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Abstract

Traditionat list schedulers order itxwructions based on an op-

timistic estimate of the load delay imposed by the implemen-

tation. Therefore they cannot respond to variations in load

latencies (due to cache hits or misses, congestion in the mem-

ory interconnect, etc.) and cannot easily be applied across

different implementations. We have developed an altern-

ative algorithm, known as balanced scheduling, that sched-

ules instructions based on an estimate of the amount of in-

struction level parallelism in the program. Since scheduling

decisions are program- rather than machine-based, balanced

scheduling is unaffected by implementation changes. Since

it is based on the amount of instruction level parallelism that

a program can support, it can respond better to variations
in load latencies. Performance improvements over a tradi-

tional list scheduler on a Fortran workload and simulating

several different machine types (cache-based workstations,

large parallel machines with a multipath interconnect and

a combination, atl with non-blocking processors) are quite

good, averaging between 3910and 18%.

1 Introduction

Instruction schedulers for conventional machines generate

code assuming a machine model in which load latencies are

well-defined and fixed. Usually the latencies reflect the most

optimistic execution situation, e.g., the time of a cache hit
rather than a cache miss. Compiler optimizations intended to
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improve performance through instruction scheduling, such

as reordering instructions to avoid pipeline stalls, insert inde-

pendent instructions after loads to keep the CPU busy while

memory references are in progress. The number of instruc-

tions inserted (in the best case) depends on this predefine

latency value.

When a load reference must exceed the implementation-

defined latency, the processor architecture generally stipu-

lates that instruction execution be stalled. The advantage of

this design (called blocking loads) is that it requires a simple

and straightforward hardware implementation. The conse-

quence for compiler technology is that the compiler does not

have to consider multiple memory latencies during instruc-

tion scheduling.

Two architectural innovations make it worthwhile to re-

consider how to schedule behind load instructions, The first

is processor designs that do not stall on unsatisfied load ref-

erences (called nonblocking loads) through the use of lockup

free caches[17, 18,15, 13], multiple hardware contexts[2, 1]

or an instruction lookahead scheme[2]. Nonblocking loads

allow a processor to continue executing other instructions

while a load is in progress. Although the design requires

more complex hardware, more instruction level parallelism

can be exploited, and therefore programs execute faster. The

second innovation is machines that have a large variance in

memory response time. They may be due to congestion in a

multipath interconnector a hierarchy of memory, including

both cache hierarchies and local and global memories.

Variable load instruction latencies, coupled with non-
blocking loads, complicate scheduling, because the instruc-

tion scheduler does not know how many instructions to

schedule after a load to maintain high processor utilization.
If the memory reference is delayed beyond the scheduler’s

latency estimate, the processor will stall and processor uti-

lization will drop. However, if the load latency is shorter

than the estimate, the destination register of a load instruc-

tion will be tied up longer than necessary. This may increase

register pressure enough to cause unnecessary spills to mem-

ory and a consequent increase in program execution time. In

addition, an excessive number of instructions may migrate
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to the top of the schedule, leaving an insufficient number to

hide load latencies near the bottom, In this case the CPU will

also be needlessly idled.

In this paper we present a code scheduling algorithm,

called balanced scheduling, that has been specifically de-

signed to tolerate a wide range of variance in load Iateney

over the entire execution of a program. Balanced schedul-

ing works within the context of a traditional list scheduler[9,

14,21,8, 6], but uses a new method for calculating load in-

struction weights. Rather than using weights that are deter-

mined by the implementation and therefore are fixed for all

programs, the weight of each load is based on the amount of

instruction level parallelism that is available to it. (We refer

to this as load level parallelism.) This assignment is effec-

tive, since load instructions are scheduled for the maximum

latency that can be sustained by the amount of load level par-

allelism in the code, In essence, our algorithm schedules

for the code instead of scheduling for the machine. Locik-

ing at it another way, balanced scheduling amortizes the cost

of incorrectly estimating actual load latencies over all loi~d

instructions in the program.

To validate the atgorithm we compared the performance

of several programs scheduled via batanced scheduling artdl a

traditional list scheduler on a variety of processor and menn-
ory architectures. The processor models differed in their

ability to exploit load level parallelism; each was coupled

with three different memory systems, that exhibit dissimilar

latency behavior. Both the balanced scheduler and the tra-

ditional scheduler were incorporated into the GCC[19] comp-

iler and generated code for the Perfect Club benchmarks[41].

Performance improvements for balanced scheduling aver-

aged 3% to 18% over the traditional list scheduler, for dif-

ferent processor and system model combinations.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces balanced scheduling, and section 3 de-

scribes the algorithm in more detail. Section 4 explains our

experimental methodology; section 5 presents the experi-

mental results. Section 6 discusses extensions and other ap-

plications of the balanced scheduling rdgorithm. A summary

follows in section 7.

2 Balanced Scheduling

The traditional approach to instruction scheduling that con-

siders machine resource constraints is list schedtding[9, 14,

21,8, 6]. The primary data structure used by list schedulers

is the code DAG, in which nodes represent instructions and

edges represent dependence between them. Each node is la-

beled with a weight reflecting the latency of the instructioml
At each iteration of its algorithm a list scheduler creates a

ready list of instructions that are eligible for scheduling, i.e.,

1Edges can also be labeled, allowing latencies to dffer among successor
“.

nodes of a given node, as on dte Intel i860.

those whose predecessors in the code DAG have been sched-

uled or have had their latencies met. A set of heuristics is

then applied to decide which instruction from the ready list

should be scheduled next the heuristics used depend on the

particular list scheduler. For example, Gibbons and Much-

nick[8] first schedule the instruction with the greatest oper-

ation latency. If more than one instruction qualities, their

scheduler breaks the tie by choosing the instruction(s) with

the greatest number of successors. The final heuristic picks

the instruction with the largest sum of the latencies along the

longest path from the instruction node to a leaf node. Other

styles of list schedulers include those that combine several

levels of heuristics into a single weight and schedule in de-

creasing weight order[ 16,22] and update scheduling weights

dynamically [21]. Our heuristics are described in detail in

Section 4.1.

