
CS 701

Final Exam

Tuesday, December 19, 2006

1:00 — 4:00 p.m.

1263 Computer Science

Instructions
Answer question #1 and any three others. (If you answer more, only the first four will
count.) Point values are as indicated. Please try to make your answers neat and coher-
ent. Remember, if we can’t read it, it’s wrong. Partial credit will be given, so try to put
something down for each question (a blank answer always gets 0 points!).

1. (1 point)
What are the top-most and bottom-most values in a lattice called?

2. This question involves points-to analysis in a language like C or C++. Assume the fol-
lowing pointer manipulation statements appear in a subprogram (points-to analyses
are flow-insensitive so non-pointer statements are irrelevant):

p1 = &a;
p2 = p1;
p1 = &b;
p3 = &c;
p2 = &d;
r = &p3;
s = &p2;
*r = *s;

(a) (11 points)
Show the points-to graph that Andersen’s Algorithm would compute for these
statements.

(b) (11 points)
Show the points-to graph that Steengaard’s Algorithm would compute for these
statements. How does it compare to that of Andersen’s Algorithm?

(c) (11 points)
Show the points-to graph that Horwitz’s Algorithm would compute for these
statements. Assume one run and two categories are used. The category
assignments are:
 Category 1: p1, a, b, r
 Category 2: p2, p3, c, d, s
How does this points-to graph compare with those produced in parts (a) and (b)?

3. Assume we have a Java-style try statement of the form

try
body

catch
 handler;

In this try statement body is executed. If any statement in body executes a throw
statement, execution transfers immediately to the statements in handler. If no throw is
executed within body, then the statements in handler are ignored. Thus either all of
body is executed or a prefix of body is executed, followed by the statements in handler.

(a) (11 points)
Assume we limit our try statement to the case in which body contains only one
top-level throw controlled by a predicate. That is, the try is now of the form

 try
body1
if (pred)

throw;
body2;

 catch
 handler;

Explain how to compute the transfer function of this form of try statement given
the transfer functions of body1, body2, pred and handler.

(b) (11 points)
Extend your solution to (a) to the case in which body contains more than one top-
level throw, each controlled by its own predicate. That is, the try is now of the
form

 try
body1
if (pred1)

throw;
body2;

if (pred2)

throw;
...
if (predn)

throw;
bodyn+1;

 catch
 handler;

Explain how to compute the transfer function of this form of try statement given
the transfer functions of body1, body2,..., bodyn+1, pred1,..., predn and
handler.
-2-

(c) (11 points)
Extend your solution to (a) to the case in which a try statement contains one top-
level throw, controlled by a predicate, nested within a top-level do-while loop.
That is, the try is now of the form

 try
body1
do

body2
if (pred1)

throw;
body3;

while (pred2)

body4;

 catch
 handler;

Explain how to compute the transfer function of this form of try statement given
the transfer functions of body1,..., body4, pred1, pred2 and handler.

4. In a language like Java or C# in which all non-scalar objects are accessed through refer-
ences, it is very useful to know, at a particular point, whether a reference is definitely
null or definitely non-null, or possibly either (null or non-null).

This motivates an “is null” data flow problem. For a given reference, r, IsNullin(b) tells
us whether r is null at the start of block b. Possible values of IsNullin(b) are T (must be
null), F (certainly is non-null), T (don’t know yet), ⊥ (may possibly be either null or
non-null). Similarly, IsNullout(b) tells us whether r is null at the end of block b.

We will focus on the following kinds of assignments to references: ref1 = null,
ref1 = new(), ref1 = method(), and ref1 = ref2, where ref1 and ref2 are local
reference variables and method is a call to a known method. We will assume all meth-
ods are preanalyzed and that we know the status of the reference each method returns
(null, non-null, maybe either). Moreover, we assume only one such assignment to a
reference variable occurs in each basic block (blocks can be split, as needed, to guaran-
tee this).

(a) (11 points)
Give a data flow framework (solution lattice, direction, transfer function and meet
operation) that can be used to solve the “is null” problem described above.

(b) (11 points)
Is the data flow problem you formulated distributive? If it is, explain carefully
why. If it is not, give a simple counter example.

(c) (11 points)
Is the data flow problem you formulated rapid? If it is, explain carefully why. If it
is not, give a simple counter example.
-3-

5. (a) (8 points)
In implementing loop-invariant code motion, very busy expression analysis would
seem to be useful and appropriate since a very busy loop-invariant expression is
an ideal candidate to move outside the loop. However, experience shows that
identifying and moving very busy loop-invariants is quite ineffective. Explain
why.

