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Abstract 

As part of an effort to develop an optimizing compiler for 
a pipelined architecture, a code reorganization algorithm has 
been developed that significantly reduces the number of run- 
time pipeline interlocks. In a pass after code generation, the 
algorithm uses a dag representation to heuristically schedule 
the instructions in each basic block. 

Previous algorithms for reducing pipeline interlocks have 
had worst-case runtimes of at least O(n4). By using a dag 
representation which prevents scheduling deadlocks and a 
selection method that requires no lookahead, the resulting algo- 
rithm reorganizes instructions almost as effectively in practice, 
while having an O(n') worst-case runtime. 

1. Introduction 

The architecture we have studied has many features which 
enable fast execution of programs, chief among them the use of 
pipelining. Whereas in a more traditional architecture each 
instruction is fetched, decoded and executed before the next 
one is fetched, in a pipelined architecture [KogSl] the execu- 
tion cycles of distinct instructions may overlap one another. 
Problems arise if the results of one instruction are needed by 
another before the first has finished executing or if a specific 
machine resource is needed by two instructions at once. In 
such a case, the second instruction must wait for the first to 
complete, and we say a pipeline hazard has occurred. 
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Fortunately, not all pairs of consecutive instructions cause 
pipeline hazards. In the architecture under consideration, the 
only hazards are register- and memory-based: 1) loading a 
register from memory followed by using that register as a 
source, 2) storing to any memory location followed by loading 
from any location, and 3) loading from memory followed by 
using any register as the target of an arithmetic/logical instruc- 
tion or a load/store with address modification. Each of these 
pipeline hazards causes some potential implementation of the 
architecture to stall or interlock for one pipe cycle. 

There are three approaches to reducing the number of pipe- 
line interlocks incurred in executing a program, distinguished 
by the agent and the time when the code is inspected: either 
special hardware can do it during execution, or a person or 
software can do it before execution. The hardware approach 
has been used in the Control Data 6600 [Tho64] and the IBM 
360/91 [Tom67], two of the fastest machines of their day. 
While reasonably effective, this approach is very expensive 
and can only span relatively short code sequences. Rymarczyk 
[Rym82] has presented guidelines for assembly language pro- 
grammers to avoid pipeline interlocks. This approach is 
impractical in general, since it is very time-consuming and 
error-prone. The use of software to detect and remove inter- 
locks is, at present, the most practical and effective approach. 
Our goal was to design an efficient algorithm for reordering 
instructions at compile time that significantly reduces the 
number of interlocks occurring when code is executed on any 
implementation of the subject architecture. 

Most research on compile-time code reorganization has 
concentrated on the scheduling and compacting of microcode, 
which begins with a correct sequence of vertical microinstruc- 
tions and packs them into a (shorter) sequence of horizontal 
microinstructions. Although pipeline-oriented scheduling is 
similar to microcode compaction in some respects, there are 
enough differences that algorithms for it pav81, Tok81, 
Veg821 are not adequate for instruction scheduling. Research 
on compile-time pipeline scheduling is relatively sparse, with 
the most significant works being [Ary83], [Aus82], [Gro83], 
[Hen831 and [Sit78]. [Gro83] presents an excellent and rela- 
tively thorough survey of research on this subject. In [Ary83], 
an algorithm with exponential worst-case runtime is presented 
for optimally scheduling instructions for a pipelined vector 
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processor. [Aus82] describes pipeline scheduling performed 
during code generation. The others [Gro83, Hen83, Sit781 
(and our own work) are all concerned with scheduling per- 
formed during a pass after code generation and register alloca- 
tion. According to the empirical evidence [Gro83], this can be 
significantly more effective than the technique of [Aus82]. 
[Gro83] and pen831 describe a powerful heuristic scheduling 
algorithm that uses lookahead to avoid deadlock, with 0 (a’) 
worst-case runtime, where II is the number of machine instruc- 
tions in the basic block being scheduled. By using a graph 
representation which prevents scheduling deadlocks and a 
selection method that does not require lookahead, we have 
developed an algorithm which eliminates nearly as many inter- 
locks as theirs while having an O(n2) worst-case runtime and 
an observed linear runtime in practice, 

2. TheIssues 

There are two issues which must be addressed when 
designing an algorithm for instruction scheduling: 1) how to 
express the constraints which must be satisfied by any legal 
reordering, and 2) how to determine the order in which instruc- 
tions are scheduled, subject to the constraints. 

