
Efficient Instruction Scheduling for Delayed-Load

Architectures

STEVEN M. KURLANDER

University of Wisconsin

and

TODD A PROEBSTING

University of Arizona

and

CHARLES N. FISCHER

University of Wisconsin

A fast, optimal code-scheduling algorlthm for processors with a delayed load of one mstructlon

cycle M described. The algorithm minimizes both execution time and register use and runs in

time proportional to the size of the expression-tree An extension that SP[llS registers when too

few registers are available 1s also presented. The algorlthm also performs very well for delayed

loads of greater than one mstructlon cycle. A heurmt]c that schedules DACk and is based on our

optimal expression-tree-scheduling algorithm is presented and compared with Goodman and Hsu’s

algorithm Integrated Prepass Scheduling (IPS). Both schedulers perform well on benchmarks with

small basic blocks, but on large basic blocks our scheduler outperforms 11’S and is slgmficantly

faster.

Categories and SubJect Descriptors D.3.4 [Programming Languages] Processors—code gen-

eration; compders; opttmtzatton

General Terms: Algorithms, Languages

Addltlonal Key Words and Phrases Code scheduhng, loadlstore archlt,ecture, register allocation

1. INSTRUCTION SCHEDULING

Modern RISC architectures are characterized by small, simple-instruction sets,

and general-purpose registers. While simple functionally, many of the instruc-

tions are complicated by instruction-scheduling requirements. For instance, on a

MIPS R3000, an integer load from memory into a register requires a single de-

This work was supported hy NSF Grant CCR-9122267

An earlier version of this article was presented at the ACM SIGPLAN ’91 Conference on Pro-

gramming Languages Des]gn and Implementation

Authors’ addresses: S. M. Kurlander, C N. Fiecher, Computer Sciences Department, University of

Wisconsin-Madison, 1210 W, Dayton St., Madmen, WI 53706; email: {sink; fischer}Qcs WMC edu;

T A. Proebsting, Department of Computer Science, University of Arizona, Tucson, AZ 85721;

email: toddQcs. arlzona,edu.

Permission to make digital/hard copy of all or part of this material without fee is granted

provided that the copies are not made or distributed for profit or commercial advantage, the

ACM copyright/server notice, the title of the publication, and its date appear, and notice is given

that copying m by permission of the Association for Computing Machinery, Inc. (ACM). To copy

otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

@ 1995 ACM 0164-0925/95/0900-0740 $03.50

Instruction Scheduling for Delayed-Load Architectures . 741

Optimal Nonoptlmal

load a, rl load a, rl

load b, r2 load b. r2

load c, r3 nop

add i-l, r2, rl add rl, r2, rl

add rl, r3, r] load c, r2

nop

add rl, r2, rl

Fig. 1 Two legal schedules to evaluate (a+b) +C on a MIPS R3000

lay cycle before the loaded value can be accessed. It is necessary to find another

instruction—that does not rely on the loaded value, or contribute to the load’s

address computation—to be placed immediately after the load. If no useful in-

struction can be found, it is necessary to put a NOP after the load to absorb the

delay cycle.

Figure 1 gives two legal code sequences for evaluating (a+b) +C for the MIPS

R3000. (All our examples, including this one, will use an instruction set with

clestinations as the rightmost operand.) The instructions selected to evaluate the

expression are the same except for register assignment. The useful instructions

differ only in their schedules (orders) and numbers of registers used. The right

sequence requires two NOP’s because the values loaded are accessed immediately

by the subsequent instructions. A compiler (or assembler) must order instructions

carefully to minimize the costs of scheduling constraints.

While the optimal evaluation order in Figure 1 requires two fewer instructions

than the nonoptimal, it does require one more register. Avoiding scheduling con-

flicts requires the ability to move operations away from the instructions that load

their operands. This lengthens the span of those register operands and, therefore,

increases the number of registers in use. Because registers are scarce, and can be

advantageously used to hold temporary and global values, it is important not to

overuse them when scheduling instructions.

2. OVERVIEW

The problem of optimally scheduling instructions under arbitrary pipeline con-

straints is NP-complete [Garey and Johnson 1979; Hennessy and Gross 1982; Lawler

et al. 1987; Palem and Simons 1990]. Many heuristics have been proposed for

scheduling pipelined code; all assume, however, that pipeline constraints can occur

after any instruction, and that operators may share common subexpressions. The

intractability of finding an optimal schedule holds even if an unlimited number of

registers is available. Optimal local register allocation in itself is also NP-complete

in the presence of common subexpressions [Garey and Johnson 1979]. Such negative

results have led to the belief that generating good-quality code for RISC machines

with pipeline constraints is too difficult to do well except in complex optimizing

compilers.

