 1 shows a code fragment from the SPECint92 benchmark eqntott. In this
fragment, the condition of the third branch is always false if the conditions of both
previous branches were true. Architects have built hardware structures that exploit
such global branch patterns [McFarling 1993; Yeh and Patt 1991]; we show that a
compiler can exploit them as well.

Figure 1 demonstrates what we call logical correlation; we can logically prove
that a must equal b if they both equal 2. Several researchers [Bodik et al. 1997;
Mueller and Whalley 1995] have designed static analysis techniques that identify
some forms of logical branch correlation and reorganize the code to isolate and
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if (aa == 2)
aa = 0;

if (bb == 2)
bb = 0;

if (aa != bb) {
...

}

aa == 2 bb == 2 aa != bb

TRUE TRUE FALSE

TRUE FALSE ?

FALSE TRUE ?

FALSE FALSE ?

Fig. 1. Example of branch correlation from the SPECint92 benchmark eqntott and the corre-
sponding truth table. If the first two branches have true conditions, then the third branch will
always have a false condition.

eliminate avoidable conditional branches. Hardware approaches, however, exploit
more than just logical correlation. They are also able to exploit what we call
statistical correlation; a pattern of correlation that is a likely but not guaranteed.
We provide examples of statistical correlation and discuss these related techniques
in later sections.

We present a static technique for capturing both logical and statistical correla-
tion. To identify all kinds of branch correlation during compilation, we use pro-
file information to summarize a program’s run-time behavior. Traditional profiles
record statistics for individual points in the program, e.g., the execution frequen-
cies of each static function or instruction. Traditional profiles suffice for per-branch
prediction schemes, where the majority direction of each branch point is used as
the prediction for that branch point.

A branch prediction scheme that exploits branch correlation requires more de-
tailed execution information than that provided by traditional (point) profiles. As
mentioned above, run-time global prediction schemes are based on the recorded
history of global branch patterns. A global branch pattern is simply a shorthand1

for the most recent piece of an execution trace, and this piece simply corresponds to
a sequence of basic blocks (or path) through the traced program. This observation
inspired a new kind of profile: instead of collecting statistics about the behavior at
points in the program, why not collect the same statistics about the behavior over
paths in the program? Path profiles cover the spectrum between traditional point
profiles and the brute-force approach of collecting and analyzing complete program
traces.

With path profiles, there is the potential for an exponential explosion in the
amount of data collected. If our example in Figure 1 had more intervening branches
between the first and last conditional, we would have needed a much larger truth
table to describe all possibilities. Some mechanism must be used to bound the
number of paths collected during profiling. Point profiles and full traces can be seen
respectively as path profiles of length 0 or of length proportional to the running
time of the program.2 We give details of how to bound the number of paths in

1A branch pattern may not identify a unique trace, since two branches can jump to the same code

location and thus produce the same global branch pattern.
2A path may include an execution of the same static branch multiple times. This definition of a
path is more general than the one used by Ball and Larus [1996]. As discussed in Section 2.2, this
more general definition provides us with more opportunities for compile-time optimization.
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Fig. 2. An intuitive illustration of the SCBP transformation. The left side of the diagram shows
a pair of conditional statements and the two most likely paths through them. When reached by
the left path, the gray block is likely to go left; when reached by the right path, the gray block is
likely to go right. Without code duplication, we can make only one static prediction for the one
copy of the gray block. The right side of the diagram shows the subgraph after SCBP. Now there
are two copies of the gray block, allowing different static predictions for the different copies.

Section 2. That section also contains a description of an efficient algorithm for
collecting path profiles.

In Section 3, we present an algorithm that extracts branch correlation from an
application’s path profile and then transforms the application so that its correlated
branches are more predictable at run time. We refer to this algorithm as static
correlated branch prediction (SCBP). The transformation is accomplished by dupli-
cating and rearranging blocks of the control-flow graph, making different copies of
an original program block represent different correlation history.

SCBP is an instance of the more general idea of specialization. Like other op-
timizations in this class (e.g., procedure cloning), it makes a space-time trade-off.
In particular, SCBP trades memory system performance for improved branch pre-
dictability. Figure 2 illustrates a very simple example of this trade-off. In the
figure, the second conditional statement is correlated to the first conditional state-
ment: control flow tends to follow either the black or the gray path. With static
branch prediction, we must fix a prediction per branch in the program before the
program runs. Without duplicating code, the static prediction for the second con-
ditional must favor the left side or the right side, penalizing one of the correlated
paths. By duplicating the second conditional statement, we can make different
static predictions for the two copies of the statement. With the different copies,
we can make more accurate static predictions that exploit correlation, reducing the
running time of the program. But the new program is larger than the original pro-
gram, so it takes up more space. This additional space may hurt performance on a
real machine because of the instruction memory resources consumed by the larger
program. As we show in Section 3.5, choosing how much space to use to reduce
branch mispredictions is key to making SCBP practical.

This work subsumes all prior work on static correlated branch prediction, and it
makes several new contributions. Overall, it makes the following contributions:

—We define and explore general path profiles, illustrating why they are useful and
provide more information than other kinds of path profiles. We appear to have
been the first researchers to have collected path profile information [Young and
Smith 1994]. Although our initial work focused on improved branch prediction
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through path profiles rather than on efficient profile collection, path profiling was
the key insight that enabled us to improve static branch prediction accuracy.

—We give an efficient algorithm for profiling general paths. This algorithm has
the same asymptotic efficiency as current point profiling and tracing techniques.
The overhead of our (untuned) implementation is on average within a factor of
two of the overhead of point-profiling techniques; tuning of other path-profiling
techniques has shown that path profiling can be as efficient as edge profiling
[Ammons et al. 1997; Bala 1996; Ball and Larus 1996].

—We describe a practical algorithm, static correlated branch prediction (SCBP),
that trades off code expansion for improved branch prediction accuracy. This
includes a global reconciliation step, which ensures that the minimum number
of copies of each original basic block are made to achieve the desired prediction
accuracy.

—We provide a heuristic overpruning method for automatically and effectively tun-
ing the SCBP space-time trade-off to match the cache and branch prediction
structure of the target processor.

—We show comprehensive results, including simulation results for SCBP coupled
with a code layout pass, and timings of our profiling and optimized programs,
running on real machines.

The rest of the article proceeds as follows. Section 2 explains how to collect path
profiles efficiently. Section 3 applies path profiles to improve the accuracy of static
branch prediction. Section 4 reports on simulated and actual performance of both
the profiling and optimization parts of our system. Section 5 discusses related work.
Section 6 summarizes our results and concludes.

2. PATHS AND PATH PROFILING

We begin in Section 2.1 by defining some necessary terminology. Section 2.2 gives
an example of a simple program and the different kinds of behavior that are cap-
tured by various kinds of profiles. The last part, Section 2.3, presents an efficient
algorithm for collecting general path profiles.

2.1 Definitions

Programs appear to machines as linear sequences of instructions. Instructions such
as conditional branches, jumps, procedure calls, and returns transfer control from
one part of the program to another. We refer to these instructions that can change
the program counter as control transfer instructions (CTIs). For many compiler
optimizations, it turns out to be useful to view the program as a graph rather than
a linear sequence of instructions, where the graph summarizes all possible control
transfers made by the program. We first define the concept of a path in a general
graph and then formalize the concept of a path in a control-flow graph. From this
discussion, it should be straightforward to apply the concept of a path to other
types of graphs used in compilation, e.g., call graphs.

Formally, a graph is a pair (V,E) where V is the set of nodes or vertices in the
graph, and E is the set of edges in the graph. Each edge is an ordered pair of
nodes; the ordering is important in directed graphs, where the edges (u, v) and
(v, u) are distinguished. The vertices that make up the edge are called the source
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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and target, respectively; the edge goes from the source to the target. Intuitively,
nodes in the graphs that we discuss represent pieces of the program at different
granularities, while edges connect nodes that might be executed immediately after
one another. For some graphs, it may be natural to extend the definition to include
designated start and finish nodes. A path is just a finite sequence of edges in the
graph, where each edge in the sequence has the same target as the source of the
next edge (i.e., the path traces out a sequence of edge-connected vertices in the
graph). The number of edges in the path is the length of the path. Note that the
number of nodes in the path is one greater than the length of the path.

A control-flow graph (CFG) represents the relationships between basic blocks [Aho
et al. 1988] within a single procedure; a basic block is a maximal single-entry
straight-line sequence of instructions. Each CFG edge represents a potential flow
of control between the code blocks; control flows from the source to the target of
an edge. In a CFG, a block with multiple successors is called a split node; a block
with multiple predecessors is called a join node. CFGs are sometimes built with
extra start (sometimes called entry) and finish (exit) nodes. These indicate where
control can enter or exit from the CFG.

In terminological shorthand, we often say that block B succeeds block A if there is
an edge from A to B in the CFG; one can also define a “successor” relation on CFG
blocks that is equivalent to the edge set E. The transitive closure of the successor
relation is the “descendant” relation; if B is a descendant of A then there is a path
from A to B. The reverse of the descendant relation is the “ancestor” relation. If
all paths from the entrance node to node B include node A, then node A is said
to dominate node B. An edge from L to H where H dominates L is called a loop
or back edge. This corresponds to one intuitive definition of a loop: in order to
traverse the edge from L to H, the program must have executed H before.

Some specific kinds of paths are especially relevant to recent work in profiling. A
forward path is a path that contains no back edges. In contrast, a general path (or
just a path, but we sometimes refer to general path profilers to distinguish them
from forward path profilers) has no constraints on its nodes or edges; it may or may
not contain duplicated edges or nodes. A cycle is just a path where the source of
the first edge is the same as the target of the last edge: it is a path that returns to
its start. Cycles in the control-flow graph correspond to loops in the program.

2.2 Example Profiles

We will use a simple example to illustrate the differences between kinds of profiles.
Figure 3 shows a C code fragment along with the corresponding part of a control-
flow graph.

Point profiles of this code fragment report execution frequencies for CFG nodes
or edges. For example, if the initial value of variable size is 60, then the node
frequencies of A and D will be 60. From the code, we do not know the distribution
of values in the data array. For the sake of illustration, suppose that 40 data
elements were positive, while the remaining 20 were zero or negative. Figure 4
depicts the point profiles that result, placing frequencies above the node or edge
that generated that execution count.

Point profiles indicate the frequently executed basic blocks of the program. From
the profiles in Figure 4, it appears that spending effort optimizing the “B” side of
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int size, data[1000];
...
do {

if (data[size - 1] > 0) /* A */
/* action B */;

else
/* action C */;

} while (--size); /* D */

A

D

CB

Fig. 3. A code fragment and its corresponding control-flow graph. Each of the nodes in the
graph corresponds to a part of the procedure. The node labeled “A” corresponds to the code
that evaluates the condition of the if statement, while the node labeled “D” holds the code that
decrements the variable size and tests the decremented value for the do/while statement. Nodes
“B” and “C” correspond to the then and else clauses of the conditional statement.

40 4020 20 59

A
D

1 1

A A

D

D

A

D

Edges:

A D

60 40 20 60

B C B

B

C

C

Nodes:

Fig. 4. Examples of node and edge profiles. Each number indicates the execution frequency of
the node or edge below it.

the loop will yield greater rewards than optimizing the “C” side of the loop, simply
because the “B” side is executed more frequently. Also, optimizations that trade off
performance on “C” in favor of improved performance on “B” will improve overall
performance, while the reverse is not true.

But point profiles also summarize away much of the run-time complexity of the
program. Each counter records independently; a point profile records no information
about the relations between the times that counters were incremented. From the
point profiles, we cannot see the sequence of if/then/else decisions across loop
iterations. Very different program behaviors can generate the same point profile.
For the example in Figure 4, the data might have been sorted in descending order, or
the data might have exhibited a repeating pattern of two positive numbers followed
by a negative number. These differences in the data would give rise to different
program behavior. In the former (sorted) case, all 40 “B” iterations will take place
first, followed by all 20 “C” iterations. In the latter (repeating) case, the iterations
will follow a pattern of two “B” iterations followed by a single “C” iteration. Point
profiles give no insight into these details of program behavior.

