
Global Register Allocation at Link Time 

David W. Wall 

Digital Equipment Corporation 
Western Research Lab 

In previous work in global register allocation, 
the compiler colors a conflict graph constructed from 
liveness dataflow information, in order to allocate the 
same register to many variables that are not simultane- 
ously live. If two procedures are in separately com- 
piled modules, however, the compiler must do this 
allocation separately for each procedure. As a result, 
the two procedures might use different registers for the 
same global, or the same register for different locals. 

We can remove these problems if we delay 
the register allocation until link time. Our compiler 
produces object modules that can be linked and run 
without global register allocation, but includes with 
each object module a body of information describing 
how the module uses variables and procedures. A 
link-time register allocator then decides which vari- 
ables are used most frequently, selects registers for 
them, and rewrites the code to reflect the decision that 
these variables reside in registers rather than in 
memory. Construction of the call graph allows us to 
use the same register for locals of procedures that are 
not simultaneously active, giving us most of the advan- 
tages of a full-scale coloring without the expense. 

When we use our method for 52 registers, our 
benchmarks speed up by 10 to 25 percent. Even with 
only 8 registers, the speedup can be nearly that large if 
we use previously collected profile information to 
guide the allocation. We cannot do much better, 
because programs whose variables all fit in registers 
rarely speed up by more than 30%. Moreover, profiling 
shows us that we usually remove 60% to 90% of the 
loads and stores of scalar variables that the program 
performs during its execution, and often much more. 

Permission IO copy without fee all or part of this material is granted provided 
that the copies are not made or distributed for direct commercial advantage. 
the ACM copyright notice and the title of the publication and its date appear. 
and notice is given that copying is hy pwmission of the Association for 
Computing Machinery. To copy otherwise, or to republish. requires a fee and/ 
or specilic permission. 

@ 19i36 ACM 0-89791-197-O/86/0600-0264 75~ 

1. Introduction 

Several recent machines [8,9,10] have been 
designed with simple instruction sets. They have only 
a few ways of accessing memory, sometimes no more 
than a single load instruction and a single store instruc- 
tion. This allows most operations to be fast, since they 
operate only on registers. In addition, these machines 
often have a large number of registers, relying on 
smart compilers to exploit them. 

How can we best take advantage of a machine 
with many registers? One promising idea is to pick 
the most frequently used variables and keep them in 
registers instead of in memory. Chaitin et al. [2,3] and 
Chow [4] have explored a technique in which many 
different variables can be assigned to the same register. 
In their technique, the compiler does a liveness 
dataflow analysis, and builds a conflict graph in which 
an edge appears between two variables if they are ever 
live at the same time. Two variables that are never 
live at the same time can be kept in the same register, 
so a coloring of this graph is equivalent to a register 
allocation for the variables. Good linear-time coloring 
heuristics exist, even though the problem of finding a 
minimal coloring is NP-complete. 

The technique of Chaitin et al. and Chow is 
less satisfactory if we also want to use separate compi- 
lation, If procedures in two different modules must be 
analyzed separately, then there is no way to keep their 
register allocations from interfering with each other. If 
one procedure calls the other, one of them must save 
and restore its locals around the call, in case the other 
procedure uses the same registers for its own locals. If 
both procedures use a common global variable, they 
may allocate different registers for the global, so each 
procedure must spill the global to a home memory 
location before transferring to the other, and load the 
global from that location whenever it gets control 
again. 

These problems are less important in an 
environment where the modules of a program are com- 
piled all together instead of separately, or in machines 
with few registers. The papers by Chaitin et al. seem 
to assume such an environment, and the first of these 

264 



papers describes a machine with only 16 general pur- 
pose registers. Both of these assumptions seem unreal- 
istic, however: the machine we are working with has 
64 registers, and separate compilation seems essential 
if we want to develop large programs. 

Our solution is to assign variables to registers 
at link time. 

2. Global register allocation at link time 

If we assign variables to registers over the 
entire program at link time, these problems disappear. 
We can keep each global in a specific register where 
any procedure can access it. And when one procedure 
calls another, we can keep the locals of the two pro- 
cedures in different registers, so that there is no need 
to save and restore them around the call. 

Simply postponing the coloring technique 
until link time is impractical, however. If we wait 
until link time and then do an expensive dataflow 
analysis, conflict graph construction, graph coloring, 
and final code generation, we will be doing the bulk of 
the compiler’s work at link time, and recompilation 
after a change will take almost as long as if we did not 
have separate compilation. Moreover, algorithms for 
dataflow analysis and conflict graph construction 
require slightly more than linear time; the cost may be 
acceptable if we apply the algorithms repeatedly to a 
lot of smaller modules or procedures, but we have 
found it too expensive to apply them to an entire pro- 
gram. It is important to do as much as we can at com- 
pile time. 

We therefore treat the assignment of variables 
to registers as a form of relocation. The compiler gen- 
erates code that can be linked and executed without 
further work, but it includes extra information similar 
in purpose to the information in the relocation diction- 
ary. If the global register allocator is invoked, it 
decides which variables should be kept in registers, 
and then uses this extra information to rewrite each 
module based on the allocation, just as a relocating 
linker rewrites a module in order to relocate it. 

