
Software Pipelining

VICKI H. ALLAN

Utah State University

REESE B. JONES

E,,ans and Sutherland, 650 Komas Drive, Salt Lake City, UT 84108

RANDALL M. LEE

DAKS, 3017 Taylor Aven ue, Ogden, UT 84405

STEPHEN J. ALLAN

Utah State Unlvers~ty

Utilizing parallelism at the instruction level is an important way to improve

performance. Because the time spent in loop execution dominates total execution time,

a large body of optimizations focuses on decreasing the time to execute each iteration.

Software pipelining is a technique that reforms the loop so that a faster execution rate

m reahzed. Iterations are executed in overlapped fashion to increase parallelism.

Let {ABC]n represent a 100P contaimng operations A, B, C that is executed n times.

Although the operations of a single iteration can be parallelized, more parallelism may

be achieved if the entire loop is considered rather than a single iteration. The software

pipelimng transformation utilizes the fact that a loop {ABC)’ is equivalent to

A{ BCA}n -1 BC. Although the operations contained in the loop do not change, the

operations are from different iterations of the original loop.

Various algorithms for software pipelimng exist. A comparison of the alternate

methods for software pipelining is presented. The relationships between the methods

are explored and possibilities for improvement highlighted.

Categories and Subject Descriptors: D. 1.3 {Programming Technique]: Concurrent

Programming; D.3.4 [Programming Languages]: Processors—compilers,

optzmzzatzon

General Terms: Algorithms, Languages

Additional Key Words and Phrases: InstructIon level parallelism, loop reconstruction,

optimization, software pipelining

Authors’ addresses: Vicki H. Allan and Stephen J. Allan, Department of Computer Science at Utah State
University, Logan, UT 84322-4205; e-mail: allanv@cs.usu.edu. Reese B. Jones, Evans and Sutherland.
Randall M. Lee, DAKS.

Permission to make dugital/hard copy of part or all of this work for personal or classroom use m granted
without fee provided that copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear, and notice m given that copying is by

permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
@ 1995 ACM 0360-0300/95/0900-0367 $03.50

ACM Computmg Surveys, Vol 27, No. 3, September 1995

368 “ V. H. Allan et al.

CONTENTS

[INTRODUCTION
1 BACKGROLTND INFORMATION

1 1 ModelLng Rewurce Usage

12 The Data Dependence Graph
13 Generating a Schedule

14 Imtlatlonlnterval
15 Factor5.Affectl ngthe Inltmtlon Inter\al
16 Methods of Computmgll
1 7 Unrolhn gRcpllcatlon
18 support forsoft\”Jre Plpellnlng

2 L1ODULO SCHEDULING

2 1 illodulo Scheduling lEI Hlerarchlcal
Reduction

22 Path Algebra

23 Predicated Modulo Scbeduhn~
24 Enhanced Modulo Scheduling

3 KERNEL RECOGNITION
31 Perfect P]pehnlng

32 Petri Net Model

33 Vegdahl’s Te~hnlque
4 ENHANCED PIPELINE SCHEDULING

41 Inst, uctlon Model
42 (}lobal Code Motion With Renammg

and Forw aId Substltutlon
43 P]pclln, ng the Loop

.4-4 Reducing Code Expansion

5 SUMMARY

5 1 Modulo Scheduling Algorithms

52 Perfect Plpehnmg

53 Petri Net Model

54 Vegdahl

55 Enhanced Plpehne Scheduhng

6 CONCLUSIONS AND FUTURE WORK

ACKNOWLEDGMENTS

REFERENCES

INTRODUCTION

Software pipelining is an excellent
method for improving the parallelism in
loops even when other methods fail.
Emerging architectures often have sup-
port for software pipelining.

There are many approaches for im-
proving the execution time of an applica-
tion program. One approach involves
improving the speed of the processor,
whereas another, termed parallel pro-
cessing, involves using multiple process-
ing units. Often both techniques are used.
Parallel processing takes various forms,

including processors that are physically
distributed, processors that are physi-
cally close but asynchronous, and syn-
chronous multiple processors (or multiple
functional units). Fine grain or instruc-
tion level parallelism deals with the uti-
lization of synchronous parallelism at the
operation level. This paper presents an
established technique for parallelizing
loops. The variety of approaches to this
well understood problem are fascinating.
A number of techniques for software
pipelining are compared and contrasted
as to their ability to deal with necessary
complications and their effectiveness in
producing quality results. This paper
deals not only with practical solutions for
real machines, but with stimulating ideas
that may enhance current thinking on
the problems. By examining both the
practical and the impractical approaches,
it is hoped that the reader will gain a
fuller understanding of the problem and
be able to short-circuit new approaches
that may be prone to use previously
discarded techniques.

With the advent of parallel computers,
there are several methods for creating
code to take advantage of the power of
the parallel machines, Some propose new
languages that cause the user to re-
design the algorithms to expose paral-
lelism. Such languages may be exten-
sions to existing languages or completely
new parallel languages. From a theoreti-
cal perspective, forcing the user to re-
design the algorithm is a superior choice.
However, there will always be a need to
take sequential code and parallelize it.
Regular loops such as fcm loops lend
themselves to parallelization techniques,
Many exciting results are available for
parallelizing nested loops [Zima and
Chapman 1991]. Techniques such as loop
distribution, loop interchange, skewing,
tiling, loop reversal, and loop bumping
are readily available [Wolfe 1990, 1989].
However, when the dependence of a loop
do not permit vectorization or simultane-
ous execution of iterations, other tech-
niques are required. Software pipelining
restructures loops so that code from vari-
ous iterations are overlapped in time.

ACM Computmg Surveys, Vol 27, No 3, September 1995

This type of optimization does not un-
leash massive amounts of parallelism,
but creates a modest amount of paral-
lelism. The utilization of fine grain paral-
lelism is an important topic in machines
that have many synchronous functional
units. Machines such as horizontal mi-
croengines, multiple RISC architectures,
VLIW, and LIW can all benefit from the
utilization of low level parallelism.

Software pipelining algorithms gener-
ally fall into two major categories: mod-
U1O scheduling and kernel recognition
techniques. This paper compares and
contrasts a variety of techniques used to
perform the software pipelining opti-
mization. Section 1 introduces terms
common to many techniques. Section 2
discusses modulo scheduling; specific
instances of modulo scheduling are item-
ized. Section 2.1 discusses Lam’s itera-
tive technique for finding a software
pipeline, and in Section 2.2 a mathemati-
cal foundation is effectively used to model
the problem. In Section 2.3, hardware
support for modulo scheduling is dis-
cussed. Section 2.4 extends the benefits
of predicated execution to machines
without hardware support. The next sec-
tions discuss the kernel recognition tech-
niques. In Section 3.1, the method of
Aiken and Nicolau is presented. Sec-
tion 3.2 demonstrates the application of
Petri nets to the problem, and Section
3.3 demonstrates the construction of an
exhaustive technique. Section 4 intro-
duces a completely different technique to
accommodate conditionals. The final
sections summarize the various contri-
butions of the algorithms and suggest
future work.

1. BACKGROUND INFORMATION

1.1 Modeling Resource Usage

Two operations conflict if they require
the same resource. For example, if 01
and Oz each need the floating point adder
(and there is only one floating point
adder), the operations cannot execute
simultaneously. Any condition that disal-
lows the concurrent execution of two op-

Software Pipelining ● 369

erations can be modeled as a conflict.
This is a fairly simple view of resources.
A more general view uses the following
to categorize resource usage:

(1)

(2)

(3)

(4)

Homogeneous/Heterogeneous. The
resources are termed homogeneous
if they are identical, hence the op-
eration does not specify which re-
source is needed, only that it needs
one or more resources. Otherwise
the resources are termed heteroge-
neous.

Specific/General. If resources are
heterogeneous and duplicated, we
say the resource request is specific
if the operation requests a specific
resource rather than any one of a
given class. Otherwise we say the
resource request is general.

Persistent/Nonpersistent. We say a
resource request is persistent if one
or more resources are required af-
ter the issue cycle.

Re.mdar/Irre.mdar. We sav a re -
so&ce i-eque;t is regular -if it is
persistent, but the resource use is
such that only conflicts at the issue
cycle need to be considered. Other-
wise we say the request is irregu-
lar.

A common model of resource usage

(heterogeneous, specific, persistent, regu-
lar) indicates which resources are re-
quired by each operation. The resource
reservation table proposed by some re-
searchers models persistent irregular re-
sources [Davidson 197 1; Tokoro et al.
1977]. This is illustrated in Figure 1 in
which the needed resources for a given
operation are modeled as a table in which
the rows represent time (relative to in-
struction issue) and the columns repre-
sent resources (adapted from Rau [1994]).
For this reservation table, a series of
multiplies or adds can proceed one after
another, but an add cannot follow a mul-
tiply by two cycles because the result bus
cannot be shared. This low-level model of
resource usage is extremely versatile in
modeling a variety of machine conflicts.

ACM Comput]ng Surveys, Vol 27, No 3, September 1995

370 “

Time

o

1

2

3 I

V. H. Allan et al.

x

Time

0

1

‘2

3

4

5

(a)

kQAw@%-1

I I
. .

I v, , -. 1

I 1 1 1 1

Illlllllxl

(b)

Figure 1. Possible reservation tables for (a) pipelined add and (b) plpehned multiply.

1.2 The Data Dependence Graph

In deciding what operations can execute
together, it is important to know which

operations must follow other operations.
We say a conflict exists if two operations
cannot execute simultaneously, but it
does not matter which one executes first.
A dependence exists between two opera-
tions if interchanging their order changes
the results. Dependence between opera-
tions constrain what can be done in par-
allel. A data dependence graph (DDG) is
used to illustrate the must-follow rela-
tionships between various operations. Let
the data dependence graph be repre-
sented by DDG(N, A), where N is the
set of all nodes (operations) and A is the
set of all arcs (dependence). Each di-
rected arc represents a must-follow rela-
tionship between the incident nodes. The
DDGs for software pipelining algorithms
contain true dependence, antidepen-
dences, and output dependence. Let 01
and Oz be operations such that 01 pre-
cedes Oz in the original code, Oz must
follow 01 if any of the following condi-
tions hold: (1) Oz is data dependent on
01 if Oz reads data written by 01, (2) Oz
is antidependent on 01 if Oz destroys
data required by O ~ [Banerjee et al.
1979], or (3) Oz is output dependent on

O ~ if Oz writes to the same variable as
does O1. The term dependence refers to
data dependence, antidependences, and
output dependence.

There is another reason that one oper-

ation must wait for another operation. A
control dependence exists between a and
b if the execution of statement a deter-
mines whether statement b is executed
[Zima and Chapman 1991]. Thus al-
though b is able to execute because all
the data is available, it may not execute
because it is not known whether it is
needed. A statement that executes when
it is not supposed to execute could change
information used in future computations.
Because control dependence have some
similarity with data dependence, they
are often modeled in the same way
[Ferrante et al. 1987].

The dependence information is tradi-
tionally represented as a DDG. When
there are several copies of an operation
(representing the operation in various it-
erations), several choices present them-
selves. We can let a different node repre-
sent each copy of an operation or we can
let one node represent all copies of an
operation. We use the latter method. As
suspected, this convention does make
the graph more complicated to read and
requires the arcs be annotated.

ACM Computmg Surveys. Vol 27, No 3, September 1995

Software Pipelining “ 371

for i

01: a[i] = a[i] + 1

02: b[i] = a[i] / 2 X
1 ITERATIONS

(0,1) ~ 11: 1 1 l.. .

Iz: 2 2 2 .,.

2 L
~ 13: 3 3 3,. ,

03: c[i] = b[i] + 3

b

(0,1)
14: 4 4 4 . . .

04: d[i] = c[i]

3

(0,1)

4

(a) (b) (c)

Figure 2. (a) Loop body pseudo-code. (b) Data dependence graph. (c) Schedule.

Dependence arcs are categorized as
follows. A loop-independent arc repre-
sents a must-follow relationship among
operations of the same iteration. A loop-
carried arc shows relationships between
the operations of different iterations.
Loop-carried dependence may turn tra-
ditional DDGs into cyclic graphs [Zima
and Chapman 1991]. (Obviously, depen-
dence are not cyclic if operations from
each iteration are represented distinctly.
Cycles are caused due to the representa-
tion of operations.)

1.3 Generating a Schedule

Consider the loop body of Figure 2(a).1
Although each operation of an iteration
depends on the previous operation, as
shown by the DDG of Figure 2(b), there
is no dependence between the various
iterations; the dependence are loop in-
dependent. This type of loop is termed a
doall loop as each iteration is given an
appropriate loop control value and may
proceed in parallel [Kuck and Padua
1979; Chandy and Kesselman 1991]. The

1 We use pseudo-code to represent the operations.
Even though array accessing 1s not normally avail-
able at the machine operation level, we use this
high-level machine code to represent the depen-
dence as it is more readable than RISC code or
other appropriate choices. We are not implying our
target machme has such operations.

assignment of operations to a particular
time slot is termed a schedule. A sched-
ule is a rectangular matrix of sets of
operations in which the rows represent
time and the columns represent itera-
tions. Figure 2(c) indicates a possible
schedule in which all copies of operation
1 can execute together. A set of opera-

tions that executes concurrently is
termed an instruction. All copies of oper-
ation 1 execute together in the first
instruction. Similarly, all copies of opera-

tion 2 execute together in the second in-
struction. Although it is not required that

all iterations proceed in lock step, it is
possible if sufficient functional units are
present.

Doall loops often represent massive
parallelism and hence are relatively easy
to schedule. A doacross loop is one in
which some synchronization is necessary
between operations of various iterations

[Wolfe 1989]. The loop of Figure 3(a) is
an example of such a loop. Operation 01
of one iteration must precede O ~ of the
next iteration because the a[i] used is
computed in the previous iteration. Al-
though a doall loop is not possible, some
parallelism can be achieved between op-
erations of various iterations. A do across
loop allows parallelism between opera-
tions of various loops when proper syn-
chronization is provided.

ACM Computmg Surveys, Vol 27, No 3, September 1995

372 “ V. H. Allan et al.

for (i=l;ii=n;i++

)O~:a[i+l]=ai]+l

02: b[i] = a[i + 1] / 2

03: c[i] = b[i] + 3

04: d[i]=c[i]

(a)

T “[2]= a[I\$E&ATIONS
~ b[l] = a[2]/2 a[3] = a[2] + 1>

M c[l] = b[l] + 3 b[2] = a[3]/2 a[4] = a[3] + 1

E d[I] = c[l] c[2] = b[2] + 3 b[3] = a[4]/2

d[2] = C[2]

1! l\

c3=b 3+3

(b) d3=c3

(1,1)

!

fliaw

(0,1)
H H

cl=b l/3
a3=a2+l

2 b[2]=a[3]/2

(0,1) a[4]=a[3j+l
for (i=l;li=n-3;i++)

3

/

d i]=c[i]

(0)1) c i+l]=b[i+l]+3

XGI=WK

(postlude)

(c) (d)

ITERATIONS

dif

II:

L

“[‘~;: “n ; z

MIA:
E

432

15: 4 32

16: 43

IT: 4

(e)

Figure 3. (a) Loop body pseudo-code. (b) First three
iterations of unrolled loop (c) DDG (d) Representa-

tive code for prelude and new loop body (postlude
omitted) plpehne prelude, kernel, and postlude. (e)
Execution schedule of Iterations. Time (mzn) is ver-
tical displacement. Iteration (dtf) M horizontal dis-
placement. In this example mm = 1 and ahf = 1,
The slope (min/dzf) of the schedule M then 1 which
is the length of the kernel.

Because software pipelining enforces
the dependence between iterations, but
relaxes the need for one iteration to com-
pletely finish before another begins, it is
a useful fine grain loop optimization
technique for architectures that support

synchronous parallel execution. The idea

behind software pipelining is that the

body of a loop can be reformed so that
one iteration of the loop can start before
previous iterations finish executing, po-

tentially unveiling more parallelism. Nu-
merous systems completely unroll the

body of the loop before scheduling to take
advantage of parallelism between itera-

tions. Software pipelining achieves an ef-
fect similar to unlimited loop unrolling.

Inasmuch as adjacent iterations are

overlapped in time, dependence between
various operations must be identified. To

see the effect of the dependence in Fig-
ure 3(a), it is often helpful to unroll a few
iterations as in Figure 3(b). Figure 3(c)

shows the DDG of the loop body. In this

example, all dependence are true depen-
dence. The arcs 1 + 2, 2 + 3, and 3 + 4

are loop independent and the arc 1 + 1
is a loop-carried dependence. The differ-

ence (in iteration number) between the

source operation and the target operation
is denoted as the fh-st value of the pair

associated with each arc. Figure 4 shows
a similar example in which the loop-

carried dependence is between iterations

that are two apart. With this less restric-
tive constraint, the iterations are more
overlapped.

It is common to associate a delay with

an arc, indicating that a specified num-
ber of cycles must elapse between the
incident operations. Such delay is used to

specify that some operations are multi-

cycle, such as a floating point multiply.
An arc a + b is annotated with a min

time that is the time that must elapse
between the time the first operation is
executed and the time the second opera-
tion is executed. Identical operations
from separate iterations may be associ-
ated with distinct nodes. An alternative
representation of nodes lets one node
represent the same operation from all
iterations. Because operations of a loop

behave similarly in all iterations, this is
a reasonable notation. However, a depen-
dence from node a in the first iteration to
b in the third iteration must be distin-

ACM Computmg Surveys, Vol 27, No 3, September 1995

for (i=l; i<=n; i++)

01: a[i+ 2] = a[i] + 1

02: b[i] = ah+ 2] / 2

03: c[i] = b~] + 3

04: dfi]=cfi]

(a)

ITERATIONS

I b[llW;;,:l;IT a[3 = a[l] + 1 a[4] = u[2] + 1

~ c[l] = b[l] + 3
d[2] = C[2]

[
d[l] = C[l] c[3] = b[3] + 3

d[3] = C[3]

!
2,1)

1

(0,1)

2

(0,1)
3

(0,1)
4

(b)

(c)

ITERATIONS

dif
I 1

II:

12:

~13:

M 14:

E 15:

16:

17:

[
“1 .1,

mi
22”11

33 2 2“”1. .1

443 322’ 1.,1

44 3 3 2 J!

4433

(d) 44

Figure 4. (a) Loop body code. (b) First three itera-
tions of unrolled loop (c) DDG. (d) Execution sched-

ule of iterations.

guished from a dependence between a
and b of the same iteration. Thus in
addition to being annotated with min
time, each dependence is annotated with
the dif that is the difference in the itera-
tions from which the operations come. To
characterize the dependence, a depen-
dence arc, a + b, is annotated with a
(dif, rein) dependence pair. The dif value
indicates the number of iterations the

Software Pipelining “ 373

dependence spans, termed the iteration
difference. If we use the convention that
a m is the version of a from iteration m,
then (a + b, dif, rein) indicates there is
a dependence between am and b m+”’,
V m. For loop-independent arcs, dif is
zero. The minimum delay intuitively rep-
resents the number of instructions that
an operation takes to complete. More
precisely, for a given value of rein, if am
is placed in instruction t (1~), then b ~ + ~’ ~
can be placed no earlier than It+,.,,,.

Table 1 shows examples of code that
contain loop-carried dependence. For the
code shown, a precedes b in the loop.
The loop control variable is i, y is any
variable, m is an array, and x is any
expression. For example, the first row
indicates that m is assigned a value two
iterations before it is used. Thus it is a

true dependence with a dif of 2.
If each iteration of the loop in Figure

3(a) is scheduled without overlap, four
instructions are required for each itera-
tion as no two operations can be done in
parallel (due to the dependence). How-
ever, if we consider operations from
several iterations, there is a dramatic
improvement.2 In Figure 3(e) we assume
four operations can execute concurrently
allowing all four operations (from four
different iterations) to execute concur-
rently in 11.

When operations from all iterations are
scheduled simultaneously, operations are
scheduled as early (in execution time) as
possible. However, if one had to store the
code from all iterations of the unrolled
loop, it would be prohibitive as there
would be many copies of each operation.
Thus one seeks to minimize the code
needed to represent the improved sched-
ule by locating a repeating pattern in the
newly formed schedule. The instructions
of a repeating pattern are called the ker-
nel, 2?, of the pipeline. In this paper, we
indicate a kernel by enclosing the opera-
tions in a box as shown in Figure 3(e).

z Scheduling in a parallel environment is some-
times called compaction as the schedule produced is
shorter than the sequential version.

ACM Computmg Surveys, Vol. 27, No 3, September 1995

374 e V. H. Allanet al.

Tablel. Dependence Examples

Instruction DDG A 7’C

Label Instruction Arc Type Dif

m[i+2]=x

; y = m[i] a-b true 2

y=m[i +3]

: m[i] = x a~b anti 3

m[i] = x

: y=m[i–2] a-b true 2

y = m[i]

; m[i–3]=x a~b ant i 3

yzt a+b anti o
; t=x+i b-+a true 1

t=x+i a-+b true o
; y=t b~a anti 1

y=x+i

: if(x>2)y=t a~b output o

k
ITERATIONS

1

for i II: 1 1 1

O~:a[i]=i*t
(0,1) T 12:

(1,1)
2

I

0, : b[i] = U[Z] * b[i - 1] 2
M Is: 3,4 2

03: c[i] = b[i]/n E 14: 3%4 2

04: d[i] = b[i] % n (0,1) 0,1) Is: 3,4

3 4

(a) (b) (c)

Figure 5. (a) Loop body code. (b) DDG, (c) Schedule.

The kernel 1s the loop body of the new
loop. Because the work of one iteration is
divided into chunks and executed in par-
allel with the work from other iterations,
it is termed a pipeline.

There are numerous complications that

can arise in pipelining. In Figure 5(a), OS
and Oi from the same iteration can be
executed together as indicated by 3, 4 in
the schedule of Figure 5(c). Note that
there is no loop-carried dependence be-

tween the various copies of O1. When

scheduling operations from successive it-
erations as early as dependence allow

(termed greedy scheduling), as shown in
Figure 5(c), O ~ is always scheduled in
the first time step Il. Thus the distance

between O ~ and the rest of the opera-
tions increases in successive iterations. A
cyclic pattern (such as those achievable
in other examples) never forms. In the
example of Figure 6(b),3 a pattern does

ACM Computmg Surveys Vol 27, No 3, September 1995

Software Pipelining ● 375

~?