(b) (17 points)
Assume we profile the execution of a subprogram and mark certain transitions
between basic blocks as highly probable. A transition is so marked if it is certain
to be taken or exceeds a high threshold probability (e.g., 95% or better). A basic
block may have at most one transition from it marked as highly probable. For some
blocks none of its out transitions will be marked.

Let us generalize very busy expression analysis to a new analysis called highly
probably expression analysis. At the top of a basic block an expression is highly
probable if it is computed in that block before any of the expression’s operands are
assigned to or if the block is transparent and the expression is highly probable at
the end of the block.

An expression is highly probable at the end of a basic block if it is highly probable
at the start of all successor blocks or if it is highly probable at the start of a single
successor connected by a highly probable transition.

Give a data flow framework for determining if an expression is highly probable.
That is, give the solution lattice, direction, transfer functions and meet operation
necessary to compute HPin and HPout for each basic block.

(c) (8 points)
Assuming that we’ve done highly probable expression analysis, can we now
effectively identify choice candidates for loop-invariant code motion? Why is this
new analysis more effective than very busy expression analysis?

6. This question involves partial redundancy elimination. The data flow equations that
define partial redundancy are listed at the end of this question.
The following three statements all pertain to the effects of partial redundancy elimina-
tion. For each statement, say whether the statement is true or false. If it is true explain
carefully why it is true. If it is false, give a counter-example that illustrates the state-
ment’s falsity.

(a) (11 points)
Partial redundancy elimination never increases program size; that is, it always
removes at least as many occurrences of an expression as it adds.

(b) (11 points)
Consider any execution path in a program (viewed as a sequence of basic blocks
from b0 to an exit block). After partial redundancy elimination the first evaluation
of an expression never occurs earlier than it did in the original (unoptimized) pro-
gram.
-4-

(c) (11 points)
Consider any basic block b that is transparent with respect to an expression e
(none of the e’s operands are changed in the block) and has only one predecessor.
If partial redundancy elimination inserts an evaluation of e in the b’s sole prede-
cessor, then an evaluation of e will never be inserted into b.

PPOutb = 0 for all exit blocks
= AND PPInk

k∈ succ(b)

PPInb = 0 for b0 (the start block)
= Constb AND (AntLocb or (Transpb AND PPOutb)

AND (PPOutp OR AvOutp)
p∈ pred(b)

Constb = AntInb AND

[PavInb OR (Transpb and ¬ AntLocb)]

Insertb = PPOutb AND (¬ AvOutb) AND (¬ PPInb OR ¬ Transpb)

Removeb = AntLocb AND PPInb

Partial Redundancy Equations
-5-

	CS 701
	Final Exam
	1. (1 point)
	2. This question involves points-to analysis in a language like C or C++. Assume the following pointer manipulation statements appear in a subprogram (points-to analyses are flow-insensitive so non-pointer statements are irrelevant):
	3. Assume we have a Java-style try statement of the form

	(a) (11 points) Assume we limit our try statement to the case in which body contains only one top-level throw controlled by a predicate. That is, the try is now of the form
	(b) (11 points) Extend your solution to (a) to the case in which body contains more than one top- level throw, each controlled by its own predicate. That is, the try is now of the form
	(c) (11 points) Extend your solution to (a) to the case in which a try statement contains one top- level throw, controlled by a predicate, nested within a top-level do-while loop. That is, the try is now of the form
	4. In a language like Java or C# in which all non-scalar objects are accessed through references, it is very useful to know, at ...

	(a) (11 points) Give a data flow framework (solution lattice, direction, transfer function and meet operation) that can be used to solve the “is null” problem described above.
	(b) (11 points) Is the data flow problem you formulated distributive? If it is, explain carefully why. If it is not, give a simple counter example.
	(c) (11 points) Is the data flow problem you formulated rapid? If it is, explain carefully why. If it is not, give a simple counter example.
	5. (a) (8 points)
	6. This question involves partial redundancy elimination. The data flow equations that define partial redundancy are listed at t...

	(a) (11 points) Partial redundancy elimination never increases program size; that is, it always removes at least as many occurrences of an expression as it adds.
	(b) (11 points) Consider any execution path in a program (viewed as a sequence of basic blocks from b0 to an exit block). After ...
	(c) (11 points) Consider any basic block b that is transparent with respect to an expression e (none of the e’s operands are cha...