Fast, optimal algorithms, however, can be devised for simpler, yet realistic ar-

chitectures. Our results show that for a restricted set of pipeline constraints and a

simple R,ISC load/store architecture, optimal code can be generated in linear time

for expressions without operand sharing. Our delayed-load-scheduling algorithm,

ACM TransactIons on Programming Languages and Systems, Vol 17, No, 5, September 1995.

742 . Steven M. Kurlander et al.

DLS, efficiently combines instruction scheduling and register allocation. Initially,

we restrict our discussion to handling expression-trees in which all leaf nodes are

direct memory references and all operators binary. DLS is as an attractive, simple,

fast, and effective alternative to more-complicated, slower heuristic solutions.

3. PREVIOUS WORK

.4n adaptation of Hu’s algorithm [Hu 1961] gives an optimal solution to scheduling

a tree-structured task system on multiple identical processors if each task has unit

execution time [Coffman 1976], but the algorithm does not handle register alloca-

tion constraints. For an architecture with two functional units, one for loads and

one for operations, with identical pipeline constraints, Bernstein et. al. [1984; 1989]

have investigated code scheduling with register allocation for trees. Although ap-

plicable to a much different machine, Bernstein’s results and algorithms are similar

to oursl—both minimize pipeline interlocks and register usage, and both run in

O(n) time (where n is the number of nodes in the expression).

Code-scheduling algorithms and heuristics for pipelined architectures have been

extensively studied in recent years. Most of the attention to code scheduling

has been directed at scheduling expressions represented by directed acyclic graphs

(DAGs) for architectures with pipeline constraints after both loads and operations.z

Heuristic attacks on this general problem can be found in Hennessy and Gross [1982;

1983], Gibbons and Muchnick [1986], Warren [1990], Lawler et al. [1987], and Palem

and Simons [1990]. These techniques are similar in spirit; they schedule instructions

from the bottom of the DAG based on differing priority heuristics. The heuristics

tend to favor those instructions that (a) are ready to execute (i.e., do not face

pipeline constraints); (b) will cause subsequent pipeline constraints (i.e., need to be

scheduled early); (c) are “far” from the roots of the DAG (i.e., may be on a critical

execution path).

Many heuristic solutions treat register allocation as a separate issue that occurs

either before or after scheduling. Most heuristics work in a breadth-first manner

from the bottom of the DAG up; they tend to cause many values to be live at

once—filling up scarce registers. Unlike DLS, these algorithms fail to integrate code

scheduling and register allocation fully, and therefore suffer from phase-ordering

problems. In addition, whereas DLS runs in O(n) time, these algorithms run in

O(n2) time and must have an additional register allocation phase.

Attempts to integrate register allocation and scheduling have been made at the

basic-block level. The techniques express the data dependence between instruc-

tions within a basic block as a DAG. Given the DAG, they attempt to schedule

the instructions while both obeying pipeline constraints and minimizing registers.

Since both optimal scheduling and register allocation on DAGs are NP-complete

problems, their solutions to the integrated problem are heuristic.

Goodman and Hsu [1988] describe a system, Integrated Prepass Scheduling (IPS),

that combines register allocation and instruction scheduling. YPS is conceptually

simple. The input is an instruction DAG for which registers have not been as-

signed. IPS consists of two possible schedulers: CSP and CSR. CSP does heuristic

1Ours can issue only one instruction per cycle

‘We wdl use operations to denote nonload InstructIons

ACM Transactions on Programmmg Languages and Systems, Vol. 17, No. 5, September 1995

Instruction Scheduling for Delayed-Load Architectures . 743

pattern instruction

reg +- memory Ioad memory, reg

veg, +- Tegl OP regk OP Te9], re9k, re9L
memory +- reg store reg, memory

F’lg. 2, Initial DLS machine model.

scheduling at the cost of voracious register use, and CSR tends to minimize register

use while possibly doing poor scheduling. Given a DAG, IPS schedules instructions

using CSP and maintains a count of available registers. When the count no longer

exceeds a threshold, IPS switches to CSR to reduce register usage. Once reduced

appropriately, IPS reverts to CSP. This oscillation continues until the scheduling

process is complete.

Bradlee et al. [1991] describe another integrated system, Register Allocation

with Schedule Estimates (RASE), and compare it to IPS. RASE works in three

sequential passes: PRESCHED, GRA, and FINALSCHED. For each basic block,

PRESCHED estimates the cost of evaluating that basic block with n registers

available, for all legal register counts. Given these cost vectors, the global register

allocator, GRA, computes the optimal number of registers to give to the block in

face of register competition for global values. FINALSCHED simply completes the

schedule required by the register level determined by GRA.

Bradlee et al. found that IPS and RASE work well in practice—reducing exe-

cution time by an average of 12Y0. While RASE worked better occasionally, the

resulting improvement was not significant. Both systems rely on heuristic schedul-

ing techniques that are slow (O(n2)) and require an ad hoc integration of register

allocation and instruction scheduling.