(0,1)

2 5

(0,1) 0,1)

@

(0,1)
3

(a)

14:
M

15:
E

16:

17:

&:

ITERATIONS
1

n21

3,5 2

4 3,5

41

2

3,5

4

(b)

11: 1
ITERATIONS

12: 2 1

13: 3,5 5

~4:421

15: 3,4 2

1
16: 5 1,5

2
IT: 3,4 2

3,5 18:
3,4 1

Ig : 2,5

(c)

Figure 6. (a) DDG. (b) Schedule that forms a pattern. (c) Schedule that does not form a pattern,

emerge and is shown in the box. Notice it
contains two copies of every operation,
The double-sized loop body is not a seri-
ous problem as execution time is not af-
fected, but code size does increase in that
the new loop body is four instructions in
length. Note that delaying the execution
of every operation to once every second
cycle would eliminate this problem.

In Figure 6(c) a random (nondetermin-
istic) scheduling algorithm prohibits a
pattern from forming quickly. As can be
seen, care is required when choosing a
scheduling algorithm for use with soft-
ware pipelining.

1.4 Initiation Interval

In Figure 3(e) a schedule is achieved in
which an iteration of the new loop is
started in every instruction. The delay
between the initiation of iterations of the
new loop is called the initiation interval

(11) and is the length of 2. This delay is
also the slope of the schedule that is
defined to be min/dif. The new loop body
must contain all the operations in the
original loop. When the new loop body is
shortened, execution time is improved.

3 It is assumed that a maximum of three operations
may be performed simultaneously, General re-
source constraints are possible, but we assume
homogeneous functional units in this example for
simplicity of presentation.

This corresponds to minimizing the effec-
tive initiation interval that is the aver-
age time one iteration takes to complete.
The effective initiation interval is
(11/iteration_ct), where iteration-et is

the number of copies of each operation in
the loop W.

Figure 4(d) shows a schedule in which
two iterations can be executed in every
time cycle (assuming functional units are
available to support the eight operations).
The slope of this schedule is min/dif = ~.

Notice that this slope indicates how many
time cycles it takes to perform an itera-
tion. Because two iterations can be exe-
cuted in one cycle, the effective execution
time for one iteration is + time cycle.

Notice that because %’ does not start or
finish in exactly the same manner as the
original loop L, instruction sequences a
and Q are required to respectively fill
and empty the pipeline. In Figure 3(d), a
consists of instructions 11, 12, and IS and
is termed the prelude. Q consists of in-
structions 15, 16, and IT and is termed

the postlude. If the earliest iteration rep-
resented in the new loop body is iteration
c, and the last iteration represented in
the new loop body is iteration d, the
span of the pipeline is d – c + 1. If Y
spans n iterations, the prelude must start
n — 1 iterations preparing for the
pipeline to execute, and the postlude
must finish n – 1 iterations from the
point where the pipeline terminates.

ACM Computmg Surveys, Vol 27, No 3, September 1995

376 e V. H. Allan et al.

H
xx

(0,1)

~(!)x

x 5

(a’)

1

2

3,4

5

Figure 7. (a) DDG with reservation style resource constraints denoted

~chedule (c) Final schedule, stretched because of resource constraints

Thus Lk = c&?” Q where k is the num-
ber of times L is executed, m is the
number of times z is executed (m =

(k – n + 1)/iteratio~z-et, for k > n), and
a and Q together execute n – 1 copies of
each operation.

1.5 Factors Affecting the Initiation Interval

Resource Constrained II. Some meth-
ods of software pipelining require an es-
timate of the initiation interval. The ini-
tiation interval is determined by data
dependence and the number of conflicts
that exist between operations. The re-
source usage imposes a lower bound on
the initiation interval (11,,,). For each

resource, we compute the schedule length
necessary to accommodate uses of that
resource. For the example of Figure 7(a),
O ~ requires resource 1 at cycle 1 (from
the time of issue) and resource 3 at cycle
3. If we count all resource requirements
for all nodes, it is clear that resource 1 is
required 3 times, resource 2 is required 4
times, and resource 3 is required 4 times.
Thus at least four cycles are required for
the kernel containing all nodes. The rela-

11

1~

13

14

15

16

17

18

19

1

---1
1

3,’4

~

5

110 3,4

111

112 5

(c)

by boxes. (b) Flat

tive scheduling of each operation of the
original iteration is termed a flu t sched-
ule, denoted :5, and shown in Figure 7(b).
The schedule with a kernel size of 4 is
shown in Figure 7(c).

Dependence Constrained II. Another
factor that contributes to an estimate of
the lower bound on the initiation interval
is cyclic dependence. There are several
approaches for estimating the cycle
length due to dependence, ll~.P. We ex-
tend the concept of (dif, min) to a path.
Let 0 represent a cyclic path from a node
to itself. Let minfl be the sum of the min
times on the arcs that constitute the cy-
cle and let dife be the sum of the dif
times on the constituent arcs. In Figure
8, we see that the time between the exe-
cution of a node and itself (over three
iterations, in this case) depends on H. In
general, the time that elapses between
the execution of a and another copy of a
that is dif, iterations away is H ~ dife. II

must be large enough so that 11 * dife >
mine. Because each iteration is offset
dzfti, after II iterations, II* dif~ time
steps have passed. Arcs in the DDG fol-

ACM Computmg Surveys, Vol 27, No 3. September 1995

Software Pipelining “ 377

ITERATIONS

T

I

M

E
mine

t

1—

a

—

L--

2

—

a

—

1
-1II

—

a

—

—

a

—

J

1dife *II

difo

Figure 8. The effect of 11 on cyclic times.

low the transitive law, therefore. a path are scheduled must exceed the mini-
6 containing a series of arcs with a >um
of the minimum delays (mine) and a sum
of the iteration differences (difo) is func-
tionally equivalent to a single arc from
the source node of the path to the desti-
nation node with a dependence pair (dife,
mine). As the cyclic dependence also
must be satisfied, the transitive arc a ~
a, representing a cycle, must satisfy the
dependence constraint inequality where
the function U(x) returns the sequence
number of the instruction in which the
operation sequence x begins in Y; Let
Time(x‘) represent the actual time in
which operation x from iteration i is
executed. Then the following formula
results:

‘d cycles 0, Time(al+d’ffl) – Time(al)

> mine.

In other words, the time difference in
which cyclically dependent operations

mum time. Because Time(al) = u(a)
and Time(al+d’f”) = a(a) + H* dife, this
formula becomes:

‘d cycles 9, a(a) +II*difO – a(a)

This can be rewritten as:

V cycles 0, 0> mine – II* diffl.

The lower bound on the initiation inter-
val due to dependence constraints (IId,P)

can be found by solving for the minimum
value of H.

b’ cycles 0, 0> mine – IId,P * difti (1)

[–1minfl
II~eP =

‘ax(v CYc’es0) difd “
(2)

For the example of Figure 7, ll~.P = 3
as the only cycle has a min of 3 and
a dif of 1. The actual lower bound on
the initiation interval is then H =

ACM Computing Surveys, Vol 27, No 3, September 1995

378 ● V. H. Allan et al.

Iterations Iterations

T

I

M

E

dif
I-i
1—

a

b

.

2

1

1J!’fa,b

a

b

—

(a)

{a+ b,d~f = l,min}

T

I

~a,b = rein– II* dif M

nin
E

I11

-1

d,f

n

12

7

:

b

a

b

a

(b)

Figure 9. The effect of II on muumum times between nodes, Each rectangle represents the schedule of

one Iteration of the orlgmal loop. [a) Posltlve value for Ma ~, indicates a precedes b (b) A negatme value
for Mu ~ indicates a follows b.

max(ll~pP, 11,,,), which is 4 for this ex-
ample. Any cycle having min /dif equal
to II is termed a critical cycle.

1.6 Methods of Computing //

1.6.1 Enumeration of Cycles

One method of estimating II~,P simply

enumerates all the simple cycles [Mateti
and Deo 1976; Tiernan 1970]. The maxi-
mum (min/ciif) for all cycles is then the
H,,, [Dehnert et al. 1989].

1.6.2 Shortest Path Algorithm

Another method for estimating II~,P uses
transitive closure of a graph. The transi-
tive closure of a graph is a reachability
relationship. If the dependence con-
straints are expressed as a function of II,
a single calculation to compute the tran-
sitive closure is sufficient. This symbolic
computation of closure allows the closure
of the dependence constraints to be cal-
culated independently of a particular
value for II. The dependence constraint

between nodes in the closure is repre-
sented by the set of distances4 by which
the two nodes must be separated in Y– in
order to satisfy dependence. In the flat
schedule, the distance, computed from a
single(dif, min) dependence pair for an

arc a + b, is given by Ma, b = min –
H Y dif. We would like to compute the
minimum distance two nodes must be
separated, but as this information is de-
pendent on H (which is a variable) one
cannot simply take the maximum dis-
tance for all paths between a and b. As
shown in Figure 9, we see that an arc
from a to b with a di~ of 1 implies that b

must follow a (in the flat schedule) by
min — H time units. In general, an arc
(?2, + nj, dif, rein) is equivalent to the
arc (n, ~ nj, O, min – dif * II), provided
H is known. As shown in Figure 9(b),
this new minimum value can be nega-
tive. For example, Ml, ~ = – 3 indicates

4 This distance M referred to as the cost In transi-
tive closure algorithms

ACM Computing Sumeys. Vol 27, No 3, September 1995

Software Pipelining “ 379

that n ~ can precede n, in the flat sched-
ule by 3 time units. This computation
gives the earliest time nJ can be placed

with respect to n ~.
If there are two paths from a to b, one

having (cZif, m in) = (3, 8) and the other
having (cZif, rnin) = (1, 5), it is not evi-

dent which represents the stricter con-
straint. In the first case, we have M,, ~ =
8 – 3 II whereas in the second case we
have M, ~ = 5 – 1 ~ 11. If 11<2, the first
is larger. For example, if 11 = 1, 8 – 3 >

5 – 1. If H >2, the (dif, nlin) for the
second arc represents the larger dis-
tance. For example, when 11 == 2, 8 –
3 ~~2<5 – 2. Thus both distances be-

tween a and b must be considered un-
less one can be eliminated by discovering
11 is sufficiently large. In the previous
example, if 11 is known to be at least 2

(due to the computation of lower bounds),
then whenever (1, 5) is satisfied so is (3,
$), and the latter constraint can be ig-
nored. Computing the closure of the de-

pendence constraints is equivalent to
finding the longest path between each
pair of nodes in the strongly connected
component. By Equation (l), we see cy-
cles always have a zero or negative dis-
tance. Therefore, by reversing the sense
of all inequalities, one can use Floyd’s
All-Points Shortest Path Algorithm to

calculate the all-points longest path
[Smith 1987].’

Let N be the set of nodes in the graph.
The cost matrix C is defined as follows:
entrY C, ~ contains the set of all depen-

dence information that influences the

longest path between i and j, that is, the
(dif, min) dependence pairs representing
the transitive closure of the dependence
arcs between node i and node j. Initially
the C,j set contains the (dif, rnin) depen-

dence pairs of arcs in the strongly con-
nected component. The closure of the
dependence constraint is calculated as

5 Floyd’s original algorithm handles negative costs
if all cycles have positive costs

follows :

‘dhEN’v’i~NVj~N

C,, = Ma.~Cost (C’,,, AddCost (C,k , C,,)) .

The function AddCost creates an up-
dated cost set by adding every de-
pendence pair in the first set to every
dependence pair in the second set, com-
ponent-wise. The function MaxCost re-
turns a set that is the union of the two
sets with the redundant dependence pairs
removed. A cost is redundant if it is un-
necessary because it provides no addi-
tional constraints. Determining whether
one of (difl, rrzinl) or (difz, nainz) is re-
dundant involves two separate tests. If
rninl – H*(difl) < minz – ll-(difz),
then the distance associated with

(difz, mirzz) is currently longer than the
distance associated with (difl, nzinl). If
difl > clifz, then for all larger values of

11, the distance of (difz, nzin ~) remains
longer due to the fact that 11 has a nega-
tive coefficient in the distance formula.

Formally, given a dependence pair

(difl, nzinl) and any other dependence
pair (difz, rninz) in the distance set, then
(difl, nzinl) is redundant if difl z difz
and mini — nzinz < II * (difl – difz).
From the previous example in which
pairl = (3, 8) and pairz = (1, 5), if we
assume H = 2, pairl can be shown to be
redundant as3>land8–5<2*(3–
1).

For an initiation of H, the cost func-
tion (cost 11(i, j)) gives the number of in-
structions by which node j must follow
node i in the flat schedule. The depen-
dence constraint is defined as follows:

cost rr(i, j)

= ‘axfvf~,f,,~,)~c,,) lnin –IIY dif.

After the closure of the dependence con-
straints is calculated, the dife and rninti
values for all cycles 6 in the 13DG are

available to calculate 11,1,], (the minim-

um initiation interval due to depen-

dence constraints). This is similar to

computing the all-points longest path of

ACM Cornput]ng Surveys, V(,1 27, N,, 3, September 1995

380 “ V. H. Allan et al.

Table 2. Transltlve Closure of Graph

Source Destination

Node Node

, 1 . I . I . I .
I I 1 I L I a I 4 1~1
!

1 (2, 6),(3,6) (1, 4),(2,4) (o, 2),(1,2) (0, 3),(1,3) ‘ (o, 1)

2 (1,2) (1,4),(2,6),(3,6) (O, 2),(1,4),(2,4) (0,3),(1,5),(2,5) (1, 3)

3 (2. 4) (1. 2) (1. 4).(2.6).(3.6) (o, 1) (2, 5)

4 (2, 3) (1, 1) (1, 3),(2,5),(3,5) (1, 4),(2,6),(3,6) (2, 4)

5 (3, 5) (2, 3) (1, 1) (1, 2) (3, 6)

I I ,—, –, I ,–, —, I ,–, -,, \—, -,,\-,-,

(1, 2)

9

.

(o, 1)

(1, 1)

J

P

(o, 2)

3

Figure 10. Sample graph

a graph, the only difference being that
the distance depends on II. The diffl and
mine values for a cycle () containing node

i are found in the C,, cost set, for exam-
ple, the entries of the main diagonal.

Table 2 shows C, the result of calculat-
ing the closure of the dependence con-
straints for the graph of Figure 10. Every
simple path between nodes is repre-
sented in this closure table. Trying a few
simple cases will convince you that com-
plex cycles (having more repeated nodes

than the initial and final node) onlv add.
redundant information when computing
the maximum (dif, min) of a cycle. How-
ever, no attempt has been made to throw
out other redundant information in this
exam~le. Once the closure of the de~en-
dence’ constraints has been calculat~d, a
lower bound on the initiation interval
due to dependence constraints can be
found using Equation (2). The (dif, rein)

pairs on the diagonal of Table 2 are the

(1,1)

dependence pairs corresponding to the
cycles in the graph. Substituting the de-
pendence pairs from the diagonal of Table
2 into Equation (2) yields:

Four is the estimate on the lower bound
of the initiation interval due to depen-
dence constraints.

1.6.3 Iterat[ve Shortest Path

The method for computing II~,p can be
simplified if one is willing to recompute
the transitive closure for each possible
II. For a given II, it is clear which of two
(dif, m in} pairs is more restrictive. Thus

the processing is much simpler as the

cost table need only contain one (dif,

rnin) pair [Huff 1993; Zaky 1989]. Be-

cause the cost of computing transitive

closure grows as the square of the num-

ACM Computmg Surveys, Vol 27, No 3, September 1995

(O,l)j

Figure 11. Sample graph.

ber of values at a cost entry, this is a
sizable savings.

Path algebra is an attempt to formu-
late the software pipelining problem in
rigorous mathematical terms [Zaky
1989]. Zaky constructs a matrix M that
indicates for each entry M,, ~ the min
time between the nodes i and j. This
construction is simple in the event that
the dif value between two nodes is zero.
Assume a == n, and b = nj. If there is an
arc (a ~ b, dif = O, rein), M, ~ = min.
As is shown in Figure 9, we see that an
arc (a ~ b, dif = 1, rein) implies than nj
must follow n, by min – H time units.
In general, an arc (n, ~ n], dif, rein)
represents the distance min – dif * H.

This computation gives the earliest time
nj can be placed with respect to n, in the

flat schedule. The drawback is that be-
fore we are able to construct this matrix,
we must estimate 11. The technique al-
lows us to tell if the estimate for 11 is
large enough and iteratively try larger 11
until an appropriate 11 is found.

Consider the graph of Figure 11. For
an estimate of 11 = 2, the matrix M is
shown in Figure 12(a). Note that accord-
ing to this matrix (for restrictions due to
paths of length one), n~ and n4 can exe-
cute together (M2, ~ = O). Even though
there must be a min time of 2 between
n~ of one iteration and n ~ from the next
as given by (n~ ~ n4, 1,2), the delay be-
tween iterations (11) is two. Hence no

Software Pipelining “ 381

1 2 3 4 5 6 7

1 –cc 1 –w –m –co –cc –w

2 –cc –m –1 –cc –cc 1 –w

3 –w –W –co cl –cc –00 –m

4 –cc –cc -w -cc 1 –cc –co

5 –1 –w –cc –cc –cc –W –cc

6 –cc –00 –w –co -’m -cc 1

7 –cc –lx –m -cc –co –3 –co

[a) Original Matrix M

T

1
1 -m

2 –cc

3 –m

40

5 –cc

6 -m

7 –w

2

—w

–’x

—co

–cc

o

-m

–cc

lT-

12

101

2 –1 o

301

401

5 –1 o

6 –co –w

7 –00 –co

TT
34.5

0 –m –cc

–w –1 –CO

–m –cm 1

–CO –m –cc

E
(b) M2

?T
345

001

–1 –1 o

001

0 0 1
–1 –1 o

–@J]-co]-co

—m –cc –cc

6

2

—cm

–cc

–m

–2

–w

7

—co

2

-m

–cc

-m

—cc

–2

t

67

23

12

23

23

12

–2 1
–3 –2

(c) Closure

Figure 12. Closure computation.

further distance between nq and nL is
required in the flat schedule:

Zaky defines a type of matrix multiply
operation, termed path composition, such
that M 2 = M 8 M represents the mini-
mum time difference between nodes that
is required to satisfy paths of length
two. For two vectors (al, az, a~, aq) and

(b,, bz, b,, b~), (al, az, a,, al) @ (b,, bz,
b~, b4)=al@ bl@a2@b2@a~@b~@
a4 @ b4. Notice that this is similar to an
inner product. @ has precedence over Q.
@ is addition, and Q is maximum.6 For
example, to get M 2(1, 6) we compose row

e It may seem strange that @ is addition, but the

notation was chosen to show the similarity between
path composition and inner product.

ACM Computmg Surveys, Vol 27, No 3, September 1995

382 . V. H. Allan et al.

1 of the preceding matrix with column 6
as follows:

[–z, ~,-~, -x,

@J–z, l, –z,

=7nax(-=,2,

= 2.

Thus there is a
edges (indicated
i%?) between n,

—Y. —-x —>> %]

—-L —J, —-L, — 3]

—7. ,—-X, —-% —-%,> —’X)

path composed of two
by the superscript on
and n. such that n.. “ .

must follow n ~ by two time steps. We can
verify this result by noting that the path
which requires ne to follow n ~ by two is
the path 1 ~ 2-6 that has a (clif, mm)

Of(o, 2).
The matrix M is a representation of

the graph in which all ciif values have
been converted to zero. Therefore, edges
of the transitive closure are formed from
adding the rnin times of the edges that
compose the path. Path composition, as
just defined, adds transitive closure
edges. In the technique of Section 1.6.2,
edges of the transitive closure are added
by summing both the dif and nzin values
composing the path. Zaky does the same
thing by simply adding the minimum
values on each arc of the path. This is
identical as difs in Zaky’s method are
always zero. Because there can be multi-
ple paths between the same two nodes,
we must store the maximum distance
between the two nodes. Thus the matrix
iVf2 is shown in Figure 12(b). Formally.
we perform regular matrix multiplica-
tion, but replace the operations (., +)
with (@, @), where @ indicates the m in

times that must be added, and @ indi-
cates the need to retain the largest time
difference required.

C’learly, we need to consider con-
straints on placement dictated by paths
of all lengths. Let the closure of M be
~(M) =k?@ M7 @ M~ @ . . . @Mu-l

where n is the number of nodes and M’

indicates i copies of M path multiplied
together. Only paths of length n – 1 need
to be considered as paths that are com-
posed of more arcs must contain cycles
and give no additional information. We
propose using a variant of Floyd’s algo-

for (k == 0; k<nodect; k++)

for (i = O; i<nodect; i++)

if (Af[i] [k] > -m)

for (j = O; j<nodect; j++)

{ t =lbf[i][k]+lkf[k]~];

if (t > .M[i]~])

J4[i]~]=t;

}

Figure 13. A \ anant of Floyd’s algorithm for path

closure

rithm as shown in Figure 13 to make
closure more efficient. r(M) represents
the maximum distance between each pair
of nodes after considering paths of all
lengths.

A legal 11 will produce a closure ma-
trix in which entries on the main diago-
nal are nonpositive. For this example, an
11 of 2 is clearly minimal because of
II~,P. The closure matrix contains non-
posltive entries on the diagonal, indicat-
ing an II of 2 is sufficient. If an II of 1 is
used, the matrix of Figure 14 results.
The positive values on the diagonal indi-
cate 11 is too small.

Suppose we repeat the example with
II = 3 as shown in Figure 15. All diago-
nals are negative in the closure table.
For instance, O, must follow O ~ by at
least – 4 time units. In other words, 01
can precede O ~ from the next iteration
by 4 time units. Inasmuch as all values
along the diagonal are nonpositive, II = 3
is adequate. Methods that use an itera-
tive technique to find an adequate II try

various values for II in increasing order
until an appropriate value is found.

