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Very Busy Expressions
This is an interesting variant of
available expression analysis.
An expression is very busy at a point if
it is guaranteed that the expression
will be computed at some time in the
future.
Thus starting at the point in question,
the expression must be reached
before its value changes.

Very busy expression analysis is a
backward flow analysis, since it
propagates information about future
evaluations backward to “earlier”
points in the computation.
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The meet lattice is:

As initial values, at the end of all exit
nodes, nothing is very busy. Hence,
for a given expression,
VeryBusyOut(blast) = F

T (Expression is Very Busy)

F (Expression is Not Very Busy)
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The transfer function for e1 in block b
is defined as:
If e1 is computed in b before any of

its operands
Then  VeryBusyIn(b) = T
Elsif any of e1’s operands are changed
   before e1 is computed
   Then  VeryBusyIn(b) = F
Else VeryBusyIn(b) = VeryBusyOut(b)

The meet operation (to combine
solutions) is:

 VeryBusyOut(b) = AND
s ∈ Succ(b)

VeryBusyIn(s)

362CS 701  Fall 2008©

Example: e1=v+w

stop

v=2

w=5

v=3 x=v+w

u=v+w

F

F

F

F

T

T
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stop

v=2

w=5

v=3 x=v+w

u=v+w
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F

T

T

T

F

Move v+w
here?

Or here?
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Identifying Identical
Expressions

We can hash expressions, based on
hash values assigned to operands and
operators. This makes recognizing
potentially redundant expressions
straightforward.
For example, if H(a) = 10, H(b) = 21
and H(+) = 5, then (using a simple
product hash),
H(a+b) = 10×21×5 Mod TableSize
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Effects of Aliasing and Calls
When looking for assignments to
operands, we must consider the
effects of pointers, formal parameters
and calls.
An assignment through a pointer
(e.g, *p = val) kills all expressions
dependent on variables p might point
too. Similarly, an assignment to a
formal parameter kills all expressions
dependent on variables the formal
might be bound to.
A call kills all expressions dependent
on a variable changeable during the
call.
Lacking careful alias analysis,
pointers, formal parameters and calls
can kill all (or most) expressions.
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Very Busy Expressions and
Loop Invariants

Very busy expressions are ideal
candidates for invariant loop motion.
If an expression, invariant in a loop, is
also very busy, we know it must be
used in the future, and hence
evaluation outside the loop must be
worthwhile.



367CS 701  Fall 2008©

for (...) {

if (...)

      a=b+c;

else a=d+c;}

for (...) {

if (a>b+c)

      x=1;

else x=0;}

t=b+c t=b+c

a=b+c a=d+c

a>b+c

T F

F

F

F T

b+c is not very busy
at loop entrance

b+c is very busy
at loop entrance
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Reaching Definitions
We have seen reaching definition
analysis formulated as a set-valued
problem. It can also be formulated on
a per-definition basis.
That is, we ask “What blocks does a
particular definition to v reach?”
This is a boolean-valued, forward
flow data flow problem.
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Initially, DefIn(b0) = false.

For basic block b:
DefOut(b) =
  If the definition being analyzed is
    the last definition to v in b
  Then True
Elsif any other definition to v occurs

     in b
  Then False
  Else DefIn(b)
The meet operation (to combine
solutions) is:

 DefIn(b) =

To get all reaching definition, we do a
series of single definition analyses.

OR
p ∈ Pred(b)

 DefOut(p)
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Live Variable Analysis
This is a boolean-valued, backward
flow data flow problem.
Initially, LiveOut(blast) = false.

For basic block b:
LiveIn(b) =
  If the variable is used before it is
    defined in b
  Then True
  Elsif it is defined before it is used
     in b
  Then False
  Else LiveOut(b)
The meet operation (to combine
solutions) is:

 LiveOut(b) = OR
s ∈ Succ(b)

 LiveIn(s)
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Bit Vectoring Data Flow
Problems

The four data flow problems we have
just reviewed all fit within a single
framework.
Their solution values are Booleans
(bits).
The meet operation is And or OR.
The transfer function is of the general
form
  Out(b) = (In(b) - Killb) U Genb

or
  In(b) = (Out(b) - Killb) U Genb

where Killb is true if a value is “killed”
within b and Genb is true if a value is
“generated” within b.
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In Boolean terms:
Out(b) = (In(b) AND Not Killb) OR Genb

or
In(b) = (Out(b) AND Not Killb) OR Genb

An advantage of a bit vectoring data
flow problem is that we can do a series
of data flow problems “in parallel” using
a bit vector.