Generating code that is correct as it stands but 
which we can easily modify later is attractive for three 
reasons. First, it means that the assignment of vari- 
ables to registers is entirely optional. If the expense of 
the assignment is unwarranted, or if bugs are 
suspected, we can omit it. Second, it means we are 
not forced somehow to allocate registers for all the 
variables in the program; if we manage to keep the 

most frequently used variables in registers, we can 
keep the rest of them in memory and the results are 
still correct. Finally, it keeps us honest as designers of 
the system; once we postpone anything until link time, 
the temptation is great to postpone everything, so that 
we can know what the other modules look like. The 
requirement that we generate working code at compile 
time makes it harder to succumb to that temptation 
when we should not. 

Making the assignment of variables to regis- 
ters optional means that the compiler must set aside 
some registers as expression temporaries, and deal with 
them separately from the registers allocated at link 
time as the homes of variables. This is contrary to the 
philosophy of Chaitin et al., which included expression 
temporaries in the conflict graph, and introduced spills 
and reloads in order to reduce the complexity of the 
conflict graph to the point where it was colorable using 
the number of registers available. This meant that glo- 
bal register allocation was an integral part of code gen- 
eration and could never be omitted. We contend that 
this is inappropriate in a realistic setting with the need 
for separate compilation and optional optimization. 

Our scheme for assigning variables to registers 
consists of three phases: compilation, register alloca- 
tion, and module rewriting. 

2.1. Compilation 

The compiler must do two things to support 
global register allocation. First, it must annotate the 
code it generates so that it can be rewritten after regis- 
ters have been allocated. Second, it must collect usage 
information that lets the allocator build the program 
call graph and estimate the usage frequency of each 
variable. 

2.1.1. Annotated code generation 

Our target machine allows memory access 
only through a simple load or store instruction. The 
compiler generates good code that does not load a 
variable twice in the same basic block unless neces- 
sary, but it makes no attempt to allocate variables to 
registers. Moredver, it uses only eight registers for 
expression temporaries; if it needs more, then it spills 
some of these eight into internal memory variables 
which are themselves candidates for global register 
allocation. In short, the compiler generates the code 
that you would expect if the machine had only a few 
registers. 

265 



The compiler annotates some of the instruc- 
tions with “register actions” that explain how the 
operands and results are related to the candidates for 
global register allocation. These candidates include 
scalar user variables, numeric constants, and the 
addresses of data structures and procedures. For exam- 
ple, the assignment “x 
tated code like this: 

instruction 
rl := load y 
r2 := load z 
r3 := rl + r2 
store x := r3 

= y + z” would lead to anno- 

actions 
REMOVE. y 
REM0VE.z 
0Pl.y OP2.z RESULT.x 
REM0VE.x 

Each action in this example is qualified by a 
variable name; the action specifies what needs to be 
done to the instruction if that variable is assigned to a 
register at link time. The action REM0VE.v means to 
delete the instruction if v is assigned to a register. The 
action OPl.v, OP2.v, or RESULT.v means to replace 
the first operand, second operand, or result of the 
instruction by the register allocated to v. The three 
examples below show the rewritten code that results at 
link time from various selections of register variables. 

register y register x,y register x,y,z 
r2 := load z r2 := load z x:=y+z 
r3 := y + r2 x := y + r2 
store x := r3 

This example was easy. Our job is more 
complicated if a variable is evaluated and then 
changed, and later the original value is used. For 
example, the C assignment “x = y++ + z”, which 
increments y but adds the unincremented value to the 
value of z, might lead to annotated code like: 

rl := load y LOAD. y 
r2 := rl + 1 RESULT. y 
store y := r2 REMOVE. y 
r2 := load z REM0VE.z 
r3 := rl + r2 OP2.z RESULT.x 
store x := r3 REM0VE.x 

The L0AD.y action says that the instruction is loading 
the current vahte of y, but that y will be changed 
before this value is used for the last time. As a result 
we cannot delete the load, instead we change it to a 
register move that copies the current value of y from 
its home register into the temporary register. For the 
same reason, we do not flag later uses of this value 
with an action like 0Pl.y. as we did in the previous 
example. If x, y, and z are all assigned to registers, 
this code segment becomes: 

rl := y 
Y := rl + 1 
x := rl + z 

We will see that distinguishing between these two 
cases is not difficult with a little analysis of the basic 
block. 

Some source languages allow an assignment 
to be used as an expression. In this case, the com- 
puted value is used as an operand to more than one 
command, not just as an operand to the assignment. 
The variable to which the value is assigned may even 
change again before we finally use the computed 
value. This makes it hard to use the RESULT action 
to combine the computation with the assignment. So 
we let the computed value remain in the temporary 
register. The C assignment “x = y = a + b”, which 
assigns the sum of a and b to y and then to x, might 
lead to annotated code like: 

rl := load a REM0VE.a 
r2 := load b REMOVEb 
r3 := rl + r2 0Pl.a OP2.b 
store y := r3 ST0RE.y 
store x := r3 ST0RE.x 

A ST0RE.v action is analogous to a LOAD action. It 
says that we should replace the store instruction by a 
register move into the register allocated to v. 