1 64 L/near Programming

Yet another method for computing II~,,r,
is to use linear programming to minimize
II given the restrictions imposed by the
(dif, min) pairs [Govindarajan et al.
1994]

1.7’ Unrolling / Replication

The term unrolling has been used by
various researchers to mean different

ACM Computmg Sur\eys, Vol 2? INO 3 iSept emher 1995

Software Pipelining “ 383

—

i
2

3

4

5

6

7—

1
—cm

–ccl

–m

–co

o
–w

–m

2

1

–cc

–cc

–Oc

–w

—m

—m m3456

–cc –cc –m —co

o–co-ml

–cc 1 –cm –cc

–w –cc 1 –cc

–cc –m —co –m

–m –m –CO –cc

—cc –m –ccl –1

7

–ccl

—m

—co

–co

—co

1

–cc

(a)

1 2 3 4 5 6 7

1 3 4 4 .5 6 8 9

2 2 3 3 4 5 7 8

3 2 3 3 4 5 7 8

4 1 2 2 3 4 6 7

5 3 4 4 5 6 8 9

6 –02 –m –cc –m –cc o 1

7 –co –co –cc –cc –m –1 o

(b)

Figure 14. (a) Original matrix (b) Closure for

II = L

transformations. A loop is completely un-
rolled if all iterations are concatenated
as in Figure 16(b). We use the term repli-
cated when the body of the loop is copied
a number of times and the loop count
adjusted as in Figure 16(c), Often the
term unrolling is used to represent ei-
ther concept [Rau et al. 1992; Zima and
Chapman 1991]. We use the term un-
rolling to represent complete unrolling
and replication to represent making
(fewer than the loop count) copies of the
loop body. All replicated copies must ex-
ist in the newly formed schedule.

Replication is helpful in two different
ways. For algorithms in which iteration
differences of greater than one cannot be
handled, replication eliminates the oc-
currence of these nonunit iteration differ-
ences. For other algorithms, replication
allows fractional initiation intervals by
letting adjacent iterations be scheduled
differently. Time optimality is possible
because the new loop body can include
more than one copy of each operation.
This is an advantage that can be achieved

T
1

1 –co

2 –00

3 –m

4 –m

5 –2

6 –cc

7 –co

2

1

–’m

–co

–m

–cc

–cm

TT
3 41 5 6

—co –’xl –w –w

–2 –co –m 1

–co o –cc –cm

–m –m –1 –m

–cc –m –cm –03

7

–52

–m

–m

–m

—co

(a)

1 2 3 4 5 6 7

1 –4 1 –1 –1 –2 2 3

2 –5 –4 –2 –2 –3 1 2

3 –3 –2 –4 o –1 –1 o

4 –3 –2 –4 –4 –1 –1 o

5 –2 –1 –3 –3 –4 o 1

6 –m –03 –m –CO –CO –4 1

7 –m –m –cc –CQ –m –5 –4

(b)

Fiaure 15. (a) Orminal matrix. (b) Closure for
11-= 3,

by any technique by simple replication,
but is complicated by the facts that (1)
any replication increases complexity, and

(2) it is not known how much replication
is helpful. Unrolling is used in order to
find a schedule (see Section 3) in many
methods. Many iterations may be exam-
ined to find a naturally occurring loop,
but it is not required that there is more
than one copy of each operation in the
new loop body.

1.8 Support for Software Pipelining

Software pipelining algorithms some-
times require that the loop limit be a
run-time constant. Thus the pipeline can
be stopped before it starts to execute op-
erations from an iteration that should
not be executed. Speculative execution

refers to the execution of operations be-
fore it is clear that they should be exe-
cuted. For example, consider the loop of
Figure 17(a) that is controlled by

ACM Comput]ng Surveys, VOI 27, NrJ 3, September 1995

384 * V. H. Allan et al

For i= 1 to 4

a

b

a

b

a’

b’

a”
~!,

a>,,

b>, >

Fori=lto2

a

b

a’

b’

(a) (b) (c)

Figure 16. (a) Loop code (b) Completely unrolled loop. (c) Rephcated
loop

ITERATIONS

for (i = 0; d[i]<MAX;i++)

01: a[i+ 1] = a[i] + 1 T 14: 4321

02: b[i] = a[i + 1] / 2
I Is: 4321

03: c[i] = b[i] + 3
M 16

04: d[i] = c[i] u h
4321

u

17

Is: h4321

432 I

(a) (b)

Figure 17. (a) LOOP body code (b) Schedule (Dart enclosed m tnamzle should not have been
executed)

for (i=t); d[i]<iYAX; 1++). Suppose
that 5 iterations execute before CI[~] is

greater than IWAX. The operations in the
triangle in Figure 17(b) should not have

been executed. Because we are executing
operations from several iterations, when
the condition becomes false, we have exe-
cuted several operations that would not
be executed in the original loop. Because
these operations change variables, there
must be some facility for “backing out”
of the computations. When software

pipelining is applied to general loops,
the parallelism is not imrmessive unless

ther~ is support for specul~tive execution.
Such speculative execution is supported
by various mechanisms, including vari-
able renaming or delaying speculative
stores until the loop condition has been
evaluated.

2. MODULO SCHEDULING

Historically, early software pipelining at-
tempts consisted of scheduling opera-

ACM Computmg Surveys, Vol 27, No 3, September 1995

Software Pipelining “ 385

II: 1

12:

Fl: 1 Is:
7 1

F2 : 14:

F3: 2,3

F4: 4,5
: b

F5: 6 I?: 6 2,3

F6: 7 Is: 7 4,5

19: 6

110: 7

(a) (b)

Figure 18. (a) Flat schedules with II = 2. (b) The resulting
re-~lar pipeline.

tions from several iterations together and
looking for a pattern to develop. Modulo

scheduling uses a different approach in
that operation placement is done so that
the schedule is legal in a cyclic interpre-
tation [Rau and Glaeser 1981; Rau et al.
1982]. In other words, when operation a
is placed at a given location, one must
ensure that if the schedule is overlapped
with other iterations, there are no re-
source conflicts or data dependence viola-
tions. In considering the software pipeline
of Figure 18(b), a schedule for one itera-
tion (shown in Figure 18(a)) is offset and
repeated in successive iterations. If the
schedule for one iteration is of length f,
there are [f/n 1 different iterations rep-
resented in the kernel (new loop body).
For this example, the span is 3 ([6/21) as
operations in the kernel come from three
different iterations. The difficulty is in
making sure the placement of operations
is legal given that successive iterations
are scheduled identically. In making that
determination, it is clear that the offset

(which is just the initiation interval) is
known before scheduling begins. Because
of the complications due to resource con-
flicts, we can only guess at an achievable
initiation interval. As the problem is a
difficult one, there is no polynomial time
algorithm for determining an optimal ini-
tiation interval. The problem has been

shown to be NP-complete [Hsu and
Davidson 1986; Lam 1987]. This problem
is solved by estimating 11 and then re-
peating the algorithm with increasing
values for H until a solution is found.

Locations in the flat schedule (the rela-
tive schedule for the original iteration)
are denoted Fl, Fz, ..., F~. The pipelined
loop, %, is formed by overlapping copies
of Y– that are offset by 11. Figure 18(a)
illustrates a flat schedule and Figure
18(b) shows successive iterations offset
by the initiation interval to form a
pipelined loop body of length two. This is
termed modulo scheduling in that all op-
erations from locations in the flat sched-
ule that have the same value modulo
H are executed simultaneously. In this
case, operations from F1, F3, and F5
(~ : i mod 2 = 1) execute together and
F2, FA, and F6 (F, : i mod 2 = O) execute
together. This type of pipeline is called a
regular pipeline in that each iteration of
the loop is scheduled identically, that
is, Y– is created so that if a new iteration
is started every H instructions, there
are no resource conflicts and all of the
dependence are satisfied.

Most scheduling algorithms use list
scheduling in which some priority is used
to select which of the ready operations is
scheduled next. Scheduling is normally
as early as possible in the schedule,

ACM Computing Surveys, Vol 27, No 3, September 1995

386 “ V. H. Allan et al.

1 1
II:

12:

13:

14:

Is:

16:

IT:

18:

Is:

Ilo:

(a)

2,3

4.5

6 1

7

2,3

4,5

6

7

(b)

II:

Iz :

13:

14:

Is:

IG:

IT:

Is:

Ig :

Ilo:

111:

2,3 1’

45

El

6 2’,3’ 1

7 4’,5’

6’ 2,3 1’

7’ 4,5

6 2’,3’

7 4’,5’

6’

112:
7’

(c)

Figure 19. (a) DDG (b) Schedule (c) Schedule after renammg to ehmmate loop-carried antldepen
dence

though some algorithms have tried
scheduling as late as possible or alternat-

ing between early and late placement
[Huff 1993]. In modulo scheduling, oper-

ations are placed one at a time. Opera-
tions are prioritized by difficulty of place-
ment (a function of the number of legal
locations for an operation). Operations
that are more difficult to place are sched-

uled first to increase the likelihood of
success. Conceptually, when you place

operation a into a partially filled flat

schedule, you think of the partial sched-

ule as being repeated at the specified
offset. (There are span copies of the
schedule.) A legal location for a must not
violate dependence between previously
placed operations in any of these copies

and a. In addition, there must not be

resource conflicts between operations

that execute simultaneously in this
schedule.

Consider the example of Figure 19 in
which the dependence graph governing

the placement is shown along with the
schedule. Suppose operation 6 is the last
operation to be placed. We determine a
range of locations in the flat schedule in

which 6 can be placed. Clearly operation
6 cannot be placed earlier than F~ (Is
and Ig) as it must follow operation 4 that
is located in F~ (Ih and IR). However,
this is also the latest it can be scheduled.
When we consider iteration 2 (that is
offset by the initiation interval of 4), op-
eration 1 from iteration 2 (scheduled in
1~) must not precede operation 6 from
iteration 1. Thus there is only one legal
location for operation 6 (assuming all
other operations have been scheduled).
All loop-carried dependence and con-
flicts between operations are considered
as the schedule is built. The newly placed
operation must be legal in the series of
offset schedules represented by the previ-
ously placed operations. This is much dif-
ferent from other scheduling techniques.
Other techniques schedule an operation
from a particular iteration with previ-
ously scheduled operations from specific
iterations. This technique schedules an
operation from all iterations with pre-
viously scheduled operations from all
iterations. In other words, one cannot
schedule operation a from iteration 1
without scheduling operation a from all
iterations.

ACM Computmg Surveys, Vol 27, No 3, September 1995

Several different algorithms have been
derived from the initial framework laid
out by Rau et al. [1981; 1982].

2.1 Rfkx3ulo Scheduling via Hierarchical
Reduction

Several important improvements over the
basic modulo scheduling technique were
proposed by Lam [1988]. Her use of mod-
U1Ovariable expansion in which one vari-
able is expanded into one variable per
overlapped iteration has the same moti-
vation as architectural support of the ro-
tating register. Rau originally included
the idea as adapted to polycyclic archi-
tectures as part of the Cydra 5, but the
ideas were not published until later due
to proprietary considerations [Rau et al.
1989; Beck et al. 1993]. The handling of
predicates by taking the or (rather than
the sum) of resource requirements
(termed hierarchical reduction) of dis-
joint branches is a goal incorporated
into state of the art algorithms. Hsu’s
[1986] stretch scheduling developed
concurrently.

This algorithm is a variant of modulo
scheduling in which strongly connected
components are scheduled separately
[Lam 1988, 1987]. Although Lam uses a
traditional list scheduling algorithm,
several modifications must be made to
create the flat schedule.

Lam’s model allows multiple opera-
tions to be present in a given node of the
dependence graph. Because her method
breaks the problem into smaller prob-
lems that are scheduling separately, she
needs a way to store the schedule for a
subproblem at a node. Each strongly con-
nected component is reduced to a single
node, representing its resulting schedule;
this graph is termed a condensation. Be-
cause the condensed graph is acyclic, a
standard list-scheduling algorithm is
used to finish scheduling the loop body.

7 A strongly connected component of a digraph is a
set of nodes such that there is a directed path from
every node in the set to every other node in the set.
Strongly connected components can be found with
Tarjan’s algorithm [1972].

Software Pipelining “ 387

Modifying the DDG Model. Each
node in the DDG becomes a schedule of
instructions for the subproblem instead

of a single operation, Usage of resource j

is indicated by placing a mark in the jth
column of the table. Rows of the table
indicate time within the instruction

group. Figure 20 shows an example of
Lam’s DDG model. Columns represent
various resources and rows represent
time. Resource usage vectors are shown
in square brackets for each instruction
group. Node B consists of operations
scheduled in two time steps. In the first
time step, resources 3 and 4 are used.
The resource usage uector (p) to the right
of node B indicates how many times each
resource is used. P(B) = [1, 0, 2, 11 indi-
cating resource 3 is used two times
whereas resources 1 and 4 are used only
once.

The resource usage vector can be sub-

scripted to indicate the resource usage at
a given point in the schedule. For a given
node u consisting of Iu I time steps, p,,(j)
indicates the resource usage vector uti-
lized by node u in its .jth time step, for
O s j < Id. In Figure 20, PC(0) =
[0, 1, 1,0] and PC(I) = [0, 1,0,01, to-

gether giving Pc = [0,2, 1, O]. The maxi-
mum number of each resource type avail-
able per time step is contained in the
limit resource vector, R. For simplicity of
presentation, a single resource of each

type is assumed.

Scheduling the Connected Compo-
nents. When scheduling a node u of a
strongly connected component, the tran-
sitive closure of dependence along paths
from every node in the component to node
u must be considered. The shortest path
cost matrix discussed in Section 1.6.2 is
utilized.

Modulo scheduling uses the closure of

the dependence constraints to form a
range of locations in the flat schedule in

which an operation must be placed. Be-
cause this range often depends on the
placement of other nodes, the range for
all nodes is updated after each node is
scheduled. The initial dependence con-

ACM Computing Surveys, Vol 27, No 3. September 1995

388 . V. H. Allan et al.

x x

(0,3]

[1 ,0,2,1] [0,2,1,0]
x x

B

\T

Cxx

x x x

(1,1) (0,1)

.~
(1,1)

Figure 20. DDG model m which each node is an mstructlon
group.

straint range for each node u is defined
as follows:

Some care must be taken when using
these initial bounds. The lower bound
can be negative. Even though o-lO,C,(u) is
negative, the node should be scheduled
in instruction zero.

Nodes in N are scheduled in topologi-
cal order of the loop-independent sub-
graph. A topological order of a graph is
a sequential ordering of all nodes such
that, if there is an arc from a to b, a

comes before b in the order. The loop-

inclcpcncient subgruph is the graph of the

strongly connected component without
the loop-carried dependence arcs. A node
is data ready if all its predecessors al-
ready have been scheduled. When there
are more than two nodes data ready, the
one with the lowest upper bound (UU) is

Kchosen. When u is selected to be sc ed-
uled, it is placed in the first instruction
(in the range from 0-10,,,(u) to aUP(v)) that
does not cause a resource conflict.x If the

node cannot be scheduled in this range,
the scheduling algorithm fails for the
current initiation interval. The depen-
dence constraint range for a node may be
larger than 11 instructions. In this case,
if the node cannot be placed in 11 consec-

utive instructions,9 the algorithm fails
for the current initiation interval. When
the algorithm fails for the current initia-
tion interval, the initiation interval is
increased by one and the algorithm is
retried.

Once a node v has been scheduled, the
dependence constraint ranges of each re-
maining unscheduled node u must be
updated. The new lower bound is the
larger of its current value and the place-
ment location caused from the arc from u

to u (where L) has just been placed, and

thus m(u) is known). Similarly, the new

8 Other scheduling strategies may be beneficial
[Huff 1993]
9 Because the schedule M cychc, all cychc locatlons

are considered by looking at II consecutive loca-
tlons m the flat schedule. If an operation confhcts
with operations m 11 successive instructions, all

cyehc mstructlons have been exammed and there m
no point m contmumg.

ACM Computmg Surveys, Vol 27, No 3, September 1995

Software Pipelining “ 389

1)

Io :

II :

12:

13:

12

5

3

4

(a) (b) (c)

Figure 21. (a) Example of strongly connected component. (b) Loop-independent subgraph. (c) Schedule.

Table 3. Closure of Dependence Constraints for Strongly Connected Component

Source Destination

Node Node

1 2 I 3141.51

, I ,,-7 –,,
.,, I

L I 1(L, L)J l(~) *)J ~(u, L)J ~(u,d)} {(1, 3)}

3 I {(2, 4)} {(1,2)} {(1,4)} {(o, 1)} {(2, 5)}

4 I ((2. 3)1 4(1. 1)} {(1,3)} {(1, 4)} {(2, 4)}

1,. . . . {(1, 1)} {(1, 2)} {(3, 6)}

upper bound is the smaller of its current
value and the placement location caused
from the arc from u to U. The following
formulas are used to update the schedule
range:

ff,ou(u)

—– max(OIOIO(u), u(U) +cost~~(u, u)),

sup(u)

= min(%(~),~(u) - Cost’’(uU))

Consider the strongly connected com-
ponent of Figure 21(a). For the sake of
simplicity, assume that all operations in
the loop can execute concurrently with-
out resource conflicts. The loop is a single
strongly connected component. The first
step in scheduling the component is cal-
culating the closure of the dependence
constraints.

Table 3 shows C, the result of calculat-
ing the closure of the dependence con-
straints. The initial dependence con-

()=straint ranges computed from al ~~ u

max(UG~) cost II(u, U) and CTUP(U)= @

(where H is initially 4) are as follows:

nl: [—2, ~1,
nz: [0, ~1,
rz3: [2, ~1,
rz4: [3, ~],

n~: [1,ml.

The preceding example illustrates a case
where the initial dependence constraint
range has a negative lower bound.

The loop-independent subgraph, shown
in Figure 2 l(b), indicates that both nl
and nz are initially data ready as they
have no predecessors. Both nodes have
an upper bound of CO,so n ~ is arbitrarily
chosen to be scheduled first, and is
scheduled in 10. Because of the place-
ment of nl, the dependence constraint
ranges are updated as follows:

nz: [0, 2],

n~: [2, 4],

n~: [3, 5],

n5: [1,7].

ACM Computmg Surveys, Vol 27, No 3, September 1995

390 “ V. H. Allan et al.

A1

(0,2)
(0,1)

Because n, has

%

2 3

(0,1)

(0,1)

(0,2)

v

4 5

(0,1)

(0,2)
. .

06

(a)

(1,1)

(0,2)

“v(0,1)
(0,3)

6

(b)

Figure 22. Example of reducing strongly connected component

been scheduled, both n ~

and n~ are data ready. Note nz has a
smaller upper bound than n~, so it is
scheduled fh-st. It is also scheduled in
10. The updated dependence constraint
ranges are as follows:

n3: [2, 2],

n4: [3, 3],

n~: [1, 5].

Nodes n~ and n~ are now data ready.
Node n ~ has the lower upper bound and
is scheduled in Iz. The updated depen-
dence constraint ranges are as follows:

nl: [3, 3],

r25: [1, 5].

Now, nodes nd and n~ are data ready.
Node n4 has the lower upper bound and
is scheduled in la. The Final dependence
constraint range is

nb: [1,5].

Finally, nb is scheduled in Il. The final
schedule, shown in Figure 2 l(c), pro-
duces a legal execution order when used
as a flat schedule. As can be seen in
this example, the dependence constraint
ranges for a node shrink as the schedul-
ing process proceeds. The narrowing of

the dependence constraint ranges re-
flects the increased constraints placed on
a node as more nodes in the strongly
connected component are scheduled.

Reducing the DDG. After each
strongly connected component is success-
fully scheduled, it is condensed to a sin-
gle node as follows. The schedule of the
strongly connected component becomes
the contents of the new node. Because
resources are represented as a reserva-
tion table (as shown in Figure 20), the
resource requirements of a composite
node are easy to represent. The mini-
mum delay on arcs entering or leaving
the condensed node is also changed so
the delay is measured with respect to the
first time step of the new node. This is
necessary as this model can only repre-
sent the minimum time between the be-
ginning of one condensed node to the
beginning of another. Thus an arc speci-
fying that the m ‘h instruction of node A
must precede the n ‘h instruction of node
B by k must be formulated as the begin-
ning of node A must precede the begin-
ning of node B by k + m – n.

Figure 22 illustrates the process of re-
ducing a strongly connected component.
Figure 22(a) shows a DDG with a strongly

ACM Computmg Surveys, Vol 27, No 3, September 1995

connected component {3, 5}. Assume the
following schedule results from schedul-
ing the strongly connected component:
0-(3) = O, and a(5) = 1. Figure 22(b)
shows the DDG after the strongly con-
nected component has been reduced to a
single node. The node labeled with both 3
and 5 represents the node resulting from
the reduction of the strongly connected
component. The arcs 3 - 5 and 5 ~ 3
are removed because both are contained

(and satisfied) in the condensed node.
The arc from 2 ~ 5 is changed from (O, 1)
to (o,0).

Scheduling the Acyclic DDG. Once
all strongly connected components are
scheduled, the nodes of the condensed
graph are scheduled in topological order
of the DDG. The priority of a node result-
ing from a strongly connected component
is defined as its heightl” in the DDG
plus the maximum height of the DDG.
Due to the weighting, this ensures that
nodes resulting from a graph reduction
are always scheduled before other nodes
whenever possible. As these composite
nodes have more resource constraints,
they are more difficult to schedule and
need to be scheduled early.

Once a node n is selected for schedul-
ing, the earliest instruction in which it
can be placed without violating depen-
dence constraints is determined by its
distance from previously scheduled
nodes. This lower limit on placement is
given by the following formula:

U,ow(n)

= ‘ax[(. - n, dzf, mzn)=El ac Scheduled)

(a(a) +VLin –Il*dif),

where Scheduled is the set of nodes al-
ready scheduled. The formula must take
into account the iteration difference on
arcs because there still may be some
loop-carried dependence that are not
contained within a strongly connected

10The height of a node in a DDG is the length of
the longest path from the node to a sink. The height

of a graph is the maximum height of any node.

Software Pipelining “ 391

component. The node is placed in the
first instruction between UIOW(n) and

alOu(n) + 11 – 1 that does not cause a
resource conflict. If the entire DDG is
scheduled, the result is a schedule for a
single iteration that forms a regular
pipeline, when used as a flat schedule. If
the node cannot be placed in any instruc-
tion in this range, the scheduling algo-
rithm fails for the current initiation in-
terval. Then 11 is incremented and the
entire process is repeated until a regular
schedule is achieved or the upper bound
on II is exceeded.

Pipelining the Loop. The software
pipelining algorithm can be summarized
as follows. The strongly connected com-
ponents of the DDG are found. Then, for
the nodes in each strongly connected
component, the closure of the dependence
constraints is computed. The algorithm
calculates an absolute lower bound of H
for the entire graph. The upper bound
is the length of the loop body when it
is compacted without pipelining con-
straints. The lower bound is found by
taking the maximum of the lower bound
estimate due to resource constraints and
the lower bound estimate due to depen-
dence constraints. In other words, be-
cause every lower bound simply means
we know the schedule cannot be any
tighter, the smallest initiation interval
possible is the largest of the various lower
bounds.

