
384CS 701 Fall 2008©

Dominators
A CFG node M dominates N
(M dom N) if and only if all paths
from the start node to N must pass
through M.
A node trivially dominates itself.
Thus (N dom N) is always true.

A CFG node M strictly dominates N
(M sdom N) if and only if
(M dom N) and M ≠ N.
A node can’t strictly dominates itself.
Thus (N sdom N) is never true.

385CS 701 Fall 2008©

A CFG node may have many
dominators.

Node F is dominated by F, E, D and A.

A

B C

D

E

F

386CS 701 Fall 2008©

Immediate Dominators
If a CFG node has more than one
dominator (which is common), there
is always a unique “closest”
dominator called its immediate
dominator.
(M idom N) if and only if

(M sdom N) and
(P sdom N) ⇒ (P dom M)

To see that an immediate dominator
always exists (except for the start
node) and is unique, assume that
node N is strictly dominated by M1,
M2, ..., Mp, P ≥ 2.

By definition, M1, ..., Mp must appear
on all paths to N, including acyclic
paths.

387CS 701 Fall 2008©

Look at the relative ordering among
M1 to Mp on some arbitrary acyclic
path from the start node to N.
Assume that Mi is “last” on that path
(and hence “nearest” to N).

If, on some other acyclic path,
Mj ≠ Mi is last, then we can shorten
this second path by going directly
from Mi to N without touching any
more of the M1 to Mp nodes.

But, this totally removes Mj from the
path, contradicting the assumption
that (Mj sdom N).

388CS 701 Fall 2008©

Dominator Trees
Using immediate dominators, we can
create a dominator tree in which A→B
in the dominator tree if and only if
(A idom B).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Control Flow Graph

Dominator Tree

389CS 701 Fall 2008©

Note that the Dominator Tree of a
CFG and its DFST are distinct trees
(though they have the same nodes).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Dominator Tree

Depth-First Spanning Tree

390CS 701 Fall 2008©

A Dominator Tree is a compact and
convenient representation of both the
dom and idom relations.
A node in a Dominator Tree
dominates all its descendents in the
tree, and immediately dominates all
its children.

391CS 701 Fall 2008©

Computing Dominators
Dominators can be computed as a
Set-valued Forward Data Flow
Problem.
If a node N dominates all of node M’s
predecessors, then N appears on all
paths to M. Hence (N dom M).
Similarly, if M doesn’t dominate all of
M’s predecessors, then there is a path
to M that doesn’t include M. Hence
¬(N dom M).
These observations give us a “data
flow equation” for dominator sets:

dom(N) = {N} U ∩ dom(M)
M ∈ Pred(N)

392CS 701 Fall 2008©

The analysis domain is the lattice of
all subsets of nodes. Top is the set of
all nodes; bottom is the empty set.
The ordering relation is subset.

The meet operation is intersection.

The Initial Condition is that
 DomIn(b0) = φ

DomOut(b) = DomIn(b) U {b}

DomIn(b) = ∩ DomOut(c)
c ∈ Pred(b)

393CS 701 Fall 2008©

Loops Require Care
Loops in the Control Flow Graph
induce circularities in the Data Flow
equations for Dominators. In

we have the rule dom(B) =
DomOut(B) =

 DomIn(B) U {B} =
 {B} U (DomOut(B) ∩ DomOut(A))
If we choose DomOut(B) = φ initially,
we get DomOut(B) =
{B} U (φ ∩ DomOut(A)) = {B}
which is wrong.

A

B

C

394CS 701 Fall 2008©

Instead, we should use the Universal
Set (of all nodes) which is the identity
for ∩.
Then we get DomOut(B) =
{B} U ({all nodes} ∩ DomOut(A)) =
{B} U DomOut(A)
 which is correct.

395CS 701 Fall 2008©

A Worklist Algorithm for
Dominators

The data flow equations we have
developed for dominators can be
evaluated using a simple Worklist
Algorithm.
Initially, each node’s dominator set is
set to the set of all nodes. We add the
start node to our worklist.
For each node on the worklist, we
reevaluate its dominator set. If the set
changes, the updated dominator set is
used, and all the node’s successors are
added to the worklist (so that the
updated dominator set can be
propagated).

396CS 701 Fall 2008©

The algorithm terminates when the
worklist becomes empty, indicating
that a stable solution has been found.

Compute Dominators(){
 For (each n ∈ NodeSet)
 Dom(n) = NodeSet
 WorkList = {StartNode}
 While (WorkList ≠ φ) {
 Remove any node Y from WorkList

 If New ≠ Dom(Y) {
 Dom(Y) = New
 For (each Z ∈ Succ(Y))
 WorkList = WorkList U {Z}
}}}

New = {Y} U ∩ Dom(X)
X ∈ Pred(Y)

397CS 701 Fall 2008©

Example

Initially the WorkList = {Start}.
Be careful when Pred(Node) = φ.