There is one degenerate case that we must 
handle properly. If we compile the assignment 
“ x = y” the above examples would lead us to expect 
the annotated code: 

rl := load y REMOVE. y 
store x := rl 0Pl.y REM0VE.x 

If we assign both x and y to registers, both instructions 
will be removed! We must therefore handle simple 
assignments of one variable to another as a special 
case, which we can do by changing the annotation of 
the store: 

rl := load y 
store x := rl 

REMOVE. y 
0Pl.y ST0RE.x 

How do we decide how to annotate the code 
in practice? Let us represent a basic block as a 
sequence of commands, where each command specifies 
the evaluation of a variable, the performance of an 
operation, or the assignment of a result. Then the C 
assignment “x = y++ + z” would appear as: 

266 



#I: leaf 
#2: operate ii1 + 1 
#3: assign y := #2 
#4: leaf 
#5: operate ;1 +#4 
#6: assign x := #5 

There are three types of commands. A leaf command 
evaluates a single variable. An operation command 
performs an operation using the values of previous 
commands, producing a new value. An assignment 
command assigns the value of a previous command to 
some variable. This organization of commands is 
appropriate for a machine like ours where we must 
access memory only via loads and stores. Other kinds 
of commands, such as indirect loads and stores and 
procedure calls, do not concern us here. 

Then generation of unannotated code is easy. 
To annotate the code with register actions, we must 
first determine where the value of each command is 
used: for instance, the value of command #l above is 
used in commands #2 and #5, but not thereafter. 
Command #I evaluates the variable y, and command 
#3 is an assignment to y, so the use of command #l in 
command #5 means that we must mark #I as “time 
critical,” meaning that the value used is not always the 
current value of the variable. 

We can find these cases with a backward pass 
over the commands, as follows. 

Let LIVELEAVES be a set of leaves in this 
basic block, initially empty. 

for each command, in reverse order, do: 
if the command is an assignment, then 

let DEST be the assignment destination 
for each leaf in LIVELEAVES, do: 

let LEAF bc the leaf variable 
if LEAF is the same as DEST, then 

Mark the leaf as “time critical” 
end 

end 
end 
if the command is a leaf, then 

remove it from LIVELEAVES 
else 

for each operand of the command, do: 
if the operand is a leaf command, then 

add the leaf command to LIVELEAVES 
end 

end 
end 

end 

This done, we generate annotated code for each com- 
mand as follows. 

Case 1. If the command is a leaf for some variable v, 
then generate a load into a temporary register. 
(Remember that expression temporaries are different 
from the registers we allocate to variables.) If the leaf 
is marked “time critical,” then annotate the load with 
LOAD.v, and otherwise annotate it with REM0VE.v. 

Case 2. If the command is an operation, generate the 
instructions to perform the operation. Usually this is 
just one instruction, but for operations that are not 
available in hardware it may be a sequence of instruc- 
tions. If the value of this operation is used only once, 
by an assignment command “v:=“, then annotate the 
instruction that produces the result with RESULT.v. 

Case 3. If the command is an assignment to some 
variable v, generate a store. If the operand is a leaf 
command, or if it is used in some other command as 
well as this one, then annotate the store with 
ST0RE.v. Otherwise annotate it with REM0VE.v. 

In either case 2 or case 3, if an operand of the com- 
mand is a leaf for some variable v and is not marked 
as “time critical,” annotate any instructions that use 
that leaf command with 0Pl.v or OP2.v, depending on 
which operand of the instruction it is. 

There are really only two things going on 
here, each of which consists of two pieces that must fit 
together properly. First there is the loading of a vari- 
able. If the value is used only in places where the 
variable still has the same value, we can mark the load 
for removal and mark the uses to be replaced by the 
variable’s register. If there are uses after the variable 
has changed, then we must retain the load (but replace 
it by a register move) and leave the uses unchanged. 
Second there is the assignment of a value to a variable. 
If the value is used only to assign it to the variable, we 
can mark it for direct computation into the variable’s 
register, and mark the store for removal. If the value 
has other uses, we must retain the store (again replac- 
ing it by a register move). A smarter analysis would 
let us see whether the other uses could instead be 
replaced by the variable’s register, but we don’t do 
that. 

2.1.2. Usage information 

The compiler collects usage information about 
each module it compiles, and records this information 
in the object file. This information includes a list of 

267 



the procedures in the module. For each procedure 
there is a list of the variables local to this procedure,,a 
list of the procedures this procedure calls, and a list of 
the variables this procedure references. Each entry in 
the last two lists includes an estimate of the number of 
times the procedure is called or the variable is refer- 
enced in each execution of this procedure. When I 
obtained the results described later in this paper, these 
estimates were computed by counting the static number 
of times the reference is made, with references inside 
loops, no matter how deeply nested, counting as 10. 

2.2. Register allocation 

Before the program is linked, the register allo- 
cator collects the usage infprmation for all the modules 
being linked, and then builds a call graph for the pro- 
gram. This call graph is a directed acyclic graph 
(DAG) and does not include edges for recursive or 
indirect calls, which require special handling. 

The allocator then estimates the total number 
of times each procedure is called, by summing the 
counts associated with the procedure in all of the call 
lists. (At first we tried to traverse the call graph and 
multiply counts, so that if P called Q ten times and Q 
called R ten times we ended up with an estimate of 
100 calls for R. Since the estimates in the individual 
call lists were only rough guesses, this tended to give 
wildly wrong counts, some even overflowing the 32-bit 
integer. The current more conservative scheme seems 
to work better.) 

The allocator also estimates the total number 
of times each variable is referenced, by summing the 
reference counts for each procedure, weighted by the 
estimated number of times the procedure is called. 

The idea behind our register allocation scheme 
is that locals of procedures that are not simultaneously 
active can be grouped together and assigned to the 
same registers.* We do this by traversing the call DAG 
in reverse depth-first search order [l], assigning the 
locals of leaf procedures to a series of groups begin- 
ning with group 0, and then assigning locals of other 
procedures to a series of groups beginning after the 
groups used by its children. The algorithm+ is as fol- 
lows: 

* Michael L. Powell is responsible for this insight, for which I 
am most grateful. 