The scheduling process proceeds in two
steps. First, each strongly connected
component is scheduled and reduced to a
single node. Thus an acyclic DDG is pro-
duced. The second step schedules the
acyclic DDG to produce Y= If either of
these scheduling processes fail, the algo-
rithm cannot find a regular pipeline for
the current 11. If this happens, the origi-
nal DDG is restored, and the scheduling
-process is repeated after incrementing
11. If the algorithm cannot create a regu-
lar pipeline with an initiation interval
less than or equal to the upper bound on
the initiation interval, the algorithm fails
and software pipelining is ineffective for
this loop.

ACM Computing Surve3s, Vol 27. No 3, September 1995

392 * V, H. Allan et al.

Operations that are overlapped with
a condition compete for resources with
the union of the requirements on the
branches rather than with the sum of the
resource requirements,ll which is a fea-
ture adopted by later modulo scheduling
algorithms. An important drawback is the
fact that schedules may not respond
appropriately to a larger II. As II is in-
creased, instead of causing the opera-
tions to spread further apart, operations
tend to remain clustered as in the previ-
ous schedule using a smaller H. Ineffi-
ciencies in the code are also introduced
by scheduling strongly connected compo-
nents separately. The problems of hierar-
chical scheduling (originally proposed by
Wood [1979]) are addressed in the En-
hanced Modulo Scheduling algorithm
[Warter et al. 1992].

2.2 Path Algebra

Path algebra is an attempt to formulate
the software pipelining problem in rigor-
ous mathematical terms [Zaky 1989]. In
Section 1.6.3, path algebra was used to
determine a viable H using the matrix
M. This same matrix also can be used to
determine a modulo schedule for soft-
ware pipelining. Nodes that are on the
critical cycle (having maximum mm /dzf)

have a zero on the diagonal of r(M)
indicating the node must be exactly zero
locations from itself. lZ Furthermore, each
row in the matrix r(M) indicates the
relative placement of nodes with respect
to each other. A row that has a zero on
the diagonal is a solution to the algebraic
equation regarding distances and is
termed an eigenlwctor. Consider the
graph of Figure 11 and the corresponding
closure matrix, as shown in Figure 12(c).

1] This is an improvement over early predicated

execution methods Note that there 1s a trade-off
~:tween a smaller II and a \maller code size

This IS a httle confusing in that It seems obmous

that euery node must be exactly zero locatlons from

Itself or II locatlons from Itself m the next itera-
‘uon, The point 1s that If dependence constraints
~orce th,s distance, the techmques of path algebra
can compute the requmed schedule,

In this case, the first five rows have a
zero on the main diagonal as those nodes
are involved in a critical cycle of the
graph. The row gives the relative place-
ment of a node with respect to the ele-
ment on the diagonal. Row 1 is (O, 1, 0, 0,
1, 2, 3) which indicates that if 01 is
scheduled in the Oth location, a legal
schedule is formed if Oz is in the I’t
location, OS is in the O’h, and so on. The
first five rows give the same relatiue

placement. Row 2 is (– 1,0, – 1, – 1, 0, 1,
2) which indicates that if 01 is scheduled
in the – l’t location, Oz must be in the
Oth location, oa in the – I’t, and so on.

Notice that the elements of row 2 differ
by a constant from the elements of row 1,
hence the relative placement of opera-
tions indicated by each row is identical.

To understand the resulting matrix, let
us reconsider alternative estimates for
H. If H is one, the original matrix and
the closure are shown in Figure 23. We
can tell that H = 1 is not sufficient to
guarantee a correct schedule because of
the distances on the main diagonal. For
example, the distance between 1 - 1 =
3, meaning 01 must follow 01 by at least
three instructions. Obviously this cannot
happen when H is 1. Figure 23(c) shows
the schedule deduced from the first line.
This schedule is incorrect as, for in-
stance, the arc from five to one is not
obeyed.

With II = 3, as shown in Figure 24, all
diagonals are negative in the closure
graph. For instance, O ~ must follow 01
by at least – 4 time units. In other words,
01 can precede O ~ from the next itera-
tion by 4 time units. Each row indicates a
different schedule, but all are legal.

This solution is elegant, but cannot

handle resource requirements. As such,

it becomes a theoretical tool rather than

a practical one.

2.3 Predicated Modulo Scheduling

Predicated modulo scheduling has all the
advantages of other techniques discussed
in this section, but represents an im-
provement of known defects. It is an ex-

ACM Comput,ng Survey., Val 27, No 3, September 1995

Software Pipelining “ 393
—

i-
2

3

4

5

6

7—

—

1

–cc

–cc

–cc

–cc

0
–w

–cc

2

1

–cc

–w

–m

–m

–02

–cc T
34

—m —co

o –C@

–cc 1

–cm –00

–m –CxJ

–cc –cc

–w –m

(a)

ST

1234

13445

22334

32334

41223

53445

6 –cc –w –cc –co

7 –cc –cc –cc –cm

(b)

5

—m

–cc

–cc

1

–cm

–cc

–W

5

6

5

5

4

6

–m

—m

6

—cm

1

–m

–cc

–cc

–cc

–1

7

—cc

–m

–cc

–cc

–m

1

—m

T

67

89

78

78

67

89

01

–1 o

I

1

2,3 1

4 2,3

54

5

6

76

7

(c)

Figure 23. (a) Original matrix. (b) Closure, (c) De-

rived schedule using row 1 for 11 = 1.

cellent technique that has been imple-
mented in commercial compilers.

Many researchers have embraced mod-
U1O scheduling for architectures with
hardware support for modulo schedul-
ing 13 and have modified the resulting
code to work on architectures without
hardware support [Warter et al. 1993].
The Cydra 5 work is described in
Dehnert et al. [1989] and Dehnert and

13 See Dehnert et al. [1989], Huff [1993], Mahlke et
al. [1992], Rau et al. [1992], Rau and Fisher [1993],

Rau et al. [1989], Tirumalai et al [1990], and Warter
et al. [1992].

Towle [1993]. We use the term Predi-
cated Modulo Scheduling to represent
this general category of algorithms. In all
but Huff [1993], the precise method for
scheduling operations is not discussed,
probably because of the complexity of ex-
plaining the process. One must assume
the method used is similar to that em-
ployed by Lam except that the hierarchi-
cal reduction of schedules produced for
strongly connected components (which
generates suboptimal results) is circum-
vented.

Register Renaming. When itera-
tions are overlapped, the reuse of regis-
ters becomes a concern. In the example of
Figure 25(a) suppose operation 1 writes
to a register (call it x) that is not used
for the last time until operation 6 of the
same iteration, and operation 3 writes to
a register (call it y) that is not used for
the last time until operation 7. In the
data dependence graph, these lifetimes
manifest themselves not only in the de-
pendence chain from 1 to 6 and from 3 to
7, but also in the antidependences of 7 ~
3 and 6 ~ 1 (shown by dotted lines in
the graph). The antidependences have a
(1, O) annotation indicating they are
loop-carried (dif > O) and that the opera-
tion which writes to the register can be
executed in the same instruction as the
last use (min = O). This is possible if we
assume the fetch of a value precedes the
write within a machine cycle. The depen-
dence from operation 1 to 2 has a (O, 2)
annotation indicating that the operation
takes two cycles to complete (min = 2).
The antidependences force the maximum
min/dif to be 4. Thus the schedule shown
in Figure 25(b) is of length 4. Let 11~~~,
be the length of the longest cycle in-
volved in a dependence cycle containing a
loop-carried antidependence. Let II be
the initiation interval for the schedule
when antidependences are ignored. If we
replicate the loop so that there are
ll..,z/II copies of the loop body, we can
use different registers in each copy. This
replicated loop is scheduled and shown in
Figure 25(c). Operations that write to dif-
ferent registers are indicated with a

ACM Computmg Surveys, Vol 27, No 3, September 1995

394 “ V. H. Allan et al.

T
1

1 –cc

2 –cc

3 –m

4 –w

5 –2

6 –cc

7 –m

rTime

o

1

2

3

4

5

6

7

8

L&

L
2 –5

3 –3

4 –3

5 –2

6 –mJ

7 –co

Row 1

1

5

3,4

2

6

7

1

5

3,4

2

6

7

2

i
—cc

—03

–m

—m

–m

—m

2

1

–4

–2

–2

–1

–c-u

—m

—ccl

–2

—cc

–C@

–w

–cc

–cm

–03

o
–cc

—cc

–cc

31 41 5

–cc

–CC

—m

–1
—02
—m T

67

–cc –m

1 –!X
—cc —cc
—cm —w
—WJ —m
–cc 1

—cc —cc —cm –5 –w

(a)

m34567

–1 –1 –2 2 3

–2 –2 –3 1 2

–4 o –1 –1 o

–4 –4 –1 –1 o

–3 –3 –4 o 1

–cm –cc —m –4 1

—m —m —m –5 –4

(b)

Row 2

I

1

2

5

3,4 1

2

5

6 3,4

7

6

7

Row 3

3

1
2

5,6

4,7

3

1
2

5,6

4,7

Row 4

3,4

1

2

5,6

7

3,4

1

2

5,6

7

Row 5

5

3,4

1
2

6

7

5

3,4

1

2

6

7

(c)

Ficjure 24. (a) Orlgmal matrix (b) Closure. (c) Derived schedule
us~ng various rows ~or II = 3

prime (e.g., 1’). In this case, as there are
two copies of each operation, there are
two versions of each register whose life-
time extends beyond H. Table 4 shows
the same schedule with renamed ver-
sions of a register differing by a prime.
Writes of an operation are shown by the
register name appearing to the left of an
equal sign. Reads from a register are
shown by the register name appearing to
the right of an equal sign. For simplicity,
only registers x and y are shown. Opera-

tion 1 writes to x in the first iteration
and x‘ m the second lteratlon. In the
third iteration, x is used again. Simi-
larly, operation 3 writes to y in the first
and third iterations and writes to y‘ in
the second iteration. Even though Is uses
x and writes x, there is no problem as
fetches precede stores within the cycle.
Instead of two registers, four (x, x‘, y, Y‘)

are required and code space has in-
creased, but the effective initiation inter-
val is halved as there are two versions of

ACM Computmg Surveys, Vol 27. No 3, September 1995

Software Pipelin ing “ 395

1
1 ,$-J’~....- 1

/n <

‘Y_)i (1,1)
L. .-. . 6

(1,0) 1,. .

(a)

i-l :

12:

13:

14:

15:

16:

17:

18:

Ig :

110:

L

2,3

4.5

n6 1

7

2,3

4,5

6

7

(b)

II:
1~:

Is:

14:

Is:

16:

I,:

1

2,3 1’

45

E

6 2’,3’ 1

7 4’,5’

6’ 2,3 1’

7’ 4,5

6 2’,3’

7 4’,5’

6’

112:
7’

(c)

Figure 25. (a) DDG. (bl Schedule. (c) Schedule after renammg to eliminate loop-carried antldepen-
dence.

Table 4. Modulo Variable Expansion

1 (x =)

2,3 (y =)

4,5

6 (= X)

7 (= y)

It(?ri

1’ (x’ =)

2’,3’ (y’=)

4’, 5[
6’ (= ~’)

7’ (= /)

ions

T–

1 (x =)

2,3 (y =) 1’ (x’ =)

4,5

6 (= x) :?:: (Y’ =)
7 (= y)

6/’(= X’)

7’ (= y’)

each original operation in the kernel. This of the 100D. man – u is the number of
is termed moddo oariable expansion
[Lam 1988]. Note that modulo variable
expansion is a code expansion that oc-
curs after scheduling (and hence does not
increase complexity), rather than an ex-
pansion that occurs before scheduling (as
does replication).

One drawback of this scheme is that
only loops that execute a multiple of

(sPan – U) + u * i times can be accom.
modated, where u is the number of copies

copies of the l~op that are present in the
prelude and postlude, and i >0. In this
case, the prelude and postlude execute
two iterations, and every execution of the
new loop body completes two original it-
erations so only loops that execute 2 + 2 i
iterations can be handled. In some situa-
tions in which the new loop body
contains multiple copies of the original
iteration, a branch out of the loop body
avoids this restriction. In this case, a

ACM Computmg Sur\,eys, Vol 27, No 3, September 1995

396 . V. H. Allan et al.

Table 5. Rotating Regmter File

11=2
Time

Register 12 34 56 78 9 10
3 X2 X2 X2 X2 *Y3 Y3 Y3 Y3

2 x’ x’ x’ x’ *y’ y’

1 1 Y1 Y1 Y1 X4 X4 X4 x’
() xl ~1 :1 xl *Y2 # Y2 Y2 xl ~1

jump out of the middle of the loop would
require a special postlude as the regis-
ters used in the current postlude would
not be appropriate.

One solution is to execute 772iterations
before entering the pipelined loop. m is
chosen so that the remaining number of
iterations to be completed is of the form
(span – u) + u * i. This is termed pre-
conditioning the loop [Rau et al. 1992].
According to Rau et al., this is acceptable
for architectures with little instruction
level parallelism, but is inadequate for
more powerful processors.

Hardware support for modulo schedul-
ing simplifies register renaming. With
the advent of rotating register files ([Rau
et al. 1992, 1989]), loop-carried antide-
pendences can be ignored without code
expansion. Variables that are not rede-
fined in the loop or whose lifetime is less
than II can be assigned static general
purpose registers. Variables involved in
loop-carried dependence cycles can take
advantage of rotating register fdes. A
rotating register file is a file whose file
pointer rotates. With a rotating register
file, register specifier n does not always
refer to the same physical register, but
rotates over the set of registers. This

is accomplished by treating the register
specifier as an offset of the Iteration
Control Pointer (ICP) that points to
the beginning of the registers for the
current iteration. Every register ref-
erence is computed as the sum of the
register specifier and the ICP (modulo
the register file size). The ICP is
decremented (modulo register file size)
at the end of each iteration execution.

In this way, each iteration accesses
different registers even though the
code remains identical for each itera-
tion. This provides hardware managed
renaming.

Using a rotating register file for our
example, the schedule of Figure 18(b)
(rather than Figure 25(c)) is achieved.
Operation 1 always writes the same reg-
ister specifier (O in this case), but be-
cause the registers rotate there is no
problem. Similarly, operation 2 always
writes to register specifier l.lA In Table
5, the rows of the table represent four
registers labeled O through 3. Time pro-
gresses horizontally. The superscripts
represent the original iteration defining
the variable. An asterisk indicates that
the register contains the value of x at
the beginning of the cycle and the value
of y at the end of the cycle. Even though
the number of registers required is the
same using rotating register files or mod-
U1O variable expansion, register assign-
ment constantly changes (as opposed to
being fixed throughout the loop). Regis-
ter O, for example, stores the x from
iteration 1 for the first five cycles, and
the y from iteration 2 until the end of
the eighth cycle. Notice that at the begin-
ning of each new H, the location of x and
y for that cycle is decremented (modulo
4). Because the ICP was initially O, it is
decremented to 3 (O – 1 mod 4) before
the second iteration and thus x J (with

14 In general, regmter specifiers are not adjacent
but are spaced to reflect the hfetlme of the regs-
ters

ACM Comput]ng Surveys, Vol 27, No 3, September 1995

Software Pipelining “ 397

register specifier 0) is assigned to physi-
cal register 3.

Predicated Execution. When code
contains conditionally executed code,
modulo scheduling becomes more compli-
cated. Consider the example of Figure 18.
Suppose that operation 2 computes a
predicate (Boolean value) that deter-
mines whether operations 4 and 6 or op-
erations 5 and 7 should be executed. If
the predicate is true, operations 4 and 6
are executed. If the predicate is false,
operations 5 and 7 are executed. Clearly
the schedule of Figure 18(b) is illegal as
4 and 5 are never both executed. We
would need two versions of the code for
each iteration of the replicated schedule.
Because code from three iterations is
overlapped, there could be eight combi-
nations resulting in complicated code ex-
pansion. Let the notation (true, false,
true) correspond to the values of the
predicate in successive iterations being
true, then false, then true. Clearly there
are eight combinations of three Boolean
values. One solution to this problem is
termed Hierarchical Reduction [Lam
1987]. Instead of scheduling each branch
of a conditional separately, the code for
both branches is scheduled with the un-
derstanding that only one of the branches
is actually executed at run time. In other
words. the schedule is created so that it
is legal regardless of which branch is
taken; the needs of both branches are
considered. The resource conflicts must
be adjusted so that at any point in time,
the union15 of the resources required by
different branches is available rather
than requiring the sum of the resources
to be available. Even though only one
copy of the pipeline is needed during
scheduling, physically the eight copies
still exist.

A hardware implementation of this
idea involves the use of predicated execu -
tion. Predicated executi& makes it possi-

15 The term union is used to indicate that two
operations that cannot both execute (due to oppo-
site values of their predicates) do not compete for
resources.

ble to execute an operation conditionally.
Instead of jumping around an operation
that should not be executed, the hard-
ware can just ignore the effects of the
operation. For example, the floating point
multiply specified by r 1 = fmpy(r 2, r 3)
(pl) is executed only if predicate pl is
true. If p 1 is false, either the operation is
ignored (treated as a no-op) or is exe-
cuted but the result register is not
changed. The former implementation
saves effort, but the latter implementa-
tion allows the operation to be executed
in the same instruction as the predicate
is computed. As the results of predicate
evaluation are known before the target
register is written, such overlap is possi-
ble. Such hardware support may elimi-
nate a physical jump. It also makes it
possible to modulo schedule loops con-
taining conditionals without code expan-
sion as well as reduce the code expansion
caused by a distinct prelude and postlude.

Like registers, predicates are also
stored in a rotating file. Predicates can
either share the regular rotating register
file or have a dedicated predicate register
file [Rau et al. 1992]. The process of con-
verting code into predicate code is termed
if-conversion and is an integral part of
Enhanced Modulo Scheduling (EMS)
[Warter et al. 1992]. Conditional branches
are removed and control dependence be-
come data dependence as conditionally
executed operations are data dependent
on the operation that generates the pred-
icate on which they depend. This
technique has more flexibility than
Hierarchical Reduction in that Hier-
archical Reduction completely schedules
the conditional code before it attempts
to schedule other operations. An arbi-
trary decision made in scheduling the
branch can have a negative impact on
the placement of other operations that
are not even considered during this
prescheduling phase.

In predicated execution schemes, all
operations in an instruction are fetched
and only those with true predicates com-
plete execution. However, in EMS and
Hierarchical Reduction, one is limited by
the number of operations that physically

ACM Computmg Surveys, Vol 27, No. 3. September 1995

398 - V. H. Allan et al.

(a)

3

PIJ P* P2

1

1

1 1

1 1

1 i 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1
1 1

1

1

T1

T2

T3

Ta

T5

T6

TT

T8

T9

TIO

T11

T12

T13

T14

T15

T16

1

1 2,3

4,5

1 2,3 6

4%5 7

1 2,3 6

4,5 ~

1 2,3 6

4,5 ~

1 2,3 6

4,5 7

2,3 6

4,5 7

6

7

(b) (c)

F%ure 26. (a) Kernel-onlv code (b) Prcdlcate values over

Lime (c) Operations enabled by predicates

execute for a given predicate value rather
than the number of operations for all
predicate values. In both cases, opera-
tions that execute under disjoint predi-
cate values can be scheduled at the same
time even if they require the same non-

sharable resource. Proponents of this
method are so enthusiastic they even rec-
ommend using this same technique for
processors that do not support predicated
execution. This technique, called reuerse
if-con vers ton simplifies the process of
global scheduling [Warter et al. 1993].
EMS has an advantage of Hierarchical
Reduction in that no prescheduling of
paths is done. This increased flexibility
produces superior code.

A side effect of predicated execution is
that one avoids having special instruc-
tions for prelude and postlude. This is
termed kernel-only code [Rau et al. 1992].
Figure 26(a) shows the code that requires
no distinct prelude or postlude. Rather

than having distinct prelude and postlude
that executes a subset of the kernel oper-
ations, the execution of various stages
in the pipe are controlled via predi-
cates. The notation 1(PO) indicates
o~eration 1 executes if P,, is true. Each. ,)

stage of the pipeline is associated with a
different predicate.

Predicates are set bv the o~eration that.
jumps to the top of a ‘loop. The predicate
file rotates by decrementing the ICP (just

ACL1 C!omputuw Surveys, TToI 27, N’CJ 3, September 1995

Software Pipelining “ 399

like the regular rotating register file).
The predicate register file is shifted ev-
ery 11 time steps. The code to set the
predicates always sets register specifier
O, but because the physical register
changes, all predicates are eventually af-
fected. This logical predicate O (PO) is set
to true in the prelude and is set to false
in the postlude.

If the code for our example is executed
six times, the predicates take on values
indicated by Figure 26(b). PO is the logi-
cal predicate pointed to by ICP rather
than the physical register. Notice that in
the time step 3 the ICP has been decre-
mented so the old value of PO becomes
PI and the new logical PO is set. Thus
both are now true. Figure 26(c) shows the
operations that are executed at each point
in time.

2.4 Enhanced Modulo Scheduling

Although all modulo scheduling tech-
niques are basically the same, they differ
in how they handle predicates. Hierar-
chical Reduction schedules operations on
each branch of a conditional construct
before combining using the union of the
requirements. This prescheduling and
unioning of requirements creates compli-
cated pseudo-operations that are difficult
to schedule efficiently with other opera-
tions. Enhanced Modulo Scheduling uses
if-conversion to convert all operations
into straight line, predicated code. In this
form, scheduling is done noting that dis-
joint operations do not conflict. There is
no need to preschedule the various parts
of the conditional construct. After modulo
scheduling, modulo variable expansion is
used to rename registers’ lifetimes from
distinct iterations.

Predicated execution has the disadvan-
tage that all operations from taken and
untaken branches are executed (even if
the results are just thrown away). Thus
the resource requirement is the sum of
the requirements of each branch. En-
hanced Modulo Scheduling recreates the
branching structure, termed reverse if-
conversion, by inserting conditional
branch instructions to eliminate predi-

cated execution. In other words, predi-
cated execution is used to allow opera-
tions to be scheduled independently of
the branching structure and then the
branching structure is reinserted. This
method has some real benefits in terms
of simplicity, but is also hampered by the
fact that such a techniaue is m-one to. .
code explosion. If a predicated operation
(predicated by p) happens to be sched-
uled early, all imperative operations that
are between the first predicated opera-
tion scheduled and the last operation
predicated on p must be cloned to ap-

Dear on each branch. If code that is m-ed-.
~cated by p is overlapped n times, there
can be code expansion of order 2‘. Clearly
this is unacceptable. Various techniques
are employed to limit code explosion, the
most important being the restriction of
which blocks are scheduled together. The
term hvwerblock is used to denote which
set of” ‘blocks are scheduled together
[Warter et al. 1992, 1993].