4. DELAYED-LOAD ARCHITECTURE

Initially we considered a simple class of architectures—RISC load/store architec-

tures with delayed loads. Their machine instruction set is given in Figure 2. All

instructions require a single instruction cycle to issue, and only loads are pipelined.

This architecture is an approximation of the integer functional units of many mod-

ern RISC processors such as the SPARC and MIPS R3000 [Patterson and Hennessy

1990].

A delayed load requires that the destination of a load not be accessed by subse-

quent instructions for some number of instruction cycles, although other, unrelated

instructions may execute. Delay will be used to refer to the number of cycles that

must elapse before the destination register is ready to be used. An attempt to use a

destination register prior to the elapsing of Delay cycles forces a pipeline interlock

that blocks processor execution until the register has finished loading.

Figure 3 shows two possible evaluations of an example expression-tree. It is

assumed that Delay = 1. The (naively produced) left sequence wastes cycles due

to unfilled delay slots at times 3 and 7—asterisks (*) denote the registers with which

the delays are associated. The right sequence incurs no delays.

5 REGISTER ALLOCATION TRADE-OFFS

Register allocation and instruction scheduling interact because the order of instruc-

tions determines the register needs for computing a given expression. Likewise,

ACM Transactions on Programming Languages and Systems, Vol. 17, No 5, September 1995

744 . Steven M Kurlander et al.

/

ml

/+\

‘\ /+\
m2 m3 m4

W.E!a

I
1

2

3

4

5.

6

7

8.

9

Unfdled Delay Slots Fdled Delay Slots

===1~==~
load m3, r3

add rl, r2*, r2 load m4, r4

load m3, rl add rl, r2, r2

load m4, r3 add r3, r4, ri

add r2, r4, r4

add rl, r3’, r3

add r2, r3, r3

Fig. 3. Sample expression-tree and two evaluation sequences

register allocation can limit or expand the possibilities for reordering code to fill

delay slots.

If register allocation precedes instruction scheduling, the ability to schedule the

code can be severely limited by constraints induced not by data dependence, but

by constraints introduced by potential register interference. If register allocation

follows instruction scheduling, a given schedule may require unnecessarily many

registers, thus limiting the effectiveness of a global optimizer and possibly requiring

spill code. This well-known phase-ordering problem is accepted in practice, but

can lead to suboptimal register use because the instruction schedulers minimize

scheduling delays without taking into account the possibility that increased register

demands could lead to costly register spilling.

The DLS algorithm avoids this phase-ordering problem by combining instruction

scheduling and local register allocation for expression-trees. DLS schedules instruc-

tions optimally to avoid all unfilled delay slots for expression-trees when Delay = 1.

Furthermore, it finds a delay-free schedule that minimizes register usage. When

Deluy > 1, DLS serves as an excellent heuristic while retaining its conceptual sim-

plicity, guaranteed linear performance, and integrated register 8Jlocation.

5.1 Canonical Form

Generating code and allocating registers is much simpler for expression-trees than

for arbitrary DAGs. Once a preliminary schedule for the code has been generated

for a tree, and the register needs determined, it is possible to reschedule the code

and reassign the registers to obtain a code sequence in a canonical form. Ordering

code in a canonical form represents the last phase of the DLS algorithm described

in Section 7.

Our canomcal form has three Important mvarlants: the relatwe order of the

operators remains unchanged; the relative order of the loads remains unchanged;

and the number of registers needed remains unchanged. For a given number of

registers and specific operation and load orders, the canonical order will minimize

unfilled delay slots for a delayed-load machine.

The canonical schedule is produced by moving loads as early as possible in the

initial instruction sequence (subject to the three invariants). Shifting the loads will

move a load away from its parent in the tree and therefore increase the number of

instructions between the load and its dependent operation.

ACM TransactIons on Programmmg Languages and Systems, Vol. 17, No 5, September 1995

Instruction Scheduling for Delayed-Load Architectures . 745

#
1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

/’\

‘+12/+\
/’

m3

Sethl-U11man(3)

load m3, rl

load m4. r2

add rl, r2*, r2

load m5, rl

load m6, r3

add rl, r3*, r3

add r2, r3, r3

load ml, rl

load m2, r2

add rl, r2*, r2

add r3, r2, r2

\ /\

m4 m5

Canonical(3)

load m3, rl

load m4, r2

load m5, r3

add rl, r2, r2

load m6, rl

add r3, rl”, rl

load ml, r3

add r2, rl, rl

load m2, r2

add r3, r2*, r2

add rl, r2, r2

m6

Canonical(4) ,,
load m3, rl

load m,l, r2

load m5, r3

load m6, r4

add rl, r2, r2

load ml, rl

add r3, r4, r4

load m2, r3

add r2, r4, r4

add rl, r3, r3

add r4, r3, r3

Fig. 4. Expression-tree and canorucal mstructlon sequences.