Clearly, instructions in a program cannot be reordered 
arbitrarily. Certain instructions must remain ahead of other 
instructions in the resulting code sequence for the overall effect 
of the program to remain unchanged. The first issue, then, 
involves developing a representation that expresses the maxi- 
mal freedom to rearrange instructions without compromising 
correctness. 

Once the constraints on the reordering have been deter- 
mined, a method is needed to choose among the possible reord- 
erings, while maintaining reasonable runtimes for the 
scheduler. 

3. The Assumptions 

Our architecture has hardware hazard detection and an 
interlock mechanism, so it is not mandatory that all pipeline 
hazards be removed. Moreover, the resulting code is intended 
to run on a range of possible implementations with differing 
sets of interlocks. This makes it impossible in general to 
remove all interlocks for all implementations, if one desires to 
obtain code which will run well on all of them without 
rescheduling. Thus, our goal was to develop a heuristic algo- 
rithm that performs well for all implementations, while perhaps 
suboptimally for any particular one. 

To simplify the task, we made some assumptions as to how 
the machine code references memory. For instance, while 
there may be multiple base registers, each memory location is 
assumed to be referenced via an offset from only one. Further- 
more, pointer references are assumed to overlap all memory 
locations. This preserves correctness in the presence of worst- 
case aliasing. These assumptions simplify determination of the 
reordering constraints in practice, but, as will be seen below, 
do not alter the worst-case runtime bound of 0 (n 3. Also, the 
assumptions can be effectively replaced with information about 
the patterns of memory aliasing obtaining in a program, such 

as is produced by the compilers described in [Cou86] and 
[Spi71]. 

4. The Approach 

The overall approach divides the problem into three steps: 
1) divide each procedure into basic blocks’, 2) construct a 
directed acyclic dependency graph expressing the scheduling 
constraints within each basic block, and 3) schedule the 
instructions in the block, guided by the applicable heuristics, 
using no lookahead in the graph. 

Expressing Constraints: The Dependency Dug 

We construct for each basic block a directed acyclic graph 
(dag) whose nodes are the instructions within the block and 
whose edges represent serialization dependencies between 
instructions. An edge leading from instruction u to instruction 
b indicates that (I must be executed before b to preserve 
correctness of the overall program. 

An example code sequence (with source operands written 
before destination operands) and its dependency dag (with 
roots at the top) are shown in Figs. 1 and 2. For any particular 
resource, such as a register, the dependency dag serializes 
definitions vs. definitions (e.g. instruction 5 vs. instruction 9 in 
Fig. 2), definitions vs. uses (3 vs. 8), and uses vs. definitions (4 
vs. 6). The dags take into account all serialization constraints, 
including register dependencies, memory dependencies, pro- 
cessor state-modifying instructions and carry/borrow depen- 
dencies2. 

1 add #l,rl,r2 
2 add #12,sp,sp 
3 store rO,A 
4 load -4(SP)J3 
5 load -8(sp)~4 
6 add #8,sp,sp 
7 store r2,Wp) 
8 load A,r5 
9 add #l&r4 

Figure 1. Sample code sequence. 