The initial simplicity of scheduling
without regard to predicates results in
the complexity of introducing condition-
als back into the code. Because the inser-
tion of branches is done after code
scheduling, various code inefficiencies
can be introduced as is common when-
ever phases are segmented. According to
Warter et al. [1992], Enhanced Modulo
Scheduling performs 18% better than Hi-
erarchical Reduction with UD to 105%.
increase in code size. Although some of
the increase in code size undo-ubtedly re-
sults from the fact that tighter code over-
laps more conditional constructs, some of
the increase results from unnecessary
elongation of the predicated region.

3. KERNEL RECOGNITION

Although modulo scheduling algorithms
create a kernel by scheduling one itera-
tion such that it is legal when overlapped
by H cycles, other techniques schedule
various iterations and must recognize
when a kernel has been formed. Some
authors term this type of software
pipelining algorithm unrolling algo-
rithms [Rau and Fisher 1993], but the

ACM Computmg Surveys, Vol 27, No 3, September 1995

400 “ V. H. Allan et al.

term kernel recognition is more accurate
as there may be no physical unrolling
present. Proponents of modulo schedul-
ing point to the need to search for a
kernel as a flaw, whereas proponents of
kernel recognition counter that searching

for a pattern can be done with hashinglG
and is much more efficient than repeat-
ing the scheduling for various goal ini-
tiation intervals. Kernel recognition
proponents also argue that the ability to
achieve fractional rates effortlessly
makes their algorithms superior. Modulo
scheduling algorithm enthusiasts claim
that the H rarely has to be incremented
over its original minimum initiation in-
terval [Rau 1994]. Obviously, modulo
scheduling can achieve fractional rates
by replicating the loop body before
scheduling. Howeverj this increases com-
plexity and may result in full iterations
in prelude and postlude (that would be
removed).

A first attempt at kernel recognition
techniques is to mimic what one might
attempt if one were scheduling by hand.
The basic idea is to look at several itera-
tions at a time and try to combine opera-
tions that are not dependent on each
other. The steps are as follows:

(1)

(2)

(3)

Unroll the loop and note depen-
dence.

Schedule the various operations
as early as data dependence al-
low.

Look for a block of consecutive
instructions that are identical to
the blocks after it. This block
represents the new loop body.
Rewrite the unrolled iterations as
a new loop containing the repeti-

tive block as the loop body.

The obvious question is “What do you
do if no block of repeating instructions
surfaces?” The URPR (UnRolling,
Pipelining, and Rerolling) software

‘fi For the general resource model, hashing must be
done on an encoding of the entire state of the

scheduler at each point m time

pipelining algorithm, designed by Su et
al. [1986] solves this problem using ad
hoc techniques to force a kernel by mov-
ing duplicate operations before or after a
section of code containing all operations.
This moving of operations after schedul-
ing introduces underutilized instructions
and produces inferior results. Su et al.
[1987] developed an extension to the ba-
sic URPR algorithm in which loops con-
taining multiple basic blocks, abnormal
entries, and conditional exits are han-
dled. Unfortunately, the problems of
URPR are carried over into the more
complicated version. Although it is inter-
esting from an historical perspective,
URPR is outperformed (in terms of tar-
get code execution time) by other tech-
niques. The next sections explain several
independent kernel recognition type soft-
ware pipelining algorithms.

3.1 Perfect Pipelining

Perfect Pipelining combines code motion
with scheduling. It achieves fractional
rates and handles general (dif, rein)
pairs. Techniques to assist the formation
of a pattern are somewhat ad hoc.

Historically, the effectiveness of local
scheduling has been limited due to the
small size of basic blocks. A new architec-
tural model in which multiple tests can
be performed within a single instruction
greatly enhances the degree of paral-
lelism achieved. Aiken and Nicolau
[1988b, 1988c, 1990] introduce the Per-
fect Pipelining algorithml~ for use with
this more general machine model [Aiken
1988; Nicolau and Potasman 1990; 13re-
ternitz 1991]. This method is important
in that it reframes the problem by chang-
ing the parameters. It answers the ques-
tion, “How would software pipelining be

17Aken does not consider Perfect P1pehnmg to be
an algonthvz but rather a framework upon which
algorithms can be built. Thus, for every reference to
“the Perfect Plpehmng Algorithm,” the reader
should substitute “one of many possible algorithms
using the Perfect Plpehning framework “ The algo-
rithm referenced is one that Aiken considers in
Aiken [1988]

ACM Computmg Surveys, Vol 27, No, .3, September 1995

Software Pipelining “ 401

I
Ol:z=x+y

02:y=5

03: w = a[i]

0~ ; if ccl

/\

Figure 27. Perfect Pipelining’s instruction model.

affected if the architectures were modi-
fied to support it better?”

Perfect Pipelining is somewhat similar
to the method of Su et al. in that the loop
is prescheduled, unrolled, and over-
lapped, but it is more sophisticated in
that operations may move independently
after the prescheduling and loops that
span multiple blocks are easily accommo-
dated. Perfect Pipelining (like Enhanced
Modulo Scheduling) is more powerful
than previous techniques in that it
can take advantage of an architecture
with multiway branching. A multiway
branching architecture allows an in-
struction to have several branch target
locations based on multiple Boolean con-
ditions. Figure 27 illustrates a basic in-
struction executable in one time unit in
this model. In one cycle, 01, Oz, and 03
are executed and control is transferred to
one of Iz, Is, or Id depending on the
values of cc 1 and cc 2 (which are predi-
cate set before this instruction). Such
instructions are called tree instructions
[Ebcio~lu and Nakatani 1990]. All the
assignment operations are executed and
a destination selected simultaneously. To

take advantage of this type of architec-

ture, a type of global code motion, called

migration, is implemented [Aiken and
Nicolau 1988a]. Migration is an improve-
ment over early trace scheduling [Fisher
1981] in that copies can be merged, and
code motion is tied to code correcting
compensation for that motion directly, so
the cost-benefit can be considered. Later
versions of trace scheduling have adopted
these improvements [Freudenberger et
al. 1994].

The types of code motion are enumer-
ated in Fisher [1981]. The addition of the
operation to join multiple copies of an
operation as they move past a branch
point, termed unification, is important in
that it reduces code explosion. The im-
portance of unification is that the multi-
ple copies of an operation generated by
moving past branch points can often be
recombined.

Aiken and Nicolau perform global code
motion within the loop before software
pipelining to simplify the initial sched-
ule. Once global code motion has been
performed, the loop is unrolled an un-
specified number of times, and the result
is scheduled assuming infinite resources.
In a loop, performing code motion before
unrolling significantly speeds up pipelin-
ing. The pipelining algorithm need not
repeatedly perform similar code motions
within each copy.

The assumption of infinite resources in
the initial scheduling step is made be-
cause the algorithm requires unham-
pered motion. If the constraint of finite
resources is enforced and II, Iz, and Is
are sequentially ordered, motion of an
operation between instructions Is and II
would be limited by the fact that the
operation may not be able to temporarily
reside in instruction Iz because of re-
source conflicts with the operations that
are placed there first. Thus instead of
allowing free code motion, the algorithm
would suffer from the race of which oper-
ation got to node Iz first. The results
would be somewhat history sensitive de-
pending on the order operations moved
rather than the best possible schedule.

ACM Computmg Surveys, Vol 27, No 3, September 1995

402 ● V. H. Allan et al.

ITERATIONS

(2,1)

(!)(0,3)

B—

(0,1)

1
c

0,1)
(1!1)

D
3,1)

(1,1)

(a)

15

16

IT

18

IS

Ilo

111

1
—

A

c
D
B

—.

2

A

BC

D

34

$

.4

A

B

c
DB

D

(b)

5 6

T1A A

B

c
DB

Figure 28. Similar nodes with different numbers of mtervenmg operations

Perfect Pipelining allows the pattern
to form natu~ally. & each succes~ive in-
struction is scheduled, one must deter-
mine whether the schedule has begun to
repeat itself. Let the state of the schedule
at a specific instruction represent the set
of information that controls which opera-
tions may be scheduled in succeeding in-
structions. For a general resource model,
state must include resources committed
by the previous scheduling of operations
with persistent resource requirements.
For operations with nonunit latencies,
state must include the concept of elapsed
time between dependent operations. One
must determine if the new instruction
that has been generated is really neces-
sary, or if a previous state in the sched-
ule is the same as the current state. If
two nodes can be reduced to the same
state, they are said to be functionally
equivalent. An instruction that is func-
tionally equivalent to an earlier node can
be replaced with a branch to the first
instruction, thus creating a loop. When
are two nodes functionally equivalent?
Clearly the two nodes must look alike,
but as Figure 28 demonstrates, that is
not sufficient. Although 12 and 16 are
identical, the state is different as suc-

ceeding instructions are not the same. If
we assume Iz, Is, IJ, and Is form a loop,
operation B appears in this proposed loop
three times and all other operations ap-
pear twice. Obviously, these instructions
cannot form a loop as the postlude would
not be static but would have to be differ-
ent depending on the number of itera-
tions actually executed. The instructions
16 and IT do form a loop, which is evident
from the fact that they keep repeating
during the rest of the schedule.

Figure 29(b) illustrates a case in which
the code between equivalent nodes repre-
sents multiple iterations of the original
loop instead of exactly one iteration as
seen in other algorithms. Although code
space is increased, the advantage is that
the code can be scheduled more tightly.
For example, in Figure 29(b) the advan-
tage of having three copies of the loop in
% is that instead of performing one itera-
tion in two instructions, one can achieve
three iterations in five instructions. In
this case, the multiple iterations repre-
sent an improvement. The ideal rate is ~,
but if we require a single iteration in the
loop, the execution time is [:1== 2. We
cannot achieve the ideal effective execu-
tion time with modulo scheduling unless

ACM Computmg Surveys, Vol 27. No 3, September 1995

(a)

1,6,7

L
(1.1)

6

(1,1)

7

(0,1)

8

2,4,5,8

m

3

(c)

Software Pipelining “ 403

1,4,6,7

2,5,8 7

3 1,6,8

2,4,5 1,7

3 2,5,6,8

3,4 1,6,7

2,4,5,8 7

3 1,6,8

2,4,5

3

(b)

11,61,71

31,22,52
32,42

(d)

Figure 29. (a) DDG. (b) Result of Perfect Pipelining. (c) Results of modulo scheduling. (d) Result
of replicating three times before modulo scheduling

we replicate first (see Figure 29(d)). In
this figure, each operation has been ex-
panded into three operations (indicated
by a superscript) due to the replication.

In other cases, multiple iterations are
present in the new loop body, but no
benefit is achieved. Figure 30 (a modified
version of Figure 9) shows a case in
which this happens. The optimal result,
in terms of execution time, that is found
with modulo scheduling, is shown for
comparison.

Functionally Equivalent Nodes. Let
X={x/,x~. x$} bethee the setofop-
erations XJ from iteration i, that are
scheduled at a given instruction [Aiken
and Nicolau 1990]. In Figure 28(b), 11 is
referred to as the set {Bl, 132, Cz, A4} and
the next instruction is then set {llz, B 3}.
Two instructions are similar if they con-

tain the same operations and the super-
scripts for the same operation differ by at
most a constant. If X = {.. . ,x~J, . . .}, let
X’={..., xy,’,. ..}. Although similarity
is necessary for functional equivalence, it
is not sufficient. Functionally equivalent
nodes are two nodes that can be used
interchangeably in the schedule graph.
Two instructions that are similar are not
always functionally equivalent. We can
find two similar instructions X and Y by
hashing, 18 but one has to compare the
state (including resources committed by
persistent irregular operations) at X and

lS Hashing is a search technique m which a func-

tion of the key is used to determine the storage
location. Two instructions that have the same con-

tents hash to the same location, and hence are
easily identified.

ACM Computmg Surveys. Vol 27. No 3, September 1995

404 . V. H. Allan et al.

(0,1)

1,3,4

2,5 4

16 1,3,5

7 2

6

7

(b)

(a)

1,3,4

2.5

IIzzl
6’
7

(c)

Figure 30. (a) DDG, (b) Result of Perfect Pipelining. (c) Result of modulo scheduling
algorlthm.

Y to ensure functional equivalence. Early
versions of this algorithm were limited
by the fact that true functional equiva-
lence was not guaranteed.

For example in Figure 28, although
Iz = {Cl, A3} and lG = {C3, A5} are simi-
lar, the next instructions scheduled are
different; no repeating pattern has
formed. In the DDG of Figure 31, we see
a case where the lack of similarity indi-
cates the nodes are not functionally
equivalent. The cycle involving nodes 1
and 2 is initiated every instruction, but
the cycle involving 3, 4, and 5 repeats
every three instructions. Although nodes
containing the same operations are found

(11 and I,), they are not similar in that
each pair of operations in the two in-
structions do not differ by a constant
subscript. Thus the procedure to find two
functionally equivalent nodes must in-
clude full state information.

If we have two dependence cycles capa-
ble of different execution rates, as seen

in Figure 31, we must slow the faster one
down in order to get a pattern. This is
accomplished by forcing the set of opera-
tions considered for scheduling to contain
only operations from a fixed range of
iterations. Let Span be the limit that in-
dicates that until all operations from it-
eration i have been scheduled, opera-
tions from iteration i + Span cannot be
scheduled. Stated another way, if opera-
tion a has been scheduled s. times and
operation b has been scheduled s~ times,
then ls~ – Sal < Span The value of Span
is experimentally determined. If Span is
too small, a schedule does not form. If
Span is too large, the prelude and
postlude are overly complicated. The
schedule of Figure 3 l(b) results when
Span = 4. Notice that 17 is delayed until
33, 43, and 53 have been scheduled.

When Perfect Pipelining is applied to a
loop body consisting of a single basic block
with unlimited resources, a time optimal
pipeline is formed. The other methods

ACM Computmg Surveys, Vol 27, No 3, September 1995

Software Pipelining “ 405

C7!?(1,1) 1

(!)(0,1)

2 a3 11: 1,3

(0,1) 12: 2,4 1

IJ 5 2

4 14: 3

(0,1) 15: 4
(1,1)

16:
~

5 17:

I*:

19:

110:

(a)

1

2 1

2 1

L_._J-l
3 1

(b)

Figure 31. An acceptable pattern may not occur without intervention. (a) DDG. (b) Pipelining with

Span = 4.

may not always form a time optimal
pipeline because they force % to contain
a single copy of each operation that may
delay the start of the next iteration. On
the other hand, when using the greedy
scheduling algorithm, Perfect Pipelining
waits for a pattern to naturally develop.
Therefore, when L consists of a single
basic block and resources are unlimited,
it always produces a time optimal
pipeline.

An Example. To see the power of
this technique, one must consider
branches within the loop. Consider the
piece of code shown in Figure 32 (taken
from Aiken [1988]) that builds a list.
Each call to append is dependent on the
previous call to append, and hence is
serialized.

If the first seven iterations of the loop
are scheduled, assuming three tests can
be performed in one instruction, the exe-
cution graph of Figure 33 results in which
nodes represent parallel instructions and
arcs represent the flow of control. The
superscript on each operation represents
the iteration number of the operation.
Notice there are several branches leaving
each instruction. The arc labels corre-
spond to the values of the tests. The label
“fft” indicates the first two tests are false
and the last test is true. An asterisk

Fori=l ton

T: If B[i] = key

A: list = append(list,i)

Figure 32. Sample code.

indicates a “don’t care” condition. To re-
duce the number of different instruction
formats, whenever an append is per-
formed, the tests for the three successive
iterations are executed, even if some have
already been performed. Notice that the
ability to perform multiple tests in a sin-
gle instruction greatly reduces the execu-
tion time of the loop in cases where the
append operation does not occur for ev-
ery value of i. After equivalent nodes
have been identified, the graph of Figure
34 shows the final result of Perfect
Pipelined scheduling.

3.2 Petri Net Model

The Petri net algorithm uses the rich
graph-theoretic foundation of Petri nets
to solve the problem of kernel recogni-
tion. It achieves fractional rates, works
for general (dif, min) pairs, and is
extendible. It has the power of Per-
fect Pipelining, but has replaced ad hoc
techniques with mathematically sound
approaches.

ACM Computmg Surveys, VO1 27, No 3, September 1995

406 e V. H. Allan et al.

t**

ff

i‘

fft

Figure 33. Loop after unrolhng seven times

fff
i=i+3

fff
t fft

i=i+4 f~ * i=i+2
i=i+l

fft

[

i=i+3
~, 1+1 l-+ r@3

b 4

t** ft *
i=i+l i=i+2

Figure 34. The same loop (Fig. 33) after plpelmmg

ACM Computing Survey,, Vol 27, No 3, September 19c15

Software Pipelining “ 407

I
TO

T2
T2

1’p4

%’1

&

pl

T4

(b)

T&

(a)

Figure 35. Petri net. (a) Concurrency. (b) Conflict.

The Petri net model of Allan, Ra-
jagopalan, and Lee [1993] provides a
valuable solution to the problems associ-
ated with the formation of a pattern, both
in terms of forcing a pattern to occur and
recognizing a pattern has formed [Raj a-
gopalan and Allan 1994]. Being able to
recognize when a pattern has formed and
aiding the efficient formation of such a
pattern is essential to kernel recognition
type software pipelining. In other tech-
niques, kernel development needs to be
assisted by manipulating the final sched-
ule and/or look-alike instructions may
masquerade as loop entry points when a
repeating pattern has not been achieved
[Jones 1991]. Both problems are ele-
gantly eliminated using Petri nets. This
algorithm is an improvement over the
Gau et al. [1991a, 1991b] algorithm which
suffers from the following limitations:

(1)

(2)

Dif values greater than 1 are
not handled in the Gao algo-
rithm except by replicating the
code so all difs are O or 1.

Initiation intervals of less than
two cannot be achieved without
replication as the acknowledg-
ment arcs create cycles and thus
force an initiation interval of two.

T3

(3) Gao’s method is complicated by
the addition of superfluous arcs
and frequently achieves nonopti-
mal initiation intervals due to
the fact that cycles having
minQ/dife > II are inadvertently
created.

A Petri net G(P, T, A, M) is a bipar-
tite graph having two types of nodes,
places P and transitions T, and arcs A
between transitions and places. Figure
35(a) shows a Petri net. The transitions
are represented by horizontal bars and
places are represented by circles. An ini-
tial mapping M associates with each
place p, M(p) number of tokens such

that M(p) >0. A place p is said to be
marked if M(p) > 0. Associated with

each transition t is a set of input places
S,(t) and a set of output places SO(t). The
set S,(t) consists of all places p such
that there is an arc from p to t in the
Petri net. Similarly SO(t) consists of all
places p such that there is an arc from t
to p in the Petri net.

The marking at any instant defines the
state of the Petri net. The Petri net
changes state by firing transitions. A
transition t is ready to fire if for all p
belonging to S,(t), M(p) > WP where WP

ACM Computing Surveys, Vol 27, No 3, September 1995

408 0 V. H. Allan et al.

is the weight of the arc between p and t.
The reader may see some similarity be-
tween transitions and runners in a relay
race. One runner cannot run (fire) until
he has been given the baton (token).
However, in this case, a runner can pass
a baton to several teammates simultane-
ously and one runner may have to re-
ceive a baton from each of several team-
mates before running.

When a transition fires, the number of
tokens in each input place is decre-
mented by the weight of the input arc
while the number of tokens in each out-
put place is incremented by the weight of
the arc from the transition to that place.
All transitions fire according to the earli-
est firing rule; that is, they fire as soon
as all their input places have sufficient
tokens. In Figure 35(a), there are no arcs
between transitions TI and T2. These
transitions are independent of each other
and can be fired concurrently. However,
Ti cannot fire until TI has fired and
placed a token in place pl. Therefore, TA
is dependent on T1. In Figure 35(b), place

P 1 contains only one token which can be
used to fire one of transitions T2, T:j, or
TJ. This represents a conflict that can be
resolved using a suitable algorithm.

The Petri net models the cyclic depen-
dence of a loop. A data dependence graph
shows the must-follow relationship be-
tween operations (nodes). However, it
cannot show which operations are ready
to be scheduled at a given point in time.
A Petri net is like a DDG with the cur-
rent scheduling status embedded. Each
operation is represented by a transition.
Places show the current scheduling sta-
tus. Each pair of arcs between two tran-
sitions represents a dependence between
the two transitions. When the place (be-
tween the transitions) contains a token,
it is a signal that the first operation has
executed, but the second has not.

The firing of a transition can be
thought of as passing the result of an
operation performed at a node to other
nodes that are waiting for this result. If
the Petri net is cyclic, a state may be
reached when a series of firings of the
Petri net take it to a state through which

it has already passed. The state of the
Petri net is represented by the token
count at each place. Because all decisions
are deterministic, an identical state (with
an identical reservation table) means the
behavior of the Petri net repeats.

Min values of greater than 1 are han-
dled by inserting dummy nodes so that
no min is greater than 1. For example,
an arc (a ~ b, dif, 3) is replaced by arcs

(a - tl, dif, 1), (tl - tz, O, 1), and (t2+
b, O, l), where tl and t2 are dummy
nodes. This implementation increases
the node count, but greatly simplifies the
recognition of equivalent states as the
marking contains all delay information.
This algorithm handles min values of
zero by doing a special firing check for
nodes connected to predecessors by min
times of zero. Thus compile time is in-
creased by accommodating min times of
zero.

Arcs are added to the DDG to make
the graph strongly connected, eliminat-
ing the problem of leading chain synchro-
nization. The benefit is that the rate of
each firing is controlled; no node is al-
lowed to sustain a rate faster than the
slowest cycle dictates. As arcs are added,
new cycles are created. If a new cycle 9‘
has a larger min ~ /dif~ than that con-
tained in the original graph, the schedule
is necessarily slowed down (II increased).