Path profiles capture more detail about program behavior. Figure 5 draws some
of the shorter paths that occur in Figure 3 by unwinding paths in the graph into
straight lines. Figure 6 shows the subset of the paths that captures the behavior
of the conditional statement across two iterations of the loop; these selected paths
illustrate how path profiles can capture the differences between the sorted and
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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General paths:

A

D

A

D

A

D

A

D

A

D

A

D

A A

D D

A A

D

A

D

A

1 0 0 11939 ? ? ? ?

CB

CB CB

CB

CBCB

CB

Fig. 5. Example path profiles. The number above each path is its execution frequency during a
particular run of the program (frequencies left as question marks will be examined in the next
figure).

D D

A A

D

A

D

A

Sorted: (ABD)40(ACD)20

Repeating: [(ABD)2(ACD)]20

39 1 0 19

B CB C

B C B C

time→

20 20 19 0

D D

A A

D

A

D

A

B CB C

B C B C

time→

40 20

60

Fig. 6. Different possible behaviors for the example in Figure 3, shown graphically, as traces, and
with the varying parts of the corresponding general path profiles.

repeating behavior patterns.
In the sorted case in Figure 6, the paths BDAB and CDAC have high execution

frequencies, while the paths that switch sides of the loop, BDAC and CDAB, have
low frequencies. In contrast, the repeating example has high frequencies for the
switching patterns, a high frequency for path BDAB, and a frequency of zero for
path CDAC. These differences are significant. If we can collect statistics about
path frequencies, then some optimizations can exploit these differences in behavior
to produce more efficient versions of the final program. In this article, we show how
to exploit these differences to improve branch predictability. As another example,
Young and Smith [1998] describe how to build a path-based loop unroller. This
unroller makes copies of the loop body that track the paths with high frequencies.
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Other researchers have investigated and implemented efficient forward path pro-
filers [Bala 1996; Ball and Larus 1996]. The first six paths in Figure 5 are forward
paths, but the four paths that distinguish our sorted and repeating examples will
not appear in a forward path profile. Forward path profiles remain useful for captur-
ing correlations within a loop iteration, but their exclusion of back edges prevents
them from capturing cross-loop correlations.

2.3 Path Profiling

While paths may theoretically provide a useful compromise between point profiles
and full program traces, they are not practically useful unless they can be efficiently
collected. By “efficient” we mean both theoretically efficient under asymptotic
analysis and practically efficient like other profiling and tracing techniques. In this
section, we describe an asymptotically efficient algorithm for collecting path profiles
of execution frequencies. We will return to the practicality of this algorithm later,
in Section 4.2.

Ideally, the overhead of path profiling should be no higher than the overhead
associated with point profiling or with tracing. Since there are more paths than
points in a program, we expect the space requirements of path profiles to be greater
than point profiles but less than the space requirements of a full trace. As for
time efficiency, both point profiling and tracing methods incur overheads within
a constant factor of the running time of the program, so we would want a path
profiler to be similarly efficient. As we report later in Section 4.2, we find that
our implementation of path profiling has a run-time overhead which is, in practice,
comparable to the overhead of edge profiling. In all of our experiments, the overhead
of path profiling is quite reasonable, and we have not spent the time to further
optimize the process, though it is certainly possible to further reduce the overhead.

Any profiling algorithm must manage two sets of information: the data items
and the descriptions of the program state where each datum was collected. A point
profile requires space proportional to the size of the program (or more precisely,
proportional to the number of points that were profiled). Descriptions of points in
the program are compact: they may just be the index or address of the point in
the program. A full program trace requires space proportional to the running time
of the program. Paths are between points and traces: the program state is a path
through the program, and there is one datum per path. Since the amount of space
required is the product of the size of a state description and the number of such
descriptions, some mechanism must be used to limit the amount of space required
for both the descriptions of the paths and the per-path statistics.

In this work, we profile intraprocedurally (globally within a function, but not
across function calls), and we place an upper bound on the number of edges that
start at a split node. We call this upper bound the history depth; it is analogous
to the number of bits in the history shift registers of dynamic branch prediction
schemes. Using shorthand for history depth in formulas, we will sometimes use
the variable k.3 And for the sake of convenient notation, we define k = 0 to be

3The choice of k is an historical artifact. The hardware branch prediction schemes that inspired
us to collect path profiles used k to describe the number of bits in a branch history shift register.
This shift register approximates remembering the paths through the last k branches. A history
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equivalent to edge profiling.
Using history depth as a bounding mechanism allows us to represent paths com-

pactly: the bound on length ensures that a description of a path never takes more
than O(k) space. This bounding mechanism also limits the number of paths that we
might encounter. Let P be the set of valid paths under our bounding mechanism.
In the theoretical worst case, |P | ≤ |V |×maxoutk, where maxout is the maximum
outdegree of any node in the CFG. This is because there are |V | different possible
nodes to start a path, and there might be maxoutk different unique paths that start
at each node. This gives a maximum storage requirement of O(k× |V | ×maxoutk)
or O(k × |P |) space. In Section 4.2 we report the exact space requirements for our
benchmark applications.

It is not clear a priori what is the best history depth to use for a particular al-
gorithm. Our branch prediction transformation suffers decreasing marginal returns
with deeper history depths. For a transformation such as this, the best strategy
is to profile as deeply as practical, then design the transformation to use as much
history information as is beneficial. Our transformation is designed in this manner;
we use history depths up to 15 in this study without having deeply explored the
marginal benefit from deeper or shallower history depths. It is an open research
issue how to find the best history depth to use for a particular algorithm. It may
also be useful to vary the history depth depending on the algorithm or the region
of the program being executed; this is also open research.

Some comments about the paths induced by our bounding method are impor-
tant for later discussion. Nodes or edges need not be unique in a path; multiple
occurrences of a CFG node or edge merely indicate that the path covered a cycle
in the original CFG. Legal paths include all paths up to and including the history
depth of split nodes in length, so paths may share prefixes, suffixes, or subpaths.

To begin describing the profiling algorithm, assume that the algorithm has access
to the trace of edges executed by the program. The trace might have been collected
using a variety of efficient hardware or software mechanisms. The algorithm might
run on-line (consuming the trace as it is generated) or off-line (reading the whole
trace after it has been output), although it would be more desirable to have an
on-line algorithm.

A naive way to collect path profiles would be to remember the most recent edges
executed in a first-in, first-out (FIFO) queue as deep as the history depth. As each
edge in the trace is examined, update the FIFO to include the new edge (possibly
removing the oldest edge to comply with the history depth limitations), then look
up and increment the counters for all of the paths represented by the edges in the
FIFO. There is a small subtlety in this last phrase: we must update only the paths
that start at old edges in the FIFO and reach all the way to the newest edge in
the FIFO; otherwise we will overcount the subpaths represented in the FIFO (said
another way, the paths that start at an old edge and reach to another edge that is
not the newest were updated during an earlier state of the FIFO). Looking up a
path will take O(k) time.4 There might be up to k paths represented in the FIFO,

depth of k is equivalent to remembering the directions of the previous k branches executed by the
program.
4Even if you hash the paths, it still takes O(k) time to examine the entire path.
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D1 E2A0 D1

A0

A0-D1-A0-D1:

A0D1 D1 A1 D1 A0 D1

most recent edge

Log of all program edges

FIFO of recent edges

A0

D1 E2A0 D1 A0 most recent path

25

A0-D1-A1-D1: 0

D1-A0-D1-A0: 17

A0-D1-A0-D0: 0

Hash table
of frequency statistics

indexed by path

Fig. 7. A naive path-profiling algorithm. In this algorithm, the most recent edge in the program
is shifted into the FIFO of recent edges, and the resulting path is looked up in the hash table. The
statistic for that path is then updated. Edges are labeled by the name of their source block and
whether the branch fell through (“0”) or jumped (“1”). For correct statistics on shorter paths,
we must also increment the counters for all subpaths ending with the most recent edge.

so this naive method would require O(k2) time per edge in the program. This naive
method might be acceptable if we choose k to be sufficiently small. Figure 7 depicts
this naive path-profiling algorithm.

Two observations allow us to do much better than O(k2) per branch in the
program. First, it suffices to keep track of paths that are not suffixes of other
paths, rather than all of the legal paths. With the frequencies from this “suffix-
unique” set of paths, we can always infer the frequency of a shorter path. For
example, if we know the frequencies of paths AXYZ, BXYZ, and CXYZ and know
that these paths are the only paths that ended in XYZ, then the frequency of path
XYZ must be the sum of the frequencies of the three longer paths.

In practical terms, the first observation allows us to speed up the naive imple-
mentation by one factor of k. We do not need to increment counts for paths in the
FIFO other than the one that reaches from the oldest edge to the newest edge in
the FIFO. All the other represented paths are suffixes of this longest path, so we
can infer their frequencies in a postprocessing step. This means that we need to
perform only one path lookup per edge, which takes O(k) time per edge.

The second observation speeds up finding the next relevant path. Even with
suffix-unique paths, there is still huge overlap between the paths considered in
successive states of the FIFO. The (k − 1) suffix of the current path is the (k − 1)
prefix of the next path. For example, if the current path is ABCD, then the next
path must start with the prefix BCD. Further, the number of possible next paths is
very small: it is the same as the number of successors of the most recent node in the
current path. To continue the example, if X and Y are the only successors of D, then
BCDX and BCDY are the only possible next paths. There is a successor relation
between paths, which is a natural extension of the successor relation between nodes.

To exploit the second observation, we make a space-time trade-off. In addition to
the description of each path, we store pointers to each successor path. This takes
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Fig. 8. The original CFG and its path CFG for paths of length up to 3. Note that paths have
up to 3 edges and up to 4 nodes. A prefixed “>” before a path indicates a path that entered the
original CFG from above block “A.”

an additional O(maxout × |P |) space, for a total of O((k + maxout)× |P |) space.
But then looking up the next path depends only on a table lookup based on the
newest edge, so we need to perform only O(1) work per edge in the trace. This
is the same amount of work performed by point profilers and full program-tracing
systems.

A third, practical observation can win back some of the lost space. We do not
need to allocate the storage space for all paths before the program runs. Instead, we
can create paths (and their pointers to other paths) lazily, as they are encountered
dynamically. When we create a new path, we set all of its successor pointers to
some null marker value (call it NULL, following C practice). If we find a NULL
path successor pointer, then we need to either find or create the successor path. We
can use a lookup method such as hashing to find whether or not the successor path
already exists in O(k) time (O(k) to compute the hash value; O(1) expected to
search the hash table). If the successor path does not already exist, then creating
it takes another O(k) time. Then we update the pointer to the successor path.

This third observation requires further space and time analysis. The savings
in space comes from lazy evaluation: we allocate space only for paths that were
actually executed, rather than for the worst case. This remains O((k +maxout)×
|P |), but |P | may be much smaller than the exponential upper bound. The time
analysis requires amortization. We still perform at least O(1) work per edge in the
trace, but we may also perform an additional O(k) work when we find a NULL
pointer. But the number of times we process a null pointer is small: it is at most
maxout × |P |. If the number of paths, |P |, encountered during a program run is
much smaller than the number of edges in the trace, |trace|, then this additional
work amortizes out to zero, so we still perform O(1) work per edge in the trace. To
be more precise about asymptotic analysis, point profiling and full program tracing
require O(|trace|) work during the course of running the program. The lazy version
of our algorithm performs O(|trace|+ k×maxout× |P |) work during the course of
running the program. If it turns out that |P | � |trace|, then the lazy algorithm is
practically indistinguishable from point profiling or full tracing.

This efficient profiling method can be viewed as a lazy exploration of a graph
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that we call the path CFG. In the path CFG, each node is a path in the original
CFG, and the successor relation is the natural path successor relation. The path
CFG is much larger than the original CFG but is homomorphic to it. If we were to
replace the nodes of the path CFG with code from the terminal block of each path,
we would end up with a correct (but much larger) version of the original program,
where each path in the original program was represented by a copy of its terminal
basic block. Figure 8 depicts the path CFG for paths with length up to three from
our example in Figure 3.

The algorithm presented efficiently collects profiles of path execution frequencies.
It also has the desirable property that it can be run on-line, as it examines edges in
the trace sequentially. The algorithm has comparable overheads to those of point
profiling and full program tracing, as long as the number of paths is much smaller
than the length of the trace. We will examine this assumption and explore the
performance of an implementation of this efficient algorithm in Section 4.2.

