Selecting INsTRUCTIONS TO ISssue

From the Ready Set (instructions with all
dependencies satisfied, and which will
not stall) use the following priority rules:

1. Instructions in block A and blocks
equivalent to A have priority over
other (speculative) blocks.

2. Instructions with the highest D
values have priority.

3. Instructions with the highest CP
values have priority.

These rules imply that we schedule
useful instructions before speculative
ones, Instructions on paths with
potentially many stalls over those with
fewer stalls, and instructions on critical
paths over those on non-critical paths.

€S 701 Fall 2008 248




Example

blockl:
1. 14
2. 14
3. add
4. st
5. cmp
6. be
block2:
7. mov
8. st
9. b
block3:
10. st
block4:
11. 14
12. 14
13. sub
14. st

[a],Prl
[b]l,Pxr2
Prl,Pr2,Pr3
Pr3, [d]
Pr3,0
block3

1l,Pr4
Pr4, [flag]
block4

0,[flag]

[d],Px5
[g],Px6
Pr5,Pr6,Pr7
Pr7, [£]

CS 701 Fall 2008°

249



We'll schedule without speculation;
highest D values first, then highest CP

values.

blockl:
1. 1d
2. 1d

12. 14

€5 701 Fall 2008 250



Next, come Instructions 3 and 4.

blockl:
1. 14 [a],Prl
2 14 [b],Pr2

12. 14 [g]l,Pxr6
3. add Prl,Pr2,Pr3

4. st Pr3,[d] °'3

€5 701 Fall 2008 251




Now 11 can issue (D=1), followed by 5,
13, 6 and 14. Block B4 is now empty, so
B2 and B3 are scheduled.

blockl:
1. 14
2. 14
12. 14
3. add
4. st
11. 14
5. cmp
13. sub
6. be
14. st
block2:
7. mov
8. st
9. b
block3:
10. st
block4:

[a],Prl
[b]l,Pr2 0,2
[g],Pr6 n
Prl,Pr2,Pr3

Pr3, [d]

[d],Px5

Pr3,0 0.1
Pr5,Pr6,Pr7 n

block3
Pr7, [£]

l,Pr4
Pr4, [flag]
block4

0, [flag]

0,3 0,2 0,1
-0
0,1

There are no stalls. In fact, if we
equivalence pr3 and pr5, Instruction 11
canh be removed.

CS 701 Fall 2008°

252



Hardware Support for Global
Code MorTion

We want to be aggressive In
scheduling loads, which incur high
latencies when a cache miss occurs.
In many cases, control and data
dependencies may force us to restrict
how far we may move a critical load.

Consider
p = Lookup(Id):;

if (p != null)
print(p.a);

It may well be that the object
returned by Lookup Is not in the L1
cache. Thus we'd like to schedule the
oad generated by p.a as soon as
nossible; ideally right after the
ookup.

CS 701 Fall 2008°

253



But moving the load above the p 1=
null check is clearly unsafe.

A number of modern machine
architectures, including Intel's
Itanium, have proposed a speculative
load to allow freer code motion when
scheduling.

A speculative load,
ld.s [adr],%reg

acts like an ordinary load as long as

the load does not force an interrupt.
If it does, the interrupt is suppressed
and a special NaT (not a thing) bit is
set in the register (a hidden 65th bit).
A NaT bit can be propagated through
instructions before being tested.

In some cases (like our table lookup
example), a register containing a NaT
bit may simply not be used because

CS 701 Fall 2008° 254



control doesn't reach its intended
uses.

However a NaT bit need not indicate
an outright error. A load may force a
TLB (translation lookaside buffer)
fault or a page fault. These interrupts
are probably too costly to do
speculatively, but if we decide the
loaded value is really needed, we will
want to allow them.

A special check instruction, of the
form,

chk.s %reg,adr

checks whether %reg has its NaT bit
set. If it does, control passes to adr,
where user-supplied "fixup” code is
placed. This code can redo the load
non-speculatively, allowing necessary
Interrupts to occur.

CS 701 Fall 2008 256



Hardware SuppoRrTt for Data
Specularion

In addition to supporting control
speculation (moving instructions
above conditional branches), it is
useful to have hardware support for
data speculation.

In data speculation, we may move a
load above a store if we believe the
chance of the load and store
conflicting is slim.