To produce the canonical ordering of an instruction sequence using R registers

that has L loads and (L–1) operations,3 create an ordering that consists of R loads

followed by an alternating sequence of L–R (op,load) pairs, followed by the remain-

ing R–1 operations. Loads are moved before operations that they had previously

followed—this does not affect data dependence since (1) all operations depend on

registers and (2) all loads depend on memory. The movement of the loads relative

to the operations will cause the necessary register assignments to change; if done

systematically this will not cause the register needs to increase. Since each load

increases the number of registers in use by one, and each operation decreases the

number of registers in use by one, the number of registers in use at any point in the

evaluation is equal to the number of loads performed minus the number of opera-

tions performed. A canonical order evaluation, therefore, ensures that the number

of registers in use will never exceed R.

Figure 4 gives an example expression with a standard Sethi-Ullman (SU) instruc-

tion schedule [Sethi and Unman 1970], a canonical order with three registers, and a

canonical order assuming four registers. (The Sethi-U1lman order, which is optimal

with respect to register usage, orders instructions by scheduling subtrees separately

3There are (L–1) operations in a binary tree with L loads.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 5, September 1995

746 . Steven M. Kurlander et al

~-
* — —

reg & memory load memory, reg

memory + rey store reg, memory

reg, + regl 0p reg~ 0p reg~, reg~, reg,

58 reg + const loadi const, reg

regz + 0p regl 0p req~, reg%

59 reg. or. ~mm + reg,, ~,

reg. or. tmm + c0nst5mal[

reg. or. tmm + reg

reg + reg. or.~mml op reg. or-zmmk 0p reg_Or-tmml , reg. Or. tmmk. re~

reg + 0p reg. or.tmm 0p reg. or.zmm, reg

memory +- reg. or.tmm store reg-or.tmm, memorll

Flg 5 DLS machme model

so that the subtree with the greater register need is scheduled first.) Simply ~uttirm

the SU-generated instructions into canonical form without additional registers re-

moves one unfilled delay slot. Adding the extra register eliminates all unfilled delay

slots. Note that the relative orders of loads and the relative order of operations are

the same in all three sequences.

52 Adding Registers Helps

As is seen in Figure 4, adding registers helps sometimes. This follows from the

observation that loads can often be ,shzfted backward (i.e., earlier) in the instruction

seqllence without affecting the outcome of the computation. This shifting does not

change the relative ordering of the loads with respect to one another, or the relative

ordering of the operations with respect to one another—it simply shifts the loads

farther from the operations that use them. Shifting a load farther away allows its

delay slot to be filled with an intervening load or operation.

Minimizing the number of registers needed to evaluate an expression without

load delays is an essential consideration. If the operations in the expression-tree in

Figure 4 were evaluated from left to right, it would be necessary to use five registers

rather than four to produce a canonical evaluation without unfilled delay slots. It

is therefore necessary to treat the problem of optimal code generation as one of

minimizing unfilled delay slots and register usage through code scheduling.

6. OVERVIEW OF DLS

Figure 5 outlines our discussion of DLS. In Section 7 the basic DLS algorithm for

finding optimal schedules for expressions with loads, stores, and binary operators

is presented. Adding unary operators and literals, both of which are delay free,

allows optimal schedules to sometimes use one fewer register than is needed by

the basic DLS algorithm of Section 7. An algorithm that determines the subtree

ordering and the minimum number of registers needed for an optimal schedule in

the presence of unary operators and literah is described in Section 8.

Figure 6 presents an example in which a tree with a unary operator has a delay-

free schedule requiring one less register than a delay-free schedule for the tree

without the unary operator. In Figure 6, tree B is similar to tree .4, but tree

B has the unary minus operator (represented as “J’) in the tree and neg in the

instruction sequence below. Both trees have a Sethi-Ullman number of three. The

ACM TransactIons on Programmmg Languages and Systems, Vol 17, No 5, September 1995.

747Instruction Scheduling for Delayed-Load Architectures .

/+\ /+\

/\ A A j\
ml rr12 m3 m4 ml m2 m3 m4

(A) (B)

Cycle#

1.

2.

3.

4.

5.

6.

7.

8.