For simplicity, the number of added
arcs is kept to a minimum. Formally, this
is done as follows. If D is the DDG, let
D‘ represent the acyclic condensation of
D in which each strongly connected com-
ponent of D is replaced by a single node.
For a node d‘ ● D‘, there exists a set of
nodes Cd c D that correspond to d‘. If
there is a single source nodelg in D‘, let

s‘ be that node. Let s be arbitrarily se-
lected from C,. If there is more than one
source node in D‘, create a set of nodes

R c D in which each source node of D‘
has a corresponding node. Let s be a
dummy node added to D. For each r E R,
add an arc (s ~ r, 1, 1) to the DDG. For

lY A source node has no predecessors

ACM Computmg Surveys, Vol 27, No 3, September 1995

Software Pipelining . 409

(1,1

d6

(1

(a)

(b)

pl

g~-

p8. p7.
“ pl

T6 T1
plo

.
p5 po

—
2 T2

IT!li
p2

T3

p4 . P3

T4

T5

t--J5.l
(c)

Marked Places (tokens) Schedule

o 4(1),5 (1),7(1),8(1),9(2),10(1) 1, 6

1 O(l), l(l), 4(l), 5(1),6(1), 9(2),10(1) 2, 5

2 2(1),4(1),5(1),7(1), 8(1),9(1),10(1) 6

3 0(1),1 (1),3 (1),5 (1)>6(1),9(1),10 (1) 4 2; 5

4 2(l), 4(l), 5(l), 7(l), 8(1),9(1),10(1)

(d)

Figure 36. (a) DDG. (b) After being made strongly con-
nected. (c) Petri net. (d) Schedule assuming infinite re-
sources

each node k‘ = D‘ which is a sink,20 ar- selected so that any cycle (3 formed has a
bitrarily select node k = C~ ~ and add an mine/dif8 ratio as close as possible to the
arc (k - s, dif, 1). The values of dif are lower bound for II without exceeding it.

For example, in Figure 36(b) the DDG of
Figure 36(a) is made strongly connected.

‘0A sink has no successors. The acyclic condensation consists of nodes

ACM Computing Surveys, Vol. 27, No. 3, September 1995

410 “ V. H. Allan et al.

(representing the sets of nodes from the
original graph) {l}, {2}, {3, 4}, {5}, and {6}.
The nodes of the acyclic condensation {1}
and {6} are both sources. Thus a dummy
node 7 is created as s and arcs (7 - 6, 1,
1) and (7 ~ 1, 1, 1) are added. The nodes
of the acyclic condensation {6}, {3, 4}, and
{5} are sinks. One node from each of the
acyclic condensation sink nodes is con-
nected to node 7. This results in adding
arcs (6 ~ 7, 0, 1), (4 ~ 7, 2, 1), and (5 ~
7, 1, 1) to the DDG. Dif values are se-
lected to force newly formed cycles to
have minti/diffl <2.

Once the DDG has been modified so
that it is strongly connected, the corre-
sponding Petri net is created. Basically,
nodes become transitions in the Petri net,
each arc becomes a pair of arcs in the
Petri net, and places are inserted be-
tween dependent transitions to keep
track of what may fire next. The formal
rules are as follows:

(1)

(2)

For each node i in the DDG, a
transition T, is created.

For each arc in the DDG from
node i to node 1“, a place p is
created along with arcs from T,
to p and from p to T].

At each point in time, the transitions
that fire form a parallel instruction of
the schedule. When the marking repeats,
a software pipeline exists. The schedule
repeats whenever the Petri net enters a
state (defined by the placement of to-
kens) in which it has been before. For a
good discussion of the properties of cyclic
Petri nets, see Gao et al. [1991b].

The initial placement of tokens must
be specified. Initially, any node that is
dependent on a previous iteration is
ready to be executed (as there is no pre-
vious iteration to deny execution). Thus
one would guess that places that model
arcs representing loop-carried depen-
dence would need to be marked. The
question comes in deciding how many
tokens should be placed there. The num-
ber of tokens necessary depends on the
dif value for that arc. A dif of zero corre-
sponds to ~zo tokens. Let b‘ represent

operation b from the i ‘h iteration. A dif
of three on arc a ~ b indicates that b
can get three iterations ahead of a. Thus
b’ must follow al; yet, bl, bz, and bJ are
unconstrained. Therefore, the number of
tokens at a place is just the dif of the
corresponding arc in the dependence
graph. The formal rule follows.

(3) The initial marking of the Petri
net is such that for an arc from z

to j in the DDG with dif value
d, the corresponding place p has
d tokens assigned to it. This al-
lows node T] to be fired up to d
times before node T, is fired.

Modeling Resources. Any restric-
tion (other than dependence) is modeled
as a resource constraint. If we had a
single adder, operations needing the
adder could not be scheduled together.
Resource usage that is regular or nonper-
sistent can be handled by introducing
resource places. The rules governing re-
source places are as follows:

(4)

(5)

For each resource, a place p, is
created. The place is assigned the
same number of tokens as the
number of instances of that par-
ticular resource.

Resource usage is controlled by
requiring that all nodes needing
the resource be cyclically con-
nected to this place. If a node
uses a particular resource, then
there is a loop from that transi-
tion to the resource place and
back. Because a node needs a to-
ken on each of its input places
before it can fire, an arc from
a resource place requires that
the resource is available before
scheduling the node. The arc to
the resource place allows the
node to return the resource after
use. 21

‘1 If an operation required more than one instance

of a gwen resource, the arcs could be weighted with
the number of tokens reqtured from that source

ACM Computmg Surveys, Vol 27. NrJ 3 September 1995

Software Pipelining “ 411

Modeling persistent irregular resources

requires a more complicated model. In-

stead of using resource places (that can
only ensure a resource is available at a
given point in time, not future availabil-
ity) a current reservation state must be
kept. A reservation state (RS) is the union
of all reservation tables (offset to reflect
starting time) for operations that have
began execution but have not completed.
Consider an operation a that is to be
scheduled. If the corresponding reserva-
tion table R ~ has length If?. 1, each row
must be intersected (binary and) with
the corresponding row of the reservation
state. If any resulting row is nonzero,
there is a resource conflict and the opera-
tion cannot be scheduled. If there are no
conflicts, each row is unioned (binary or)
with the corresponding row of the reser-
vation state to reflect the current and
future resource needs. After all opera-
tions for the current time cycle have been
scheduled, the reservation state is ad-
vanced to reflect the passage of time,
that is, RS[i] = RS[i + 1] Vi = O... IRSI
– 1.

Behavior Table. The schedule
shown in Figure 36(d) is termed the be-
havior table. Row O of Figure 36(d) indi-
cates the initial marking of each place in
the Petri net; the number of tokens at
each place is shown in parentheses. The
column marked “Schedule” indicates the
transitions that fire given the current
marking. For simplicity of presentation,
it is assumed there are no resource con-
flicts. As the state at instruction 2 and
the state at instruction 4 are identical,
the kernel starts at instruction 2 and
ends at instruction 3, The kernel with an
initiation interval of two is marked with
a box. In order to incorporate persistent
irregular resource usage, each row of the
behavior table has an attached resource
state describing the current and future
resource commitments. For simplicity,
the attached resource state (dummy
transition 7) is not shown.

This algorithm is enhanced by the ad-
dition of a pacemaker that regulates the
greediness of the algorithm [Allan et al.

1993]. A pacemaker is a cycle of dummy

nodes added to the Petri net that has a
min@/difti equal to the estimated H. The
pacemaker passes tokens to the rest of
the Petri net to control the rate of firing.
The pacemaker attempts to force the es-
timated pace so a repeating section is
formed quickly. In the example of Figure
36(b), a pacemaker to ensure that nodes
do not fire more frequently than every
two cycles is not required as the schedule
exhibits that property already. In larger
examples, a pacemaker can reduce the
compile time to obtain the schedule, the
Span for the kernel, and the achieved
initiation interval.

This general model for software pi-pe-
lining has the advantage of being easily
extendible. For example, predicates

within the loop body are handled by
passing the token along paths represent-
ing both the branches and by having a
merge node that does not fire until it
receives a token from both branches. The
control dependence itself is treated as a
form of data dependence. The Petri Net
Pacemaker (PNP) technique performs
optimizations such as renaming and for-
ward substitution to improve the perfor-
mance of loops containing predicates

[Rajagopalan and Allan 1994].
The Petri net approach solves the prob-

lem that &ken and Nicolau [1988c] and
Zaky [1989] faced of having two parts of
the graph execute at different rates.
Making the graph strongly connected
forces all transitions to fire at the same
rate. The number of tokens at each
resource place reflects the number of
resources of each type. Thus when a
transition fires, all other transitions
competing for the same resource are
prohibited from firing as the token is
not available. To maintain determinism,
the selection algorithm must be
consistent in choosing which candidates
fire when there are competing choices.
The priorities used in scheduling are
similar to other scheduling algorithms.
Each transition is augmented with an
execution count that is incremented each
time the transition fires. When several
transitions are able to fire, the selection

ACM Computmg Surveys, Vol. 27, No 3, September 1995

412 “ V. H. Allanet al.

algorithm is able to fire the transition
that has fired least and hence is from the
earliest iteration. Transitions are also
prioritized so that within the same itera-
tion, transitions that are part of critical
cycles are selected first.

The Petri net approach also solves the
problem of persistent irregular resources.
The procedure to identify an identical
state is broken down into steps. Step one
uses hashing on the encoding of the to-
kens at each place to discover when the
tokens are in an identical configuration.
For each state on the matching hash list,
step two checks to see if the current global
reservation table agrees with the global
reservation table at the previous step.
For a sufficiently large hash table, the
number of entries to check is small (one
or two) and the test for an identical state
only proceeds until a single element
differs, so the check for identical state
requires minimal effort.

Comparison With Other Methods.
PNP is similar in spirit to Perfect
Pipelining [Aiken and Nicolau 1988a,
1988b; Nicolau and Potasman 1990]. A
problem for Perfect Pipelining is the dif-
ficulty of determining when nodes are
functionally equivalent (i.e., the pattern
is repeating). Because the Petri net uses
a combination of places and global reser-
vation tables to record state information,
a repeating pattern can reliably be deter-
mined. Perfect Pipelining also creates
kernels in which duplicate operations are
present even when doing so does not im-
prove performance. For example, a loop
length of 4 with two copies of each opera-
tion (for an effective initiation interval of
2) is generated when a loop length of 2

(with one copy of each operation) is
equivalent. This results from the prob-
lem of scheduling each node greedily. Be-
cause each node is allowed to execute as
fast as possible as long as gaps do not
occur in the schedule (preventing a pat-
tern from forming), some operations are
scheduled more frequently than the ef-
fective initiation interval. Later, other
operations have to be delayed to satisfy
dependence constraints. Inasmuch as the

pacemaker regulates the rate of all oper-
ations, such rate fluctuations (that in-
crease the code size) are less likely. For a
thorough discussion of these problems see
Jones and Allan [1990].

The PNP algorithm is compared with
Lam’s algorithm on loops with both low
and high resource conflicts [Rajagopalan
and Allan 1994]. With low resource con-
flicts, the PNP algorithm does marginally
better. With high resource conflicts, the
PNP algorithm shows a significant im-
provement of 9.27c over Lam’s algorithm.
PNP often finds a lower H as fractional
rates are required. Because Lam’s algo-
rithm schedules each strongly connected
component separately, a fixed ordering of
the nodes belonging to each strongly con-
nected component in the schedule is used.
This fixed ordering, together with the
resource conflicts between the nodes of
the strongly connected component and
other nodes of the schedule, restricts the
overlap between them. This forces Lam
to use a higher value of H which in
many cases is not optimal.

The PNP algorithm is compared with
Vegdahl’s [1992] technique that performs
an exhaustive search of all the possible
schedules to look for a schedule with the
shortest length. PNP compares quite fa-
vorably with this exhaustive technique.
The compile time of PNP is negligi-
ble compared to Vegdahl’s exhaustive
technique.

3.3 Vegdahl’s Technique

Unlike all other techniques discussed in
this survey, Vegdahl’s represents an ex-
haustive method in which all possible
solutions are represented and the best is
selected. As software pipelining is NP-
complete, this makes the algorithm
impractical for real code.

Vegdahl [1992, 1982] uses an exhaus-
tive technique that relies on a decision
graph of choices. The method uses a dy-
namic programming scheduling algo-
rithm to schedule straight line code
formed from the loop body by unrolling.
Vegdahl builds an operation set graph in
which nodes represent the set of opera-

ACM Computing Sur>eys, Vol 27, No ‘3, September 1995

Software Pipelining “ 413

Figure 37. Partial operation set graph for the example of Figure 28.

tions scheduled so far and arcs represent
a series of scheduling decisions. In
essence, the nodes represent state infor-
mation similar in usage to the markings
in the Petri net algorithm, the difference
being that the operation set graph repre-
sents all possible scheduling decisions at
every point in time rather than a single
decision. Although the concept is like a
decision tree [Smith 1987], the diagram
becomes a graph because nodes repre-
senting equivalent states are merged.
Rather than considering loop-carried an-
tidependences directly, Vegdahl defines
“duals” of the dependence to represent
antidependences. This appears to be an
idiosyncrasy of the data representation
rather than an inherent part of the con-
cept. The automatic interpretation of de-
pendence arcs is a disadvantage if reg-
ister renaming eliminates loop-carried
antidependences.

Consider the partial operation set
graph for the example of Figure 37, Be-
cause the graph is so large, only repre-
sentative parts of it are shown. Inasmuch
as the span of the schedule obtained by
PNP is two, it is reasonable to apply
Vegdahl’s exhaustive technique to a loop
body that has been unrolled twice (two
copies exist) as this allows operations
from adjacent iterations to be scheduled

together. Initially no operations have
been scheduled (represented by the ini-
tial node with no label). There are three
choices: 1 can be scheduled, 6 can be
scheduled, or both 1 and 6 can be sched-

uled. These three choices are represented
by three arcs emanating from the initial
node. Suppose 6 is scheduled first, then
there are three choices for the next time
step: 1 can be scheduled, operation 6 from
the next iteration (6’) can be scheduled,
both 1 and 6’ can be scheduled. These
choices are represented by arcs coming
out of the node labeled 6. Note that the
node labeled 6 indicates operation 6 has
been scheduled, and an arc labeled 6 in-

dicates 6 is to be scheduled at this time
step. If 6 is scheduled in the first time
step and then 1 is scheduled in the sec-
ond time step, the node 16 is reached.
Notice this is the same node reached
if operations 1 and 6 were scheduled
initially. The scheduling process is as
follows:

(1) Create an empty initial node and
mark it as open.

(2) While there exists an open node,
select an open node curr.

(a) While observing both re-
source conflicts and depen-

ACM Computing Surveys, Vol. 27, No. 3, September 1995

414 “ V. H. Allanet al.

(3)

dence constraints, consider
all possible operations that
can be scheduled given the
operations of curr have exe-
cuted. Let exec be one possi-
ble set of operations that can
be executed. Let next repre-
sent the new state formed
from executing exec when
curr was the previous state.
If next contains every op-
eration from one iteration,
reduction is applied by re-
moving the set of operations
and shifting the remaining
operations by one iteration,
for example, x‘ becomes x,

x“ becomes x‘. (In our exam-
ple, when we execute 42’5’ at
node 123561’6’ this results in
node 1256 rather than
1234561’2’5’6’.) If next is al-
ready in existence as a node,
create an arc from curr to

that node with label exec.
Otherwise, create a new node
representing next and create
an arc from curr to next with
label exec and mark the new
node as open.

(b) Repeat the preceding step for
each possible set exec.

Once there are no more o~en
nodes, locate all cycles in ‘the
graph. Cycles of minimum length
are possibilities for the kernel of
the software pipeline.

Kernel recognition is handled by the
merging of equivalent nodes followed by
finding minimal cycles. In our example,
one cycle (shown in bold) consists of in-
structions 31‘ 6‘ and 42’5’ and represents
the same kernel found in Figure 36(d).
Another possible schedule is shown by
the schedule 31‘ and 42’5 ‘6’. A nonopti-
mal schedule is indicated by 2, 361’, and
45’. Numerous other possibilities exist
but have been omitted from the opera-
tion set graph in the interest of readabil-
ity. This method does not generate
prelude or postlude, although this code
can easily be generated given the kernel.

In order to evaluate which cycle of mini-
mal length is best, prelude and postlude
code must be considered.

Because the algorithm is exhaustive, it
produces optimal results but is obviously
inappropriate for graphs of any size. The
algorithm works best when the graph is
tightly constrained and has many re-

source conflicts as fewer state nodes in
the operation set graph are possible. This
algorithm has many similarities to the
Petri net algorithm. Min values of
greater than one are implemented by in-
troducing dummy nodes. Vegdahl [1992]
states that dif values of greater than
one can be handled, but this has not been
fully tested. Although the use of dummy
nodes addresses the problem of nonunit
latencies, persistent resource usage can-
not be modeled. Although Vegdahl never
mentions fractional rates, this method
clearly has the potential of achieving
fractional initiation intervals. Vegdahl’s
algorithm differs from the Petri net algo-
rithm in its exponential time complexity
as well as in the fact that it physically
unrolls the loop a “sufficient” number of
times before the algorithm begins. An
upper bound on the number of nodes in
the operation set graph is the cardinality
of the power setzz of the set containing
all operations of the unrolled loop. Be-
cause the size of the unrolled loop may
have such a negative effect on the com-
plexity, it is important to be able to pre-
dict the amount of unrolling necessary to
achieve an optimal schedule. Many of
these nodes are never present in the op-
eration set graph as they do not repre-
sent a legal state in the firing sequence
constrained by dependence and resource
conflicts.

Predicates have not been implemented
but the author alludes to the possibility
that conditionals could be handled by
combining the algorithm with trace
scheduling.

‘4A power set of set P IS the set of all subsets of 2?
For a set F’ having p elements, the power set has
2/’ members.

ACM Computing Survey., Vol 27, No 3, September 1995

Although this algorithm is impractical

because of its complexity, it may be use-
ful for very small examples, and it under-
scores the reason that researchers look
for heuristics.

4. ENHANCED PIPELINE SCHEDULING

Enhanced Pipeline Scheduling integrates
code transformation with scheduling to
produce excelle~t results. One important
benefit is the ability to schedule various
branches of a loop with different II.

Ebcio~lu and Nakatani [1990, 1987]
propose an algorithm unlike either mod-
U1Oscheduling or kernel recognition algo-
rithms. Enhanced Pipeline Scheduling
uses a completely different approach to
software pipelining, building on code
motion (like Perfect Pipelining), but re-
taining the loop structure so no kernel
recognition is required. This algorithm is
quite complicated both to understand and
in the code produced. However, it has
benefits no other algorithm achieves as it
combines code transformation with soft-
ware pipelining.

Code motion pipelining can be de-
scribed as the process of shifting opera-
tions forward in the execution schedule.
Because operations are shifted through
the loop control predicate, they move
ahead of the loop, into the loop prelude
and they move back into the bottom of
the loop, as operations from a later itera-
tion. The degree to which shifting is able
to compact the loop depends on the re-
sources available and the data depen-
dence structure of the original loop. The
algorithm has some similarity to Perfect
Pipelining in that it uses a modification
of Perfect Pipelining’s global code motion
algorithm, but differs significantly be-
cause Enhanced Pipeline Scheduling
manipulates the original flow graph to
create z and does not require searching
for a pattern in unrolled code. Because
the loop is manipulated as a whole rather
than as individual iterations, Enhanced

Pipeline Scheduling does not encounter
the problems of pattern identification in-
herent in Perfect Pipelining.

Software pipelining occurs when oper-

Software Pipelining “ 415

ations are moved across the back edge,23
allowing them to enter the loop body as
operations from future iterations. The
pipelining algorithm iterates until all the
loop-carried dependence have been con-
sidered, The pipeline prelude and post-
lude are generated by the automatic code
duplication that accompanies the global
code motion.

This model can handle min times of
greater than 1 by inserting dummy nodes.
However, the algorithm cannot handle
persistent irregular resources.

4.1 Instruction Model

Enhanced Pipeline Scheduling is a
powerful algorithm that can utilize a
multiway branching architecture with
conditional execution. The conditional ex-
ecution feature makes this machine
model more powerful than the original
Perfect Pipelining machine model that
includes only multiway branching. Re-
cent versions of Perfect Pipelining have
included multipredicated execution
[Nicolau and Potasman 1990]. In order to
take advantage of multipredicated execu-
tion, a more powerful software pipelining
algorithm is required.

Figure 38 shows a typical control flow
graph node,24 11, termed a tree instruc-
tion. 12 through 14 are labels of other
control flow graph nodes. The condition
codes ccl and CC2 are computed before
the node is entered, and only those state-
ments along one path from the root to a
leaf are executed. All the operations on
the selected path are executed concur-
rently, using the old values for all
operands. For example, in Figure 38 if
ccl is true (left branch) and CC2 is false
when II is executed, operations 01, 03,
OT, and OS are executed simultaneously,

23A back edge of a data dependence graph is an

edge whose head dominates its tail in the flow
graph and is used to locate a natural loop [Aho et
al. 1988]. A node a dommates a node b m a graph If

every path from the source to b must contain a
24A Control Flow Graph (CFG) M a graph in which
nodes represent computations and edges represent
the flow of control [Aho et al. 1988].

ACM Computmg Surveys, Vol 27, No 3, September 1995

416 “ V. H. Allan et al.

05: if CC2 1 12 1
L ---- 1

/\

o~:t=t–1
of3:y=o

Os : a[z] = t

~----,
1131
L ---- J

r ---- 1
I 14 I
L---- J

Figure 38. Tree mstructlon used m enhanced Dmelme

scheduhng.

then control is transferred to 11. Thus
the assignment to t by OT does not effect
the use of t by Og. Two types of resource
constraints are placed on this machine
model. One is limited by the total num-
ber of operations that can be contained
within the tree instruction. One is also
limited to a fixed number of different
paths through the tree instruction.

With conditional execution, operations
can be placed on any branch of a CFG
node, unlike a traditional machine model
in which all operations must precede any
conditional branch operations. Although
Enhanced Pipeline Scheduling can uti-

lize such features, the scheduling tech-
nique does not require this powerful ar-
chitecture. Other architectures can be
represented by the tree instruction by
restricting the form of the instruction.
For example, architectures that do not
support multi way branching or condi-

tional execution can be modeled lby tree
instructions.

4.2 Global Code Motion With Renami[ng and
Forward Substitution

Nakatani and Ebcioglu [1989] use re-
naming and forward substitution25 to

—

25The authors term this combmmg,

. .

move operations past predicates and

shorten dependence chains involving an-

tidependences. Renaming involves re-

placing an operation such as x = y op z

with two operations x‘ = y op z; x = x‘.
Because x‘ = y op z defines a variable
that is only used by the copy statement

x =x’, the assignment to x is free to

move outside the predicate. When x‘ =

y op z moves before the predicate that

controls its execution, the statement is

said to be speculative because the state-
ment is only useful if the branch is taken.