If a processor exposes the variations in actual memory ref-

erence latency to the compiler through non-blocking load

instructions, instruction scheduling becomes more compli-

cated. Traditionrd list schedulers use a single constant for the

weight of all load instructions, usuatly art implementation-

defined latency (e.g., cache hit time). They then schedule in-
structions independent of that load until the load latency has

been consumed. As expected, traditional schedulers work

best when the actual latency of each load matches the pre-

define (and optimistic) value. When it does not, a longer

latency (e.g., the time of a cache miss) penalizes the pro-

gram by stalling the CPU. This fixed estimate of memory

latency prevents the scheduler from hiding latencies larger

than the nominal value. Therefore, when the optimistic ex-

ecution scenario does not occur, performance suffers. The

worst scheduling situation exists when the actual latencies

change over time, for example, as congestion in the inter-

connect varies.

In contrast, the balanced scheduler computes load instruc-

tion weights based on a measure of instruction level paral-
lelism in the code rather than on an implementation-defined

value. This measure, which we call load level parallelism,

defines the number of instructions that may execute in par-

allel with each load instruction. The weight for each load

is calculated separately, as a function of the number of in-

structions that may initiate execution during the load and the

number of other loads that could also use them to hide laten-

ties.

Both the balanced scheduling algorithm and the traditional

scheduler operate on a basic block by basic block basis. The

balanced scheduler simply incorporates the new method of

computing weights for each load instruction into a traditional

list scheduler.

Using the code DAG of Figure 1 as an example, Figure 2
illustrates the schedules generated by the traditional and the

balanced schedulers. Nodes labeled LrJ represent load in-

structions and nodes labeled Xn represent other non-load
instructions of weight 1. The schedules in Figures 2a and

2b result from scheduling the graph of Figure 1 with a tra-
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Figure 1: Code DAG of a hypothetical program.

Traditional Traditionat Balanced
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Figure 2: Schedules generated from the code DAG in

Figure 1, using the traditional and balanced schedulers.

The traditional scheduler is illustrated with load instruction

weights of 5 and 1, respectively.

Load Latencv vs. Interlocks

m Figure 2 (a)
o Figure 2 (b)
m Figure 2 (c)

Jw.Ldll1
8

Figure 3: Interlocks generated from Figure 2 for various load

Iatencies.

ditional scheduler, assuming load instruction weights of 5

and 1, respectively. These two schedules illustrate the ef-

fect of over- and under-estimating load instruction latency.

In Figure 2a, if L1 incurs an actual latency greater than one,

hardware interlocks will be inserted before X4. We say the

scheduler is greedy in this case, because LO captured all of

the load level parallelism and left none for L1. The oppo-

site situation occurs when load instruction weights are too

small. Figure 2b illustrates the schedule produced when a

weight of one is used. In this case we have not taken advan-

tage of the load level parallelism with respect to LO, We say

the scheduler was lazy, because it passed over opportunities

for parallelism. Should the actual latency be greater than the

scheduling assumption, the processor will needlessly stall.
Figure 2C is the schedule that the balanced scheduler gen-

erates. The balanced scheduler has measured the load level

parallelism in the DAG and determined that a weight of 3

assigned to each load instruction would generate an efficient

schedule.

Figure 3 summarizes the number of interlocks that accrue

when these schedules are executed with varying memory la-

tencies. The chart shows that, for latencies in the range of

2-4, the balanced schedules are faster than both the greedy

and lazy traditional schedules illustrated in Figure 2. Out-

side this range the balanced and traditional schedules per-

form equivalently.

In summary, balanced scheduling’s strength is its ability

to look beyond fixed latencies, thereby exposing additional

instruction level parallelism. Whereas traditional sched-

ulers plan for the optimal latency, balanced schedulers make

scheduling decisions based on the amount of load level par-

allelism the code can support. It therefore produces fewer
interlocks when the optimal case doesn’t occur.

3 The Balanced Scheduling Algorithm

This section presents the balanced scheduling algorithm,

The algorithm is first illustrated through two simple exam-

ples. The examples depict the two relationships load instruc-

tions can have with each other, i.e., occurring in series and

in parallel, and, therefore, the two cases the algorithm must

handle.

When presented with load instructions in series, the bal-

anced scheduling algorithm equally distributes among them

all instructions with which they can execute in parallel. Re-

ferring again to the code DAG of Figure 1, the two load in-

structions, LO and L1, may execute independently of XO, Xl,

X2 and X3. Since L1 is dependent on LO, the obvious par-

titioning would schedule two instructions after LO and two

after L1. The weight on each load instruction is simply one

(for the issue slot of the load), plus the number of instruction

issue slots that may be initiated independently of the load di-

vided by the number of loads in series or, 1 + (4/2) = 3.

