
581CS 701 Fall 2008©

CS 701 Final Exam (Reminder)
Friday, December 12, 4:00—6:00P.M.,
1289 Computer Science.

582CS 701 Fall 2008©

Andersen’s Algorithm
An algorithm to build a points-to
graph for a C program is presented in:
“Program Analysis and Specialization
for the C programming Language,”
L.O. Andersen, 1994.

The algorithm examines statements
that create pointers, one by one, in
textual order (the algorithm is flow-
insensitive). Each statement updates
the points-to graph if it can create
new points-to relationships.

583CS 701 Fall 2008©

Six kinds of statements are
considered:
• p = &a;

• p = q;

• p = *r;

• *p = &a;

• *p = q;

• *p = *r;

We will detail the points-to graph
updates each of the statements
induces.

1. p = &a;
We add an arc from p to a, showing p
can possibly point to a:

p a

584CS 701 Fall 2008©

2. p = q;

We add arcs from p to everything q
points to. If new arcs from q are later
added, corresponding arcs from p
must also be added (this implies an
iterative or worklist algorithm).
For example (the dashed arc is newly
added):
p a

qb

c

585CS 701 Fall 2008©

3. p = *r;

Let S be all the nodes r points to. Let
T be all the nodes members of S point
to. We add arcs from p to all nodes in
T. If later pointer assignments
increase S or T, new arcs from p must
also be added (this again implies an
iterative or worklist algorithm).
For example (dashed arcs are newly
added):
p e

rf

c

a

b

d

586CS 701 Fall 2008©

4. *p = &a;

Add an arc to a from all nodes p
points to. If new arcs from p are later
added, new arcs to a must be added
(this implies an iterative or worklist
algorithm).

For example (dashed arcs are
newly added):
p q a

r

587CS 701 Fall 2008©

5. *p = q;

Nodes pointed to by p must be
linked to all nodes pointed to by q.
If later pointer assignments add
arcs from p or q, this assignment
must be revisited (this again
implies an iterative or worklist
algorithm).
For example (dashed arcs are
newly added):
p e

qf

c

r

s

588CS 701 Fall 2008©

6. *p = *r;

Let S be all the nodes r points to.
Let T be all the nodes members of
S point to. We add arcs from all
nodes p points to to all nodes in T.
If later pointer assignments
increase S or T or link new nodes
to p, this assignment must be
revisited (this again implies an
iterative or worklist algorithm).
For example (dashed arcs are
newly added):

p w

rx

c

u

v

d

a

b

589CS 701 Fall 2008©

Example

Consider the following pointer
manipulations:
p1 = &a;

p2 = &b;

p1 = p2;

r = &p1;

*r = &c;

p3 = *r;

p2 = &d;

We start with:
p1 = &a;

p2 = &b;

p1 a

p2 b

590CS 701 Fall 2008©

Next:
p1 = p2;

Then:
r = &p1;

p1 a

p2 b

p1 a

p2 b

r

591CS 701 Fall 2008©

Next:
*r = &c;

Then:
p3 = *r;

p1 a

p2 b

r

c

p1 a

p2 b

r

c

p3

592CS 701 Fall 2008©

Finally:
p2 = &d;

But we aren’t quite done yet. This
algorithm is flow-insensitive, so we
must consider other execution orders
(and iterative re-execution). If we
make another pass through the
assignments, we see that the final

p1 a

p2 b

r

c

p3

d

593CS 701 Fall 2008©

assignment to p2 can flow to p1, and
then to p3 through r:

This points-to graph is rather dense,
but it does capture all the ways
pointer values might propagate
through the various pointer
assignments.

p1 a

p2 b

r

c

p3

d

594CS 701 Fall 2008©

Calls are handled by treating pointer
parameters and pointer returns as
assignments, done at the points of
call and return. Subprogram bodies
are effectively inlined to capture the
points-to relations they induce.
Given
 *int echo (*int r) {

 return r; }
 p = echo (&a);

we see the implicit assignments
 r = &a;

 p = r;

and add the following points-to
information:
p a r

595CS 701 Fall 2008©

As an optimization, libraries can be
pre-analyzed to determine the
points-to relations they induce. Most
may use (read) pointers but don’t
create any new points-to relations
visible outside their bodies. Call to
such library routines can be ignored
as far as the caller’s points-to graph
is concerned.