Tree A: Canonical(3) I Tree A: basic DLS(4)

load ml, rl load ml, rl

load m2, r2

load m3, r3

add rl, r2, r2

load m4, rl’

add r3, rl”, r3

add r2. r3. r3

load m2, r2

load m3, r3

load m4, r4

add rl, r2, r2

add r3, r4, r3

add r2, r3, r3

Tree B: DLS(3)

load ml, rl

load m2, r2

load m3, r3

add rl, r2, r2

load m4, rl

neg r3, r3

add r3, rl, r3

add r2 r3 r~

Fig. 6. Column one presents a canonical schedule of the nodes in Tree A The canomcal schedule

uses three registers, and there is an empty delay slot in cycle six. Column two shows a basic

DLS schedule for Tree A. This schedule uses four registers and has no empty delay slot. Column

three shows a DLS schedule for Tree B, which includes a unary operator Onl,v three registers are

needed for a delay-free schedule

first column of the table in Figure 6 shows a three-register canonical-form schedule

for tree A. This schedule has an empty delay slot in cycle six. The basic DLs

algorithm generates a delay-free schedule for tree A using four registers, one more

than the Sethi-Ullman count of the tree. This delay-free schedule is shown in

column two. Extending DLS to schedule unary operators (and literals), a delay-

free schedule for tree B requires only three registers, one fewer register than the

basic DLS schedule for tree A. The DLS schedule for tree B is shown in column

three. The unary operator neg fills the delay slot between the load in cycle five

and the add in cycle seven in the DLS schedule.

After discussing unary operators and literals, the machine model is extended in

section 9 to include register variables and immediate operands. A register variable

is a register that has been allocated in a separate expression-tree. .4n immediate

operand is a small literal value that can be referenced directly without loading

its value into a register. In Section 10 the extensions of Sections 8 and 9 are

incorporated into the DLS algorithm.

Register spilling within expressions is introduced in Section 11, and an investiga-

tion of the behavior of DLS with Delay > 1 is discussed in Section 12. In Section 13

a heuristic which is based on DLS is outlined and compared with Goodman and

Hsu’s scheduler IPS [Goodman and Hsu 1988].

7, OPTIMAL ALGORITHM FOR Delay = 1

Optimal instruction scheduling and register allocation for an expression-tree when

Delay = 1 can be done in time proportional to the size of the expression-tree. Our

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 5, September 1995,

748 . Steven M. Kurlander et al.

DLS algorithm is a variation of the Sethi-Ullman algorithm adapted to our machine

model.

Both the SU algorithm and the DLS algorithm are driven by minimizing the

register needs for evaluating an expression. These needs are denoted as the mznRe,q

of a node and refer to the minimal number of registers needed for computing the

subtree rooted at that node without spilling. The mznReg value of a node is simply

the standard SLT number, adapted to our load/store architecture.~ It is calculated

by the following procedure, labelo.

1

2

3

4

5

6

7

8

9

10

11

12

13

procedure label(node EzprNode)

if asLeaf (node) then

node. mznReg & 1;

else

label (node .left);

label(node. rzght);

if node. left. mmReq = node. rzght. manReg then

node. manReg +- node. left .manReg+ 1,

eke

node. manReg +- MA X(node.left. mm Re.q, node. rtqht. mm Req);

end if

end if

end procedure

7,1 Exceptional Cases for Delay = 1

When Delay = 1,exactly two trees in our model have schedules that must always

incur unfilled delay slots: the tree consisting of a single node ancl the tree consisting

of a single operator and two leaf (memory) nodes. It is trivial to verify that these

must incur unfilled delay slots and that the register needs for these trees are one

and two, respectively.

72 Algorithm

The DLS algorithm presented in Figure 7 finds an instruction schedule and regis-

ter assignment that is optimal for a given expression-tree. For all trees with the

exception of the two just mentioned, the DLS schedule will have no unfilled delay

slots and will use the minimal number of registers for any schedule without unfilled

delay slots.

The number of registers needed for such a schedule is exactly one more than the

minimal number of registers needed to evaluate the expression without any spills

(i.e., the SU minReg value of the root of the expression).

The DLS algorithm is a simple three-pass algorithm for finding the optimal in-

struction sequence and register allocation. The procedure label () (given earlier)

labels the nodes with their SU mz’nReg values. Procedure ordero finds the oper-

ation and load orders. ordero is similar to the original Sethi-Ullman algorithm.

schedule () then emits the instructions from the Sethi-Ullman ordering in canonical

order.

4The original SU algorlthm was based on a machme model in which binary [operations could access

their r]ght operands directly from memory Our model requ]res all operands to be In registers

ACM TransactIons on Programmmg Languages and Systems, Vol 17, No 5, September 1995

Instruction Scheduling for Delayed-Load Architectures . 749

1 // Sethi-Ullman Ordering

2 procedure order(root : EzprNode; var opSched, loadSched nodeLtst)

3 if not wtea,f(root) then

4 if root, left. mrnReg < root. rzght .mmReg then
<5 order (root .raght, opSched, loadSched);

6 order (root. left, opSched, loadSched);

7 else

8 order (root. left, opSched, loadSched);

9 order (root. rzght, opSched, loadSched);

10 end if

11 opSched +- root II opSched; // append opSched to root

12 else

13 loadSched -+- root II loadSched; // append loadSched to root

14 end if

15 end procedure

16

17 // Canonical Ordering

18 procedure schedule (opSched, loadSched : nodeLzst; Regs : integer)