Issue slots are measured, because instruction weights repre-
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Figure 4: Code DAG in which LO and L1 are independent

and execute in parallel with all other instructions.
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Xo
xl
x2
x3
x4

Figure 5: Balanced schedule generated from the code DAG

in Figure 4.

sent the number of machine cycles that should pass before

an instruction that uses the result of the load is initiated.

When load instructions are not dependent on each other,

i.e., they occur in parallel, their latencies can be hidden, us-

ing instructions drawn from the same set. Referring to Ihe

code DAG in Figure 4, the balanced scheduling algorithm

takes advantage of the fact that LO and L1 can, and should,

share the same set of padding instructions. In Figure 4 each
load instruction may execute in parallel with five other in-

structions, so they are each assigned a weight of six ( 1+5/ 1).

The final schedule is shown in Figure 5.

For a balanced scheduling algorithm to be successful, any

combination of loads in series and loads in paratlel must be

accommodated.

A balanced scheduler operates by measuring load level

parallelism and assigning weights accordingly. The algo-

rithm, shown in Figure 6, examines each instruction i in the

code DAG (G) and computes the set of instructions with
which it may execute in parallel. It first eliminates frc~m

G those instructions that are predecessors or successors, re-

cursively, producing G~.d (line 3). The resulting connected

components of G~nd contain the SetSof load instructions th2tt

may execute in parallel with i. Within each connected com-

ponent, C, the path with the largest number of load instruc-

tions is located (lines 4-5), (We examine the longest load

path, because loads on other paths can be overlapped with
it.) Since the loads on this path execute in series, their sum

(called Chances) represents the number of opportunities for

scheduling i. Finally, the number of issue slots in the instruc-

tion execution pipeline that are required by i is divided by

the number of loads in series (IssueSlots(i)/C’hances), and
is added to the accumulating weight of each load instruction

in C’ (lines 6-7).

Figure 7a illustrates the balanced scheduling algorithm on

a more challenging basic block. Using i=Xl, step 4 gen-

erates the three connected components shown in Figure 7b.

(L2 does not appear in a connected component because it is a

predecessor of Xl). The maximum path length in thecompo-

nent containing L1 is 1; therefore Xl contributes 1/1 to L1’s

weight. The maximum path length in the second compo-

nent is 3, and X 1 contributes 1/3 to the weights of each load

instruction, L3, L4, L5 and L6. The third connected com-

ponent has no load instructions. Table 1 shows the weight

contributed by each instruction to each load at the comple-

tion of the algorithm. The latencies assigned to the five load

instructions represent a distribution of load level parallelism

that is representative of the load level parallelism in Figttre7.

If n is the number of nodes in the DAG, steps 4 and 5

together may be done in a worst case time of O(n a n)2,

using the set union algorithm. First, each node in Gind is
labeled with its level from the farthest leaf. Next, it is com-

bined with the nodes to which it is connected, using the set

union function. Each time we perform set union, the set label

is updated to reflect both the minimum and maximum level

number that has been seen in that set. Therefore, the largest

path length for each connected component is simply the max-

imum level number minus the minimum level number plus 1,

Steps 6-7 are performed in O(n) time and, therefore, do not

impact the worst case time complexity. Connected compo-

nent anatysis is done for each instruction in the code DAG;

therefore, the entire atgorithm has a worst case time com-

plexity of 0(n2 a n). Since the worst case time complexity

of list scheduling is 0(n2 ), the batartced scheduling atgo-

rithm is nearly as efficient.

An attemate technique for assigning weights might com-

pute a weight based on the average load level parallelism

over atl load instructions in a basic block. However, since

load level parallelism typically varies within a basic block,

this method does not consider those imbalances, often ignor-

ing load level parallelism that is greater than the average for

some loads, while unrealistically allocating nonexistent par-

allelism to others. Our early experiments indicated that this
attemative produced schedules that executed no faster than

schedules from the traditionat scheduler.

2 a k the inverse Ackerman function. As a function of n, it increases
very slowly and may be considered constant[20].
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Term Definition

G the code DAG.
Pred(z) the transitive closure of the predecessor function on node i.
SUCC(2) the transitive closure of the successorfunction on node i.

Chances the maximum number of loads on any path in a connected component.
IssueSlots(i) the number of issue slots in the instruction execution pipeline required by instruction i.

1. Initialize the latency of each load instruction to 1.
2. for each instruction i in G
3. G,~d = G – (Pred(i) U Succ(z))

4. for each connected component C in ~,nd
5. Find the path with the maximum number of load instructions.
6. for each load instruction 1 ~ C
7. add IssueSlots(i)/Chances to the weight of /

Figure 6: Balanced scheduling algorithm
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L1 L3 xl x2
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Figure 7: Balanced scheduling example, with the code DAG (a) and the connected components

(3x2

1
x4

placements for Xl (b).

4 Experimental Methodology

We designed a series of experiments to compare balanced

scheduling with a traditional scheduling approach. These

experiments modeled the execution of real programs running

on several different architectures. This section describes the

methodology of these experiments. The integration of the
balanced scheduler into the GCC compiler, the workload and

the simulator we used for our measurements are described,
in turn, in sections 4.1 through 4.3.

For our experiments we classify the target machine char-

acteristics into two groups. The processor characteristics

are those that control how the processor exploits parallelism

with respect to load instructions. The system characteristics

are the attributes of the memory system in a particular im-
plementation. We used several alternatives for each model,

to demonstrate that balanced scheduling works well on ar-

chitectures that contribute to latency uncertainty in different

which determine the possible

ways. The processor and system models we used are de-

scribed in sections 4.4 and 4.5.