’ My thanks to Richard Beige1 for this elegant algorithm. 

for each proc p in reverse depth-first search order, do: 
(* Each child was given groups in a previous 

iteration. Leaves have no children. *) 
childGroups := 0 
for each child q of p in the call DAG, do: 

if groups[q] > childGroups then 
childGroups := groups[q] 

end 
end 
groups[p] := childGroups 
for each local v of p. do: 

assign v to group number “groups[p]” 
gw=bl := groups[p] + 1 

end 
end 

The register allocator then assigns each global 
variable to a singleton group, gives each group a fre- 
quency that is the sum of the reference frequencies of 
its variables, and sorts the groups by frequency. Then 
it assigns the most frequently used groups to registers. 

A variable whose address is taken anywhere 
in the program is ineligible for assignment to a regis- 
ter. This is an extremely conservative decision, which 
could be relaxed by using datatlow analysis to deter- 
mine the places where the address might be used. We 
were interested in how well we could do without that 
sort of analysis, so we didn’t do it. 

2.3. Module rewriting 

When we have decided which variables to 
keep in registers, we know which register actions to 
apply to the code of each module. Applying these 
actions is easy, since each one is independent of con- 
text; the compiler did the hard work when it generated 
the actions in the first place. The only tricky part is 
that we may add or delete instructions, so addresses 
that appear in instructions or data must be adjusted. 
Finding these instructions or data is easy as well, 
because the compiler flags them for relocation by the 
linker. 

The module rewriter starts by building an 
adjustment table that it uses to map old addresses into 
new ones. This table specifies the adjustment that we 
must make to addresses in a given range: to find the 
range for a code address we do a binary search. Data 
addresses are easier: we always adjust them by the 
change in the size of the code. 

Then the rewriter steps through the code seg- 
ment, modifying or discarding each instruction 

268 



according to the register actions that apply to it. If the 
instruction has a relocation entry, the rewriter discards 
the relocation entry if the instruction is removed or if 
relocation is no longer needed, and modifies the relo- 
cation entry by adjusting the address it applies to if the 
instruction is retained but has a different address than 
before. We rewrite the data segments in much the 
same way; there are no actions to apply, but a data 
item itself may be flagged for relocation as some kind 
of address, in which case the value must be adjusted. 

We rewrite the linker symbol table in exactly 
the same way. Each symbol has a value and a type; 
the type tells us how to adjust the value. 

The rewritten module is then returned to the 
linker, to be combined with other rewritten modules. 

ordinary code to assign their initial values at the begin- 
ning of the procedure. This code is annotated just like 
code for explicit user statements. 

Parameters, however, do remain a small prob- 
lem. To avoid copying argument values if register 
allocation is not requested, our calling conventions 
require that the calling procedure put arguments on the 
stack in locations that will correspond to the parame- 
ters of the called procedure. If the register allocator 
decides to assign one of these parameters to a register, 
the module rewriter must insert code at the beginning 
of the procedure to load the argument into that register 
from the stack. The compiler specifies another register 
action to mark the place where we must generate these 
loads.* 

2.4.2. Recursive and indirect calls 
2.4. Complications and Extensions 

When I implemented the scheme described 
above, I encountered several complications and several 
opportunities for extensions. My implementation han- 
dles all of these. 

2.4.1. Initialization 

Some variables have initial values that we 
must consider in our global register scheme. 

A global variable may be declared with an 
initial value. This value normally appears in the core 
image produced by the loader, so no instruction is exe- 
cuted to assign the value to the variable. If we decide 
that some variable will reside in a register rather than 
in memory, we must somehow get that initial value 
from the home memory location into the register. 

Identifying all such globals is easy for the 
compiler, so it includes information about these globals 
with the usage information. The driver program, 
which is responsible for initializing the program 
environment and invoking the user main program, 
includes an action called INIT. The INIT action is 
unconditionally performed by the module rewriter. 
This action requests that instructions be inserted to 
copy the initial value into each initialized global that 
has been assigned to a register. 

Local variables declared with initial values do 
not present this problem, since the compiler generates 

If rhe program contains recursive calls, we 
must do something to maintain the correctness of our 
scheme. Our approach is potentially expensive, but 
not extremely so in typical cases. And recursive calls 
are a small fraction of the total, especially when tail 
recursion is removed. 

What is the problem with recursive calls? 
Our aim was to allocate registers so that when we call 
procedure P, the registers allocated to P’s locals are 
not currently in use, so we don’t have to save and 
restore these registers. This obviously cannot be true 
in a recursive call, because rhe set of variables local to 
P are already in use, in a previous invocation of P. If 
we kept all of our variables in memory, we would han- 
dle this by creating a new frame on the stack. If we 
are going to use the registers for the new instances of 
these locals, we must archive the old values. This 
archiving is enough to let P operate correctly, since the 
new invocation of P cannot access the locals of the 
previous invocation. 

One way to organize the archiving of recur- 
sively instantiated locals is to have each recursive pro- 
cedure be responsible for archiving its own local regis- 
ters. This unfortunately is not consistent with our 
algorithm for combining non-conflicting locals into 
groups, as shown by the following call graph: 

’ In fact, we can do better, by having the caller put the argu- 
ment value directly into the parameter register. We discuss this in 
section 2.4.3. 