596CS 701 Fall 2008©

Performance of Andersen’s
Algorithm

Experience has shown that Andersen’s
Algorithm gives useful points-to data
and is far superior to the naive
address-taken approach.
Interestingly, experiments show that
making the technique flow-sensitive
or calling context-sensitive doesn’t
improve results very much on typical
benchmarks.

But execution time for moderate to
large programs can be a problem.
Careful analysis shows that
Andersen’s Algorithm can require
O(n3) time (where n is the number of
nodes in the points-to graph).

597CS 701 Fall 2008©

The reason for this larger-than-
expected analysis time is that a
statement like

p = *q;

can force the algorithm to visit n2

nodes (q may point to n nodes and
each of these nodes may point to n
nodes). The number of pointer
statements analyzed can be O(n),
leading to an O(n3) execution time.

598CS 701 Fall 2008©

Steensgaard’s Algorithm
It would be useful to have a
reasonably accurate points-to
analysis that runs in essentially linear
time so that really large programs
could be handled.
This is what Steensgaard’s Algorithm
offers.
(Points-to Analysis in Almost Linear
Time, B. Steensgaard, 1996 Principles
of Programming Languages
Conference.)
Steensgaard’s Algorithm is essentially
Andersen’s Algorithm, simplified by
merging nodes a and b if any pointer
can reference both.

599CS 701 Fall 2008©

That is, in Andersen’s Algorithm we
might have

In Steensgaard’s Algorithm we would
instead have

In effect any two locations that
might be pointed to by the same
pointer are placed in a single
equivalence class.

p a

b

p
a
b

600CS 701 Fall 2008©

Steensgaard’s Algorithm is sometimes
less accurate than Andersen’s
Algorithm. For example, the following
points-to graph, created by
Andersen’s Algorithm, shows that p
may point to a or b whereas q may
only point to a:

In Steensgaard’s Algorithm we get

incorrectly showing that if p may
point to a or b then so may q.

p a

b

q

p
a
b

q

601CS 701 Fall 2008©

But now statements like
p = *q;

can’t force the algorithm to visit n2

nodes, because multiple nodes
referenced by the same pointer are
always merged. Using the fast union-
find algorithm, we can get an
execution time of O(n α(n)) which is
essentially linear in n. Now very large
programs can be analyzed, and
without too much of a loss in
precision.

602CS 701 Fall 2008©

Andersen vs. Steensgaard in
Practice

• Horwitz and Shapiro examined 61 C
programs, ranging in size from 300 to
24,300 lines.

• As expected, Steensgaard is less
precise: On average points-to sets are
4 times bigger; at worst 15 times
bigger.

• As expected, Andersen is slower. On
average 1.5 times slower: at worst 31
times slower.

• Both are much better than the naive
“address taken” approach.

• Bottom line: Use Andersen for small
programs, use Steensgaard (or
something else) for large programs.

603CS 701 Fall 2008©

The Horwitz-Shapiro
Approach

It would be nice to have a points-to
analysis that is parameterizable,
ranging between the accuracy of
Andersen and the speed of
Steensgaard.
Horwitz and Shapiro (Fast and
Accurate Flow-Insensitive Points-To
Analysis, 1997 Principles of
Programming Languages Conference)
present a technique intermediate to
those proposed by Andersen and
Steensgaard.

604CS 701 Fall 2008©

Horwitz and Shapiro suggest each
node in the points-to graph be
limited to out degree k, where
 1 ≤ k ≤ n.
If k =1 then they have Steensgaard’s
approach.
If k =n (n is number of nodes in
points to graph), then they have
Andersen’s approach.