4.1 Compiler

We modified the GNU GCC version 2.2,2 compiler[19] to
perform batanced instruction scheduling. The default in-

struction scheduler within GCC was replaced by a new mod-

ule that can schedule using either the traditional or balanced

approaches. In addition, several changes were made to GCC

to increase scheduling effectiveness and improve instruction

level parallelism. The chartges include alleviating the effect

of dependence in spill code introduced by register alloca-

tion, our heuristics for picking instructions from the ready
list (one of which helps control register pressure) and modi-

fications to GCC’S RTL intermediate language. Both sched-

ulers take advantage of these modifications.
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Contribution by Total
Load L1 L2 L3 L4 L5 L6 Xl X2 X3 X4 Weight

E

L1OII 1111 111 10
L2 1/40000000 00 1 1/4
L3 1/4 o 0 0 0 0 1/3 1/3 1/3 1/3 2 5/12
L4 1/4 o 0 0 1 1 1/3 1/3 1/3 1/3 4 5/12
L5 1/4 o 0 1/2 o 0 1/3 1/3 1/3 1/3 2 11/12
L6 1/4 o 0 1/2 o 0 1P 1/3 lp 1/3 2 11/12

Table 1: How instruction weights are calculated for Figure 7. The total weight is one plus the sum of the weight contribution

of each instruction to each load.

GCC performs instruction scheduling both before andl af-

ter register allocation. Since register allocation may add spill

code and/or copy instructions, the second scheduling pass

serves to integrate these additional instructions into the finat

schedule. However, the effectiveness of the second schedul-

ing pass is restricted because of dependence introduced by

register allocation.

These false dependence negatively effect schedule lper-

formance in two ways. First, the final assignment of lreg-

ister numbers severely limits the code motion that a sched-

uler can perform. Second, when adding spill instructions,, the

GCC compiler always uses register numbers selected from a

small pool of spill registers. The net effect is that spill code

cannot be scheduled effectively with other instructions. We

improve performance by increasing the size of GCC’S spill

register pool by two and implementing a FIFO queue-like or-

dering of the registers in the pool. An alternative appra~ach

would use software register renaming after register alloca-

tion to better integrate spill instructions.

As previously mentioned, both the balanced and tradit-

ional schedulers use the same list scheduler. Some list

schedulers place instructions onto the ready list when all

their predecessors in the code DAG have been scheduled. In

contrast, our scheduler defers adding these instructions to the

ready list until each predecessor has exhausted its expected

latency. In the case of starvation the scheduler inserts virtual

no-op’s into the instruction stream. This delayed insertion

of instructions into the ready list increases the accuracy of

instruction placement within the schedule, Since our pro-

cessors use the hardware interlock model of execution, the

virtuat no-ops are removed before actual code generation.

List schedulers select instructions from the ready list in

priority order. In our case, the priority of an instruction is

equal to its weight plus the maximum priority among its suc-

cessors. In the event of ties we select instructions using, al-

ternate heuristics in the following order. The first selects

the instruction that has the largest difference between con-
sumed and defined registers; this heuristic helps control reg-
ister pressure. The second ranks instructions based on the

number of successors in the code DAG that would be ex-

posed for scheduling if that instruction were to be selected;

it gives the list scheduler more instructions from which to se-

lect. The final heuristic selects the instruction that was gener-

ated the earliest. Our list scheduler is a bottom-up scheduler,

therefore we generate schedules in reverse order by schedul-

ing from the leaves of the code DAG toward the roots.

The compiler has been configured for the MIPS RISC pro-

cessor[12]. GCC’S intermediate language, RTL, is not suf-

ficiently RISC-like for an instruction scheduler to get max-

imum benefit, since some primitive operations in RTL are

actually multi-cycle macros. In the context of this work,

memory-to-memory copies are the most notable, since it is

load instructions that we are concentrating on scheduling.

Our implementation extracts GCC’S intermediate language

after optimization but before register allocation and modifies

it to replace certain non-RISC patterns, such as memory-to-

memory copy, with their RISC equivalents. The modified

RTL is at a lower level and therefore more suitable for in-

struction scheduling.

Loop unrolling is an optimization that increases instruc-

tion level parallelism. Due to a conflict with the way we use

profiling information (section 4.3), GCC’S unrolling capabil-

ity is not usable for these experiments. Therefore, unrolling

was performed manually.

4.2 Workload

The workload consisted of the Perfect Club suite of bench-

marks[4]. Since these programs are written in FORTRAN,

they were converted to C using j2c[7]. The Fortran-to-C

converter produces C programs that correctly represent the

semantics of the original FORTRAN programs. However,

these C programs are conservative translations: after being

compiled by a C compiler, they will most likely execute

more slowly than if they were compiled by a FORTRAN

compiler. For example, since almost all data is referenced

through pointers in the C program, it is nearly impossible

for a C compiler to do the memory reference disambiguation

that might be obvious to a FORTRAN compiler. Instmc-

tion scheduling is affected, because load instructions are not
free to move above stores. Since this problem severely re-

stricts a scheduler’s ability to exploit load level parallelism,

we apply a transformation which more correctly models the

dependence in the FORTRAN program and increases the

available parallelism.
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float a[HUGE], b[HUGE];

float func(a, b)

float *a, *b; float newfunc(ar b)

{ float *a, *b;
+

a[l] = b[21; {

a[2] = b[31; a[l] = b[21;

} a[2] = b[31;

}

Figure 8: An exampleflc program showing the disambiguation problem and our transformation. In f unc the loadofb[31

must be considered dependent on the store of a [1]. Our transformation results in newf uric. The resulting program produces

incorrect results, but accurately models the code that would be generated by a FORTRAN compiler.