Hence using ordinary word-level ANDs,
ORs, and NOTs, we can solve 32 (or 64)
problems simultaneously.
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Example
 Do live variable analysis for u and v,
using a 2 bit vector:

We expect no variable to be live at
the start of b0. (Why?)

v=1

u=0

a=u v=2

print(u,v)

Gen=0,0
Kill=0,1

Gen=0,0

Gen=1,0 Gen=0,0

Gen=1,1

Kill=1,0

Kill=0,0 Kill=0,1

Kill=0,0

Live=0,0

Live=0,1

Live=1,1 Live=1,0

Live=1,1
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Reading Assignment
• Read pages 31-62 of “Automatic

Program Optimization,” by Ron Cytron.
(Linked from the class Web page.)
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Depth-First Spanning Trees
Sometimes we want to “cover” the
nodes of a control flow graph with an
acyclic structure.
This allows us to visit nodes once,
without worrying about cycles or
infinite loops.
Also, a careful visitation order can
approximate forward control flow
(very useful in solving forward data
flow problems).
A Depth-First Spanning Tree (DFST) is
a tree structure that covers the nodes
of a control flow graph, with the start
node serving as root of the DFST.
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Building a DFST
We will visit CFG nodes in depth-first
order, keeping arcs if the visited node
hasn’t be reached before.
To create a DFST, T, from a CFG, G:

1. T ← empty tree
2. Mark all nodes in G as “unvisited.”
3. Call DF(start node)

DF (node) {
1. Mark node as visited.
2. For each successor, s, of node in G:

If s is unvisited
  (a) Add node → s to T
  (b) Call DF(s)
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Example
A

B

C

D

E F

G

H

I J

Visit order is A, B, C, D, E, G, H, I, J, F
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The DFST is

A

B

C

D

E F

G

H

I J
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Categorizing Arcs using a
DFST

Arcs in a CFG can be categorized by
examining the corresponding DFST.
An arc A→B in a CFG is
(a) An Advancing Edge if B is a proper
     descendent of A in the DFST.
(b) A Retreating Edge if B is an
     ancestor of A in the DFST.
     (This includes the A→A case.)
(c) A Cross Edge if B is neither a
     descendent nor an ancestor of A
     in the DFST.
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Example
A

B

C

D

E F

G

H

I J

a
a

a

a

a a

a

a

a a

r

r

r

r

c
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Depth-First Order
Once we have a DFST, we can label
nodes with a Depth-First Ordering
(DFO).
Let i = the number of nodes in a CFG
(= the number of nodes in its DFST).
DFO(node) {
   For (each successor s of node) do
         DFO(s);
   Mark node with i;
   i--;
}
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Example
The number of nodes = 10.

A

B

C

D

E F

G

H

I J

1

2

3

4

6 5

7

8

10 9
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Application of Depth-First
Ordering
• Retreating edges (a necessary component

of loops) are easy to identify:
   a→b is a retreating edge if and only if
   dfo(b) ≤ dfo(a)

• A depth-first ordering in an excellent
visit order for solving forward data flow
problems. We want to visit nodes in
essentially topological order, so that all
predecessors of a node are visited (and
evaluated) before the node itself is.
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Dominators
A CFG node M dominates N
(M dom N) if and only if all paths
from the start node to N must pass
through M.
A node trivially dominates itself.
Thus (N dom N) is always true.

A CFG node M strictly dominates N
(M sdom N) if and only if
(M dom N) and M ≠ N.
A node can’t strictly dominates itself.
Thus (N sdom N) is never true.
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A CFG node may have many
dominators.

Node F is dominated by F, E, D and A.

A

B C

D

E

F
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Immediate Dominators
If a CFG node has more than one
dominator (which is common), there
is always a unique “closest”
dominator called its immediate
dominator.
(M idom N) if and only if

(M sdom N) and
(P sdom N) ⇒ (P dom M)

To see that an immediate dominator
always exists (except for the start
node) and is unique, assume that
node N is strictly dominated by M1,
M2, ..., Mp, P ≥ 2.

By definition, M1, ..., Mp must appear
on all paths to N, including acyclic
paths.
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Look at the relative ordering among
M1 to Mp on some arbitrary acyclic
path from the start node to N.
Assume that Mi is “last” on that path
(and hence “nearest” to N).

If, on some other acyclic path,
Mj ≠ Mi is last, then we can shorten
this second path by going directly
from Mi to N without touching any
more of the M1 to Mp nodes.

But, this totally removes Mj from the
path, contradicting the assumption
that (Mj sdom N).
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Dominator Trees
Using immediate dominators, we can
create a dominator tree in which A→B
in the dominator tree if and only if
(A idom B).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Control Flow Graph

Dominator Tree
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Note that the Dominator Tree of a
CFG and its DFST are distinct trees
(though they have the same nodes).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Dominator Tree

Depth-First Spanning Tree
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A Dominator Tree is a compact and
convenient representation of both the
dom and idom relations.
A node in a Dominator Tree
dominates all its descendents in the
tree, and immediately dominates all
its children.