Their worst case run-time is

O(k2 n), which is not much worse
than Steensgaard if k is kept
reasonably small.

605CS 701 Fall 2008©

To use their approach assign each
variable that may be pointed to to
one of k categories.
Now if p may point to x and p may
also point to y, we merge x and y
only if they both are in the same
category.
If x and y are in different categories,
they aren’t merged, leading to more
accurate points-to estimates.

606CS 701 Fall 2008©

Example
p1 = &a;

p1 = &b;

p1 = &c;

p2 = &c;

Say we have k = 2 and place a and b
in category 1 and c in category 2.
We then build:

This points-to graph is just as
accurate as that built by Andersen’s
approach.

p1 a,b

p2 c

607CS 701 Fall 2008©

But...
What if we chose to place a in
category 1 and b and c in category 2.
We now have:

This graph is inexact, since it tells us
p2 may point to b, which is false.
(Steensgaard would have been worse
still, incorrectly telling us p2 may
point to a as well as b and c).

p1 a

p2 b,c

608CS 701 Fall 2008©

Another Good Idea
What if we ran Shapiro and Horwitz’s
points-to analysis twice, each with
different category assignments?
Each run may produce a different
points-to graph. One may say p2
points to b whereas the other says it
can’t.
Which do we believe?
Neither analysis misses a genuine
points-to relation. Rather, merging of
nodes sometimes creates false points-
to information.
So we will believe p2 may point to b
only if all runs say so.
This means multiple runs may “filter
out” many of the false points-to
relations caused by merging.

609CS 701 Fall 2008©

How Many Runs are Needed?

How are Categories to be Set?
We want to assign categories so that
during at least one run, any pair of
pointed-to variables are in different
categories.
This guarantees that if all the runs
tell us p may point to a and b, it is
not just because a and b always
happened to be assigned the same
category.

To force different category
assignments for each pair of variables,
we assign each pointed-to variable an
index and write that index in base k
(the number of categories chosen).

610CS 701 Fall 2008©

For example, if we had variables a, b,
c and d, and chose k = 2, we’d use
the following binary indices:
a 00
b 01
c 10
d 11

Note that the number of base k digits
needed to represent indices from 0 to
n-1 is just ceiling(logk n).

This number is just the number of
runs we need!

611CS 701 Fall 2008©

Why?
In the first run, we’ll use the right
most digit in a variable’s index as its
category.
In the next run, we’ll use the second
digit from the right, then the third
digit from the right, ...
Any two distinct variables have
different index values, so they must
differ in at least digit position.

612CS 701 Fall 2008©

Returning to our example,
a 00
b 01
c 10
d 11
On run #1 we give a and c category 0
and b and d category 1.
On run #2, a and b get category 0
and c and d get category 1.
So using just 2 runs in this simple
case, we eliminate much of the
inaccuracy Steensgaard’s merging
introduces.

Run time is now O(logk(n) k2 n).

613CS 701 Fall 2008©

How Well does this Approach
Work?

On 25 tests, using 3 categories,
Horwitz & Shapiro points-to sets on
average are 2.67 larger than those of
Andersen (Steensgaard’s are 4.75
larger).

This approach is slower than
Steensgaard but on larger programs it
is 7 to 25 times faster than Andersen.

614CS 701 Fall 2008©

How Well do Points-to
Analyses Work in Real Data
Flow Problems?

In “Which Pointer Analysis Should I
Use,” Hind and Pioli survey the
effectiveness of a number of points-
to analyses in actual data flow
analyses (mod/ref, liveness, reaching
defs, interprocedural constant
propagation).
Their conclusions are essentially the
same across all these analyses:
• Steensgaard’s analysis is significantly

more precise than address-taken
analysis and not significantly slower.

• Andersen’s analysis produces modest,
but consistent, improvements over
Steensgaard’s analysis.

615CS 701 Fall 2008©

• Both context-sensitive points-to
analysis and flow-sensitive points-to
analysis give little improvement over
Andersen’s analysis.