The FORTRAN standard[3] specifically disallows alias-

ing among dummy arguments (formal parameters) if there

will be any stores to the dummy arguments. If the function

f unc in Figure 8 were produced byflc, the FORTRAN stan-

dard would assume that array a and array b were disjoint

therefore the load for b [ 31 could be scheduled before the

store of a [1]. However, the C semantics for func insert a

true data dependence between the store of a [11 and the load

ofb[31. This dependence is an artifact of the Fortran-to-C

translation and does not exist in the original program.

Our compiler takes advantage of the FORTRAN seman-

tics by performing a parallelism-exposing transformation on

the input C programs. The transformation would replace

f unc with newf uric, as illustrated in Figure 8, New global

variables are inserted with the same names as the original

subroutine parameters. The formal parameters are replaced

with names that are never referenced. The program is no

longer semantically correct, but the compiler is now able to

correctly model the FORTRAN independence between ref-

ererices to array a and array b. The net effect is the genera-

tion of code that is comparable to that generated by a FOR-

TRAN compiler. This transformation is a conservative rep-

resentation of the data dependence that a FORTRAN com-

piler could discover, since FORTRAN is quite specific about

when aliasing may occur.

4.3 Simulator

After the second scheduling pass, the machine instructions

are extracted and run through an instruction level simulator.

Given a particular model for load instruction latencies (ex-
plained in section 4.5), the simulator simulates instruction

issue and completion for each basic block and computes its

execution time in cycles.

As the simulator encounters load instructions, it draws la-

tency samples from a random distribution that represents the

system-level characteristics being modeled (see seetion 4.5).
The output of the simulator is one sample of the number of

instruction and interlock cycles that comprise the execution

time of the program on the modeled system. Because the

results of the simulation are based on an independent and

identically distributed random variable, we can take several

steps to both reduee the execution time of the simulation and

improve the quality of the results.

Our method executes the full instruction-by-instruction

simulation 30 times with new random numbers on eaeh it-

eration. The number 30 represents an arbitrary choice which

is large enough to avoid statistical noise.

Second, we measure the accuracy of our results by gen-

erating confidence intervals. Confidence intervals are com-

puted for percentage improvement using a bootstrapping[5]

procedure. From the 30 sample runtimes, we randomly draw

30 samples, with replacement, in order to generate a second

sample mean. This process is repeated until we have 100

sample means for the block. These 100 sample mean rtm-

times are scaled by the profiled execution frequency to com-

pute the actual runtime of the block, The sample means for

each block are summed giving 100 sample rtmtimes for the

entire program. The mean runtime reported is the mean of

the 100 sample mean runtimes.

In order to report a percentage improvement for balanced

scheduling, the 100 sample means from the balanced sched-

uler are paired with an equal number from the traditional

scheduler, and the calculation is performed. After sorting,

a 95% confidence interval is directly extracted.

4.4 Processor-level model

Processor-level attributes model a processor’s ability to ex-

ploit load level parallelism. We model three different config-

urations. The first is unrealistically aggressive and serves as

a best case reference. The second two are restricted in ways

that make them implementable, All of our processor models

are assumed to maintain store/load consistency, i.e., if a load

instruction follows a store, and they reference the same ad-

dress, the load instruction receives the data that was written

by the store instruction.

The first processor model (called UNLIMITED) cart dis-

patch non-blocking load instructions with no limit on the

number of loads outstanding. This model is similar to the-

oretical datatlow machines[ 10]. It is of interest because it

exposes the maximum benefit that processor parallelism etm

achieve. The second (called MAX-8) allows a maximum of

eight load instructions to be simultaneously executing. If a
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ninth load instruction is issued, the processor blocks until

one of the eight outstanding loads completes. The third pro-

cessor model (called LEN-8) restricts the maximum number

of cycles a load instruction can take before blocking, as in

the Tera Computer[2].3 In this model, if a load instruction

has been outstanding for eight cycles, the processor blocks

until the data is returned.

The balanced scheduler has not been specifically con-

figured for any of the processor models. In particular, it

may schedule more than eight load instructions before using

loaded data (as is prohibited in MAX 8), and it might assign

load instructions weights greater than eight (not effective in

LEN-8). If this information were available to the compiler,

the results for MAX-8 and LEN-8 would improve. We used

a processor-independent version of balanced scheduling to

demonstrate that a code scheduling approach that was not

associated with a particular implementation, but instead was

based solely on program characteristics, such as the amount

of load level parallelism, would generate efficient code.

4.5 System-1evel model

Three memory systems are modeled and simulated, repre-

senting different latency behavior in both current and future

architectures. The first has a data cache. A load instruc-

tion’s data is returned after 2 cycles on a cache hit and ei-

ther 5 or 10 cycles on a cache miss. The model represents

a typical workstation-class RISC processor that implements
nonblocking load instructions, such as the Motorola 88000

series [15]. It is simulated with cache hit rates of 80% and

95%, modeling first level caches of 4K and 32K bytes, re-

spectively 11]. Four configurations are modeled, and ~are

referred to as Lhr(hl,ml), where Lhr stands for lockup-free

caches with a hit rate of hr, and hl and ml are hit and miss

latencies, respectively.