Figure 39 illustrates the shortening of a
data dependence chain (involving an an-
tidependence) and a control dependence

chain using renaming of a. Figure 39(a)
shows the original dependence graph,

whereas Figure 39(b) shows the graph

after renaming. The dependence between
n3 and n4 can be eliminated by forward

substitution. For an assignment state-

ment var = expr, when uses of var in
subsequent instructions are replaced by
expr, it is termed forward substitution.
This is particularly useful if, as a result
of the forward substitution, the opera-

tions can be executed simultaneously. In
Figure 39(c) forward substitution is used

to change d = 2*a to d = 2*a’ because
the a referenced has the value of a‘.

ACM Computmg Surveys, Vol 27, No 3, September 1995

m

+
a

ACM Computmg Surveys, Vol 27. No 3, September 1995

418 . V. H. Allan et al.

Oz : if ccl Oz : if ccl

f

2

0B:CC2=Z<Y

04: X=Z+4

4

&’>,--J

+

Os:cc2=Z<y
04: X=Z+4

06:ya=z+6

4

+
0,s : if CC2

7’\OG:y =x+
0~ : z = a[y] Oc~:y=y.

/\

07: z = a[y]

08: y = a[x]
Og:z=ya+w

08: y = a[z]

T
5 if;i

L--J

09:z=y*w

:17j--

Figure 40. Example of code motion of 06
x=z+4forthexln 06.

Figure 39(a) shows that d = 2 * a is re-

named. Notice that in this case the length

of the dependence chain for the graph is
decreased.

To see the flexibility of this model, node

2 could also represent a predicate and
the same transformations used on the

data dependence also can be applied to
the control dependence.

Forward substitution may collapse true
dependence that prevent code motion. A

true dependence between two operations
01 and Oz may be collapsible with for-
ward substitution if (1) O ~ is a copy oper-

ation, or (2) both operations involve a
constant immediate operand. Forward
substitution is performed if a true depen-

dence can be collapsed.

Figure 40 shows an example in which
both forward substitution and renaming
are required to move an operation. The

with renaming and forward substitution of

diagram shows part of a CFG before and

after operation Oc is moved from instruc-

tion 14 to instruction Iz. Note that multi-
ple tree instructions are shown in the
figure. Each rectangular node is the en-
try point of a tree instruction. Dashed
boxes represent branches to the tree
instructions indicated. OG has a true de-

pendence on 04 that involves an immedi-

ate operand, making this dependence a
candidate for forward substitution. First,

y is renamed giving Oc : y. = z + 6 and
o ~a : y = y.. Next, forward substitution
is performed giving OG : y = z + 4 + 2.
Constant folding is then performed giv-
ing OG : y = z + 6. To see the advantage
of this renaming, Og is moved from 15
eliminating 15. This motion requires for-

ward substitution as Oq : z = y. * w. No-
tice that the total execution time of the

code has been reduced.

ACM Computing Surveys, Vol 27 No 3, September 1995

Software Pipelining “ 419

J
A a= b[i]+c

(0,1)

B d(i] = a + e[i]

(0,1)

c fli] = g[i-1] + d[i]

(1,1) (0,1)

D g[i] = fli] + j[i]

(a)

Iterations

123

A

BA
—

1
A

B

c

D

(b)

Iterations

1234

A

BA

CBA

Iterations

1

E

A } f..Ce

B

c

D

(c)

I cBAl}fence I -~1 }ferl.

Itemtions

12

A

1

B A } fence
c
D

(d)

Figure 41. Enhanced pipeline scheduling. (a) DDG of loop. (b) Control flow graph of loop. (c) After
filling first instruction. (d) After filling second instruction. (e) After filling third instruction. (f) Final

software pipeline.

4.3 Pipelining the Loop

To perform pipelining, code is moved
backward along the control flow arcs. The
algorithm consists of two phases that re-
peat until all operations have an oppor-
tunity to move. In phase one, code from
within the current loop body is moved as
early as dependence allow. The first
parallel instruction(s) of the loop is
termed a fence. The name is derived from
the fact that code is moved from the rest
of the loop to a position as early as possi-
ble in the loop, but not past the fence.
Hence, the fence bounds the code motion.
In phase two, the fence instruction is
duplicated and moved. Code from the loop
body is duplicated as it moves past the
top of the loop because there are two

control predecessors. The code that moved
out of the loop forms a prelude. The code
that joins code at the bottom of the loop
body represents work originally per-
formed in a different iteration. This pro-

cess continues until all statements from
the original loop body have an opportu-
nity to move [Ebcioglu and Nakatani
1990].

For example, consider the example of
Figure 41. The four statements of the
loop are connected by true dependence.
Thus when the fence instruction contains
operation A, no other operations from

the loop can move up as shown in Figure
41(c). Once a fence instruction is filled, it
is moved out of the (top of the) loop,
where it becomes a part of the loop’s
prelude. A fence is considered filled if all
resources are consumed (or nearly con-
sumed) or if all code motion to the fence
has been exhausted. In early versions of
the algorithm, code migrated upward be-

fore it was known whether the code could
even be executed early. This wasted mo-

tion (which also caused race conditions)
was eliminated in recent versions. The
filled fence is also duplicated to follow

ACM Computmg Surveys, Vol 27, No. 3, September 1995

420 “ V. H. Allan et al.

the loop back edge of the CFG where it
rejoins the loop (at the bottom). In Figure
4 l(b) the back edge is shown from D to
A and represents the fact that A is exe-
cuted after D. This motion across the
back edge moves operations between it-

erations. Hence software pipelining is
achieved.

Nonunit latencies are handled by in-
serting dummy nodes, but there is no
provision for persistence resource con-
straints.

In Figure 41(d) the fence instruction
from Figure 41(c) (consisting of operation
A) is moved into the prelude and back
into the loop as can be seen by the two
copies of A. Because the A that moves
back into the loop is from the second
iteration, it is not dependent on any op-
erations from the first iteration. Thus
operation A moves all the way to the
new fence instruction. In the next stage

(Figure 41(e)) the fence of Figure 41(d)
consisting of BA is moved into the pre-
lude and back into the loop. As neither B
nor A (from the second and third itera-
tions, respectively) depend on operations
from the first iteration, they move to the
top of the loop. In the last step (Figure
41(f)) the fence CBA is moved into the
prelude and back into the loop as opera-
tions from iteration two, three, and four,
respectively. In this case, the C from
iteration two is dependent on the D from
iteration one so these operations do not
move into the fence. Because all opera-
tions have been considered in a fence, the
pipelining algorithm terminates.

In general, operations from previous
fence instructions move all the way
through to the current fence (when data
dependence permit), allowing operations
from many iterations to move as the fence
is moved across the back edge. This pro-
cess continues until all instructions in
the original loop body have moved up to
the top for their chance as a fence, or
when all data dependence in the loop
have been seen, Note that at every stage
in the process a valid loop is maintained.

Enhanced Pipeline Scheduling uses a
CFG and the dynamic data dependence
information of the loop body. Each node

in the CFG represents a tree instruction
containing several operations that are
executed concurrently. Initially all the
instructions contain a single operation.

Figures 42–45 illustrate the process on a
sample loop from Ebcio~lu and Nakatani
[1990]. In Figure 42(a) each operation is
shown as a separate instruction. During

Enhanced Pipeline Scheduling, code mo-

tion is always toward the top of the loop.
The instruction(s) that has no predeces-
sors in the loop independent subgraph is

termed the fence and is shown in the

figure as a dotted box.
Figure 42(b) shows the loop after all

possible operations have moved out of
the false (right) branch of the !CC1 con-
ditional in Is and upward as far as
possible. By convention, we always move

operations from the false branch before

considering possible code motion in the

true branch.ze In Figure 42(b) note that

the operation x = g(x) must be renamed

as it moves past the branch on !CC1 as x
is live27 on the true branch. During the

upward migration, the movement of op-
erations from all successors of a node
must be attempted before code motion is
allowed from the node. For example, if
both 16 and IT have an identical opera-
tion, performing code motion on succes-

sors of 15 allows such duplicates to be
recognized and merged. Otherwise, the

two copies might move up to create re-
dundant code. Because duplicate copies
are often created by the code motion al-
gorithm, this becomes important. The
merging, termed umfication, of identical
operations at branch points of the CFG is
a key feature of both Perfect Pipelining
and Enhanced Pipeline Scheduling that
distinguishes their global code motion

“ The order of code motions in the figures does not

always follow the strict order of the algorlthm. The
result M the same,. and this order aids the presenta-
tion. By the ~trict sense of the algorithm, all possi-
ble mlgratmns from 15 would be attempted before
mqq-ation IS allowed from mstructl ons located above
lt.
27 A variable IS hve If lt IS used on some path before
It M redefined.

ACM Computmg Sur>ey\, Vol 27 No 3, September 1995

Software Pipelining “ 421

“A..

/
“ -&m
.--A kt=f(x)

+

ccl=t<k

!Ccl

(a)

.
11 [

+

CCO= i < Ii
z. = g(x) .

.

!C

/\

t= f(x)

+

ccl=t<k

(b)

Figure 42. (a) Unpipelined loop. Dotted box represents the fence, (b) Loop after migrating from

false branch of the !CC1 conditional.

from other global code motion algorithms
[Fisher 1981].2s

Figure 43(a) shows the loop after the
fence instruction II has been filled. Note
that when the operation z = h(Y) moves

past the !CC1 branch, it does not need to
be renamed as x is dead29 on the other
branch, but when it moves past the !CCO
branch, it must be renamed as x is live
on loop exit.

Upward code migration stops when
code movement possibilities encountered
in that pass have been exhausted. Thus

28 These features have been added to a later ver-

sion of trace scheduling [Freudenberger et al. 1994].
29A variable is dead if it is not used before it is
defined on all branches.

at Figure 43(a) code motion stops as no
further movement exists. Any empty in-

structions are removed from the CFG;
that is why 11 is eliminated. Note that
removing empty instructions causes no

problems in adhering to required min

times. Because necessary delays are

achieved by the insertion of dummy
nodes, dummy nodes within an instruc-

tion prevent the instruction from being
eliminated. Persistent resources cannot

be handled with this model. Both the
insertion and removal of empty instruc-
tions cause problems in the strict timing
constraints of consecutive instructions
imposed by persistent resources.

After code motion stops, the current

fence is marked as filled and all immedi-

ACM Computing Surveys, Vol 27, No 3, September 1995

V. H. Allan et al.

t= f(x) :

[)

Za=gx “
Xb=hx :
i=i+l .

m’”””””

t<

L---/’Y
(a)

Figure 43. (a) Loop after filling fence I
bottom of loop.

ate successors of the current fence be-
come the new fence instructions. Figure
43(b) shows the filled fence instruction
migrating upward past the join point of
the loop in which the program enters the
loop and the loop back edge returns to
the top of the loop. When this motion
takes place, the instruction enters the
pipeline prelude and also enters the loop
as the first instruction from iteration two

(l:). In Figure 43(b) the old fence in-
struction is not seen at the bottom of the
loop because all the operations it con-
tained moved into Is. Note the forward
substitution of x. for all uses of x in
operations from the old fence as they
move into the false branch of the !CC1
conditional, No analogous transformation
is required on the true branch as it is
empty.

Moving the filled fence instruction cre-
ates at least two copies of the fence: one

L

. .

7‘! ,

‘em-i :

. .

1

X=xb

ccl=t<k .

.!.

?

5

t
!yl

A
x=x~

CCO= i < n CCO= 1 < n

t=f[x) t= f(xa)
x~

Xa=g(x)
= g(za)

zb=h(x) xb = h(L?a

i=il i = i+l

(b)

(b) Loop after moving filled fence II to

on the path entering the loop and one at
the end of the loop. In this example there
are three copies produced because there
are three predecessors of 11,

As these operations move up, a soft-
ware pipeline is created. The new fence
instructions are filled by the same mi-
gration process. Enhanced Pipelining
Scheduling repeatedly fills fence instruc-
tions until the loop contains only one
instruction, or the loop prelude and %
contain operations from a sufficient num-
ber of iterations to see all the loop-
carried dependence.

Figure 44(a) shows the loop after all
possible operations have moved out of
the false branch of the !CC1 conditional
and upward as far as possible. The oper-
ations that resulted in unification have
also been moved at this point. Note that
the copies of operations i = i + 1 and
CCO = i < n that appeared on both

ACM Computmg Sur\,eys, Vol 27, No .3, September 1995

Software Pipelining “ 423

I I [
CCO= i < n

t= f(x)
Za = g(x)

z~ = h(x)
i = i+l

—
12

:!co

/q

X=xb

ccl=t<k :

ccO=i<n
~<t , : t = f(za) :
--- J“

Zc = g(xa) .

‘+
Xb = h(z.) :

i=i+l 1
.,.

“I’’””””””

!Ccl

-__QILt=f(x

Za=g(x) x=x~
x~ = xc

xb=h X—

(a)

T
I

cc=i<n
t= f(x)

f[1

x—x
X;z x

+

/

I
1

i

X=Zb

h ccl=t<k
i CCO= i < n

--. 1;
?Xlt ,, t = f(xa)--- 1

1 Zc = g(za)
I
1 ~b = h(za)
1
1 i = i+l
t
8 ta =f(xb)
I

X~ = g(~b;
1
1

‘$
e = h(xb’I

I
1
,------

G
------- .

t
!Ccl

,---
i
1
I
I
1
I
1
I
1
I
1
I
1
I
1
1
1
I
1
1
#
1
1
I
i
1
1
1
I
i
1

. .

(b)

Figure 44. (a) Loop after migrating from false branch of the !CC1 conditional. (b) Loop after filling

branches of the condition !cc1, are each
merged into a single operation as they

move past the branch point. Note also

that x. has been renamed x, as it moves
past the use of x. that is assigned to x.

Figure 44(b) shows the loop after the
fence instruction Iz has been filled. Fig-

ure 45 shows the final pipelined loop. Z

in this example is only one tree instruc-
tion. Enhanced Pipeline Scheduling
starts with a large loop and reduces it in
size as the pipelining proceeds. As the
loop is always valid, the algorithm only
iterates until the loop does not shrink in
size. This occurs when the loop contains

only one instruction or when all loop-

carried dependence have been seen.
The copy operations to x appear to be

redundant in % as x is never used. The
copies to x are needed because x is live
on exit from the loop. Note that the oper-

ations originally assigned to x are now

executed speculatively and their results
placed in renamed copies of x. The copy
operations to x ensure the correct value
is assigned to x on loop termination. The
resulting loop is the pipelined loop body,

and the prelude and postlude are gener-
ated automatically by the code duplica-

tion that occurs when operations are

ACM Computmg Surveys, Vol 27, No 3, September 1995

424 . V. H. Allan et al.

X
II

ccO= i < n

t= f(x)

z= = g(x)

~b = h(x)

i = i+l

Iz

! Cco

/
exit

!Ccl

,~\co

/
i ‘eki - i
L ---- J

Figure 45. Final pipelined loop

ACM Computmg Surveys, Vol 27, No 3, September 1995

Software Pipelining “ 425

m
01: a[i] = b[i]/2

OZ : c[i] = a[i] + 2

03:d[i]=z+i
I

04: if ccl

D

04 ; if ccl

/
Exit

U ~ }

IZ

Oz:ci=a[i]+2 02:ci=a[i]+2
03:di=z+i H03:di =z+i

[73~<it~ -~ ~ t t

i73 i
L -- J

Figure 46. Example of copying operations to both branches of a moved branch operation

moved in the CFG. This pipeline has no
postlude because the exit branch never
moves past other operations of the loop.

The postlude is generated when the
conditional branch operation of the exit
test is moved upward past code in the
loop. When the branch is moved, any
operations it moves past must appear on
both branches, resulting in the loop
postlude. For example, Figure 46 shows
part of a CFG before and after the branch
operation OL is moved to II. Note that Oz
and OS must be copied to the exit to
become part of the postlude branch as
they are executed regardless of the out-
come of the conditional branch in the
original loop. The pipeline postlude with
Enhanced Pipeline Scheduling is typi-
cally small due to the renaming.

4.4 Redlucing Code Expansion

Enhanced Pipeline Scheduling places a
restriction on the movement of opera-
tions out of a filled fence to reduce the
code expansion that occurs because of the
copying of operations to both predeces-
sors of a node, Operations are allowed to
move out of a filled fence instruction only
if all the operations can move, but once
the operations have moved out of a filled
fence instruction, they are free to move
independently of each other. Without this

requirement, given a node with two
predecessors, it is possible that code mo-
tion would generate two versions of the
node without any execution time benefit,
However, this restriction can result in
accepting a local minimum rather than
achieving the global minimum. En-

hanced Pipeline Scheduling does not have
an optimal 11 value that it is trying to
achieve, but stops when no further im-
provements are seen.

Figure 47 shows an example of this

code duplication. When moving opera-
tions from Is, OA can move to Iz when
forward substitution is used to collapse
the true dependence, but 04 cannot move
to the other predecessor of Is. The opera-
tion 05 cannot move to either predeces-

sor of Is. If code motion is allowed in
which operations of Is are allowed to
move independently, two copies of 1~ are
needed, one containing both OA and 05,

and the other containing only 05. If Is is
a filled fence, this type of code duplica-
tion would be prevented, as both OA and
05 would have to move out of Is for any
movement to occur. Code duplication is
expensive, therefore Enhanced Pipeline
Scheduling tries to reduce it.

In an improvement of Enhanced Pipe-
line Scheduling, Nakatani and Ebcio~lu
[1990] introduce a windowing technique

ACM Computmg Surveys, Vol 27, No 3, September 1995

426 * V. H. Allan et al.

Ol:x

02:

II
1

Iz
I

= c[i]

y = d[i]

I

mII

04: a[x] = x/2

05: b[y]=z*5

+~----,
1141
L ---- J

‘u’

7)’
01: z = c[i] 03:X=2

Oz : y = d[i]
OZ : y = d[i]

OA. : a[z] = ,2/2

Is Is.

OA : a[z] = x/2 05: b[y]=z*5

05: b[y]=z*5

r--l

I 14 t
L ---- J

Figure 47. Example of code duphcatlon

designed to reduce code expansion. When the work due to finding more parallelism
Enhanced Pipeline Scheduling produces than can be utilized, they recommend

a pipeline assuming infinite resources, that the movement of operations be al-
the instructions can become extremely lowed only within a given number of in-
large, as renaming and forward substitu- structions (termed the window size) from
tion are repeatedly removing movement the current fence instruction. The win-
blocking dependence. In order to reduce dow size can be set to a value that gives

AC’M Computmg Surve\,s, Vol 27, No 3, September 1995

Software ?ipelining “ 427

Table 6. Comparison of Algorithms

Lam Path Pred EMS Perfect Petri Vegdahl EPS

Fractional Rates no no no yes yes yes no

dif >1 yes yes yes yes yes yes yes no
min > 1 yes yes yes yes yes dummy dummy dummy

Resource Constraints yes no yes yes yes yes np np

Complexity poly poly poly 2’ poly poly 2“ poly

Code Expansion yes no no yes yes yes yes yes

Limited Rate yes yes yes yes no yes no yes

Leading Chain Problem no no no no yes no no no

E

Regular yes yes yes yes no no yes no
Kernel Recognition no no no no yes yes yes no
Modulo yes yes yes yes no no no no

good results for a particular application,
A disadvantage of this technique is that
it can limit the number of iterations exe-
cuting concurrently within X. When the
window size is small, new operations from
future iterations are not within the
movement window until several fence in-
structions have been filled, thus slowing
down the rate at which they can migrate
back up to the current fence instruction.

5. SUMhflARY

Table 6 summarizes the attributes of the
various algorithms. The column, Path,
represents Zaky’s path algebra algo-
rithm. Pred represents the various predi-
cated modulo scheduling algorithms.
Perfect represents Aiken and Nicolau’s
Perfect Pipelining. EPS represents En-
hanced Pipeline Scheduling.

The table is divided into sections. The

UPPer ~ec~on shows factors that influ_
ence efficiency of the target code pro-
duced or the practicality of the algo-
rithm. The middle section shows factors
that influence the code size or compile
time. The bottom section lists attributes
that are descriptive in nature and do not
affect the efficiency of the code produced

or the generality of the algorithm, but
may help to classify the algorithms. This
table is extremely useful not only in de-
termining the best algorithms, but in

suggesting possible modifications to en-
hance their capabilities.

The row labeled Fractional Rates indi-
cates whether the algorithm achieves
fractional initiation intervals without
having to replicate before scheduling. All
algorithms can achieve fractional initia-
tion intervals with replication, but suffer
from the inability to decide easily on an
appropriate replication factor.

All algorithms either address rnin

times of greater than 1 as an integral

part of the technique or introduce dummy
nodes to remove the occurrences. Dif
values greater than 1 are handled by all
algorithms except EPS which must repli-
cate before scheduling to remove the oc-
currences. All algorithms deal with gen-
eral resource constraints except for
Zaky’s path algorithm. This is a serious
limitation of Zaky’s algorithm. Resource
constraints can be expressed by a limit
on the number of functional units, a con-
flict graph, or a resource vector of hetero-
geneous resource requirements.

All methods handle irregular persis-
tent resources except for Path (which ig-
nores resource constraints) and those
marked with np, which deal with non-
persistent resources only.

Most of the algorithms have complex-
ity 0(n3) or 0(n ~). However, Vegdahl’s
algorithm is 0(2”) and is thus impracti-
cal for even moderate sized problems.

ACM Computmg Surveys, Vol 27, No 3, September 1995

428 e V. H. Allan et al.

EMS has a worst case complexity of O(2 n)
resulting from the exponential code ex-
plosion, but such cases are rare.

Code expansion refers to the increase
in code size caused by the same operation
being repeated multiple times in the
schedule (not counting prelude and
postlude). Any method that achieves
fractional rate does so by incurring code
expansion. Lam’s code expansion comes
from scheduling operations that are not
in branches with both versions of the
branch code and from modulo variable
expansion to eliminate loop-carried an-
tidependences. The hardware support for
predicated modulo scheduling eliminates
this code expansion. The transforma-
tions EPS uses to reduce the length of
cyclic dependence also introduces code
expansion.