In general, the dags are constructed by scanning backward 
across a basic block, noting each definition or use of a resource 
and then later the definitions or uses which must precede it. 
Thus, for example, in Fig. 2 an arrow is inserted between 2 and 
4 because instruction 2 defines the stack pointer sp and 4 is the 

‘This step is usually performed by any optimizing compiler and hence 
is considered to be “free”. So as to make basic blocks as long as 
possible, our compiler does not consider a procedure call or an 
instruction which conditionally skips a following (non-branch) 
instruction to end a basic block. 
ZThe architecture includes several instructions which set or use 
~arry/borrow bits in the processor state. The collection of these bits is 
a unique processor resource, like a register, and hence requires 
serialization. However, as will be seen below, they require special 
handling in the scheduler. 

12 



next instruction in the linear sequence which either uses or 
defines it3. Carry/borrow dependencies are handled specially 
in constructing the dags, since carries and borrows are very fre- 
quently defined but only rarely used. Serializing all 
carry/borrow definitions against each other would be unduly 
constraining. Instead, a special subgraph is generated within 
the dag for each instruction which uses a carry or borrow; the 
subgraph includes all the instructions which must appear 
between the use and the corresponding definition (or the begin- 
ning of the basic block if no definition is found in it). Scanning 
backward across the instructions of a basic block facilitates this 
special handling of the carry/borrow bits. 

Figure 2. Dependency dag for code in Fig. 1. 

Our dags differ from those of [Gro83, Hen831 primarily in 
that we serialize definitions vs. definitions, while they do not. 
In the absence of liveness information, this serialization is 
essential, at least for the final definition of a resource in a 
basic block. It also avoids the possibility of deadlocks in the 
scheduling algorithm. 

Selecting an Order: The Static Evaluator 

As long as the instructions in a basic block are scheduled 
in some topological sort [Knu68] of the dependency dag, the 
overall effect* of the block is indistinguishable from its execu- 
tion in the original order. 

Our algorithm selects instructions to schedule by sweeping 
down the dag, beginning at the roots (which represent the 
instructions which can possibly be executed first). An instruc- 
tion is a candidate for scheduling if all its immediate predeces- 
sors in the dag have been scheduled (or if it has no predeces- 
sors). Among the candidates at any given time, the “best” 
instruction is selected based on the following two guidelines: 
1) if possible, an instruction is scheduled that will not interlock 
with the one just scheduled, and 2) given a choice, an instruc- 
tion is scheduled that is most likely to cause interlocks with 

‘A minimal set of edges suffices te represent the dags. The full set of 
dependencies is the transitive closure of the binary relation given by 
the edges. 
4Note the emphasis on “overall effect”. Since we are rearranging 
instructions over spans of several statements, there may not be any 
points in the resulting instruction sequence corresponding to the ends 
of source statements internal to the block. This may impact the user’s 
understanding of the state of a program whose execution is interrupted, 
either by the occurrence of a fault or during the debugging process. 
The interaction of debugging and optimizing transformations has been 
considered in fHen81,Ze184]. 

Intuitively, these properties bias toward selecting instructions 
which: 

1) may cause interlocks (and hence need to be scheduled 
as early as possible, when there is most likely to be a 
wide choice of instructions to follow them), 

2) 

3) 

uncover the most potential successors (and hence the 
widest possible latitude for future choices), and 

balance the progress along the various paths toward 
the leaves of the dag (and hence leave the largest 
number of choices available at all stages of the pro- 
cess). 

instructions after it. The first guideline is obvious: it is the 
local expression of the overall goal of the scheduling process. 
When the second is combined with it, the selections can be 
thought of as occurring in pairs comprising an instruction 
likely to cause an interlock, followed by one which does not 
interlock with it (but which is likely to cause an interlock 
itself). In our architecture, for example, the best choice after 
an “add” is a “load”, while the best choice after a “store” is 
another “store”. These heuristics am incorporated into a 
static evaluator which rates individual candidates. 