The second model has a memory interconnection network

and no cache. The interconnection scheme uses a hashimg

function to assign addresses to memory modules, effectively

randomizing memory access locations. In this architecture,

memory latencies modeled by one of two zero-based prob-

ability mass functions, depicting normal distributions with

standard deviations of 2 or 5. A standard deviation of 2 rep-

resents a machine in a relatively stable state (uniform net-

work load, low to medium uncertainty). A standard devia-

tion of 5 represents one with unpredictable memory latencies

(changing network load, high uncertainty). The network ma-

chine is modeled in seven different configurations. Each dk.-

tribution is combined with a mean of 2, 3 or 5, representing

different base load levels. In a multithreaded processor suich
as the Tera, the different means are related to the number of

active threads; the more threads, the lower the mean mem-
ory access time. We refer to these models as N(p ,a) where

3me Tera restricts the number of instmctions rather than Cycles:Since
we assume that instmctions orher than loads execute in a single cycle, the

two are equivalent.

p is the mean of the distribution and o is the standard de-

viation, All six configurations are reasonable design points

for the machine. A seventh configuration models an unbal-

anced system, with a mean access time of 30 cycles and a

standard deviation of 5 (N(30,5)), Although we recognize

that a compiler would not likely generate code specifically

for such an unbalanced configuration, we include it in order

to gauge balanced scheduling’s ability to handle a workload

that has t~ little load level parallelism to hide the average

latency.

The third machine has both a data cache and a Tera-style

memory interconnection network. A cache hit occurs 80%

of the time and takes two cycles. A cache miss is represented

by a normal distribution with a mean of 30 and a standard de-
viation of 5. This configuration is referred to as L80-N(30,5)

and has a mean latency of 7.6. In this case the 30 cycle la-

tency is a reasonable design point, since the cache satisfies

most requests. The model is intended to be representative

of Alewife-like systems[l], where a commodity processor

might be incorporated into a shared memory machine,

5 Experimental Results

The first set of results is the percentage improvement in

execution time of the balanced scheduler over the tradi-

tional scheduler. (The results for the UNLIMITED proces-

sor model appear in Table 2. Positive values indicate an im-

provement due to balanced scheduling.) For these experi-

ments, the traditional scheduler uses load Iatencies equat to

the cache hit time or effective access time for models with

caches and the mean of the normal distribution for mod-

els without caches (labeled Optimistic Latency in the table).

The percentage improvement of balanced scheduling over

traditional scheduling is quite good. The average decrease

in execution time for the UNLIMITED model varies from 3

to 18 percent for individual system models, with a mean im-

provement of 9.9%, The results for MAX-8 and LEN 8 are

similar, with ranges of 7qo to 1670 and 3% to 16%, and means

of 10.O7Oand 8.7%, respectively. These results demonstrate

that balanced schululing works well for several architec-

tures, each of which contributes to latency uncertainty in

a different way. It is important to emphasize that the bal-

anced scheduler has not been customized for the restricted

processors; these results represent the improvement from a

machine-independent scheduler and would be better if the

processor dependence were taken into account.

The balanced scheduler does relatively better (over the tra-

ditional scheduler) as the uncertainty of the load instruction
latencies increases. This can be seen in three different situ-

ations: when the cache hit rate is low (L80 vs. L95): when
the cache miss penatty is high (L8O(2,1O) vs. L80(2,5) and

L95(2,1O) vs. L95(2,5)); and when the standard deviation of

the normat is high (N(2,5) vs. N(2,2), etc.).

To better understand the reasons for the performance im-
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Processor modeh UNLIMITED — Unlimited loads

System Optimistic Percentage improvement from balanced schedulig

Latency ADM I ARC2D I BDN A FL052Q MDG I - I WD2 I T’RACK llM~

Data cachq bus-based in terconnection

L80(2,5) 2 5.8 6.7 6.0 4.9 9.8 7.0 19.3 7.2 8.3
2.6 4.0 6.2 5.2 3.6 8.7 6.2 18.6 2.6 6.9

L8O(2,1O) 2 9.9 13.1 10.6 8.7 14.4 11.9 27.8 6.7 12.9
3.6 7.5 11.7 8.1 6.7 11.6 10.7 25.8 2.2 10.5

L95(2,5) 2 3.4 3.9 4.4 2.8 6.9 3.7 16.9 6.1 6.0
2.2 2.1 4.0 4.0 2.1 6.2 3.9 16.2 2.0 5.1

L95(2,1O) 2 4.6 5.8 5.8 3.9 8.0 5.4 19.9 4.9 7.3
2.4 3.2 6.1 5.6 3.8 7.2 5.8 19.0 1.7 6.6

No cach~network interconnection
N(2,2) 2 8.0 9.3 8.0 6.5 11.3 9.2 21.3
N(3,2) 3 6.4 8.9

9.4 10.4
4.0 5.0 12.0 8.6 22.7 3.5 8.9

N(5,2) 5 4.8 5.5 3.4 3.6 13.5 6.5 20.0 3,9 7.7
N(2,5) 2 14.2 17.7 14.4 11.9 20.9 16.1 32.7 16.6 18.1
N(3,5) 3 11.5 18.2 10.8 10.9 20.0 14.9 35.9 3.9 15.8
N(5,5) 5 9.2 12.0 9.3 7.6 18.3 10.3 27.8 4.9 12.4
N(30,5) 30 -3.5 -5.0 1.9 4.1 19.3 -0.9 7.1 0.6 3.0