Limited Rate indicates whether the al-
gorithm uses the idea of a target 11 in
making decisions. All modulo methods
begin with a lower bound on the II in
order to save effort. In addition, because
a single copy of each operation exists in
the kernel, the rate is automatically lim-
ited by 11. Kernel recognition algorithms
often lack the ability to control the greed-
iness in initiating iterations possibly re-
sulting in greater compilation time,
longer initiation intervals (greater execu-
tion time), and greater span (increased
length of prelude and postlude). The Petri
net algorithm achieves this limited rate
via the pacemaker (but this is an en-
hancement to the algorithm rather than
an integral feature). In Perfect, rate is
indirectly limited by setting the maxi-
mum span of a single instruction as new
operations cannot execute if the set span
is exceeded. Vegdahl is exhaustive and
searches for all schedules, but altering
the algorithm to limit the rate of execu-
tion would greatly reduce the compile
time. In EPS, a limited rate does not
exist per se, but the rate is limited by the
number of times an operation is moved
past the back edge or the window size.

The Leading Chain Problem refers to
the problem that some algorithms experi-
ence when there are one or more nodes
that are not successors of operations in

the critical cycle. A leading chain often
creates problems in algorithms without a
measured rate as they are uncon-
strained. Perfect solves the leading chain
problem by delaying operations when it
is evident they are executing at different
rates.

It is possible for all methods to han-
dle predicates within the loop when if-
conversion is used. Only EPS is capable
of achieving different II on each branch
of a predicate. Lam schedules subprob-
lems before combining. EPS and Perfect
are transformation based. Petri and
Path both can perform transformations
prior to scheduling to improve pipelining
results.

The row labeled Regular indicates
whether an operation in the prelude or
postlude is executed at the same interval
as it is while executing the kernel. Inas-
much as Vegdahl’s method does not spec-
ify how the prelude and postlude are gen-
erated, we assume a regular schedule is
produced. A regular schedule can be both
an advantage and a disadvantage. Be-
cause the prelude and postlude execute
just like the kernel (only with some oper-
ations omitted), predicated execution can
make kernel-only code possible. How-
ever, as some operations are omitted,
separate scheduling of prelude and
postlude may be more efficient. This is
a minor point as the conversion between
a regular schedule and an irregular
schedule (and vice versa) is a trivial
transformation.

Most of the algorithms are either mod-
U1O or kernel recognition, but EPS is
neither.

5.1 Modulo Scheduling Algorithms

Rather than waiting for a pattern to form,
modulo techniques analyze the DDG and
create a desirable schedule. The tight
coupling of scheduling and pipelining
constraints results in a pipeline that is
near optimal. The ability to adjust the
scheduling technique to control register
pressure or prioritize by various at-
tributes gives great flexibility. The regu-
lar pipeline that is produced simplifies

ACM Computmg Surveys, Vol 27, No 3, September 1995

Software Pipelining “ 429

the formation of the prelude, kernel, and
postlude. With the replication suggested,
fractional rates can be achieved [Jones
1991]. The trial-and-error approach of
finding the achievable 11 increases the
compile time, but no software pipelining
algorithm has a tight bound on compile
time.

Zaky [1989] uses a technique that pro-
duces results very similar to other mod-
U1O scheduling techniques, but uses path
algebra as a framework. Zaky’s algo-
rithm is impractical as it cannot handle
resource constraints, but is important be-
cause of the elegant way it formulates
and solves the problem. Because of the
concise algorithm, this technique pro-
vides an excellent conceptual model.

The modulo scheduling techniques
have continued to improve by using
hardware support to reduce code expan-
sion and allow tighter schedules by the
use of rotating register files. These meth-
ods represent an excellent choice for soft-
ware pi pelining, their only drawback be-
ing that fractional rates are not achieved
without replication before scheduling.

5.2 Perfect Pipelining

Perfect Pipelining is important from an
historical perspective due to the early

work in exploration of pipelining involv-
ing branches within the body of the loop.
Unification is an important addition to
earlier global code motion techniques.

Conceptually, Perfect Pipelining has an
advantage in that it is not forced to con-
sider al 1 paths through the loop simulta-
neously. In other words, various paths
through the loop are able to achieve a
different initiation interval. The fre-
quency of achieving optimal overall re-
sults is hampered by the ad hoc nature of
the scheduling.

The main disadvantage of Perfect
Pipelining is the difficulty of determining
when two nodes are functionally equiva-
lent. Other problems include the genera-
tion of loops that contain more copies of
the original iteration than needed and
the need to help the pattern develop.

5.3 Petri Net Model

The Petri net model is another excellent
choice for software pipelining due to its

strong mathematical orientation and
flexibility in adapting to a wide variety of
constraints. General reservation models
pose no problem for this adaptable
method. It produces excellent schedules,
its only drawback being the need to
search for a pattern.

5.4 Vegdahl

Vegdahl’s method is an interesting theo-
retical tool. Because of its exponential
complexity, it is not a practical tech-
nique, but serves as an “optimal” for
small code size. The method could be
adapted for use with persistent re-
sources, but would significantly increase
the run time. Perhaps Vegdahl’s method
could be used in combination with other
techniques. For example, if modulo
scheduling was used to determine span
and 11, Vegdahl’s exhaustive technique
could be greatly restricted to explore so-
lutions with span and 11 slightly better

than the achieved. A parallel implemen-
tation of a greatly reduced search space
could make the algorithm reasonable for
a broader class of problems.

5.5 Enhanced Pipeline Scheduling

Enhanced Pipeline Scheduling is unique.
Not only does it deal with multiblock
loops, but it always maintains a legal
loop structure rather than trying to
rebuild the loop. Enhanced Pipeline
Scheduling handles general loops. Al-
though renaming and forward substi-
tution have been utilized for years, the
degree to which they have been success-
fully employed in this technique is note-
worthy.

Enhanced Pipeline Scheduling has sev-
eral advantages over Perfect Pipelining.
The algorithm increases the speed of con-
vergence by retaining the loop construct
and reducing the resulting code size.
These techniques can also cause prob-

ACM Computmg Surveys, Vol. 27, No 3, September 1995

430 “ V. H. Allan et al.

lems, as prematurely forcing operations
to remain together can restrict the paral-
lelism. These disadvantages are lessened
if a majority of the loop dependence can
be removed by the automatic renaming
and combining. The most serious draw-
back is the unsuitability of the method
for use with persistent resources. Be-
cause instructions are inserted or re-
moved during the scheduling, persistent
resources (that require a fixed set of re-
sources a given offset from instruction
initiation) cannot be accommodated.
Fractional rates are not achieved.

6. CONCLUSIONS ANEI FUTURE WORK

Software pipelining is an effective tech-
nique for extracting parallelism from
loops that thwart attempts to vectorize
or divide the work across processors.
Although the speedup is modest, it
should be noted that software pipelining
succeeds where other methods fail and
can be applied after other techniques
have extracted coarse grain parallelism.
The variety of architectures benefiting
from software pipelining underscores its
importance.

Although an NP-complete scheduling
problem, software pipelining has numer-
ous effective heuristics that have been
developed. Both resource conflicts and
cyclic dependence produce a lower bound
on the initiation interval. Such lower

bounds can be computed in polynomial
time. In considering algorithmic features
such as low complexity, ability to deal
with conditionals, accommodation of re-
source conflicts, and achievement of frac-
tional initiation intervals, the current
n~ethods have various degrees of success.

Some researchers are applying artifi-
cial intelligence techniques to the prob-
lem of software pipelining. Beaty [1991]
uses genetic algorithms for instruction
scheduling. O’Neill [1994] and Allan and
O’Neill [1994] use genetic algorithms and
simulated annealing to solve the problem
of software pipelining. In the future, we
expect to see more improvements in the
application of artificial intelligence tech-
niques to scheduling problems.

ACKNOWLEDGMENTS

The authors would Ilkc to thank B R Rau for h]s

insight Into the history of modulo scheduling and

hls pamstakmg attention to the detads of this pa

per. Thanks to the anonymous referees, The quallty

of the paper has been tremendously Improved by

them comments This work was supported m part

by the Nat]onal Science Foundation grants CDA-

9100788 and IRI-S901175

REFERENCES

AHO, A V, Sirmu, R, AND ULLMMV, J D 1988
Cnmpilcr~ Prlnclple~, Techniques, and Tools

Addison-Wesley, Reading, MA

ATKEN, A 1988 CompactIon-based parallehza-

tlon Cornell Umverslty, Dept of Computer Sci-
ence, Ph D Thesm. Ithaca, NY

AIKEN, A. AND NLCOLiIU, A 1988a. A development
envu-onment for horizontal microcode IEEE
Trams Softw. Eng. 14, 5 (May), 584-594

AI%N, A AND NICOL~L~, A 1988b Optimal loop
parallehzatlon In Prowedzngs of the SIGPLAN

’88 Conference on Programming Language De-

sign and Implementation (Atlanta, GA. June),
308-317

A1hEN, A. AND NICOLAL, A, 1988c. Perfect
plpehmng. A new loop optlmlzatlon techmque,

In Proceedings of the 1988 European Sympo-

szum on Programming. Springer Verlag Lec-
ture Notes zn Computer Science, #300 (Atlanta,
GA, March), 221-235

AIKEN, A ANII NICOLP.LT, A 1990 A reallstic
resource-constrained software plpehrnng algo-
rithm Tech Rep RJ 7743, IBM Research Dlvi-

slon, San Jose, CA, October

ALLAN, V, H, AND O’NEILL, M. R, 1994. Software

plpehnmg: A genetic algorithm approach, In
PACT 94 (Montreal, Canada, Aug. 23–26).
North-Holland, Amsterdam, 311–314

AT LAN, V H , RAJAGOPALAN. M , AND LEh, R M

1993. Software plpehmng Petri net pace-
maker In Working Con ferpnce on Arch ztectures

and Cornpzlat[arz Techniques for Fzne and
Medzam Grain Parallelzsrn (Orlando, FL, Jan

20–22) North-Holland, Amsterdam, 15–26

BANERJMi, U , SHFX, S , KUCK, D J., .LNn TOWLE.
RA 1979 Time and parallel pr.ccswm
bounds for Fortran-hke loops. IEEE !l’rans
Comput C-28, 9 (Sept), 660-670

BEAT~, S, J. 1991, InstructIon scbeduhng using

genetic algorithms. Colorado State Umverslty,
Fort Colhns, CO, Ph D Thesm,

BWK. G. R , Y~N, D W L , W~ ANDERS lN, T L

1993 The C’ydra 5 mimcomputer Architec-
ture and implementation In J Supercomput
(May), 143-180

BRETERNITZ. M,. JR. 1991, Architecture synthesis
of high-perforrnance apphcatlon-speclflc ~roces-
som Carnegie Mellon Universlt~,, Pittsburgh,
PA, Ph D Thesis

ACM Computing Surve>~, Vol 27, No d, September 1995

Software Pipelining “ 431

CHANDY, K. M. AND KESSELMAN, C. 1991 Parallel
programming in 2001. IEEE Softzo. 8, 6 (Nov.),

11-20.

DAVIZMON, E. S. 1971, The design and control of

pipehned function generators, In F’mceedmgs
of the 1971 International IEEE Conference on

S.vsterns, Netzuorks, and Computers (Oaxtepec,
Mexico, Jan.), 19-21.

DEHNERT, J. C., HSCT, P, Y.-T., AND BRATT, J, P.

1989. Overlapped loop support m the Cydra-5.
In Proceedings of the Thzrd International Com

ference on Architectural Support for Progrant-
nung Languages and Operatzng Systems (Bos-

ton, MA, April), 26-38.

D~HNERT, J. C. AND TOWLE, R, A. 1993. Compil-

ing for the C ydra-5. In J. Supercomput. (May)j

181-228.

E~c10t2Lu, K. 1987. A compilation technique for

software pipelining of loops with conditional
jumps. In Proceedings of the 20th Micropro-

gramming Workshop (MZCRO-20) (Colorado

Springs, CO, Dec.), 69-79

EBCIOi3LU, K. AND NAKATANI, T. 1990. A new com-
pdation techmque for parallelizing loops with

unpredictable branches on a VLIW architec-
ture. In Languages and Gompders for Parallel
Computmg, D. Gelernter, Ed,, MIT Press.

Cambridge, MA, 213-229.

FERRANTE, J,, OTTENSTEIN, K. J., AND WARREN, J. D.

1987. The program dependence graph and its

use m optimization. ACM Trans. Program.
Lang. Syst. 9, 3 (July), 319-349.

FISHER, J. 1981. Trace scheduling: A technique

for global microcode compaction. IEEE Trans.
Comput. C-30, 7 (July), 478-490.

FRTZUD~NMIRG~R, S. M., GROSS, T. R., AND LOWNEY,

P. G. 1994. Avoidance and suppression of

compensation code in a trace scheduler ACM
Trans. Program. Lang. Syst. 16, 4 (July),
1156-1214.

GAO, G. R., WONG, W.-B., AND NING, Q. 1991a. A
timed Petri-net model for fine-grain loop
scheduling. In Proceedings of the ACM SIG-
PLAN ’91 Conference on Programmmg Lan-

guage Design and Implementation (June
26-28), 204-218.

GAO, G. R., WONG, W.-B., AND NING, Q. 1991b. A
timed Petri-net model for tine-gram loop

scheduhng. Tech. Rep. ACAPS Technical Memo
18, School of Computer Science, McGdl Univer-

sity, Montreal, Canada, H3A 2A7, January.

GOWNDARAJAN, R., ALTMAN, E. R., AND GAO, G. R.
1994, Minimizing register requirements un-

der resource constrained rate-optimal software
pipclining. In Proceedings of the 27th Annual
International Symposium on Micz-oarchitectuz-e,
to appear.

Hsu, P. Y. T. 1986. Highly concurrent scalar

processing. University of Ilhnois, Urbana-
Champaign, Urbana-Champaign, IL. Ph.D.
Thesis.

Hsu, P. Y T. AND DAVIDSON, E. S. 1986. Highly

concurrent scalar processing. In Proceedings of

the Thirteenth Annual In ternatlonal Sympo-

.wum on Computer Architecture, 386–395.

HUFF, R. A. 1993. Lifetime-sensitive modulo
scheduling. In Conference Record of SIGPLAN
Programmmg Language and Desgn Implenten -
tat~on (Albuquerque, NM., June). ACM, New
York, 258-267.

JONES, R, B. 1991. Constrained software pipelin-
ing. Utah State University, Dept. of Computer
Science, Logan, UT, Master’s Thesis, Sept.

JONES, R. B. AND ALLAN, V. H. 1990. Software
plpelining: A comparison and improvement. In
Proceedings of the 23rd Znternatzonal Sympo-

swm and Workshop on Mlcroprogrammmg and
Mzcroarchztecture (MICRO-23) (Orlando, FL,

Nov. 27-29). IEEE Computer Society Press,
46-56.

KUCK, D. J. AND PADUA, D. A. 1979. High-speed

multiprocessors and their compilers. In Pro-
ceedings of the 1979 Internatzmzal Conference

on Parallel Processing, 5–16.

LAM, M. S. 1988. Software pipelining: An effec-
tive scheduhng technique for VLIW machines.
In Proceedings of the SIGPLAN ’88 Conference

on Programnung Language DesLgn and Imple -
rnentatzon (Atlanta, GA, June), 318–328.

LAM, M. S. 1987. A systolic array optimizing

compiler. Carnegie Mellon University, Dept. of
Computer Science, Pittsburgh, PA, Ph.D. The-
sis.

MAHLKE, S, A., LIN, D. C., CHEN, W. Y., HANK, R. E.,
AND BRINGMANN, R. A. 1992. Effectwe com-

piler support for predicated execution using the
hyperblock. In Proceedings of the 25th Annual
International Symposwm on Mlcroarchitecture

(MICRO-25) (Portland, OR, Dec. 1-4), 45-54.

MATETI, P. AND DEO, N. 1976. On algorithms for

enumerating all circuits of a graph. SZAM J.
Comput. 5, 1,990-999.

NAKATANI, T. AND EBCIO~LU, K. 1990. Using a
lookahead window in compaction-based paral-
lehzing compder. In Proceedings of the 23rd

MLcroprogrammlng Workshop (MZCRO-23)

(Orlando, FL, Nov.). IEEE Computer Society
Press, 57-68.

NAKATANI, T. AND EBCIOGLU, K. 1989. “Combin-
ing” as a compilation technique for VLIW ar-
chitectures. In Proceedings of the 22nd Micro-
programming Workshop (MICRO-22) (Dublin,
Ireland, Aug.), ACM, New York, 43-55.

NICOLAU, A. AND POTASMAN, R, 1990. An envmon-
ment for the development of microcode for
pipelined architectures. In Proceedings of the
23rd SymposizLm and Workshop on Micropro-
gramming and Microarchitectuz-e (Orlando, FL,
Nov.), 69-79.

O’NEILL, M, R. 1994. Software plpelining with
stochastic search algorithms. Utah State Uni-

versity. Dept. of Computer Science, Logan, UT,
Master’s Thesis.

ACM Computmg Surveys. Vol 27, No 3. September 1995

432 ● V. H. Allanet al.

RAJii~o~.ALAN, M. AND ALLAN, V.H, 1994. Speclfl-
catlon of software pipehmng using Petri nets
Int J. Parallel Process 3, 22, 279–307.

RAIT, B. R 1994 Iterative modulo scheduhng An

algorithm for software plpehned loops In Pro-

ceedings of Mw-o-27, The 27th Annual Interna -
tmnal Sympostum on Mmroarchu!ecture (San
Jose, CA, Nov 29-Dee. 2) ACM, New York.

63-74

RAU, B. R. AND FISHER, J. A. 1993. Instructlon-
level parallel processing History, overview, and

perspective. J. Supercomputmg 7, 9-50.

RAU, B. R., LEE. M , TIRUMIiLM, P P , AND
SCHLANSKER, M S 1992 Register allocation

for modukz scheduled loops Strate@es, algo-
rithms, and heuristics. In Proceedings of the
ACM SIGPLAN ’92 Conference on Program-
mrng Language Design and Implementchon

(San Francisco, CA, June), ACM, New York,
283-299

RAU, B R., SCHLANSKSR, M S , m~ TIRUMALAI, P P
1992 Code generation schema for modulo

scheduled loops. In Proceedings of Mzcro-25,
The 25th Annual International Sjmposzzzm on

Microarch/tecturt (Dec.) IEEE Computer Soci-

ety Pres>, 158–169

RAU, B R., YEN, D. W L , YEN, W.. AND TOWLE,
R. A. 1989. The Cydra 5 departmental su-

percomputer: Design phdosophles, decmlons,
and trade-offs IEEE Cornput. (Jan.), 12–25.

RAU, B. R. AND GLAESER, C. D. 1981 Some
scheduling techniques and an easily schedula-
ble horizontal architecture for high perfor-
mance scientific computmg In Proceedings of

the Fourteenth Annual Workshop of Micropro-
gramming (Ott), 183-198

RAU, B. R., GLAESER, C. D., AND GREENt~7ALT, E. M.
198’2, Architectural support for the efficient

generation of code for horizontal architectures.
In Proceedings of the Symposl urn on Arch ~tec-
tural Sapport for Progrccmmzng Languages and

Operating Systems (March), 96-99.

SMIrH, H F 1987 Data Structures Form and

Fanctzon Harcourt Brace Jovanovich, San
Diego, CA

Su, B., DING, S., WANG, J,, AND XIA, J, 1987.
GURPR—A method for global software plpe-
lining. In Proceedings of the 20th Mzcropro-
grammmg Workshop (MIC’RO-20) (Colorado
Springs, CO, Dee), 97-105.

Su, B , DING, S., AND Xm, J. 1986. URPR—An
cxtenslon of URCR for software plpehm ng. In
Proceedings of the l%h Mlcroprogramm zng
Workshop (MICRO-19) (New York, Oct.),
104-108.

TARJAN, R 1972 Depth-first search and linear

graph algorithms. SI.4M J, C’omput. 1, 2 (June),

146-160

TIERNAN, J C. 1970. An efficient search algo-

rlthm to find the elementary circuits of a graph.

Commun ACM 13, 1, 722-726

TIRUMALAI, P., LEE, M , AND SCHLANSKER, M S.

1990 Parallelization of loops with exits on

p,pehned architectures In Proceedings of

SuperComputmg ’90 (Amsterdam, Nov), ACM,
New York, 200-212

TOKCMW, M , TAMURA, E., TAK.A\E, K, AND TAMARU,

K. 1977 An approach to microprogram opti-

mization considering resource occupancy and

instruction formats In Proceedr ngs of the

10th Annual Workshop on M[croprogrumnung

(Niagara Falls, NY, Nov.), 92-108

VEGI)AHL, S R. 1992 A dynamic-programming

technique for compacting loops In Proceeduzgs
the 25th Annual International Symposium on

Mzcroarclzztecture (MICRO-25) (Portland, OR,
Dec) IEEE Computer Society Press, 180-188

VEC,D.AHL, S R 1982 Local code generation and

compaction in optlmlzmg microcode compders

Carnegie-Mellon Umversity. Dept of Computer

Science, Pittsburgh, PA, Ph D Thesis

WARTER, N J., HmB, G. E , AND Bocmwms, J. W

1992 Enhanced modulo scheduling for loops

with conditional branches In Proceedings of

the 25th Annual International Symposzum on

Mzcroarchztecture (MICRO-25) (Portland, OR,
Dec 1–4), IEEE Computer Society Press,

170-179

WARTER, N. J , MAHLKR, S A, Hwu, W. M W., AND

RAU, B R 1993 Reverse If-conversion In
PLDI (Albuquerque, NM, June) ACM, New

York, 290-299

WOLFE, M. J. 1990. Tzny—A Loop R.estructuruzg

Tool, User Manual Oregon Graduate Institute

of Science and Technology, Beaverton, OR.

WOLFE, M J 1989 Optzmzzzng Supercompders

for Supercomputers MIT Press, Cambridge,

MA.

WooD, W, G. 1979. Global optlmlzatmn of micro-
programs through modular control constructs

In proceedings of the 12th Mlcroprogramm lng

Workshop (MICRO-12) (Hershey, PA, Nov.),
1-6.

ZAzm, A. M. 1989. Efi’iclent stat]c scheduhng of

loops on synchronous multiprocessors, Ohio

State University, Dept. of Computer and Infor-
mation Science, Columbus, OH, Ph.D. Thesis.

ZIMA. H, AND CHAPMAN, B. 1991. Supercornpllers

for Parallel and Vector Computers ACM, New
York

Received November 1993, rewed version received February 1995, final revlslon accepted July 1995,

ACM Computjng Surveys, Vol 27, No 3, September lq95