3. SCBP

This section describes static correlated branch prediction (SCBP), a code transfor-
mation that makes the conditional branches in a program more predictable. Pre-
dictability has an immediate benefit to performance, as modern processor designs
perform better on programs with predictable control flow. Predictability can also
have additional benefits during compilation: some optimizations make predictable
programs run faster.

Our SCBP transformation consists of four major steps: profiling, local mini-
mization, global reconciliation, and layout. We begin in Section 3.1 with a simple
profiling example that we use to help explain the other steps in our algorithm. The
next three sections present the other three major steps. The local minimization step
examines the paths leading to each individual branch in the program to see if that
branch correlates to the behavior of any of its CFG ancestors. Local minimization
then determines the minimum amount of history necessary to achieve maximum
prediction accuracy. The global reconciliation step combines the requirements of
all branches in the program to produce a new CFG with the minimum number
of basic blocks. The new CFG may have new basic blocks and edges in order to
preserve history information and maximize prediction accuracy. The layout step
chooses an ordering of the blocks in the new CFG, seeking to reduce the number
of unconditional jumps in the program. After presenting the four major steps, Sec-
tion 3.5 discusses how to tune the trade-off between improved prediction accuracy
and code expansion to make SCBP improve performance on real programs. We
tune the space-time trade-off by overpruning the history information from the sec-
ond, local minimization step; overpruning discards marginal prediction accuracy in
favor of better code size.

3.1 Path Profiling: A Simple Example

Path profiling was discussed in detail in Section 2. In this section we will introduce
a simple example that helps to illustrate how SCBP works. Figure 9 depicts a
program that loops through the integers from 1 to 100, counting up the numbers
that are divisible by 2, 3, 5, and 6. In our benchmark suite, this is the corr
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div2

div3

div5

div6

loop

unsigned i=1, c2=c3=c5=c6=0;

do {

if (i % 2 == 0)

++c2;

if (i % 3 == 0)

++c3;

if (i % 5 == 0)

++c5;

if (i % 6 == 0)

++c6;

} while (i++ <= 100);

inc2

inc3

inc5

inc6

init

Fig. 9. The “corr” program: a simple program with branch correlation used to illustrate how
SCBP works. “Fall-through” edges are shown in black without arrowheads, while “jump” edges
are shown in gray with arrowheads.

microbenchmark.5 Next to the program is its CFG, with the basic blocks named
by abbreviations for what they do. Blocks with names like “div2” and “div3”
test the variable i for divisibility by 2 and 3, respectively, then branch so that
the appropriate increments of counters are performed. Blocks with names like
“inc2” increment the matching counter, while “loop” tests the loop condition for
the program. CFG edges that correspond to blocks with no branches or the fall-
through path out of a conditional branch are drawn with simple lines; CFG edges
that correspond to jumping to the target of a conditional branch are drawn grayed
with arrowheads. Also, note that when i is divisible by a number, the branch
condition will be true, but the branch will fall through so that the increment is
performed; this may be the reverse of what one expects.

Basic arithmetic tells us that if i is divisible by 2 and 3, then it will also be
divisible by 6. And we also expect that divisibility by 2 or 3 does not imply
anything useful about divisibility by 5. If SCBP works correctly, then it should
notice these cases and modify the program to exploit them. We expect that SCBP
will make at least two copies of div6 so that it can make one prediction for iterations
where i was divisible by both 2 and 3 and a different prediction for iterations where
i was not divisible by one of 2 or 3.

Figure 10 shows the paths whose last edge started at div6 that were collected by

5We use this simple benchmark for pedagogical reasons. Though our benchmark suite in Section 4
does contain a variant of this program that iterates from 1 to 100,000, our results also show that
we are able to uncover and exploit the correlation that exists in real-world applications.
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inc2inc2inc2inc2

inc3inc3inc3inc3

inc5inc5inc5inc5

loop loop loop loop loop loopinc6inc6 inc6

div6 div6 div6 div6 div6 div6 div6 div6 div6

div5 div5div5 div5 div5 div5 div5 div5

div3 div3 div3 div3div3 div3div3 div3 div3

div5

div2 div2 div2 div2div2 div2 div2 div2 div2

Fig. 10. Paths collected from running corr that help us to predict node div6. Each path’s frequency
is shown above it.

the path profiler during the run of corr. In other words, div6 is the penultimate
(second-to-last) block on these paths; we care not just about the path by which div6
was reached, but also about which way the branch at the end of div6 went when
reached by that path. For the purposes of illustration, we use a history depth of 3
branches in this example. Note that a path corresponding to a depth of 3 branches
contains 4 branches: the branch being profiled plus the preceding 3 branches of
history. Furthermore, these paths contain a variable number of CFG nodes. The
“incX” blocks do not end in branches, so they do not contribute to the history
depth, although they do contribute to the length of the path.

Before continuing on to discuss local minimization, one observation is important.
Some paths never occur because they are impossible: the rightmost path in Fig-
ure 10 would occur only for a number that was not divisible by 2, 3, or 5 but was
divisible by 6. As we shall see, SCBP exploits paths with zero or low frequency to
improve prediction accuracy.

3.2 Local Minimization

After collecting branch profiles, we examine each branch in the program to deter-
mine if its behavior correlates to any of its ancestors. If there is correlation, we also
want to find the minimum amount of history information necessary to exploit that
correlation. The less history information that we need to preserve, the less code
expansion will result in the final program.

To look for branch correlations, we build a data structure called a history tree for
each block in the program that ends in a conditional branch. Each history tree will
be used to predict a single branch from the original program. At this point it helps
to introduce some new terminology: when we build a history tree for a particular
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conditional branch, call that branch the predicted branch and call the basic block
that it terminates the predicted block. Call any path whose last edge starts (not
ends!) at the predicted block a predictive path. For each predictive path, call its last
edge the counted edge, and call the rest of the path (the prefix of the path that omits
the predicted edge) the observed path. By definition, all observed paths must end at
the predicted block, and all counted edges must start at the predicted block. For a
fixed observed path, there will be one predictive path for each counted edge out of
the predicted block (predictive paths can have zero frequency). Then associate the
frequency of each predictive path with the matching counted edge. These counts
tell us the most likely successor of the predicted branch when it was reached by the
observed path. Returning to the example in Figure 10, for the observed path “div2
(jump) div3 (jump) div5 (jump) div6,” there are two predictive paths, one where
div6 falls through and one where div6 jumps. The counts are 0 for falling through
and 26 for jumping.

Predictive paths may seem unintuitive: we use them to predict their last edge,
not their last block. We define predictive paths this way because a path tells us
nothing about the exit edge from its final block.

A history tree summarizes common suffixes in observed paths (a history tree is
a form of suffix tree). Each nonroot node in the history tree maps to an edge in
the CFG; the root node of the history tree maps to the predicted block. Based on
its position in the tree, each history tree node also represents an observed path in
the CFG; this path is just the path found by taking the image of the path from
the history tree node to the root of the history tree. Note that different nodes in
the history tree may map to the same edge in the CFG, since there might be many
paths from a CFG ancestor to the predicted block. For example, the edges exiting
the if block of a conditional statement could appear multiple times in a history
tree because the predicted block was reached along both sides of the conditional
statement. Or a loop edge could appear multiple times in a history tree because
path history covers more than one loop iteration.

Each node in the history tree represents a unique observed path; no two nodes
in the history tree can represent the same observed path. More formally, the map
from history tree nodes to CFG edges is not injective, but it induces an injective
map from history tree nodes to CFG paths.

To make predictions, each node in the history tree holds a set of counters, one
counter per counted edge from the predicted block. The counters record the fre-
quencies for each of the counted edges that could be appended to the observed
path to make a predictive path. In other words, the counters in a node show the
frequencies with which each counted edge was traversed when the predicted block
was reached by the observed path corresponding to that node. So if a predicted
block has two exit edges, then every node in its history tree will hold two counters.
The counters in the root node of the history tree show the total frequencies with
which the predicted branch jumped or fell through. The counters in any other node
of the history tree will have the same or smaller values than the counters in the
root node; they show the frequencies with which the predicted branch jumped or
fell through when it was reached by the observed path represented by that history
tree node.

Figure 11 shows the history tree for block div6, which was assembled from the
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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Fig. 11. History tree for block div6. “xx/yy” means that the execution reached basic block div6
xx+ yy times along the path starting at that node, and that the branch at div6 took xx of those
times, while it fell through yy of those times.

paths depicted in Figure 10. We use graphics to indicate the kind of CFG edge
represented by each history tree node. To represent the edge, “div2 falls through,”
we draw a box labeled, “div2,” with a fall-through (black, no arrowhead) line to
its history tree parent. Similarly, the history tree node for the edge “div2 jumps”
is drawn as a box labeled “div2” with a jump (gray, with arrowhead) line to its
parent. This allows us to draw history trees in a way that makes them resemble
the CFG paths from which they are derived. But it is important to remember that
history tree nodes represent CFG edges.

Notice how the path frequencies from Figure 10 have been rearranged and totaled
into a pair of frequencies at each node (we omit counts for the incX nodes). In this
example, one of the counts at each leaf node corresponds to the count from a
nonzero path, while the other count corresponds to the count from a path with
zero frequency. Each parent node totals the count from its children, summarizing
them. Note that div6’s successors, inc6 and loop, do not appear in the history tree;
the edges leading to them are implied by the counts at each node. Also note that
we draw history trees with the leaves at the top and the root at the bottom; this is
botanically correct, but the reverse of traditional computer science practice. Lastly,
note that edges in history trees (i.e., edges from parents to children) point in the
reverse direction from CFG edges, even though our graphical conventions resemble
the CFG edge from child to parent.

Figure 11 shows that correlation occurs. If SCBP can remember three prior
branches worth of history (thus capturing divisibility by 2 and 3), then the direction
of div6’s branch is completely determined by that history. This is shown in Figure 11
by the fact that the counts on all of the leaves of the history tree are of the form
0/yy or xx/0. Using correlation information, we can always predict div6’s branch
correctly; simple static prediction based on point profiles would choose to predict
the branch to be taken and be correct only 84% of the time.

To transform path profiles into history trees, we first partition the paths by their
penultimate block. Each partition thus holds predictive paths for a single branch in
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struct edge { /* an edge in the CFG */

int node_num; /* source node’s number */

int succ_num; /* which succ of the source node */

};

struct hnode { /* history tree node data structure */

edge mapto; /* the edge to which this node maps */

int *counts; /* one per succ of predicted node */

hnode *sib; /* pointer to next sibling */

hnode *kid; /* pointer to first child */

};

struct hpath { /* history path data structure */

int freq; /* execution frequency of this path */

int length; /* number of edges in this path */

edge *edges; /* array of edges in this path */

};

Fig. 12. Common data structure declarations for pseudocode in this article. Note that a pair of
a node number and a successor number uniquely designates an edge in the CFG.

add_path_to_history_tree (hpath *p, hnode *n) {

int last_edge = p->edges[p->length - 1]->succ_num;

for (i = p->length - 1; i >= 0; i--)

n->counts[last_edge] += p->freq;

if some child c of n is the i’th edge in p then

let n = c;

else

create a new child of n that represents the i’th edge in p;

let n = that new child;

}

Fig. 13. Iterative algorithm for adding a history path to a history tree. To build the history tree
for a predicted branch, add all predictive paths for that branch to a starting node that maps to
the predicted block.

the program. Then from the paths in each partition, we build the history tree for the
common predicted block. For each path, we walk the path from the predicted node
to the oldest node and simultaneously walk the corresponding nodes in the history
tree. Along the way we augment the counters corresponding to the path’s most
recently visited edge by the path’s frequency, and we create new nodes if necessary
to represent the current path. This method ensures that parent nodes correctly
accumulate counts for the common suffixes of the observed paths. This method for
constructing history trees requires suffix-unique paths to work correctly; otherwise
internal nodes may end up with counts that are not the sum of their children.
Figure 12 gives common data structure declarations used in this article; Figure 13
gives pseudocode for the algorithm that builds history trees from predictive paths.