Mixed
L80-N(30,5) 2 12.4 20.4 15.8 12.7 20.0 13.3 39.6 11.3 18.2

7.6 7.0 9.3 18.4 6.3 14.3 4.5 19.4 -2.5 9.6

Table 2: Percent improvement in execution time from simulations using processor model UNLIMITED

Program: MDG

(Bins = 5,144 million)

System Optimistic Tins UNLIMITED MAX 8 LEN 8

Latency ]rnp% T170 ] BI % II Imp% I ‘H%] BI% 1]Imp%~o I BI%

Data cache bus-based intercon nection

L80(2,5) 2 5,358 9.8 10.4 5.6 7.8 13.9 10.9 9.6 10.4 5.7

2.6 5,351 8.7 9.6 7.4 13.7 8.2 9.3

L8O(2,1O) 2 5,358 14.4 21.6 13.6 10.8 25.2 20.6 14.6 22.5 14.7
3.6 5,299 11.6 20.2 8.9 24.7 11.6 21.2

L95(2,5) 2 5,358 6.9 5.9 3.4 6.0 8.8 7.1 6.8 5.8 3.4

2.15 5,351 6.2 5.5 6.0 8.9 6.2 5.3

L95(2,1O) 2 5,358 8.0 9.4 6.1 6.4 12.1 10.2 8.0 9.9 6.6

2.4 5,351 7.2 8.9 6.8 12.5 7.2 9.4

No cache; network inter tonne ction

N(2,2) 2 5,358 11.3 12.8 6.9 10.2 16.6 11.8 11.2 13.1 7.2
N(3,2) 3 5,351 12.0 16.1 9.7 10.0 21.1 16.5 12.0 16.0 9.5
N(5,2) 5 5,297 13.5 24.4 16.8 10.8 32.1 27.0 12.9 24.3 17.0

N(2,5) 2 5,358 20.9 30.0 18.7 15.9 35.6 28.3 19.2 30.4 20.4
N(3,5) 3 5,351 20.0 31.8 21.3 14.5 37.2 30.9 17.4 31.9 23.0
N(5,5) 5 5,297 18.3 35.5 25.9 13.5 42.3 36.4 16.4 36.3 28.0

N(30,5) 30 5,393 19.3 71.8 67.9 14.5 79.4 77.5 18.7 73.1 69.6

Mixed

L80-N(30,5) 2 5,358 20.0 49.9 42.3 13.6 52.3 47.9 13.9 49.5 44.7
7.6 5,405 14.3 46.9 11.5 50.9 10.4 47.4

Bins = The number of instructions executed, in millions, for the balanced scheduler.

Tins = The number of instmctions executed, m millions, for the traditional scheduler.

Imp% = The percentage improvement of the balanced scheduler over the traditional scheduler.

TI% = The percentage of cycles which were interlock cycles for the traditional scheduler.

BI% = The percentage of cycles which were interlock cycles for the balanced scheduler.

Table 3: Detailed analysis of performance in MDG
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provements, we did a component anatysis of the execution

times. All of our instructions execute in a single cycle; theref-

ore the runtime of a program is the sum of the number of

instructions executed and the number of interlocks incurred.

Table 3 presents interlock information on the performance

of one of the benchmarks, MDG. In this table, the percelmt-

age of the total number of cycles that were interlock cy-

cles is reported for both the traditional and balanced sched-

ulers. MDG’s performance gain with balanced scheduling

(and also that of the other programs) is a result of both exe-

cuting fewer instructions (Bins < Tins) and incurring fewer

interlocks (BI% < TIYo).

Balanced schedules execute fewer instructions because

their schedules often contain less spill code. Table 4 presents

data on the percentage of total instructions executed that was

classified as spill code. (A spill instruction is defined to be

any instruction that is inserted by the register allocator.) Bal-

anced scheduling incurred fewer spills than the traditional

scheduler for virtually all implementation-defined latenciies

on all programs. (The sole exceptions were ARC2D with an

optimistic latency of 30 cycles and FL052Q with 3.6 cycles.)

We hypothesize that the reduction in interlocks and spill

code when using the balanced scheduler is a direct conse-

quence of its always considering load level parallelism when

calculating latency weights. It measures the parallelism, and,

whether it is high or low, tries to use it to hide all load laten-

cies in a basic block.

When there is significant load level parallelism, code

DAGs tend to be bushy, causing all list schedulers to sched-

ule independent instructions in parallel. The balanced sched-

uler manages this by assigning load instruction weights in

such a way that load latencies are hidden by the other in-

structions. Traditionat schedulers lack the guidance for ef-

ficient load placement. Therefore they incur similar register

pressure, but also more interlocks.

When there is little load level parallelism, traditionat

schedulers greedily let independent instructions float to one

end of the basic block. Therefore they incur spills at that end,

and interlocks at the other. In contrast, the balanced sched-

uler spreads out the few independent instructions behind all

loads. In all cases uses quickly follow definitions, and little

or no spill code is generated. If the load level parallelism

is less than the latency assumed by the traditional scheduler,

balanced scheduling generates fewer spill instructions than

the traditionat technique.

In both situations (high and low load level parallelism)

balanced scheduling contributes either little additional or

less register pressure. When actual latencies differ from the

optimistic latency, balanced scheduling incurs fewer inter-

locks; when both Iatencies are equal, the number of inter-

locks produced by the two schedulers is similar.