Looking ahead in a basic block to instructions which are 
not yet candidates will certainly improve scheduling. Unfor- 
tunately, this lookahead dramatically increases worst-case run- 
time. Instead, three heuristicsS are used in place of lookahead. 
The heuristics express several static local properties of nodes 
in a scheduling dag. In order of importance to the scheduling 
process, they are: 

1) whether an instruction interlocks with any of its 
immediate successors in the dag, 

2) the number of immediate successors of the instruction, 
and 

3) the length of the longest path from the instruction to 
the leaves of the dag. 

An outline of the scheduling algorithm, given a basic block 
of machine instructions, is as follows: 

1. 

2. 

3. 

make a prepass backward over the basic block to con- 
struct the scheduling dag, comparing each instruction 
to the nodes of the scheduling dag constructed so f& 

put the roots of the dag into the candidate set (an 
instruction is a root if it has no predecessors in the 
dag) 

select the first instruction to be scheduled from the 
candidate set, taking into account the instructions 
which terminate its predecessor basic blocks and the 
static heuristics (applied in the order given in the 
preceding paragraph) 

‘For a discussion of these and similar heuristics and their effects on 
scheduling algorithms in general, see Section 6-8 of [Con67]. 
%ecalf that the roots of the completed dag represent the instructions 
which may appear as the first instruction in the reordered block, so that 
construction of the dag (sweeping backward across the block) selects 
the leaves lirst. 
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4. while the candidate set is nonempty: 

a. evaluate the candidates based on the last instruc- 
tion scheduled and the static heuristics (applied in 
the order given in the preceding paragraph) and 
select the best one 

b. emit the selected instruction 

c. delete the newly scheduled instruction from the 
candidate set and add any newly exposed candi- 
dates to it 

Running our algorithm on the code in Fig. 1 results in the 
schedule 3, 2, 4,5, 8, 1, 6, 7,9 shown in Fig. 3, which reduces 
the four interlocks in the original sequence (3 - 4, 5 - 6, 7 - 8 
and 8 - 9) to one (8 - 1). 

3 store rO,A 
2 add #~2,~P,~P 
4 load -4(W)J3 
5 load -8(sp)~4 
8 load A,r5 
1 add #l&2 
6 add +%SP,SP 
7 store rUXv) 
9 add #l,rO,r4 

Figure 3. Result of Scheduling the Instruction 
Sequence in Fig. 1. 

5. Computational Complexity of Our Algorithm 

The complexity of our instruction scheduler is at worst 
0 (nZ) for a basic block of n instructions. To build the depen- 
dency dag, in the worst case each instruction must be com- 
pared with all the instructions already in the dag. Thus build- 
ing the dag is at most O(n*). To schedule the instructions, in 
the worst case all unscheduled instructions must be visited 
each time an instruction is scheduled. Since evaluating a can- 
didate for scheduling is done without lookahead, the visitation 
time is O(l), and thus scheduling is O(n*) * O(l) = O(n*). 
Actual scheduling time is generally linear in practice; for 
example, just over IWO evaluations per instruction are made in 
scheduling the Acker benchmark [Hen83]. 

Hennessy and Gross [Gro83, Hen831 present an instruction 
scheduling algorithm with 0(n3 worst-case runtime. The 
architecture for which they derived their algorithm imposes 
more stringent requirements than ours: the hardware has no 
pipeline hazard detection and no interlock mechanism, and the 
duration of a pipeline hazard can be more than one cycle. 
Under our easier requirements, however, their algorithm is still 
001~). Moreover, the algorithm presented here can be 
modified to remove all hazards, and hence be effective for their 
architecture: simply insert a “no-op” whenever a hazard is 
unavoidable. The algorithm can also be extended to handle 
multi-cycle pipeline hazards. However, this changes its com- 

plexity to O(b) * O(n*), where b is the upper bound on the 
duration of a hazard, presumably a constant. 