269 



A 

r /I 6 C 

Here B and C are leaves of the call DAG. because the 
recursive call from B to A does not appear in the 
DAG. Thus it looks like we can use the same group 
of registers for the locals of B and C: but this is wrong 
because B and C can be simultaneously active after all. 
if B calls A and A calls C. If we made each pro- 
cedure responsible for archiving its own locals on 
entry. we would make the following error. The call to 
B would not archive the locals of C because C is not 
part of any recursive chain. The call from B to A 
\vould archive the locals of A. but not those of B and 
C. But this means that B and C would use the same 
registers without archiving them in between. So we 
need a better method. 

We could change the way we group locals. or 
vve could change the way we do archives. On the 
assumption that recursive calls are much less frequent 
that non-recursive calls. we chose the latter. Instead of 
each procedure in a recursive chain saving its own 
local registers. the procedure that makes the recursive 
call saves the locals of all the procedures in the chain. 
This occasionally saves some things unnecessarily. as 
in the example: 

f” A 

J\ B 
L 1J C 

D 

Here the recursive call from D to A saves the locals of 
both B and C. even though only one group of locals 
can possibly be active. This example is typical, how- 
ever. in that the locals of B and C are assigned to the 
same group of registers. Moreover. many apparently 
recursive programs are recursive only in exceptional 
cases: this solution allows us to call such a routine in 
the normal case without archiving its locals unless we 
do an actual recursive call. 

The same problem occurs with indirect calls, 
in which a procedure is called though a procedure vari- 
able, so that we cannot tell at compile time which pro- 
cedure is being called. Since such a call cannot appear 
in the call graph. we cannot take it into account when 
we allocate registers to locals. 

It turns out that we can apply the same solu- 
tion here. An indirect call archives all of the 
apparently active locals. so that when we arrive at the 
called procedure we can behave as if we had per- 
formed a normal call visible in the call DAC. 

You should note that this works only because 
the languages we are dealing with allow indirect calls 
only to top-level procedures. If P and Q are both 
nested in R and both refer to R’s locals. and P calls Q 
indirectly. archiving R’s locals around the call is 
wrong, because Q might legally change one of them. 
We could still apply the technique by postponing it to 
run time; the procedure variable could be implemented 
as a structure that includes information about what 
needs to be saved. This is not too different from 
current implementations. in which the procedure vari- 
able includes a display that describes the environment 
in which to call the procedure. 

2.43. Fast argument passing 

The scheme we have described so far deals 
with argument passing in a simple-minded way. We 
evaluate each argument and place it on the stack in the 
memory location associated with the parameter that we 
are about to create. If the called procedure has a 
register parameter, it loads the argument from the stack 
into that register. It would be better if the calling pro- 
cedure could put the argument directly into the param- 
eter register to begin with. 

This would not be possible if we were doing 
global register allocation at compile time, since the 
called procedure might be in a different module and 
we would not know which of its parameters would be 
assigned to registers. Since we are doing global regis- 
ter allocation at link time, however, it is straightfor- 
ward to include this optimization. 

We use the same idea here that we used in 
expression evaluation. The compiler generates code 
that stores the argument on the stack, but flags the 
store with an action PARM that tells which procedure 
is being called and the index of the parameter being 
passed. (It cannot refer to the parameter by name 
because it generates the action at compile time, when 

270 



the called procedure may not be visible.1 At link time. 
the module rewriter checks to see whether that parame- 
ter is assigned to a register. and if so converts the 
PARM action into an ordinary STORE action. 

In the section “Initialization.” we described 
the insertion of loads into the procedure entry code. to 
load the arguments from the stack into the parameter 
registers. Now we must omit these loads. since the 
caller has already put the arguments directly into the 
purameter registers. and the value on the stack is gar- 
bage. However. there remains the possibility that 
someone will call the procedure indirectly. in which 
case this optimization cannot be applied. So we leave 
the inserted loads in place, and instead modify the call 
so that it enters the procedure after the point at vvhich 
we have inserted the loads. 

Proponents of the Berkeley- RISC machine [9] 
are justly proud of the Roaring register windows that 
allow arguments to be passed in registers. It is sntisfy- 
ing to see that w-e can accomplish much the same thing 
without hardware support or runtime overhead. hlore- 
over. letting the compiler and linker take care of it is 
more flexible. since we can decide for each program 
how many registers to use for globals and for locals of 
each procedure. 

Z.J.J. Profiling 

We do not keep all of the variables in regis- 
ters. but only those that seem to be referenced fre- 
quently. As a result. the quality of the estimates of the 
frequency with which variables are referenced and pro- 
cedures are called is often important. especially in 
large programs. These estimates can be improved by 
using previously gathered execution-time profile infor- 
mation. We have tw-o kinds of profilers that we can 
use with the register allocator. 

The first is a variable-reference profiler that 
we built ourselves for precisely this purpose. The 
compiler prints statistics about removable loads and 
stores in each basic block. and generates code that 
counts the times each basic block is executed. These 
two sets of information are combined to give us the 
number of executions of loads and stores that could be 
removed by assigning each variable to a register. This 
will normally be a very good estimate of the amount 
by which assigning that variable to a register would 
make the pro-gram faster. although it does not consider 
changes in the behavior of the instruction cache that 
result from removed and inserted instructions. and it 
does not consider the time spent archiving registers for 

recursive or indirect calls. 

The variable-reference protile has the disad- 
vantage that we may need to recompute it often for it 
to be most effective. If the programmer adds a new 
variable to a procedure that is executed very fre- 
quently, that variable will not appear in the previously 
computed profile and therefore is unlikely to get 
assigned to a register. An alternative is to use gprof 
161 to get actual counts of run-time procedure calls. 
and then combine these with the compile-time esti- 
mates of variable usage by each procedure. which are 
computed every time the module is compiled. The 
result is a protile that is somewhat less precise but also 
somewhat less sensitive to small changes in the pro- 
gram. 