When load latencies are much larger than the amount

of load level parallelism and therefore cannot be hiddlen

via instruction scheduling, there is no guarantee the bal-

anced scheduler will do better. In this case, register pres-

sure can be a problem, and balanced scheduling can insert

more spill code than the traditional scheduler. The situa-

tion is illustrated in Table 5, which summarizes the results

for the N(30,5) model. This model assumes a mean latency

much larger than the amount of load level parallelism of the

programs in our workload. Two interrelated factors con-

tribute to balanced scheduling’s poor performance with this

model. First, as latencies get long, interlocks account for an

increasingly large proportion of execution time. Both sched-

ulers do poorly, and often equally poorly (for example, see

TRACK). Second, a consequence of long load Iatencies is

that each load instruction consumes more cycles relative to

other instructions, and its contribution to execution time is

greater, Therefore whichever scheduler generates more spill

loads will have the poorer performance. Occasionally bal-

anced scheduling chooses load instruction weights that cause

higher than necessary register pressure and consequently is-

sues more spill instructions (for example, see ARC2D),

In summary, these results indicate that balanced schedul-

ing reduces execution time relative to traditionat list schedul-

ing in most cases. Because its schedules are based on the

amount of load level parallelism that a program can support,

they cause fewer interlocks during program execution and

contain less spill code. The benefits are most apparent when

memory latency uncertainty is high, as evidenced by greater

miss rates and penalties, and larger standard deviations from

mean Iatencies.

6 Extensions

Balanced scheduling has been presented in a specific form

(weights calculated based on load level parallelism) to solve

a specific problem (scheduling with uncertain load instruc-

tion latencies). The technique should be applicable to a

wider set of problems, such as other multi-cycle instructions

(e.g., floating point operations coupled with asynchronous

floating point units), disabling balanced scheduling when the

latency is known (e.g., for the second access to a cache line),

techniques that enlarge basic blocks (trace scheduling and

software pipelining) and superscalar architectures.

7 Summary

This paper describes an instruction scheduling algorithm,

called balanced scheduling, that is appropriate for com-

puters that expose uncertain memory latencies. Balanced

scheduling is fundamentally different from previous list

schedulers in two respects. First, it ignores the optimistic,

implementation-determined memory latency when assign-
ing scheduling priorities, basing them instead on the amount

of paratlel execution that is achievable in the program. Sec-

ond, it computes individual scheduling weights for each load

instruction separately, rather than using a single value for all
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Percentage of Spilt Instructions

B&m ced Tradmonat Sch eduler w]th Op tlmlsttc La tency of

Program Bins Scheduter 2 2.15 2.4 2.6 3 3.6 5 7.6 30

ADM 2,494 7.43 9.59 9.15 9.15 9.15 9.22 9.42 9.50 8.70 7.49

ARC2D 11,149 10.47 13.52 13.74 13.74 13.68 13.27 13.46 13.89 12.25 10.11

BDNA 2,391 22.84 26.50 26.32 26.32 26.32 24.17 24.94 24.68 24.73 25.54

FL052Q 3,323 4.61 7.14 6.82 6.82 6.82 6.97 3.91 6.55 5.89 4.90

MDG 5,144 7.49 7.86 8.04 8.04 8.04 8.04 8.13 8.00 8.86 9.21

MG3D 60,784 7.38 9.73 10.36 10.36 10.36 10.36 10.86 10.36 8.85 7.88

QCD2 1,176 19.91 29.30 28.92 28.92 28.92 28.92 28.78 28.02 26.89 28.02

TRACK 398 15.78 20.41 17.85 17.85 17.85 17.85 17.85 17.84 17.45 17.46

Table 4: Spill Instructions Executed

.
UNLIMITED MAX 8 LEN 8

Program TrrtS Bitts Imp% m% BI% Imp% m% BI% Imp% TWO BI%

ADM 2,496 2,494 -3.5 67.8 69.0 -1.7 76.1 76.5 -2.7 69.9 70.7

ARC2D 11,108 11,149 -5.0 67.3 68.9 -3.9 78.4 79.1 -4.7 70.9 72.1

BDNA 2,478 2,391 1.9 65.0 65.6 12.5 85.3 84.0 2.5 71.1 71.4

FL052Q 3,332 3,323 4.1 67.0 65.7 1.4 76.6 76.4 3.7 69.0 67.9

MDG 5,393 5,144 19.3 71.8 67.9 14.5 79.4 77.5 18.7 73.1 69.6

MG3D 61,116 60,784 -0.9 63.1 63.7 1.5 86.6 86.5 -3.8 67.4 68.8

QCD2 1,270 1,176 7.1 69.0 69.2 23.4 86.4 84.5 6.3 72.2 72.6

TRACK 40+5 398 0.6 81.6 81.9 4.7 85.6 85.2 2.3 82.3 82.3

Table 5: Analysis of N(30,5) results — the effect of spill code.

loads in a basic block. Balanced scheduling thus insulates

program execution from machine uncertainties by generat-

ing schedules that are optimized for the program rather than

the machine.

To validate the algorithm balanced scheduling was in-

corporated into the GCC compiler and the performance

of the Perfect Club benchmarks scheduled with both bal-

anced scheduling and a traditional list scheduler was com-

pared. Three processors were modeled, representing ma-

chines with varying abilities to exploit instruction level par-

allelism. Each of the processor models was coupled with

several memory systems that exhibit dissimilar latency be-

havior. Execution time reductions of batanced scheduling

over the traditional list scheduler averaged between 370 and

18%, depending on the processor model, system model and

program. The results demonstrate that, if the capability to

exploit uncertain memory latency is architected in future ma-

chines, balanced schedulers can effectively take advantage

of the additional flexibility to generate faster schedules.
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