Consider a variant of our earlier
lookup example,

p = Lookup(Id):;

g.a = init();
print(p.a);

CS 701 Fall 2008°

256



We'd like to move the load implied by
p.a above the assignment to g.a. This
allows p to miss in the L1 cache, using
the execution of init () to cover the

miss latency.

But, we need to be sure that g and p
don't reference the same object and that
init () doesn't indirectly change p.a.
Both possibilities may be remote, but

proving non-interference may be
difficult.

The Intel Itanium provides a special
"advanced load"” that supports this sort
of load motion.

The instruction
ld.a [adr],%reg

loads the contents of memory location
adr Into %reg. It also stores adr into

€S 701 Fall 2008 57



special ALAT (Advanced Load Address
Table) hardware.

When a store to address x occurs, an
ALAT entry corresponding to address x Is
removed (if one exists).

When we wish to use the contents of
%reg, We execute a

ld.c [adr],%reg
instruction (a checked load).

If an ALAT entry for adr is present, this
Instruction does nothing; %reg contains
the correct value. If there is no
corresponding ALAT entry, the 1d.c
simply acts like an ordinary load.

(Two versions of 14.c exist; one
preserves an ALAT entry while the other
purges it).

€S 701 Fall 2008 258



And yes, a speculative load (1d.s) and
an advanced load (1d.a) may be
combined to form a speculative
advanced load (14.sa).

€5 701 Fall 2008 259




Speculative MulTi-threaded
PROCESSORS

The problem of moving a load above a
store that may conflict with it also
appears in multi-threaded processors.

How do we know that two threads don't
interfere with one another by writing
into locations both use?

Proofs of non-interference can be
difficult or impossible. Rather than
severely restrict what independent
threads can do, researchers have
oroposed speculative multi-threaded
DroCessors.

n such processors, one thread is primary,
while all other threads are secondary and
speculative. Using hardware tables to
remember locations read and written, a
secondary thread can commit (make its

€S 701 Fall 2008 260



updates permanent) only if it hasn't read
locations the primary thread later wrote
and hasn't written locations the primary
thread read or wrote. Access conflicts are
automatically detected, and secondary
threads are automatically restarted as
necessary to preserve the illusion of
serial memory accesses.

€5 701 Fall 2008° 261



Reading AsSiGNMENT

. Read Section 15.5, "Automatic
Instruction Selection,” from Chapter 15.

. Read Pelegri-Llopart and Graham's paper,
“Optimal Code Generation from
Expression Trees.”

. Read Fraser, Henry and Proebsting's
paper, "BURG--Fast Optimal Instruction
Selection and Tree Parsing.”

€5 701 Fall 2008° 262



Sofrware Pipelining

Often loop bodies are too small to allow
effective code scheduling. But loop
bodies, being "hot spots,” are exactly
where scheduling is most important.

Consider
void £ (int al[l,int last) {
for (p=&al[0];p!=&al[last];p++)
(*D) ++;
}

The body of the loop might be:

L: 14 %g3] ,%g2
nop
add %g2,1,%g2
st %g2, [%sg31]
add %g3,4,%g3
cmp %g3,%g4
bne L

nop

CS 701 Fall 2008°

263



Scheduling this loop body in isolation is
ineffective—each instruction depends
upon its immediate predecessor.

So we have a loop body that takes 8
cycles to execute 6 "“core” instructions.

We could unroll the loop body, but for
how many iterations? What if the loop
ends in the "middle” of an expanded
loop body? Will extra registers be a
problem?

€S 701 Fall 2008 64



In this case software pipelining offers a
nice solution. We expand the loop body
symbolically, intermixing instructions
from several iterations. Instructions can
overlap, increasing parallelism and
forming a "tighter” loop body:

1d [°%g31],%g2

nop
add %g2,1,%g2

L: st %g2, [%sg31]
add %g3,4,%g3
1d [%g3],%g2
cmp %g3,%g4
bne L

add %g2,1,%g2
Now the loop body is ideal—exactly 6

Instructions. Also, no extra registers are
needed!

But, we do "overshoot" the end of the
loop a bit, loading one element past the
exit point. (How serious is this?)

CS 701 Fall 2008 265



Key InsighT of Sofrware
Pipelining
Software pipelining exploits the fact

that a loop of the form {A B C}", where
A, B and C are individual instructions,
and n is the iteration count, is equivalent

to A {B C A" B C and is also equivalent
to AB{C AB})"C.