The algorithm presented here is simpler, partly due to the 
differences between the dags used. As mentioned above, our 
dependency dags are more restrictive than those in [Gro83, 
Hen831 in that ours serialize multiple definitions of the same 
register (while theirs do not) and consider memory and other 
resources, and henie are somewhat less versatile for schedul- 
ing. However, our dependency dags prevent any scheduling 
deadlocks: there is always an instruction that can be 
scheduled, regardless of which instructions have been 
scheduled already. Thus the algorithm does not need looka- 
head to avoid deadlock. Since the architecture has 32 general 
registers and the register allocator uses different registers for 
different temporary values as much as possible’, serializing 
definitions does not unduly restrict our code. 

6. Experience 

We implemented the instruction scheduler described above 
in C, adding to it a branch scheduler and a floating-point 
scheduler. The branch scheduler attempts to fill delay slots fol- 
lowing branches with instructions selected from the preceding 
basic block or from the target basic blocks. Our experience 
with sample code scheduled by it yields the following observa- 
tions: 

1) 

2) 

3) 

4) 

In general the algorithm performs quite well, despite 
the comparatively restrictive dags and the lack of loo- 
kahead. Without inserting “no-ops”, it removes 15 of 
the 19 avoidable interlocks in the code our C compiler 
generates for the Acker benchmark. Moreover, for 
many of the proposed machine implementations, it 
removes 100% of the avoidable interlocks. On the 
other end of the scale, it removes only 5 of the 16 
avoidable interlocks in the Sieve benchmark. 

Our assumptions about memory referencing greatly 
improve the overall results. For example, without our 
assumption that a single memory location must be 
referenced using only a single base register, the algo- 
rithm removes only 9 of the 19 avoidable interlocks in 
Acker. On the other hand, better aliasing information 
greatly improves the effectiveness of the algorithm on 
certain programs. With better aliasing information (as 
discussed in Section 3 above), it can remove 10 of the 
16 avoidable interlocks in Sieve. 

The carry/borrow subgraphs do not significantly 
improve scheduling for most programs. Substantial 
improvements come only for programs which are com- 
putationally intensive. The improvements in these 
cases, however, seem to warrant the small additional 
cost of constructing the subgraphs. 

Using the more versatile dags of [Gro83, Hen831 mar- 
ginally improves the effectiveness of the instruction 
scheduler on our architecture. Using the same 

‘[Gm83, pp. 62 - 631 shows a real-life example where register reuse 
policy makes a dramatic difference in scheduling. 
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assumptions about memory referencing and the same 
heuristics for selection when a choice is available 
among instructions, our algorithm and that given in 
[Gro83, Hen83], in fact, produce identical results on 
the Acker, Sieve and Fibonacci benchmarks. 

Additional information on the performance of this algo- 
rithm can be found in the paper [Joh86] in this proceedings. 

7. Conclusions 

We have presented a highly efficient instruction scheduling 
algorithm for a pipelined architecture which demonstrates the 
effectiveness of judiciously chosen heuristics and the balancing 
of policies in other parts of the compilation process (e.g. the 
register reuse policy) with the approach to scheduling. 

Another benefit of this approach to instruction scheduling 
is that our dependency dags are useful for many other code 
optimizations. For example, candidates for code hoisting and 
loop-invariant code motion can readily be discovered using 
them. Also, a peephole optimizer based on the dags can out- 
perform one based on linear code sequences: the dags expose 
more combinations of instructions that can be folded, since 
they tend to bring related instructions closer together. 

One issue we have not pursued is the extension of instruc- 
tion scheduling across basic blocks, which is of particular 
interest for architectures with long pipelines and either multi- 
ple execution units or branch prediction (or both). Techniques 
for extended basic blocks would seem to be a relatively 
straightforward extension. The trace scheduling techniques of 
fFis81] arc relevant as they function, in effect, to lengthen 
basic blocks. 

Another area of interest would be to develop a model of an 
average instruction sequence and from it an expected runtime 
for the algorithm. 
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