19 mzttalLoads : znteger +- MIN(Regs, length (loadSched));

20 forall i +- 1 to znzttalLoads do // Loads First

21 ld +- popHead(loadSched);

22 ld. reg +- getRego;

23 gen(Load, ld. name, ld. reg);

24 end forall

25 while not Empty (/oadSched) do

26 op +- popHead(opSched);

27 op. reg + op. rvght. reg;

28 gen(op. op, op.left. reg, op.raght. reg, op. reg);

29 ld +- popHead(loadSch ed);

30 ld. reg + op. left. reg;

31 gen(Load, ld.name, ld. reg);

32 end while

33 while not Empty(opSched) do

34 op +- popHead(opSched);

35 op. reg +-- op. rtght. reg;

36 gen(op. op, op.left. reg, op. right. reg, op. reg);

37 freeReg (op.left. reg);

38 end while

39 end procedure

40
41 // Schedule Instructions

42 procedure generate(root : ExprNode; Delay : integer)

43 label(root) // Compute mvnReg

44 opSched +- loadSched +- emptyLtst (); // Initialize

45 order (root, opSched, loadSched); // Find Load/Op Order

46 schedule (opSched, loadSched, root. mtnReg+ Delay); // Emit Canonical Order

47 end procedure

// (Operation, Load) Pairs

// Remaining Operations

Fig. 7. Optimal delayed-load-scheduling (DLS) algorlthm

ACM Transactions on Programming Languages and Systems, Vol 17, No 5, September 1995.

750 . Steven M. Kurlanderet al.

73 Optimality Proof

The argument that the DLS algorithm creates an optimal instruction schedule and

register allocation follows from two observations: the number of registers needed

to avoid unfilled delay slots must be at least m,znReg + 1,and the canonical order

generated by the algorithm using minReg + 1 registers does not incur unfilled delay

slots .

The following theorem was proved in Proebsting and Fischer [1991].

THEOREM 7.3.1. Let T be an expression-tree wzth Sethi- Unman number, mm-

Reg, and let Delay = 1. If only m~nReg registers are avadable to schedule T, then

T wdl have an unjilled delay slot.

PROOF. The evaluation cannot take fewer than mtnReg registers. If only manReg

registers are available, there must be a point at which a just-loaded register must be

used in the next instruction, which would result in a load delay. This follows from

the fact that only loads can increase the number of registers in use, and thus at

some point a load must put mtnReg registers in use. Because only mmReg registers

are available, this load must be followed by an operation on the just-loaded register

(if another operation could have been scheduled, it would have been to keep the

number of registers in use at a minimum). Therefore, more than minReg registers

are needed to avoid unfilled delay slots. Ill

We will refer to the following corollary of Theorem 7.3.1. Let t.mtnReg be the

minReg value for a subtree t of T.

COROLLARY 7.3.2. Let T be an expression-tree, Delay = 1, and t be a subtree

of T. Assume in a Sethz - Unman ordering of T there are only t. mmReg reg~sters

available to schedule t. Then a load in t has an empty delay slot.

PROOF. This follows immediately from the proof of Theorem i’.3. 1. ❑

Assuming minReg registers are available, there are only two trees in which a

load does not follow an operator in a Sethi-Ullman ordering–-a single identifier

and a binary operator whose two operands are identifiers. Let set E contain all

expression-trees except these two. The following theorem identifies loads that will

have filled delay slots in a canonical-form schedule of a Sethi-Ullman ordering of a

tree in E.

THEOREM 7.3.3. Let T E E, and let Delay = 1. Assume at least mmReg reg-

tsters are avadable to schedule T. Let 01 be a Setht- Unman ordering of T, and

02 be the canonical-form schedule based on 01. If there are at least two avo~lable

regwters for a load L in 01, one of whzch wdl be asszgned to L, then L‘s delay slot

is jilled in 02.

PROOF. To produce 02, we slide each load forward in 01 in succession beginning

with the first, such that we never overallocate registers. Immediately prior to sliding

a load L forward, the same number of registers available to L in 01 are now available

to L, since only loads ahead of L in 01 have been moved forward.

Let load L have at least two available registers in 01. If a load follows L in 01,

then after L is scheduled in 02, the nearest load following L will slide ahead of

the operator referencing L. This nearest load will be assigned a register that was

ACM Transactions on Programmmg Languages and Systems, Vol 17, No. 5, September 1995

InstructIon Scheduling for Delayed-Load Architectures . 751

available to L before L was scheduled. L’s delay slot is filled. Next, assume no

loads follow L in 01. Since T 6 E, an operator must precede L in 01. Since at

least two registers are available to L, L slides ahead of the nearest operator. Again,

L’s delay slot is filled. ❑

COR.OLLAWX’ 7.3.4. Let T c E. Given minReg -t- 1 registers, DLS produces a

delay-jree schedule.