A

B C

D

E

F

Start

End

ALL

ALL

ALL ALL

ALL

ALL

ALL

ALL

398CS 701 Fall 2008©

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Control Flow Graph

Dominator Tree

{start}

{start,A}

{start,A,B} {start,A,C}

{start,A,D}

{start,A,D,E}

{start,A,D,E,F}

{start,A,D,E,F,End}

399CS 701 Fall 2008©

Postdominance
A block Z postdominates a block Y
(Z pdom Y) if and only if all paths
from Y to an exit block must pass
through Z. Notions of immediate
postdominance and a postdominator
tree carry over.
Note that if a CFG has a single exit
node, then postdominance is
equivalent to dominance if flow is
reversed (going from the exit node to
the start node).

400CS 701 Fall 2008©

A

B C

D

E

F

Start

End

D

B C A

F

E

End

Start

Control Flow Graph

Postdominator Tree

401CS 701 Fall 2008©

Dominance Frontiers
Dominators and postdominators tell
us which basic block must be
executed prior to, of after, a block N.

It is interesting to consider blocks
“just before” or “just after” blocks
we’re dominated by, or blocks we
dominate.

The Dominance Frontier of a basic
block N, DF(N), is the set of all blocks
that are immediate successors to
blocks dominated by N, but which
aren’t themselves strictly dominated
by N.

402CS 701 Fall 2008©

DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
The dominance frontier of N is the set
of blocks that are not dominated N
and which are “first reached” on
paths from N.

403CS 701 Fall 2008©

Example

Block A B C D E F

Dominance
Frontier

φ {F} {E} {E} {F} φ

B

C D

E

F

A

B

C D E

A

Control Flow Graph

Dominator Tree

F

404CS 701 Fall 2008©

A block can be in its own Dominance
Frontier:

Here, DF(A) = {A}
Why? Reconsider the definition:
DF(N) =
 {Z | M→Z & (N dom M) &

¬(N sdom Z)}
Now B is dominated by A and B→A.
Moreover, A does not strictly
dominate itself. So, it meets the
definition.

B

C

A

405CS 701 Fall 2008©

Postdominance Frontiers
The Postdominance Frontier of a basic
block N, PDF(N), is the set of all
blocks that are immediate
predecessors to blocks postdominated
by N, but which aren’t themselves
postdominated by N.

PDF(N) =
 {Z | Z→M & (N pdom M) &

¬(N pdom Z)}
The postdominance frontier of N is
the set of blocks closest to N where a
choice was made of whether to reach
N or not.

406CS 701 Fall 2008©

Example

Block A B C D E F

Postdominance
Frontier

φ {A} {B} {B} {A} φ

B

C D

E

F

A

E

B C D

F

Control Flow Graph

Postominator Tree

A

407CS 701 Fall 2008©

Control Dependence
Since CFGs model flow of control, it
is useful to identify those basic blocks
whose execution is controlled by a
branch decision made by a
predecessor.
We say Y is control dependent on X if,
reaching X, choosing one out arc will
force Y to be reached, while choosing
another arc out of X allows Y to be
avoided.
Formally, Y is control dependent on X
if and only if,
(a) Y postdominates a successor of X.
 (b) Y does not postdominate all

successors of X.
X is the most recent block where a
choice was made to reach Y or not.

408CS 701 Fall 2008©

Control Dependence Graph
We can build a Control Dependence
Graph that shows (in graphical form)
all Control Dependence relations.
(A Block can be Control Dependent on
itself.)

409CS 701 Fall 2008©

What happened to H in the CD Graph?

C

D E

F

G

B

F

C D E

B

Control Flow Graph

Postominator Tree

A

H

H

G A

A

B G

C F

D E

Control Dependence
Graph

410CS 701 Fall 2008©

Let’s reconsider the CD Graph:

Blocks C and F, as well as D and E,
seem to have the same control
dependence relations with their
parent. But this isn’t so!
C and F are control equivalent, but D
and E are mutually exclusive!

C

D E

F

G

B

Control Flow Graph

A

H

A

B G

C F

D E

Control Dependence
Graph

411CS 701 Fall 2008©

Improving the Representation
of Control Dependence

We can label arcs in the CFG and the
CD Graph with the condition (T or F
or some switch value) that caused the
arc to be selected for execution.
This labeling then shows the
conditions that lead to the execution
of a given block.
To allow the exit block to appear in
the CD Graph, we can also add
“artificial” start and exit blocks,
linked together.

412CS 701 Fall 2008©

Now C and F have the same Control
Dependence relations—they are part
of the same extended basic block.
But D and E aren’t identically control
dependent. Similarly, A and H are
control equivalent, as are B and G.

C

D E

F

G

B

Control Flow Graph

A

H

A

B G

C F

D E

Control Dependence
Graph

Start

Exit

T

T

T

T

F F

F

F

Start

H

T T

TT

T

T
T

TF