Mixing instructions from several
iterations may increase the effectiveness
of code scheduling, and may perhaps
allow for more parallel execution.

Sofrware Pipelining is Hard

In fact, it is NP-complete:

Hsu and Davidson, “Highly concurrent
scalar processing,” 13th ISCA (1986).

€S 701 Fall 2008 266



The IteraTtioN INTERVAL

We seek to initiate the next iteration
of a loop as soon as possible,
squeezing each iteration of the loop
body into as few machine cycles as

nossible.

The general form of a software
nipelined loop is:

Prologue Code

y
Kerne

Code

Epiloéue Code

CS 701 Fall 2008°

267




The prologue code "sets up” the main
loop, and the epilogue code “cleans
up” after loop termination. Neither
the prolog nor the epilogue need be
optimized, since they execute only
once.

Optimizing the kernel is key in
software pipelining. The kernel's
execution time (in cycles) is called
the initiation interval (I); it measures
how quickly the next iteration of a
loop can start.

We want the smallest possible
Initiation interval. Determining the
smallest viable Il is itself NP-
complete. Because of parallel issue
and execution in superscalar and
multiple issue processors, very small Il
values are possible (even less than 1!)

€S 701 Fall 2008 268



Factors That Limit The Size of
the INiTIATION INTERVAL

We want the initiation interval to be
as small as possible. Two factors limit
how small the Il can become:

. Resource Constraints

. Dependency Constraints

CS 701 Fall 2008 269



Resource CONSTRAINTS

A small Il normally means that we are
doing steps of several iterations
simultaneously. The number of
registers and functional units (that
execute instructions) can become
limiting factors of the size of Il.

For example, if a loop body contains 4
floating point operations, and our
processor can issue and execute no
more than 2 floating point operations
per cycle, then the loop’s Il can't be
less than 2.

CS 701 Fall 2008°

270



Dependency CoNSTRAINTS

A loop body can often contain a /oop-
carried dependence. This means one
iteration of a loop depends on values
computed in an earlier iteration. For
example, in

void £ (int al[]l) {
for (i=1;1<1000;i++)
alil=(ali-1]+al[il])/2;

}
there is a loop carried dependence from
the use of a[i-1] to the computation of
a[i] in the previous iteration. This
means the computation of a[i] can't

begin until the computation of a[i-1]
Is completed.

Let's look at the code that might be
generated for this loop:

€S 701 Fall 2008 071



mov %00, %02 la in %02

mov 1, %ol 1i=1 in %ol
L:

sll %0l, 2, %00 1i*4 in %o0

add %00, %02, %g2 !&al[i]l] in %g2

*o 14 [%g2-4], %g2 la[i-1] in %g2
14 [%02+%00], %g3 !a[i] in %g3
& add %g2, %g3, %g2 la[i-1l]l+al[il
& srl %g2, 31, %g3 !s=0 or l=sign
@ add %g2, %g3, %g2 la[i-1l]l+al[il+s
@& sra %g2, 1, %g2 la[i-1]1+a[i]l/2
add %0l, 1, %ol 1i++
cmp %01, 999
ble L
&« st %g2, [%02+%00] !store alil
retl
nop

The 6 marked instructions form a cyclic
dependency chain from a use of a[i-1]
to its computation (as a[il) in the
previous cycle. This cycle means that the
loop’s Il can never be less than 6.

€S 701 Fall 2008 272



Modulo Scheduling

There are many approaches to
software pipelining. One of the
simplest, and best known, is modulo
scheduling. Modulo scheduling builds
upon the postpass basic block
schedulers we've already studied.

First, we estimate the |l of the loop
we will create. How?

We can compute the minimum |l
based on resource considerations
(Il,es) and the minimum Il based on

cyclic loop-carried dependencies
(Hgep)- Then max(lleqllgep) is @

reasonable estimate of the best
possible Il. We'll try to build a loop
with a kernel size of Il. If this fails,
we'll try H1+1, 11+2, etc.

CS 701 Fall 2008°

273




In modulo scheduling we'll schedule
Instructions one by one, using the
dependency dag and whatever
heuristic we prefer to choose among
multiple roots.

Now though, if we place an
instruction at cycle ¢ (many
Independent instructions may execute
in the same cycle), then we'll place
additional copies of the instruction at
cycle c+ll, c+2*1l, etc.