To find the minimum amount of history necessary to exploit correlation, we prune
the history trees; the shape of the pruned tree will tell the global reconciliation step
how much history to preserve. One can imagine a variety of degrees of pruning:
pruning a tree all the way back to its root indicates that we wish to make a sin-
gle per-branch prediction, while not pruning the tree at all indicates that every
predictive path needs to be distinguished from every other predictive path (this
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int prune_htree (hnode *nod) {

int max_succ = -1, max_count = 0;

for each counted edge e of the predicted branch do

if (max_count < nod->count[e]) then

max_count = nod->count[e];

max_succ = e;

boolean children_agree = TRUE;

for each child of nod c do

if (max_succ != prune_htree(c)) then

children_agree = FALSE;

if (nod is not a leaf and children_agree) then

prune all children;

return children_agree ? max_succ : -1;

}

Fig. 14. Recursive pruning algorithm for history trees.

seems unlikely and would be very expensive in terms of code expansion). There
is one mathematically natural way to prune: prune as much as possible without
decreasing the potential branch prediction accuracy. And as we will discuss later,
it is practically beneficial to prune further, sacrificing some prediction accuracy in
order to limit code expansion.

In the example of Figure 11, the upper-right div2 blocks (and their corresponding
paths) have the same bias: it does not matter whether i was divisible by 2, because
on both of these paths, i turns out not to be divisible by 3. Their bias agrees
completely with the bias of their parent, so they can be pruned away. We can
similarly prune the third and fourth div2 blocks in the top row and the second and
fourth inc2 blocks in the second row; they also agree in bias with their parent. But
we cannot prune any further without potentially losing prediction accuracy. The
pruning algorithm is a simple bottom-up (leaves to root) recursive algorithm, where
the children of a node may only be pruned if they all agree as to the most likely
successor of the root node of the history tree. This pruning algorithm may lead to
an uneven tree, but it always preserves a full tree where some sibling nodes on the
frontier6 always disagree (in a full tree, all nodes have either their original number
of children or zero children). Figure 14 gives the algorithm for pruning history trees
in pseudocode; Figure 15 shows the history tree from Figure 11 after running the
recursive pruning algorithm.

In profiles with deep histories over programs with short loops, we would see
nonroot nodes in the history tree that map to the predicted block. Such nodes, if
not pruned away, indicate cases where the prior history of a branch relates to its
future direction. If there is interesting correlation to exploit, SCBP may perform
the equivalent of loop peeling or loop unrolling in order to capture the needed
correlation history.

In many cases, we find that the history tree of a branch basic block prunes back to
its root. This indicates that there was no global correlation visible for that branch

6The interior of a tree is the set of nonleaf nodes. The frontier is the set of leaf nodes.
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Fig. 15. Pruned history tree for block div6.
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80/20div5

13/3 14/3 27/7 1/0 25/7
loop loop loop loop

13/3 14/3 27/7 26/7div2 div2 div2 div2

27/6 53/14div3 div3

init

Fig. 16. History tree for block div5 before pruning. In this case, recursive pruning will prune the
tree back to its root, as all paths have the same bias.

in the profile. Figure 16 shows the history tree for block div5, where this is indeed
the case. This corresponds to our intuition that there is no interesting correlation
history for divisibility by 5.

3.3 Global Reconciliation

Having determined the minimal amount of history necessary to exploit correlation
for each branch, the next step is to determine how many copies of each basic block
must be made and how they must be connected so as to preserve correlation history.
In a simple world, we would need at most two copies of each conditional branch
basic block: one that predicts the branch will fall through, and one that predicts
the branch will be taken. But predictions for many different future branches may
need to be encoded into the program counter to maximize prediction accuracy. To
do this, extra copies of CFG blocks may be needed to preserve correlation history
information for these later branches in the program.
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div5.t1 div5.t2

div6.f div6.t

div2

div3

div2

div3 div3

inc5.1 inc5.2

Fig. 17. Copies made of blocks div5 and inc5 during the global reconciliation step for div6. The
large blocks show the actual blocks created; the small blocks show the execution history associated
with the large blocks.

To illustrate the issues in reconciliation, consider block div5, whose history tree
was pruned back to its root in the previous step. In a per-branch static prediction
scheme, we would need just one copy of div5, say div5.t (the “.t” indicates that the
branch in this copy is likely to be taken). But the path by which div5 was reached
turns out to be important for div6: if either div2 or div3 took (indicating a number
not divisible by 2 or 3), then div6 will be taken as well. With a single copy of div5,
we cannot maintain a history of what happened during the execution of blocks div2
and div3 on behalf of div6, since we would traverse the single copy of div5 in all
executions.

In order to preserve history information for div6, we need to make multiple copies
of div5.t on div6’s behalf. In particular, paths where neither div2 nor div3 were taken
will connect to one copy of div5 (call it div5.t1), while paths where div2 or div3
were taken will connect to a second copy of div5 (call it div5.t2). Then we can
connect all paths out of div5.t1 to div6.f (the copy of div6 that predicts that the
branch in div6 will be not taken) and all paths out of div5.t2 to div6.t (the copy of
div6 that predicts that the branch in div6 will be taken). Connecting copies this
way ensures the correct static predictions for a given path history. Figure 17 shows
each of these copies, along with the path history that each copy represents.

In the general algorithm, many more complicated splits may have to be per-
formed. However, some splits may come “for free” because of work done for another
node. In our example, if div5 had a different branch condition so that it correlated
the same way as div6 to div2 and div3, then div5 would have needed two copies for
different static predictions anyway. And div6 would not have needed to further split
div5’s copies, because the extant copies already preserved the necessary correlation
history.

There are three major steps to the general global reconciliation algorithm. In the
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for each basic block B in the program do

let Split[B] = the set of splitters of B;

for each basic block B in the program do

let Part[B] = the minimal set of copies of B;

for each basic block B in the program do

for each successor T of B do

for each copy c of B in Part[B] do

connect c to the appropriate copy of T in Part[T];

Fig. 18. High-level pseudocode for global reconciliation.

first step, we find all the potential splitters of each block in the original program.
An interior node b in a history tree is a splitter of basic block B if it is necessary
to have more than one copy of B so that the appropriate execution history can
be maintained until we reach the block7 corresponding to the root of the history
tree. To distinguish between history tree nodes and basic blocks, we write history
tree nodes in lowercase and basic blocks in uppercase. In the second step, we use
the splitters to compute the minimum number of copies of each original program
block. The copies will form the nodes of the output CFG. Finally in the third step,
we examine each copy and use the history associated with the copy to connect
it to the predecessor and successor copies that will maximize prediction accuracy.
Connecting the copies in this third step creates the edges of the output CFG.
Figure 18 shows the three major steps in the highest level of the reconciliation
algorithm.

Finding splitters of a block occurs as follows: each nonleaf node of a minimized
(pruned) history tree is a splitter of the source block of the edge to which it maps.
A node might appear in multiple places in one history tree and in different history
trees; we consider each occurrence of a node to be a different splitter. To find the
splitters, we recursively walk through the history trees, assigning nonleaf nodes to
sets of splitters. Figure 19 shows the pseudocode for this first step of global recon-
ciliation. In Figure 15, the pruned history tree of div6, there are two occurrences
each of div3, inc3, and div5 and one occurrence each of inc5 and div6 in the interior
of the pruned history tree; each of these nodes is a splitter of the blocks div3, inc3,
div5, inc5, and div6, respectively.

The second major step in reconciliation determines the minimal number of copies
of each basic block. Consider one basic block B from the original program. Let
Path[B] be the set of suffix-unique CFG paths that end at block B. The set of
necessary copies of B is found by using the splitters of B to partition Path[B].
Each piece of the resulting partition requires one copy of B in the transformed
program. Each piece is a set of paths; these paths should be the only paths that
reach the corresponding copy of B in the output CFG. Frequently, the partition
ends up with just one piece; this means that only one copy of B is needed in the
output CFG.

Now consider one splitter, b, of basic block B. By definition, b was a nonleaf node

7Actually, when we are done, it may be a copy of the block corresponding to the root of the
history tree.
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void find_splitters () {

for each block B do

let Split[B] = {};

for each block B do

let T[b] be B’s minimized history tree;

let b be the root of B’s minimized history tree;

find_splitters_helper(b);

}

void find_splitters_helper (htree_node *n) {

if n is not a leaf then

let N = n->mapto.node_num; /* source of this edge */

add n to Split[N];

for each child c of n do

find_splitters_helper(c);

}

Fig. 19. Pseudocode for finding splitters (part 1 of global reconciliation).

R

paths that predict R goes right

paths that predict R goes left

a path in the history tree
the image of the path

part of the CFGR’s history tree

in the CFG

a splitter of block Bb

r

blocks in the CFG

nodes in the history tree

B

Fig. 20. Drawing of definitions for the discussion of how splitters drive partitioning.

of some history tree where b was an edge that started at B. Splitter b is part of
a history tree with some root node; call that root node r and call the basic block
to which r maps R. Splitter b works on behalf of basic block R, possibly forcing
additional copies of block B to be made so that R can be predicted accurately. By
the way the pruning algorithm worked, we know that some children of b in R’s
history tree disagree about the prediction for R when R is reached by the image of
the path from b to r. In plain English, at least two paths go through B and reach
R but lead to different predictions for node R. These definitions are illustrated in
Figure 20.

Let T [b] be the history subtree rooted at b. Since b is a splitter, at least one
path in T [b] predicts one successor for basic block R, while some other path in T [b]
predicts a different successor for R. In fact, the frontier of T [b] can be partitioned
according to the successor of R that each path in the frontier predicts. In order for
us to predict R correctly, there must be at least as many copies of B as there are
pieces in this partition of T [b]. Each partition piece implies a different prediction for
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R if R is reached by the image of the path from b to r. Further, this partitioning
of T [b] can be used to build a partitioning of Path[B]. Consider any path Π in
Path[B] (recall that Π is a suffix-unique path that ends at B). There is exactly one
path π in T [b] that maps to a suffix of Π. This fact allows us to build a function
from Path[B] to T [b], where each suffix-unique path Π is assigned to its prefix in
the history tree π. Then this function and the partition of T [b] induce a partition
of Path[B].

There may be many splitters of each basic block in the program. Each splitter
induces its own partition of the paths ending at that basic block. The intersection
of these partitions is the final partition for that basic block. Call this final partition
Part[B]. Since this is a finite intersection of partitions of a finite set, the final
partition is well defined. To build the basic blocks of the output CFG, we create
one copy of each original basic block for each piece of its final partition.

Implementing this intersection of partitions turns out to be a set of nested loops.
We can consider each splitter individually, because applying the partition induced
by a splitter monotonically refines the partition: once two paths have been put
in separate pieces, they will never be reunited. To apply a splitter, we consider
each piece of the partition so far, breaking pieces into finer pieces if required by
the partition induced by the splitter. In practice, we find the piece of the partition
induced by the splitter by tracing each path in Path[B] along the corresponding
path in T [b]. When we reach a leaf node in T [b], we use the prediction of that leaf
node to decide where to place the path. The pseudocode for the second part of
reconciliation is shown in Figure 21.

The final partition piece that is associated with each copy is a set of paths; these
paths are used in the third step of global reconciliation to determine the edges of
the output CFG. It suffices to determine the successors of each block in the output
CFG. Consider one piece of the final partition of basic block B; call it B1. B1 is
a set of suffix-unique paths that end at B. B1 is associated with a copy of B in
the output CFG; call this Copy(B1). In the original CFG, B had some number
of successors; we need to connect Copy(B1) to copies of these successors. Let T
be one of B’s successors in the original CFG; without loss of generality, suppose
that T was reached by the branch at the end of B jumping. Let e be the edge that
connects B to T by jumping, and if Π is a path in B1, then let S(Π, e) be the path
obtained by appending e to Π, then possibly discarding some of the oldest edges in
Π if necessary to preserve the history depth. Consider S(B1, e), the image of B1
when we first extend each path in B1 using e, and then shorten to preserve history
depth. Then we claim that S(B1, e) is a subset of at most one piece of Part[T ].
Assuming this claim is true, that unique piece corresponds to a unique copy of T in
the transformed graph; this copy of T should be made the successor of Copy(B1)
by jumping. The pseudocode for connecting the different copies of the output CFG
is given in Figure 22.