2.45. Local coloring 

In grouping together local variables that we 
can assign to the same register. the only liveness infor- 
mation that we use is the fact that a local variable can- 
not be live except when its procedure is active. This 
is reasonable because more precise liveness informa- 
tion requires expensive intermodule dataflow analysis, 
and because the lifetimes of most locals are short any- 
way. This simplification does have one possibly seri- 
ous limitation. however: it does not allow us to com- 
bine two non-conflicting locals of the same procedure. 

Recognizing two such locals does not require 
interprocedure dataflow analysis, but only the local 
dataflow analysis used by Chaitin et al. and Chow. 
We made this technique an optional addition to our 
own. If requested. the compiler does a liveness 
analysis on each procedure it compiles, grouping 
together locals that do not conflict. Of course, it can- 
not allocate registers to these groups without interfer- 
ing with the link-time register allocator, so it simply 
reports these groups to the link-time allocator. 

The only tricky part is that the liveness 
analysis may allow a parameter to be combined with 
another local; if so, the actions associated with pro- 
cedure call must make sure that the argument value 
gets properly loaded into the register that the two vari- 
ables share. More subtly, we may combine one 
parameter with another parameter whose argument 
value is never used; then we should not load the 
unused argument into the shared register. The remain- 
ing case is two parameters whose arguments are both 
used; here the liveness information by itself prevents 
us from combining them. 

271 



We could also use this liveness dataflow infor- 
mation to keep track of which locals are live when 
their procedure calls another procedure. This would 
let us improve the allocation, since we might be able 
to keep two locals in the same register even if they are 
local to procedures that are simultaneously active. We 
didn’t do this, however, because we expected that 
coloring would remove the need for this: there might 
be locals that are not live at the call, but there would 
usually not be registers that are not live. If we are 
going to incur the expense of the datatlow analysis, we 
might as well go ahead and do the coloring. 

3. Results 

I implemented this global register allocator in 
a code generator used for Fortran, C, and Modula-2, 
and my colleagues have used it to port the Unix* 
operating system to the new machine. To learn how 
well it works, I applied several kinds of allocation to 
six benchmarks: the Livermore Loops, the Whetstones 
benchmark, the LINPACK linear equation benchmark 
[5], the Stanford suite collected by Hennessy [7], the 
logic simulator RSIM [1 11, and a timing verifier. 

lines vars groups 

Livermore 268 166 165 
Whetstones 462 254 181 
Linpack 814 214 119 
Stanford 1019 402 211 
Simulator 3003 811 262 
Verifier 4287 1395 693 

Table 1. The six benchmarks. 

The six benchmarks ranged in length from 
268 to 4287 lines of user source code, and the number 
of variables ranged from 166 to 1395. These variables 
were the candidates for assignment to registers, and 
included local user variables, global user variables, and 
global constants such as numbers and the addresses of 
arrays and procedures. The third column of Table 1 
shows the number of non-conflicting groups the alloca- 
tor combined these variables into; if we had this many 
registers then we could assign every variable to a 
register without causing any conflicts. 

register with with with 
allocation colorinn vrofile both 

Livermore 
Whetstones 
Linpack 
Stanford 
Simulator 
Verifier 

18% 18% 19% 19% 
10% 10% 10% 10% 
13% 13% 13% 13% 
25% 25% 27% 28% 
12% 14% 15% 16% 
10% 15% 16% 19% 

Table 2. Percentage improvement in speed with 
52 registers allocated to variables. 

I applied the register allocator to these bench- 
marks in four different ways and compared the speeds 
of the resulting code to the speed of the original code 
with no global register allocation. Table 2 contains the 
percentage improvements when we compare speed 
with allocation to speed without allocation. In this 
table I allowed the allocator to use 52 registers. These 
52 registers count only those used for allocating vari- 
ables, and not the expression temporaries or addressa- 
bility registers managed by the compiler. Global regis- 
ter allocation speeded up the benchmarks by 10 to 25 
percent over code without it. These improvements 
apply to a machine with a one-cycle memory cache; 
they would be better still for a machine on which the 
penalty for memory access was greater. 

The first column of Table 2 contains the 
improvement when we did register allocation using the 
compile-time usage estimates, The compile time usage 
estimates include recognition of loops. 

The second column of Table 2 contains the 
improvement when we compiled the program with 
local dataflow analysis and coloring, as described in 
section 2.4.5. Because this allowed us to combine 
locals of the same procedure with each other as well as 
with locals of non-conflicting procedures, the allocator 
was able to keep more of the variables in registers. 
The result was invariably faster, but it was noticeably 
faster only for the larger programs. 

The third column of Table 2 contains the 
improvement when the usage estimates came from a 
previously collected profile instead of the compile-time 
estimates. This tended to make a larger difference 
than local coloring did, but again the difference is 
noticeable only for the larger programs. 

The fourth column of Table 2 contains the 
improvement when we used both local coloring and 
the profile. 

* Unix is a trademark of Bell Laboratories. 

272 



register with with with 
allocation coloring profile hdth 

Livermore 80% 81% 93% 94% 
Whetstones 73% 75% 84% 88% 
Linpack 95% 96% 99% 99% 
Stanford 90% 92% 97% 98% 
Simulator 73% 83% 92% 95% 
Verifier 52% 61% 78% 83% 

Table 3. Percentage of removable dynamic memory 
references that were actually removed. 