PROOF. DLS produces a canonical-form schedule from a Sethi-Ullman ordering

of T. Given minReg + 1 registers, each identifier has at least two available registers

in a Sethi-Ullman ordering of T. By Theorem 7.3.3, DLS generates a delay-free

schedule. •l

Assume that there are only minReg registers available to schedule an expression-

tree T and that a load L in T has two available registers in a Sethi-Ullman ordering

of T. If T is a single identifier or binary operator whose two operands are identifiers,

then L will still have a filled delay slot in a canonical-form schedule based on the

ordering.

THEOREM 7.3.5. Let T be an expression-tree, and let Delay = 1. Assume only

minReg registers are available to schedule T. Let 01 be a Sethi- t.Jllman ordering of

T, and 02 be the canonical-form schedule based on 01. If there are at least two

available registers for a load L in 01, one of which will be assigned to L, then L‘s

delay slot is filled in 02.

PROOF. If T e E, then by Theorem 7.3.3, a load in 01 that has at least two

available registers has its delay slots filled in Oz. Assume T @ E. If T is a single

load, then minReg = 1,and there is only one register available to T, which has an

unfilled delay slot. If T is a binary operator whose two operands are loads, then

minReg = 2. The first load scheduled in 01 has two available registers and has its

delay slot filled in Oz by the second load. There is one register available for the

second load in 01, which has an unfilled delay slot in 02. ❑

8. SCHEDULING LITERALS AND UNARY OPERATORS

Above we presented an algorithm to schedule expression-trees optimally in which

Delay = 1 and minReg + 1 registers are used. Some trees can be scheduled using

only minReg registers if the nodes of those trees include unary operators or literals.

In this section we extend the machine model to include unary operators and

literals, both of which are delay free. We assume a loadi instruction is used to

move the literal’s value to a register. In Section 9 we extend our algorithm to allow

operators to reference immediate operands.

When scheduling unary operators and literals, choosing which subtree to schedule

first can be based on the number of empty delay slots in each subtree. We need to

identify which loads have unfilled delay slots in the final schedule.

Assume a tree is given exactly minReg registers. By Theorem 7.3.5, if we have a

canonical-form schedule sched based on a Sethi-Ullman ordering of the tree, those

loads that do not increase the register count to mznReg in a Sethi-Ullman ordering

will have filled delay slots in sched. Loads that increase the register count to minRe.g

have only one register available. By Corollary 7.3.2, these loads will have empty

ACM TransactIons on Programmmg Languages and Systems, Vol. 17, No 5, September 1995

752 . Steven M. Kurlanderet al.

+

LA
Rg 8 Unary operators U are the only operators from the left subtree of + that can fill delay

slots m the right subtree.

delay slots insched. Byintroducing delay-free loads anddelay-free unary operators,

loads that increase the register count to mtnReg may be delay free, or have their

delay slots filled by unary operators. We now sometimes find a delay-free schedule

that utilizes only mmReg registers.

8.1 Filling Delay Slots with Unary Operators

Assume first that L. mznReg = R. minReg or L. mtnReg = R. minReg + 1, and let

scheduling begin with L. In both cases T. minReg = R. minReg -t 1. Since more

than L. mznReg registers are available to L, each load in L has at least two registers

available. Delay slots in L will be filled. Since there are only R. minReg registers

available to schedule R, unary operators from L will be used to fill delay slots in R.

The left subtree in general may have a chain U of n consecutive unary operators,

n ~ O, descending from its root and extending down to a binary operator or a

leaf, v (see Figure 8). The only unary operators in L available to fill delay slots in

R are those in U. After v is scheduled there will be R. m~nReg registers available

to schedule R. By Corollary 7.3.2 and Theorem 7.3.3, slots must be filled in R at

points where R. mtnReg registers are in use. These delay slots can be filled by unary

operators U in the left subtree, as v will have been scheduled (with its value already

computed into some register, which can be reused by all the unary operators in U).

If L. minReg > R. mmReg + 1,then once L is scheduled, there will be at least

R. minReg + 1 registers available to schedule R. Scheduling R after L is therefore

sufficient to fill all the delay slots of R without use of L’s unary operators.

8.2 Finding a Schedule with Unary Operators and Literals

The algorithm UnaryCalc in Figure 9 calculates the number of unary operators

needed to fill the remaining load delay slots for each subtree of T. T may contain

literals, which are subtrees of T having no empty load delay slots. To allocate

only mmReg registers, Unary Calc applies the Set,hi-Ullman algol ithm to select the

subtree to schedule first. If the Sethi-Ullman algorithm does not have a preference,

UnaryCalc selects the ordering that minimizes the number of unfilled delay slots.