Our claim is stated precisely and proven in the following theorem:

Theorem. For each partition piece B1 in Part[B], the final partition of block
B, and for each successor T of B, where e = (B, T ) is an edge in the original CFG,
S(B1, e) is a subset of at most one partition piece in Part[T ].
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refine_partitions () {

for each basic block B

/* Start with a single-piece partition */

let Part[B] = {{all suffix-unique paths ending at B}};

for each splitter b in Split[B]

apply_splitter(Part[B], b);

}

apply_splitter (partition S, hnode *split) {

let r = the root of split’s tree;

let R = r->mapto.source (split’s predicted block);

/* Subdivide each partition piece in S */

for each piece Si of S

/* Need maxout(r) buckets for this splitter */

let N[0..maxout(r)-1] be empty sets;

for each path p in Si

/* which way will R go when reached by p? */

let predict = find_predict(split, p);

add p to the set N[predict];

replace Si by nonempty pieces in N[0..maxout(r)-1];

}

find_predict (hnode *n, hpath *p) {

for (i = p->length - 1; i >= 0; i--)

if n is a leaf

return the index of n’s largest counter;

some child of n must the same edge as the ith

edge in p, so let n = that child;

/* never reached, by construction of htrees */

}

Fig. 21. Pseudocode for creating the basic blocks of the output CFG (part 2 of global reconcilia-
tion).

Proof. By contradiction. Suppose it were otherwise: S(B1, e) intersects with
both T1 and T2, where T1 and T2 are different pieces of Part[T ], the partition of
paths ending at T. For this to be true, there must be two paths Π1 and Π2 in B1,
such that S(Π1, e) is in T1 and S(Π2, e) is in T2.

During the partitioning step, there must have been some splitter t of T that
divided the paths in T1 from those in T2. In order to separate S(Π1, e) from
S(Π2, e), t must have used some difference between them. But we know that the
last edge in S(Π1, e) and S(Π2, e) was e, so S(Π1, e) and S(Π2, e) must differ at
an earlier edge than e. This earlier difference must also be present in Π1 and Π2.
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for each original block B in the program

let Part[B] be the partition of paths ending at B;

for each partition piece Bi in Part[B]

let C(Bi) be the copy associated with Bi;

for each edge e that starts at B

let S(Bi, e) = {};

for each path P in Bi

let tmp be the path obtained by appending e to P;

let S(P, e) be the path obtained by removing old

edges from tmp until |tmp| < history depth;

add S(P, e) to S(Bi, e);

let T be the block reached by traversing e;

let Part[T] be the partition of paths ending at T;

let Ti be the piece of Part[T] of which S(Bi, e) is a subset;

let C(Ti) be the copy of T associated with Ti;

connect C(Bi) to C(Ti) using the same kind of edge as e;

Fig. 22. Pseudocode for connecting the blocks of the output CFG (step 3 of global reconciliation).

Since t was a nonleaf node, it must have a child node b that maps to e.

Claim. t’s child node b must be a splitter of B.

Proof. By contradiction. Suppose b was a leaf node in r’s history tree. We
know that paths S(Π1, e) and S(Π2, e) both end in e. Using find predict would
return the same prediction for both paths. Then t would have assigned them to the
same partition piece. But this contradicts our definition of t as the splitter that
separated these two paths.

We now know that Π1 and Π2 differ at some edge before e, and the claim showed
that b is a nonleaf node in r’s history tree. So b must assign them to different pieces
of Part[B]. This contradicts our original assumption that Π1 and Π2 were in the
same partition piece, B1. This contradiction proves the theorem.

In a practical implementation of reconciliation, history paths with frequency
zero are not considered during the partitioning step. Some nodes end up without
connected successor edges because the counts for the corresponding counted edge
for all observed paths leading to the node were zero. In such cases, we connect such
edges to the most frequently executed successor copy.

Returning once again to our example, the CFG after reconciliation is drawn in
Figure 23. As expected, there are two copies of div6. The first copy, div6.f, can
only be reached if both div2 and div3 fall through. The second copy, div6.t, will
be reached if either div2 or div3 takes. So SCBP performs as desired, creating
the first two columns in Figure 23. It is also interesting to note the div2.f copy
of div2 in Figure 23. In the early blocks, div2 and div3, a history depth of three
allows SCBP to see backward past the loop block to the execution of div6 in the
previous iteration of the loop. The third column is reached only when div6 takes,
i.e., the value of i on the previous iteration was not divisible by 6. This means that
two-fifths of the time i was even on the previous iteration, making it odd two-fifths
of the time on the current iteration. This bias is used to predict that div2 will fall
through (indicating an even number) on this path.

The div2.f block of Figure 23 captures an interesting phenomenon: statistical
correlation. While most compiler optimizations prove what must happen on all or
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init

div2.t

inc2

div3.t2

inc3

div5.t2

inc5

div6.f

inc6

loop.t1

div3.t1

div5.t1

inc3

div6.t

inc5

div2.f

div3.f

loop.t2

Fig. 23. CFG resulting from global reconciliation of the corr program. Shaded blocks predict
that their terminal conditional branch will jump. While the original CFG in Figure 9 would have
achieved a static branch prediction accuracy of 76.0% (120 mispredictions assuming all branches
were predicted to be taken), this CFG achieves a prediction accuracy of 82.8% (86 mispredictions).

some paths of a program, the third column exploits something that is likely, but
not certain, to happen. With a good optimizer, we might hope to find and exploit
the logical correlation in the first two columns of Figure 23, eliminating a test for
div6 on some of the paths in the program. But a classical optimizer will never find
statistical correlations.

The div3.f block of Figure 23 is a candidate for overpruning, a technique that
we discuss extensively in Section 3.5. The bias of this branch is nearly 50%. The
marginal benefit in terms of prediction accuracy is therefore small and probably
much less than the cache costs of this code duplication.

3.4 Layout Issues

The CFG produced by reconciliation typically is not an executable program, be-
cause reconciliation may have created new join points. If SCBP is performed in an
intermediate representation where control-flow is represented by graphs, new join
points do not matter. But in object code, or in intermediate representations that
resemble machine instructions, branches may have only one explicit target. New
join points may require additional branch instructions in order to ensure correct
program semantics. Transforming a control-flow graph into a linear sequence of
instructions is called the code layout problem; algorithms that attack code layout
attempt to reduce cache misses or pipeline stalls in the program by changing the
order of basic blocks or procedures [Calder and Grunwald 1994; Hwu and Chang
1989; McFarling 1993; Pettis and Hansen 1990; Torellas et al. 1995; Young et al.
1997].

In the first conference paper on SCBP [Young and Smith 1994], we attempted
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to improve branch prediction accuracy without increasing instruction count. To
do this, we used a simple and inefficient layout algorithm that copied code until
an unconditional branch or the end of a procedure was reached. This algorithm
further increased code expansion due to SCBP, but it allowed us to exhibit branch
prediction gains and pessimistic code expansion. However, there are a number of
effective existing code-layout schemes that insert a small number of unconditional
branches instead of duplicating code, and it makes sense for us to use one of them.

Pettis and Hansen [1990] described a simple, greedy, profile-driven scheme for
basic-block placement in their paper on code placement optimizations. In brief,
they sort the CFG edges by profiled frequency, and then they lay out the CFG by
connecting edges whenever possible in sorted frequency order. This greedy heuristic
attempts to minimize the number of taken branches in the code; whenever a high-
weight edge is placed as a taken branch, it must have been the case that some
higher-weight edge had already connected to the same destination, or that the
taken branch is necessary to close a loop. Calder and Grunwald [1994] proposed a
more refined greedy approach, and we [Young et al. 1997] have done work on nearly
optimal code layouts, but for the purpose of this work, we use Pettis and Hansen’s
greedy method to lay out the CFG.

3.5 Trading Off Space and Time

As described so far, SCBP attempts to capture the maximum improvement in
prediction accuracy with no attempt to limit code expansion. But the net effect
on performance will depend both on improvements due to better branch prediction
and on penalties due to worse cache miss rates. As SCBP duplicates code, it
will reach a point of negative returns, where the marginal benefit from improved
prediction accuracy is more than outweighed by the marginal penalty from worse
cache miss rates. Rather than making the maximum number of copies to achieve
the maximum improvement in prediction accuracy, it will be better to choose only
the most profitable branches and blocks for duplication.

Figure 24 depicts a case where unconstrained SCBP performs poorly. It shows a
code fragment from the massive count procedure in the espresso benchmark. This
part of the massive count routine updates counts of the bits that are set in a bit
vector. Each increment of a count is guarded by a branch that tests the corre-
sponding bit in the bit vector. These guards form a sequence of if-then branches.
The way that SCBP works, it will attempt to predict each bit in the vector based
on the preceding bits in the vector. But in general we expect to find very little
correlation between neighboring bits in bit vectors (and even less correlation across
different training and testing data sets), while the code expansion is potentially
exponential in the history depth. To make SCBP practical, we need to find a way
to avoid making exponential copies of branches in this part of massive count, while
still exploiting useful correlation in other parts of the program.

Overpruning the minimized history trees gives us precise fine-grain control over
the trade-off between prediction accuracy and code expansion. While we called
the result of the second step a “minimized” history tree, this minimization was
with respect to prediction accuracy, not code expansion. A minimized history tree
preserves the minimum path history necessary to perform prediction with the same
accuracy as the original, unpruned history tree. By pruning even farther (i.e.,
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if (val & 0xFF000000) {

if (val & 0x80000000) cnt[31]++;

if (val & 0x40000000) cnt[30]++;

if (val & 0x20000000) cnt[29]++;

if (val & 0x10000000) cnt[28]++;

if (val & 0x08000000) cnt[27]++;

if (val & 0x04000000) cnt[26]++;

if (val & 0x02000000) cnt[25]++;

if (val & 0x01000000) cnt[24]++;

}

Fig. 24. A worst-case code fragment for unconstrained SCBP. Bits in val are unlikely to be
correlated, but SCBP will duplicate code to exploit minor variations in frequency on each path
through the sequence of tests. Further, the minor frequency variations are unlikely to remain across
data sets: this is false correlation. In the worse cast, examples like this can lead to exponential
code expansion and no actual improvement in prediction accuracy.

overpruning), we can sacrifice prediction accuracy to limit code expansion.
For this study, we implemented a simple overpruning heuristic that sorts split-

ters by their marginal benefit, then selects splitters until most of the benefit from
correlation has been captured or until the marginal benefit of the next splitter has
decreased by some limiting factor below the marginal benefit of the most valuable
splitter. This overpruning heuristic is blind to specifics such as cache size and pro-
gram size that might allow a better trade-off to be made. But as we will see in
Section 4, this heuristic works well enough for most of our benchmarks.

Determining the marginal benefit of a splitter is simple: just subtract the best
possible prediction for the split node from the sum of best possible predictions for
its children. This difference represents the improvement in prediction accuracy that
would result from making a prediction for each path from a child of the splitter
to the root of the history tree versus making a single prediction for the path from
the splitter to the root of the history tree. After sorting the splitters by marginal
benefit, we iterate from most beneficial to least beneficial splitter, marking each
splitter as we reach it. We stop marking splitters once we accumulate 50% of the
total possible improvement in prediction accuracy or if the benefit due to the next
splitter is less than one tenth of the benefit due to including the most beneficial
splitter.8

After we have marked the most useful splitters, we then run a recursive over-
pruning step. The overpruning step prunes any node whose parent has no marked
descendants. Pseudocode for all of the overpruning step is given in Figure 25; we
add two new fields, mark (a boolean) and benefit (a frequency count), to each
history tree node to implement overpruning.