The profile provides the number of executed 
loads and stores that would be removed if each vari- 
able were assigned to a register. If we compare this 
profile to the list of variables actually assigned to 
registers, we can see how many of the removable loads 
and stores we actually removed. The fraction is 
surprisingly large, even for large programs. Table 3 
shows the percentage of the removable executed loads 
and stores that we removed when 52 registers were 
used. (This is not a fraction of all loads and stores 
executed, but only of those that we can remove by 
keeping some scalar variable in a register instead of 
memory.) 

There are two reasons that so many of the 
removable loads and stores got removed. First, these 
are dynamic loads and stores, actual counts from the 
execution of the program, and we give priority to those 
variables that seem to have a large number of run-time 
references. Second, we look at the call graph to dis- 
cover non-conflicting procedures and we keep their 
locals in the same group of registers. I can illustrate 
the importance of both these effects by considering the 
timing verifier, the largest of the benchmarks. The 
usage frequencies in the profile range from 0 to 
3257639. In the allocation without coloring or 
profiling, we kept 505 distinct variables in the 52 
registers. If we had assigned only the 52 variables 
with the highest estimated frequency, we would have 
removed only 25% of the loads and stores instead of 
52%. 

The number of loads and stores removed will 
usually be a good estimate of the speed improvement. 
though it neglects the effects of the cache and the 
loads introduced for initializing globals, passing argu- 
ments in indirect calls, and archiving locals for recur- 
sive or indirect calls. Benchmarks that are small 
enough that all the variables fit in 52 registers rarely 
improved by more than 30%, and often by much less. 
In this light it is unsurprising that there are so few 
removable loads and stores left in these programs. 

These results also suggest that we are getting 
a benefit from global register allocation that is compar- 
able to the benefit we would get from any global regis- 
ter allocation scheme. Even if a better scheme could 
somehow manage to keep all of the variables in 52 
registers without introducing spills and reloads, it 
would not be able to double any of the improvement 
percentages in Table 2, and usually its advantage over 
our scheme would be even smaller. 

register 
allocation 

Livermore 16% 
Whetstones 7% 
Linpack 10% 
Stanford 24% 
Simulator 9% 
Verifier 9% 

with 
coloring 

17% 
8% 

13% 
24% 
13% 
11% 

with with 
profile both 

18% 18% 
9% 10% 

13% 13% 
26% 27% 
14% 15% 
12% 16% 

Table 4. Percentage improvement in speed with 
32 registers allocated to variables. 

Tables 4 and 5 show how well the link-time 
allocation does with fewer registers. Naturally it does 
not do as well, but substantial increases in speed can 
occur with as few as 8 registers. It is interesting how 
well the compile-time estimates do when few registers 
are available. Using local coloring or profile informa- 
tion often improves the result, however, and should be 
considered a common or even normal part of global 
register allocation when few registers are available on 
the target machine. 

Livermore 
Whetstones 
Linpack 
Stanford 
Simulator 
Verifier 

register 
allocation 

10% 
3% 
2% 

15% 
3% 
2% 

with 
coloring 

10% 
3% 
7% 

16% 

6% 
3% 

with 
-fzg!!L 

5% 
8% 

18% 
8% 
5% 

with 
both 
12% 
5% 

10% 
20% 
8% 
7% 

Table 5. Percentage improvement in speed with 
8 registers allocated to variables. 

I also allowed the register allocator to simu- 
late compile-time global register allocation. In this 
compile-time method we look at only one procedure at 
a time. We keep each local of that procedure in a 
register if it seems to be used more than twice, and 
save these registers when the procedure begins and 
restore them when it returns. We do not keep globals 
in registers, and we pass parameters on the stack. 

273 



link-time compile-time compile-time 

allocation allocation with coloring 
Livermore 18% 12% 12% 
Whetstones 10% 1% 2% 
Linpack 13% 10% 10% 
Stanford 25% 19% 20% 
Simulator 12% 10% 11% 
Verifier 10% 4% 7% 

Table 6. Percentage improvement in speed for link- 
time allocation compared to the improvement 

for compile-time allocation. 

Table 6 compares link-time allocation using 
52 registers without coloring or profiling (the first 
column of Table 2) to this compile-time method. 
Link-time allocation does substantially better. 

The compile-time method can also include 
local coloring, and the combination should be close to 
what you would get if you were to implement the 
method reported by Chaitin et al. and Chow so that it 
supported separate compilation. The third column of 
Table 6 shows the improvement that this method gives 
us. With 52 registers, our method of link-time alloca- 
tion without dataflow analysis and coloring is a clear 
winner over the compile-time local coloring method. 

4. Conclusions 

Link-:ime register allocation based on the call 
graph is a reasonable alternative to compile-time allo- 
cation based on dataflow analysis and graph coloring. 
It compresses variables into registers about as well, it 
allows procedure calls to happen without saving and 
restoring local register variables, and it allows us to 
include global variables in the allocation. If good 
usage estimates are used, obtained from a profiler or a 
good static estimator, speed improvements of 10 to 25 
percent are possible even if only a few registers are 
used. 

Another important contribution of this work is 
the idea of generalizing relocation information to let us 
cheaply postpone important decisions until link time. 
It is also an effective way to make studies of the sort 
described here possible; for example, we added the 
simulated compile-time allocation described in Table 6 
quite late in this study, but we did it merely by apply- 
ing different link-time interpretations to some of the 
register actions, with no change to the compiler 
required. We expect this idea to be useful in other 
areas as well. 