Placement must respect dependency
constraints and resource limits at all
positions. We consider placements
only until a kernel (of size IlI) forms.
The kernel must begin before cycle s-
1, where s is the size of the loop body
(in instructions). The loop's
conditional branch is placed after the
kernel is formed.

€5 701 Fall 2008 274



If we can’t form a kernel of size |l
(because of dependency or resource
conflicts), we increase Il by 1 and try
again. At worst, we get a kernel equal
in size to the original loop body,
which guarantees that the modulo
scheduler eventually terminates.

Depending on how many iterations
are intermixed in the kernel, the loop
termination condition may need to be
adjusted (since the initial and final
iterations may appear as part of the
loop prologue and epilogue).

€5 701 Fall 2008° 975



Example

Consider the following simple
function which adds an array index to
each element of an array and copies
the results into a second array:
void £ (int al[l,int bI[]) {

tl = &al[0];

t2 = &b[0];

for (1=0;i<1000;i++,tl++,t2++)

*tl = *t2 + 1i;

}
The code for £ (compiled as a leaf

procedure) is:

CS 701 Fall 2008 276



1. £ movw 0, %g3

2. L: 14 [%01], %g2

3. add %g3, %g2, %g4
4. st %g4, [%00]

5. add %g3, 1, %g3
6. add %00, 4, %00
7. cmp %g3, 999

8. ble L

9. add %0l, 4, %0l
10. retl

11. nop

\\
EI
Dashed arcs are

\\
E n anti dependencies.

€5 701 Fall 2008 77



We'll software pipeline the loop body,
excluding the conditional branch
(which is placed after the loop kernel
is formed).

This loop body contains 2 loads/
stores, 5 arithmetic and logical
operations (including the compare)
and one conditional branch.

Let's assume the processor we are
compiling for has 1 load/store unit, 3
arithmetic/logic units, and 1 branch
unit. That means the processor can
(ideally) issue and execute
simultaneously 1 load or store, 3
arithmetic and logic instructions, and
1 branch. Thus i1ts maximum issue
width is 5. (Current superscalars have
roughly this capability.)

CS 701 Fall 2008 278



Considering resource requirements,
we will need at least two cycles to
process the contents of the loop body.
There are no loop-carried
dependencies.

Thus we will estimate this loop's best
possible Initiation Interval to be 2.

Since the only instruction that can
stall is the root of the dependency
dag, we'll schedule using estimated
critical path length, which is just the
node's height in the tree. Hence we'll
schedule the nodes in the order:
2,3,4,5,6,7,9.

We'll schedule all instructions in a
legal execution order (respecting
dependencies), and we'll try to choose
as many instructions as possible to
execute in the same cycle.

€S 701 Fall 2008 279



Starting with the root, instruction 2,
we schedule it at cycles 1, 3 (=1+ll),

5 (=1+2*1):

cycle instruction

1. 1d %01l], %g2
2.

3. 1d %0l1], %g2
4.

5. 1d %0l1], %g2

No conflicts so far, since each of the
loads starts an independent iteration.

€5 701 Fall 2008° 280



We'll schedule instruction 3 next. It
must be placed at cycles 3, 5 and 7
since it uses the result of the load.

cycle

No ook WWDND PR
e o e o o o o o o

instruction

14 %011, %g2

14 %01l], %g2
add %g3, %g2, %g4d
14 [%01], %g2

Note that in cycles 3 and 5 we use
the current value of %g2 and initiate
a load into %g2.

CS 701 Fall 2008°

281



Instruction 4 is next. It uses the result
of the add we just scheduled, so it is
placed at cycles 4 and 6.

cycle instruction

1. 1d %0l], %g2

2.

3. add %g3, %g2, %g4d
3. 14 %01l], %g2

4. st %g4, [%00]

5. add %g3, %g2, %g4d
5. 14 %0l1l], %g2

6. st %gd, [%00]

7. add %g3, %g2, %g4d

CS 701 Fall 2008°

282



Instruction 5 iIs next. It 1s anti
dependent on instruction 3, so we can
place it in the same cycles that 3 uses

(3, 5 and 7).

cycle instruction

1. 1d %0l], %g2

2.