After overpruning, global reconciliation and layout operate without modification.
This claim requires some justification for the reconciler, because overpruning might
be imagined to change the partitions in such a way that connecting the edges of the
transformed CFG would no longer work. This is not the case because overpruning
is still a form of pruning: any split performed for a child history tree node will
have a corresponding split in the parent history tree node. The parent split ensures
that there will always be at most one partition piece that matches the connection

8These heuristic values were chosen as reasonable guesses. No effort has been made to tune them.
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/* Add these new fields to struct htree: */

boolean mark;

int benefit;

over_prune_step () {

total_benefit = 0;

for each splitter s

let s->benefit = max_count(s);

for each child c of s

s->benefit -= max_count(c);

total_benefit += s->benefit;

sort splitters by benefit;

cumulative_benefit = 0;

first_benefit = 0;

for each splitter s from largest to smallest benefit

if (first_benefit == 0)

first_benefit = s->benefit;

if (cumulative_benefit > 0.50 * total_benefit

|| benefit(next_splitter) < 0.10 * first_benefit)

break;

s->mark = TRUE;

cumulative_benefit += s->benefit;

for each history tree h

over_prune_htree(h);

}

max_count (htree *n) {

return the maximum value in n->counts;

}

over_prune_htree (htree h) {

boolean stop = h->mark;

for each child c of h

stop |= over_prune_htree(c));

if (!stop)

prune all of h’s children;

return stop;

}

Fig. 25. Pseudocode for the overpruning step.

criteria for the third stage of reconciliation. Alternatively, one can state that the
proof of reconciler correctness relied only on the relationships between history tree
nodes and never used minimality of the history trees, so the proof still applies to
nonminimal history trees.

4. EXPERIMENTAL RESULTS

This section measures the practical quantities associated with our general path
profiling algorithm and with the SCBP optimization. Section 4.1 begins by de-
scribing our experimental benchmarks, compiler, test machine, and measurement
methodology. Section 4.2 measures the space and time overheads from a simple
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Table I. Benchmarks Used in this Study

Category Benchmark Description

microbenchmarks alt Sorted example
ph Repeating example
corr Branch correlation example
wc UNIX word count program

SPECint92 compress Lempel/Ziv file compression utility
eqntott Translates boolean eqns to truth tables
espresso Boolean function minimizer

SPECint95 gcc GNU project C compiler
go Plays the game of Go
ijpeg JPEG encoder
li XLISP interpreter
m88ksim Microprocessor simulator
perl Interpreted programming language
vortex Object-oriented database

implementation of the path profiling algorithm of Section 2. Section 4.3 reports
our simulation results for branch prediction accuracy and cache miss rates of pro-
grams transformed by SCBP coupled with Pettis-and-Hansen-style code layout.
Section 4.4 analytically examines the performance of SCBP, while Section 4.5 re-
ports wall-clock times for SCBP-transformed programs on actual hardware.

4.1 Benchmarks and Methodology

We used the benchmark programs listed in Table I to evaluate the performance
benefit of SCBP. The first three programs are microbenchmarks. They are idealized
examples of the kind of behavior that can be exploited using path profiles but
is invisible using point profiles. The fourth program, wc, is frequently used for
studies in instruction-level parallelism and can be thought of as a microbenchmark.
Besides these, we mainly use a number of SPECint benchmarks from the 1992 and
1995 suites. The SPECint benchmarks tend to have shorter basic blocks and more
unpredictable control flow than the SPECfp benchmarks. We include compress
from the 1992 suite because it runs for fewer cycles than the 1995 version but is
substantially the same program. We include eqntott from the 1992 suite because
it is frequently used to illustrate branch correlation in the research literature; we
include espresso from the 1992 suite because it includes a worst-case example for
the SCBP algorithm of Section 3.

To fairly assess a profile-based technique such as SCBP, we use cross-validation:
an application is optimized using the profile data gathered by running the applica-
tion on a training data set, and then results are reported for running this optimized
executable on a separate testing data set. Table II lists the training and testing
inputs for each benchmark. The microbenchmarks, unlike the application bench-
marks, take no input; we simply list “null” as their training and testing inputs.

Fisher and Freudenberger [1992] performed an extensive cross-validation study
on profiled static branch prediction, concluding that good training sets for static
branch prediction can be found. We have not done an extensive cross-validation
study to show that optimizations using path profiles are robust across a wide variety
of training data sets. Such a cross-validation study is open research; it is not even
clear that path profiles are mathematically less robust than point profiles, because
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Table II. The Input Data Sets Used with Our Benchmarks.

Benchmark Training Data Set Testing Data Set

alt null null
ph null null
corr null null
wc compress92 ref input PostScript for a conference paper

compress compress92 ref input; source code MPEG movie data (6MB)
eqntott fixed to floating-point encoder priority encoder, SPEC92 ref input
espresso ti, part of SPEC92 ref inputs tial, part of SPEC92 ref inputs

gcc amptjp.i, SPEC95 train input cccp.i, part of SPEC95 ref inputs
go 2stone9, SPEC95 train input 9stone21, part of SPEC95 ref inputs
ijpeg vigo, SPEC95 train input vigo, SPEC95 ref input
li SPEC95 train input SPEC95 ref input
m88ksim dcrand, SPEC95 train input dhry, SPEC95 test input
perl primes, SPEC95 train input primes, SPEC95 ref input
vortex SPEC95 train input SPEC95 test input

Table III. Additional Information about Benchmark Runs. “Size” is the number of
bytes in the dynamically linked binary executable file of the original version of the
program. For the training and testing data sets, “M Branch” counts the millions of
branches executed, while “M Instr.” counts the millions of instructions executed by the
original version of the program.

Training Data Set Testing Data Set
Benchmark Size (KB) M Branch M Instr. M Branch M Instr.

alt 25 - - 2.0 12.3
ph 25 - - 2.0 11.3
corr 25 - - 5.0 2.2

wc 25 6.6 26.1 14.6 60.2
compress 57 11.8 112.1 135.4 1,305.9
eqntott 115 46.5 388.0 335.8 2,519.8
espresso 565 87.0 745.5 157.2 1,247.8
gcc 5,595 252.6 2,015.1 244.1 1,941.0
go 918 68.1 738.0 4,177.3 45,612.9
ijpeg 573 97.4 2,451.5 1,801.3 51,934.4
li 279 34.3 337.9 10,961.5 81,323.2
m88ksim 532 18.5 203.1 116.0 943.1
perl 1,032 1.4 12.5 2,274.6 20,170.3
vortex 1,737 292.0 3,690.0 1,068.8 13,208.6

point profiles are often used by optimizations to simulate path statistics.
Table III lists the branch and instruction counts for each of our benchmarks

under each data set. Branch counts were collected using branch instrumentation,
while the instruction counts were collected using a compiled simulation of a basic-
block-scheduled version of each program. The major point of Table III is that our
benchmarks execute a significant number of instructions and are reasonable to use
in branch prediction studies.

For all of our experiments, we used the SUIF compiler system (version 1.1.2)
from Stanford [Wilson et al. 1994], including Machine SUIF (version 1.1.2) exten-
sions from the HUBE research group at Harvard [Smith 1996]. SUIF is a research
compiler that has been used for studies in parallelization, memory alias analy-
sis, and interprocedural loop detection. The Machine SUIF extensions support
machine-specific optimizations and have been used for studies in branch prediction,
code layout, register allocation, and instruction scheduling. For profiling, we used
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HALT [Young and Smith 1996], a profiling package that works with Machine SUIF.
We use the efficient profiling method described in Section 2 within HALT to insert

profiling code into our programs. HALT works similarly to Atom [Srivastava and
Eustace 1994], an instrumentation tool that inserts calls to user-written analysis
routines into a program. The HALT and Atom approach incurs a function call
overhead at each instrumentation point, but offers tremendous flexibility in the
kind of analysis that can be performed. More special-purpose profilers have achieved
much lower profiling overheads [Ball and Larus 1994; 1996], but are often tailored
to specific kinds of profiling and machine implementations. For our purposes, O(1)
overhead is asymptotically the same as traditional branch-profiling methods, so we
have not taken the time to build a more efficient profiler.

Simulations, compilations, and performance timing experiments were performed
on an AlphaPC 164LX with an Alpha 21164 microprocessor running at 533MHz.
Profile timing experiments were performed on an AlphaStation 500 with an Alpha
21164 microprocessor running at 266MHz. Both of these Alpha workstations have
2MB of third-level off-chip combined instruction and data cache and 128MB of
main memory. The 533MHz workstation ran Digital UNIX 4.0D; the 266MHz
workstation ran Digital UNIX 4.0.

4.2 Overheads in Path Profiling

This section describes and measures the performance of an implementation of the
path-profiling algorithm from Section 2.3. We implemented the algorithm under
the SUIF compiler, using Machine SUIF extensions and the HALT profiling envi-
ronment. HALT provides CFG edge tracing, so our implementation of the path-
profiling algorithm was relatively straightforward. A labeling pass assigns a unique
number to each branch in the program. The Machine SUIF CFG library [Holloway
and Young 1997] provides an abstraction of a program as a graph where the suc-
cessors of a node are sequentially numbered starting at zero. Each edge can then
be uniquely described using the pair of the unique branch number and its successor
number.

The implementation represents paths compactly, storing just the starting node of
the path and the sequence of successor numbers from subsequent branch nodes in
the CFG. Since the path stores only branch nodes, a path of length n may include
more than n CFG nodes. Successor numbers are concatenated into a packed bit
representation; successor numbers may only be accessed by sequentially shifting
and masking numbers off this packed representation. We have run with history
depths up to 20 without overflowing the 64-bit registers on the Digital Alpha mi-
croprocessors used in this study.

Very little tuning has been done on the implementation of our algorithm. As
noted previously, HALT incurs a function call overhead at every instrumentation
point; this is every call, return, conditional, or multiway branch in the program.
HALT ensures safety by computing the live registers of the program at each instruc-
tion, then saving all live registers at the instrumentation point. It then collects any
desired run-time information (e.g., successor numbers in our case), then passes that
information and any compile-time-specified constants (e.g., unique branch number)
to the analysis function. Inlined profiling code would certainly be faster. Also, the
path data structure is implemented as a C++ class, and the layers of storage for
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Fig. 26. Number of paths profiled as a function of history depth.

inheritance cause a large amount of data structure bloat. As we are about to see,
the number of paths we collect and the running time of the algorithm have been
acceptable, so we have not spent additional time tuning the profiling step.

Acceptable performance requires good behavior in both space and time. In prac-
tical terms, we would like the path profiles to take up much less space than a full
program trace (however, we expect that path profiles will include more samples
than point profiles). And we would like the time for path profiling to be within a
small constant factor of point profiling.

Figure 26 graphs the number of paths collected as a function of the history depth.
The number of paths collected is fairly small in most of the benchmarks; this is
consistent with the findings of Ball and Larus [1996]. The worst offenders in terms
of number of paths are the gcc and go benchmarks. gcc reaches a maximum of
276,758 paths at a history depth of 15, while go reaches a maximum of 356,860
paths at a history depth of 15. These are not overly large databases of information
for a compiler to handle.

Figure 27 shows the same data as Figure 26, but normalized against the number
of points in an edge profile (k = 0). Recall from Section 2.3 that the worst-case
number of paths is exponential in the history depth. Figures 26 and 27 show that the
relationship between history depths and the number of paths is indeed exponential,
but that for the benchmarks in this study and the history depths we consider, the
number of paths encountered is not overwhelmingly large. It is interesting to note
that benchmarks with large absolute numbers of paths (high peaks in Figure 26) are
not necessarily the same benchmarks with large normalized numbers of paths (high
peaks in Figure 27). In particular, wc and compress have small absolute numbers of
paths, but because the branches in these benchmarks are mostly data-driven, the
small number of branches contribute to large normalized numbers of paths.

Figures 26 and 27 show that the number of paths can be exponential in the history
depth. This is a fundamental property of path profiles. Heuristics that constrain
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Fig. 27. Number of paths profiled as a function of history depth, but normalized against k = 0
(edge profiling).

the number of paths or the history depth in infrequently executed parts of the
program may help to limit the number of paths collected, but they probably will
not change the exponential number of paths, as most paths occur in the frequently
executed parts of the program. Since the number of paths is not unmanageably
large at the history depths we explore, we have not investigated any space-saving
heuristics.

To show that our implementation runs in reasonable time, Table IV lists and
Figure 28 graphs running times of our benchmarks under various instrumentation
schemes. The “Original” column shows the running time of the unmodified pro-
gram. The “Null Analysis” column gives the running time of the program modified
by HALT to call empty analysis functions that return immediately. The difference
between “Original” and “Null Analysis” corresponds to the overhead introduced by
HALT-style instrumentation alone. The “Point Profile” columns show the running
time of node and edge profilers under HALT; the “Path Profile” columns show the
running time of our efficient path profiler with history depths of 0 (equivalent to
edge profiling) and 15. Times were collected using the UNIX time(1) command
on a multitasking machine; factors like multitasking activity or buffer cache status
may have influenced the results. We were less precise about timing our profiling
versions of the program because the point of Table IV is to show general ranges
of performance rather than to make precise statements about the performance of
untuned profilers.