5. Future work 

There are several things we didn’t try to do in 
this work, some of which we are investigating now. 

Chaitin et al. report good results from the 
optimization of subsumption. If two variables are 
assigned to the same register, then any assignment of 
one into the other can be removed altogether. This is 
especially common when the assignment is really the 
passing of a value parameter. Recognizing these cases 
requires dataflow analysis, but it is a good thing to do 
if you are doing the analysis anyway, for instance if 
you are including the local conflict coloring. 

A better solution to the problem of recursive 
or indirect calls is needed if we want to do functional 
or object-oriented programming. Recursive calls can 
probably be handled better by breaking the call graph 
into strongly connected components and treating each 
strongly connected component as a single node in the 
algorithm of section 2.2. This would allow the archiv- 
ing to be done incrementally rather than all at once at 
the end of the cycle, which might be more robust. 
Indirect calls are a thornier problem. We may be able 
to record them in the call graph as if they were 
separate calls to every procedure that is assigned to ‘a 
procedure variable, but we may need to do some 
dataflow and aliasing analysis to limit the number of 
different procedures that an indirect call might be cal- 
ling. 

We explicitly decided not to do more than the 
most primitive aliasing analysis in this system. The 
problem of global register allocation seems mostly 
independent of the problem of alias detection, and we 
were interested in how well we could do without it. It 
is clear, though, that the information provided by such 
an analysis would be helpful some of the time. 

Finally, we are interested in designing a 
hybrid scheme, midway between the traditional 
compile-time approach and our link-time approach. In 
the former, all local variables are kept in registers, but 
these registers must be saved and restored on entry and 
exit, to prevent interference with other procedures. In 
the latter, there are no saves and restores because 
registers are allocated based on the call graph, but not 
all local variables get assigned to registers. Whenever 
a local variable is used more than twice, it is worth 
incurring the expense of a save and restore if it allows 
us to keep the variable in a register, and if there is a 
register available that we are not using for something 
more important during the lifetime of the procedure to 
which the variable is local. An allocation scheme that 

274 



allowed us to do saves and restores only when war- 
ranted would allow us to keep more variables in regis- 
ters. However, we are already keeping the most 
important variables in registers, so it would be interest- 
ing to see whether it would be substantially better than 
our simpler scheme. 

6. History and acknowledgements 

Many people contributed to the ideas 
described in this paper. Forest Baskett and Michael L. 
Powell wanted to try to do link-time allocation before 1 
ever joined them. Richard Beige1 built a prototype 
allocator to show the feasibility of the approach, and 
invented the callgraph traversal algorithm in section 
2.2. Michael L. Powell, Loretta Guarino Reid, and 
Gene McDaniel were constant sources of help, ideas, 
and encouragement throughout the development of the 
system. To all of them, my thanks. 

References 

[II 

PI 

131 

[41 

t51 

Alfred V. Aho and Jeffrey D. Ullman. Princi- 
ples of Compiler Design, pages 449-45 1. 
Addison-Wesley, 1979. 

Gregory J. Chaitin, Marc A. Auslander, Ashok 
K. Char&a, John Cocke, Martin E. Hopkins, 
and Peter W. Markstein. Register allocation via 
coloring. Computer Languages 6: 47-57, 1981. 

G. J. Chaitin. Register allocation & spilling via 
graph coloring. Proceedings of the SIGPLAN 
‘82 Symposium on Compiler Construction, 
pages 98-105. Published as SIGPLAN Notices 
17 (6), June 1982. 

Frederick C. Chow. A Portable Machine- 
Independent Global Optimizer - Design and 
Measuremenrs. (PhD dissertation) Computer 
Systems Laboratory Technical Note No. 83- 
254. Stanford University, December 1983. 

Jack J. Dongarra. Performance of various com- 
puters using standard linear equations software 
in a Fortran environment. Computer Architec- 
ture News 11 (5): 22-27, December 1983. 

61 

171 

[81 

191 

1101 

illI 

Susan L. Graham, Peter B. Kessler, and 
Marshall K. McKusick. gprof: a call graph 
execution profiler. Proceedings of the SIG- 
PLAN ‘82 Symposium on Compiler Construc- 
tion, pages 120-126. Published as SIGPLAN 
Notices 17 (6), June 1982. 

John Hennessy. Stanford benchmark suite. 
Personal communication. 

John L. Hennessy, Norman P. Jouppi, Steven 
Przybylski, Christopher Rowen, and Thomas 
Gross. Design of a high performance VLSI 
processor. In Randal Bryant, editor, Third Cal- 
tech Conference on Very Large Scale Integra- 
rion, pages 33-54. Computer Science Press, 11 
Taft Court, Rockville, Maryland. 

David A. Patterson. Reduced instruction set 
computers. Communications of the ACM 28 
(1): 8-21, January 1985. 

George Radin. The 801 minicomputer. 
Proceedings of the Symposium on Architectural 
Support for Programming Languages and 
Operating Systems, pages 39-47 (March 1982). 
Published as SIGARCH Computer Architecture 
News 10 (2), March 1982, and as SIGPLAN 
Notices 17 (4), April 1982. 

Christopher J. Terman. User’s Guide to NET, 
PRESIM, and RNLINL. M.I.T. Laboratory for 
Computer Science, 545 Technology Square, 
Room 418, Cambridge, Massachusetts. 

275 