3. add %g3, %g2, %g4d
3. 14 %01l], %g2

3. add %g3, 1, %g3
4. st %g4, [%00]

5. add %g3, %g2, %g4d
5. 14 %01l], %g2

5. add %g3, 1, %g3
6. st %g4, [%00]

7. add %g3, %g2, %g4d

7. add %g3, 1, %g3

CS 701 Fall 2008 283



Instruction 6 iIs next. It Is anti

dependent on instruction 4, so we can
place it in the same cycles that 4 uses
(4 and 6).

cycle

1.

instruction

1d %011, %g2
add %g3, %g2, %g4d
14 %0l1], %g2
add %g3, 1, %g
st %g4, [%00]
add %00, 4, %o
add %g3, %g2,
14 %011, %g2
add %g3, 1, %g
st %g4, [%00]
add %00, 4, %o
add %g3, %g2,
add %g3, 1, %g

CS 701 Fall 2008°

284



Next we place instruction 7. It uses
the result of instruction 5 (%g3), so it
Is placed in the cycles following
instruction 5 (4 and 6).

cycle instruction

1. 14 %0l1], %g2

2.

3. add %g3, %g2, %g4d
3. 14 %01l], %g2

3. add %g3, 1, %g3
4. st %gd, [%00]

4. add %00, 4, %00
4. cmp %g3, 999

5. add %g3, %g2, %gd
5. 14 %01l], %g2

5. add %g3, 1, %g3
6. st %g4, [%00]

6. add %00, 4, %00
6. cmp %g3, 999

7. add %g3, %g2, %g4

7. add %g3, 1, %g3

CS 701 Fall 2008°

285



Finally we place instruction 9. It is

anti dependent on instruction 2 so it
Is placed in the same cycles as

instruction 2 (1, 3 and 5).

instruction

cycle
1.

%g2

[%01],

1d

o®

add

%g2

[%01],
ol,

%01

o®

add
add
st

[%00]

g4,
o0,
g3,

o0

o®

o®

add
cmp
add
14

999

o®

%g2

[*%01],

o®

add
add
st

o®

[%00]

%g4,

6.

o0

o®

%00,

add
cmp
add
add

999

g3,

o®

6.

o®

Io/o

X

L L

Mm ™M

o® of

286

CS 701 Fall 2008°



We look for a 2 cycles kernel that
contains all 7 instructions of the loop
body that we have scheduled. We also
want a kernel that sets the condition
code (via the cmp) during its first
cycle so that it can be tested during
its second (and final) cycle. Cycles 4
and 5 meet these criteria, and will
form our kernel.

We place the conditional branch just
before the last instruction in cycle 5
(to give the conditional branch a

useful instruction for its delay slot).

€5 701 Fall 2008 287



We now have
cycle
1.

instruction

%g2

[%01],

1d

o®

add

%g2

[*%01],

1d

%01
%g3

ol,
g3,
g4,
o0,
g3,

o®

add
add

1,

(<]

N

[%00]

o0

o®

o®

add
cmp

999

o®

1d
add
ble

%01

ol,

o®

o®

add

[%00

g4,
o0,
g3,

o®

st
add
cmp

6.

o0

o®

o®

999

o®

6.

o®

add

288

CS 701 Fall 2008°



A

couple of final issues must be dealt

with:

. Does the iteration count need to be

changed?

In this case no, since the final valid
value of i, 999, is used to compute
%g4 in cycle 5, before the loop exits.

. What instructions do we keep as the

loop's epilogue?

None! Instructions past the kernel
aren't needed since they are part of
future iterations (past i==999)which
aren't needed or wanted.

. Note that b[1000] and b[1001] are

“touched"” even though they are never
used. This is probably OK as long as
arrays aren't placed at the very end of
a page or segment.

CS 701 Fall 2008°

289



Our final loop is:

cycle
1.

1.
3.
3.
3.
3.
4. L:
4.
4.
5.
5.
5.
5.
5.

instruction

14 %01l], %g2
add %0l, 4, %ol
add %g3, %g2, %g4d
14 [%01], %g2
add %0l, 4, %ol
add %g3, 1, %g3
st %gd, [%00]
add %00, 4, %00
cmp %g3, 999

add %g3, %g2, %g4d
14 %011, %g2
add %0l, 4, %ol

ble L
add %g3, 1, %g3

IN,
IN,
IN,
IN;
IN,;
IN,
IN,
IN,
IN,
IN,;
IN,
IN,
IN,
IN;

This is very efficient code—we use the
full parallelism of the processor,

executing 5 instructions in cycle 5

and 8 instructions in just 2 cycles. All

resource limitations are respected.

CS 701 Fall 2008°

290