From Table IV, one can see that the “Point Profile” and “Path Profile” columns
are often close. For most benchmarks the difference is never more than a factor of
2; go is the sole exception, where path profiling takes 4.1 times longer than edge
profiling. Compared to the original program, the worst case for point profiling is
wc (which is 12 times slower than the original program), while the worst case for
path profiling is again go (which is 30 times slower than the original program).
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Table IV. Profiling overheads under HALT. Times are for the training data sets.

Time (seconds)
Benchmark Null Point Profile Path Profile

Original Analysis Node Edge k=0 k=15

alt 0.2 0.9 0.7 0.9 0.9 0.9
ph 0.1 0.3 0.6 0.8 0.8 0.8
corr 0.2 0.2 0.3 0.3 0.3 0.4
wc 0.2 0.8 1.8 2.4 2.5 2.5
compress 1.3 2.2 4.1 5.6 5.4 7.6
eqntott 3.6 7.9 15.9 22.0 21.9 26.8
espresso 4.0 14.3 29.9 37.9 39.6 67.5
gcc 19.2 53.7 104.8 140.8 167.4 270.2
go 5.2 14.2 27.9 38.0 42.3 154.7
ijpeg 11.1 21.4 38.5 47.6 48.4 66.5
li 2.0 6.2 13.6 17.2 19.9 21.1
m88ksim 1.6 4.4 8.6 11.4 11.6 13.3
perl 0.6 1.1 1.5 1.9 1.8 3.4
vortex 25.9 65.4 160.6 219.5 210.1 209.8
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Fig. 28. Profiling Overheads under HALT. A slowdown factor of 1 corresponds to the running
time of the original program.

4.3 Prediction Accuracy and Cache Miss Rate

Tables V and VI and Figures 29 and 30 show the effect of SCBP on program size,
branch misprediction rate, and cache miss rate. These statistics were collected by
transforming each program using SCBP (with k = 15 and overpruning) and Pettis-
and-Hansen-style basic-block and procedure placement. Table V displays the size
of the text segment of each program as determined by the UNIX size command.
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Table V. Static Code Size of Original and Transformed Programs.

Size in bytes Percent
Benchmark orig scbp (k = 15) increase

alt 4104 4328 5.46
ph 4008 4056 1.20
corr 4248 4472 5.27
wc 4328 4328 0.00
compress 18640 19280 3.43
eqntott 45888 46016 0.28
espresso 243368 247704 1.78
gcc95 2266776 2268728 0.09
go95 412368 420992 2.09
ijpeg95 241864 263736 9.04
li95 106280 107224 0.89
m88ksim95 210240 210304 0.03
perl95 489704 490216 0.10
vortex95 747304 748872 0.21

Table VI. Mispredict Rates and Cache Miss Rates for Programs Transformed with
Overpruning SCBP. Static branch predictions were made by SCBP. Pettis-and-Hansen-
style block and procedure placement was performed. If a benchmark has both a training
and a testing data set, then the results shown are cross-validated by profiling and opti-
mizing using the training data set then running on the testing data set. If not (corr, alt,
and ph), then the results shown are from training and testing on the same data set.

Mispredict Rate (%) Cache Miss Rate (%)
Benchmark orig scbp (k = 15) orig scbp (k = 15)

alt 12.5 0.0 0.0 0.0
ph 15.0 0.0 0.0 0.0
corr 24.0 12.7 0.0 0.0
wc 14.4 8.8 0.0 0.0
compress 14.5 12.1 0.0 0.0
eqntott 13.4 12.2 0.0 0.0
espresso 20.3 18.7 0.1 0.1
gcc 12.8 12.5 1.6 1.6
go 22.4 20.4 0.9 1.5
ijpeg 11.5 9.8 0.0 0.1
li 14.7 12.9 0.2 0.1
m88ksim 9.0 8.9 0.2 0.2
perl 11.0 10.1 0.3 0.4
vortex 0.9 0.8 2.0 1.1

None of our programs increase in text size by more than 10%.
We then instrumented each transformed program to collect branch prediction

statistics and to perform a cache simulation. The “orig” column shows results for
per-branch static prediction, while the “scbp” column shows results for SCBP run
on path profiles. Static predictions were set by SCBP using the training data set; for
all benchmarks with both training and testing data sets we show mispredict rates
for runs using the testing data set. The cache simulator simulated a 32-kilobyte,
direct-mapped cache with a 32-byte line size; this size is slightly larger than the
caches found in microprocessors that are shipping today, so these cache results will
be optimistic compared to what we might expect on real processor implementations.

All of the SPEC benchmarks show improvements in prediction accuracy after
transformation using SCBP; the arithmetic average over SPEC benchmarks is an
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.



Static Correlated Branch Prediction · 1065

0

5

10

15

20

25

30

al
t

ph

co
rr w
c

co
m

eq
n

es
p

gc
c

go

ijp
eg

li

m
88

k

pe
rl

vo
rt

ex

M
is

pr
ed

ic
t R

at
e 

(%
)

orig

scbp

Fig. 29. Graph of the effect of SCBP on branch mispredict rate. Data are taken from Table VI.
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Fig. 30. Graph of the effect of SCBP on cache miss rate. Data are taken from Table VI.

improvement of 1.2%. Cache miss rates are interesting for the SPEC95 bench-
marks. The go benchmark has bad cache behavior under SCBP (its working set is
much larger than 32KB); in this case an overpruning heuristic that took cache size
and program working set into account would restrict code expansion much more
drastically. espresso, gcc, ijpeg, and perl also suffer from increasing cache miss rates
under SCBP. Li and vortex each improve in cache miss rate under SCBP; this is
due to variations in procedure placement in the cache.9 Unsurprisingly, the mi-

9Changes in procedure size due to SCBP cause different procedures to overlap and to cross cache
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crobenchmarks show large improvements in misprediction rate and show negligible
changes in cache traffic. Given these trends in branch predictions and cache misses,
we would expect all benchmarks but go, perl, and ijpeg to improve in performance
under SCBP.

4.4 Analysis of Performance

Mispredict rate and cache miss rate both influence performance, but the net effect
on performance is what matters. To understand the net effect of SCBP on per-
formance, this section examines the magnitude of the branch prediction and cache
components and examines their relative importance for different kinds of proces-
sors. But because modern processor implementations are complex, we cannot ana-
lytically describe all effects of SCBP on performance. To address this complexity,
Section 4.5 presents run times for SCBP-transformed programs executing on real
hardware.

From our simulations, we know the number of branch mispredictions and cache
misses from each program run. The differences between a traditional statically
predicted program (history depth of 0) and a program transformed with SCBP
(history depth of 15) are shown in Table VII. Negative numbers indicate cases
where SCBP improved (reduced) the number of mispredictions or cache misses,
while positive numbers indicate cases where SCBP worsened (increased) them. The
benchmarks fall into four categories. For the microbenchmarks and for compress,
eqntott, and m88ksim, branch mispredictions improve while cache misses change
negligibly. Under li and vortex, both branch mispredictions and cache misses im-
prove. For espresso, gcc, and perl, the improvement in mispredictions is greater than
or similar to the worsening in cache misses. And for go and ijpeg, the worsening in
cache misses is much larger than the improvement in mispredictions.

Benchmarks in the first two categories clearly benefit from transformation by
SCBP, while benchmarks in the last two categories may benefit from SCBP, depend-
ing on the penalties associated with branch mispredictions and cache misses. These
penalties vary with processor implementation and cache structure. Table VIII de-
scribes some of the penalties and cache sizes associated with recent microprocessor
implementations. Multiplying the columns in Table VII by weights for different
processor implementations can give some insight into the likely overall change in
performance.

By multiplying items from Tables VII and VIII, we can estimate the net perfor-
mance effect of SCBP. Suppose that a processor has a five cycle mispredict penalty
and an average memory access time (AMAT) of seven cycles to serve references that
miss in the first-level cache. Then by multiplying the change in mispredictions by
the mispredict penalty and adding the product of the change in cache misses with
the AMAT, we can estimate the number of cycles that the program will speed up
or slow down. For this example processor, we would expect the go benchmark from

lines or page boundaries. For example, the original version of vortex ended up with its most fre-

quently executed procedure, Get MemWord(), laid out across a page boundary. And the xlevarg()

routine in the original version of li is flushed from the cache when it calls xleval(); the SCBP-
transformed version of li does not suffer from the same flushing behavior. In both cases, a cache-
aware procedure-placement algorithm, such as Gloy et al. [1997], would remove this problem.
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Table VII. Changes Due to SCBP in Factors that Contribute to Performance. This
table shows the difference in counts between the “k = 0” (traditional static prediction)
and “k = 15” (SCBP with a history depth of 15) versions of the program. Simulations
were done assuming a 32KB, direct-mapped primary instruction cache.

Benchmark Change in mispredicts Change in cache misses

alt -250,000 5
ph -299,999 1
corr -56,667 6
wc -816,385 0
compress -3,153,617 17
eqntott -4,082,420 7
espresso -2,541,670 505,922
gcc -651,830 422,969
go -85,441,578 321,045,879
ijpeg -29,846,641 50,752,332
li -167,812,690 -68,303,333
m88ksim -29,130 2
perl -19,250,983 19,593,753
vortex -1,788,406 -112,306,440

Table VIII. Performance-Related Characteristics of Recent Processor Implementations.
System board-level caches are reported only for the HP microprocessors, which have no
on-chip cache, so the board-level cache serves as a combined primary instruction/data
cache in typical workstations.

Mispredict Instruction cache
penalty hit time (cycles) size (bytes)

Processor (cycles) L1 L2 L1 L2

Alpha 21064A 4 2 - 16KB -
Alpha 21164 5 2 6 8KB 96KB
HP PA-7200 1 1 - (128KB) -
HP PA-8000 5 1 - (256KB) -
Intel Pentium 2 1 - 16KB -
Intel Pentium Pro 11-13 1 3 16KB 256KB

Table VII to slow down by (5×−85, 441, 578)+(7×321, 045, 879) = 1, 820, 113, 263
cycles.

4.5 Running Times

Table IX and Figure 31 compare running times of the original programs against
programs transformed by overpruning SCBP. In both cases, we ran Pettis-and-
Hansen-style basic-block placement after assigning branch predictions. Times were
collected using the UNIX time(1) command; time has a resolution of 0.1 second.
All measurements were made on the machine described in Section 4.1. For each
benchmark, we profiled and optimized using the training data set and report the
time from running on the testing data set. We timed each program 15 times;
and we report the arithmetic mean of the last 10 timing measurements. Standard
deviations were less than 0.1 for all benchmarks.

The results in Table IX match our expectations from the simulations of perfor-
mance. Go and ijpeg slow down, while compress, eqntott, gcc, and vortex speed up;
the remaining SPEC benchmarks (espresso, li, and perl) show little change. The mi-
crobenchmarks perform the same within the resolution of the timer. These results
are encouraging: SCBP affects performance as anticipated by our simulations. Mi-
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Table IX. Comparison of Running Times for Programs with Per-Branch Static Branch
Prediction Followed by Pettis-and-Hansen-Style Basic Block Ordering (k = 0) and Pro-
grams with Static Correlated Branch Prediction Followed by Pettis-and-Hansen-Style
Basic Block Ordering (k = 15). We ran each program 15 times and report the average
of the last 10 runs.

Running Time (seconds) Running Time (seconds)
Benchmark k=0 k=15 Benchmark k=0 k=15

alt 0.1 0.1 gcc 8.0 7.9
ph 0.0 0.0 go 161.4 164.9
corr 0.1 0.1 ijpeg 118.2 120.1
wc 0.2 0.2 li 211.3 211.3
compress 5.2 5.1 m88ksim 2.5 2.5
eqntott 6.9 6.3 perl 60.4 60.5
espresso 3.2 3.2 vortex 40.5 38.7

0.85

0.90

0.95

1.00

1.05

co
m

eq
n

es
p

gc
c

go

ijp
eg

li

m
88

k

pe
rl

vo
rt

ex

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Fig. 31. Normalized change in execution time of the SPEC benchmarks. The original program
provides the baseline of 1.0; values below 1.0 represent speedups, while values above 1.0 represent
slowdowns (go and ijpeg). Note that the vertical axis does not begin at zero.

croprocessors with larger cache sizes or more aggressive pipelining will allow SCBP
to improve performance overall; these two directions match recent design trends.

To further understand why espresso, li, and perl did not improve in performance,
we used the Compaq Continuous Profiling Infrastructure (CCPI) [Anderson et al.
1997] to access the Alpha performance counters and analyze the behavior of these
programs. For these three programs, branch predictability improved, but cache
misses worsened, swamping the gains from branch predictability. The difference
between our simulation results and the timing runs on the Alpha 21164 is the cache
size: we simulated a 32KB first-level instruction cache, while the 21164 has only
an 8KB first-level instruction cache. Other simulations (not reported here) with
smaller cache sizes agree with our timing results.
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5. RELATED WORK

Dynamic branch prediction schemes that exploit correlation motivated the devel-
opment of SCBP and general path profiling; we point to some of the initial work
in dynamic correlated branch prediction in Section 5.1. Other researchers have
also investigated path profiling, but all such work that we are aware of collects
forward, rather than general path profiles. Section 5.2 describes that work. Lastly,
Section 5.3 lists other compile-time optimizations with intents or effects similar to
SCBP, while Section 5.4 discusses the links between SCBP and DFA minimization.

5.1 Dynamic Correlated Branch Prediction

In 1991, Tse-Yu Yeh and Yale Patt introduced two-level adaptive prediction schemes
[Yeh and Patt 1991; 1993; Yeh 1993]. These schemes capture branch history and
use this history as an additional index into the traditional table of two-bit counters.
Branch history is recorded in branch history shift registers (BHSRs), where a “1”
represents a branch that took (jumped), and a “0” represents a branch that fell
through. Two-level schemes may have a single, global BHSR or many per-branch
or local BHSRs (the per-branch BHSR is selected by low-order bits of the branch
address). Global history registers capture the pattern of recent branch directions
for all branches in the program, while each local history register attempts to capture
the pattern of recent directions for a single branch in the program. In their work,
Yeh and Patt concatenated a branch history of k bits with the j bits of branch
address to index into a table of 2j+k counters. Both the global and local schemes
(in Yeh and Patt’s taxonomy, GAs and PAs) gave better prediction accuracies than
per-branch two-bit counter schemes. Figure 32 depicts the structure of a general
two-level adaptive prediction scheme. The familiar table of two-bit counters has
been extended into a second dimension indexed by the branch history.

Pan et al. [1992] appear to have been the first to use the term “correlation” to
describe the behavior exploited by global history schemes. To provide a concrete
example of correlation, they showed the code fragment from the SPEC integer
benchmark eqntott that was reproduced in Figure 1. As noted before, the direction
of the third branch is determined if both of the first two branch conditions are true.
A global-history shift register with a depth of two or more can exploit this fact,
because the shift register records the direction of the previous two branches. When
the shift register is used as part of the index into the table of two-bit counters, the
deterministic case will map to a different counter from the other three cases, sepa-
rating out the deterministic case from the other three cases. This separation allows
the correlated scheme to achieve higher prediction accuracy than the per-branch
scheme; Pan et al. reported up to 11% improvement (reduction) in mispredict rate
over per-branch schemes.

While these dynamic branch correlation schemes achieve impressive accuracy,
they operate too late to help the compiler. An early motivation for SCBP was to
find a way to exploit branch correlation statically, so that compiler optimizations
could also benefit from improved prediction accuracy.

5.2 Other Path Profilers

Two other projects of which we are aware also collect intraprocedural path profiles,
but in different ways from the path-profiling algorithm described here. Both Ball
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Fig. 32. Two-level adaptive prediction scheme. The branch history shift registers index into a
second dimension in the familiar table of two-bit counters.

and Larus [1996] and Bala [1996] profile forward paths in the control-flow graph,
where a forward path is a path that ends at a back edge or a procedure return.
When they encounter a path-ending condition, both other groups record the pro-
filing statistic for the forward path up to that point, then begin recording the next
forward path. This is a different method of bounding the number of paths to make
descriptions and statistics storage practical.

Forward paths have a very different character from the general, bounded-length
paths collected by our algorithm. Forward paths never contain more than one
iteration of a loop (although they may capture some of the blocks before a loop
entry or after a loop exit). Also, forward paths do not overlap in the trace; instead
they “chop” the trace into disjoint pieces. Said another way, our path-profiling
algorithm collects statistics over a sliding window of the last k branches in the
trace, while the forward path-profiling algorithms collect statistics over disjoint,
sequential pieces of the trace.

The algorithm described in Section 2.3 collects execution frequencies. Ammons,
et al. [1997] point out that a profile could collect other statistics, such as cache
misses or memory-aliasing information, per path using the hardware performance
counters of most modern processors. However, using hardware counters with gen-
eral paths as described in our algorithm can be complex for statistics that do not
sum as execution frequencies do. For example, the cache misses along path XYZ are
definitely not the sum of the cache misses along paths AXYZ, BXYZ, and CXYZ.
Forward paths are much better suited to such statistics, as the hardware counters
can be read, then reinitialized between each disjoint program path.

Ball and Larus use an efficient encoding of path descriptions. Before running the
program, they compute the number of possible forward paths in the CFG; then they
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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assign each path a unique sequential number. Their assignment of path numbers
is carefully chosen so that at each split point in the CFG, a single arithmetic or
logical operation suffices to update the path number up to this point. At each
back edge and return, the prior sequence of individual operations reproduces the
path number by which the program point was reached. Ball and Larus use a low-
overhead profiling environment that allows them to scavenge unused registers and
spare parallel issue slots on the profiled machine; they achieve impressively low
overheads (between 17% and 96%) on SPECint95. Ball and Larus report that they
occasionally run out of encoding space for paths in some large procedures; to fix
this problem they mark additional CFG edges as places to terminate the existing
path and initiate a new path.

Bala’s path profiler also scavenges general-purpose registers from the profiled
machine, but he uses an encoding of paths that is very similar to the FIFO in our
naive path-profiling algorithm. Bala records a unique identifier for the starting
branch of a path and the sequence of conditional branch directions that form the
path. One limitation of Bala’s approach is that he requires special provisions to
capture multiway branches. Bala also achieves low overheads (between 10% and
64%) on SPECint95. Bala reports that he rarely encounters sequences of conditional
branch directions that overflow the 64-bit registers of modern machines.

Ammons et al. [1997] extended Ball and Larus’ algorithm to collect path profiles
on the call graph; they call such a profile a context-sensitive profile. Because they
do not record back edges in the call graph, they will not record recursive call cycles.

5.3 Other Program Transformations

Other researchers have published compile-time optimizations similar to SCBP. Krall
[1994] performed a study that examined the prediction accuracy benefits and code
size expansion from CFG transformations based on both local and global history.
His approach to local history involved building state machines where each state
was an entire copy of a loop body, with copies connected based on the local history
state of one particular branch in the loop. In this way at most one branch per loop
could benefit from improved accuracy without incurring exponential code expan-
sion. Krall very quickly discusses global history (as “correlated branches”); but he
is so brief that it is not clear that he built a global reconciler, and it would not be
possible from his exposition to build one. Further, Krall’s study left cross-validation
as further research.

As mentioned in our discussion of global reconciliation, some branches are logi-
cally correlated and might be removed by a good optimizer. Mueller and Whalley
[1995] combined a path-based examination of the original CFG with partial redun-
dancy elimination (PRE) to find and remove such logically correlated branches.
Bodik et al. [1997] present an interprocedural variant of this work. The benefits of
this approach are that it does not require any profile information, relying only on
aspects of the program code, and that it can remove any correlated branch marked
as avoidable. As noted before, SCBP can capture statistical correlation, where a
branch direction is made likely, but not determined, by some history. Conversely,
SCBP can also be fooled by false correlation: correlation that is specific to one
training data set but not general among all runs of a program. Mueller and Whal-
ley’s optimization does not capture statistical correlation, but it also will not be
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led astray by behavior specific to one training set.
Some recent work has applied path profiles to other performance areas, including

cache optimizations, memory disambiguation, and instruction scheduling. Gupta,
Berson, and Fang used path profiles to drive implementations of PDCE [Gupta et al.
1997] and PRE [Gupta et al. 1998]. Reps et al. [1997] used path profiles in coverage
testing. Mowry and Luk [1997] use path profiles to avoid data cache misses; they
profile to find paths in the program that are more susceptible to data cache misses
than others. Young and Smith [1998] use path profiles during global instruction
scheduling; they show that path profiles both simplify the implementation of a
superblock scheduler and improve the quality of the scheduled code.

5.4 DFA Minimization

In substantial respects, SCBP is a method to minimize the path CFG without
losing any static prediction accuracy. SCBP is thus related to methods that mini-
mize deterministic finite automata (DFA) [Lewis and Papadimitriou 1981]. In DFA
minimization, the goal is to eliminate equivalent states: states from which the au-
tomaton accepts the same set of strings. Similarly, the goal of global reconciliation
is to merge together equivalent sets of paths in the path CFG: sets of paths where
the same static predictions will be made in the future. The description of reconcil-
iation given above starts from the original CFG nodes and partitions them until all
needed history is preserved. But we could also have built the algorithm to work in
reverse, merging equivalent paths to find a minimal partition of the paths leading
to a predicted block. We would start with the path CFG (including the likely suc-
cessor of each path), then merge equivalent paths into sets of paths until we could
perform no more merging without affecting the accuracy of likely successor infor-
mation. Reconciliation differs from DFA minimization because we can merge only
paths with the same terminal node, and because the likely successor information
can have arbitrary arity (for multiway branches), while acceptance in a DFA has
arity 2.

6. CONCLUSIONS

Path profiling provides a new kind of profile information that is intermediate in
scope between existing point profiling methods and the collection of full program
traces. Path frequencies report how often a sequence of program blocks executed,
and they thus precisely indicate the hot regions of the program. Paths are useful
for the class of optimizations that attempt to reduce conditional-branch barriers to
performance in modern microprocessors.

We examined profiles of general, bounded-length paths in a control-flow graph.
We described, implemented, and evaluated a constant-time-per-executed-branch
path-profiling algorithm. Using this practical algorithm, we found that the overhead
of path profiling is on average within a factor of two of the overhead of edge profiling,
and that the resulting database of path profile information is of manageable size
for modern processors.

This article described the first optimization to use path profiles: static correlated
branch prediction, where we achieve higher static branch prediction accuracy by
duplicating and discriminating correlated paths through a program’s control flow
graph. Our results show that SCBP can improve branch predictability on all of
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 5, September 1999.
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our benchmarks, and that it can improve the performance of the majority of our
benchmarks when run on modern machines. The few benchmarks that do not
perform well appear to be amenable to more precise overpruning heuristics than
the one implemented for this study. With better overpruning heuristics, we can
ensure that we never lose in performance when compared to the original program.
Furthermore, as future processors implement larger instruction caches and incur
larger misprediction penalties, the applicability of SCBP will only increase.

Robustness remains an open issue for path profiles. Initial work in path profiling
has shown that different data sets show very similar sets of hot paths [Ammons
et al. 1997; Ball and Larus 1996], and this works shows that we can use path
profiles in optimization and achieve performance improvements. Even so, in a sta-
tistical sense, path profiles must be less robust than point profiles because they
derive more statistics (samples) than point profiles from the same trace of program
behavior. Since many point-oriented optimizations attempt to generate path fre-
quencies through heuristics (e.g., trace-based schedulers), these optimizations will
certainly benefit from path frequency data.

In summary, path statistics can improve performance, but they unfortunately
seem harder to apply than traditional profiles. Finding ways to make them work in
optimizations requires some facility with graph theory and a willingness to duplicate
code so that hot paths can be discriminated from cold ones. As computer architects
and compiler writers shoulder more of the burden of improving performance, both
will look for new tools and techniques that will improve machine performance. Path
statistics and analyses are one such tool; path-driven optimizations like SCBP are
some of the techniques.
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