T. need represents the number of extra unary operators needed to fill T’s delay

slots. If T. need 1s O, then T. mmReg registers are sufficient for a delay-free schedule.

T. have is the number of unary operators chained at the root of T that may fill T’s

sibling’s delay slots.

ACM TransactIons on Programming Languages and Systems, Vol 17, No 5, September 1995

Instruction Scheduling for Delayed-Load Architectures . 753

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
$5
46

procedure Unar-yCalc(Tree T)

if zsLea~ (T) then

if ~sDelayedLoad(T) then // Delayed-Loads have delay slot

T.needi- 1; T.have +-- O;

else // Dela,y-free Load

T.need+-- O; T.have +- O;

end if

elsif zsUnary(T) then // Increment number of unary operators available

Tree C+ T.sched-unary; // Child subtree

UnaryCalc(C);

T,have +- G’.have + 1; T.need +- C.need;

else // T’s root node is a binary operator

Tree L +- T.sched.left , R +- T.sched.rzght; // Left and right subtrees

UnaryCalc(L);

UnaryCalc(R);

T.have+- O; // Binary operators cannot contribute unary operators

if L.mmReg = R.mmReg then // T.mmReg G L.mvnReg + 1

integer lcount, rcount; // Unary operators needed by T if left or right

// subtrees are scheduled first, respectively

lcount +- MAX (O,R.need – L.have); // Determine which ordering has

rcount + MAX (O,L. need – R.have); // fewer unfilled delay slots

if lcount ~ rcount then

// Scheduling left subtree first allows for fewer unfilled delay slots

T.need +- lcount; T.sched-jirst +- left;

else

T.need +- rcount; T.sched-first G rzght;

end if

ekif L, mtnReg > R. mmReg then

// Left subtree scheduled before right; T.mmReg .+ L.mmReg

if L. mmReg = R.mmReg + 1 then

T.need +- L.need + MAX(O, R.need – L.have);

else // right subtree has no unfilled delay slots

T.need G L.need;

end if

T. sched-first +- left;

eke L. mmReg < R.mvnReg

// hymmetric to R.mmReg > L.mmReg case.

end if

end if

end procedure

Flg 9. Determme the number of unary operators needed for each subtree for a delav-free schedule
with rnznf?eg registers.

ACM TransactIons on Programnung Languages and Systems, Vol. 17, No. 5, September 1995,

754 . Steven M. Kurlanderet al,

THEOREM S.2.1. For a tree T, T.need represents the number of unary operators

T needs to be delay free using exactly T. mtnReg reg~sters.

PROOF.

Base Step (heZght = 1). Let T be a tree of height one (a singleton node). Then

T is either a delayed load or a delay-free load. In the former case, T needs one

unary operator to fill the load’s delay slot, so T. need = 1. In the latter case, there

is no delay slot to fill, so T. need = O. In both cases no unary operators are made

available, so T. have = O.

Inducttve Step (hezght > 1).

Case 1. The operator at the root node of T is unary. This unary operator cannot

be used as one of the unary operators its subtree might need. However, this unary

operator may be used to fill a delay slot in another subtree. So, T. have = C’. have

+ 1, where C is the subtree of T. Since the unary operator is delay free, T. need =

C.need.

Case 2. The root of T is a binary operator. Let L be T’s left operand and R he

T’s right operand.

Unary operators below the root of T cannot fill the load delay slots of subtrees

above the root of T, so T.have = O.

Case 2a. L.mznReg = R.minReg (T.mmReg = L.mznReg i- 1). L.mtnReg +

1 registers are available for the first subtree scheduled. When the first subtree is

scheduled, its result before (and after) scheduling the unary operators at, the root

of the subtree will be in a single register, leaving L. minReg registers to schedule the

second subtree. Since L. mznReg + 1 registers are available for the first subtree, all

of its delay slots will be filled. If L is scheduled first, any unary operators descending

from the root of L may fill delay slots of R. In this case T. need = MAX (O, R. need

– L.have). If R is scheduled first, T.need = MAX(O, L.need – R.have). If more

unary operators are provided than are needed, then T. need = O. We choose the

ordering that minimizes T. need.

Case 2b. L.minReg > R.mtnReg + 1 (T.minReg = L.mtnReg). Since the mtnReg

count of L is greater than R’s, L is scheduled first. After L is scheduled, there will

be at least R. mmReg + 1 registers to schedule R. R will have no empty delay slots.

Therefore, the number of delay slots needed to be filled by T is the number of delay

slots needed by L. So, T.need = L.need.

Case 2c. L.minReg = R.m~nReg + 1 (T.mmReg = L.mznReg). Again L has

a larger minReg count and is scheduled before R. Before scheduling any unary

operators at the root of L, L will compute its result in a register. So R. mznReg

registers, the minimum number of registers necessary for R, will be available to

schedule R. The number of T’s delay slots to be filled will be those of L plus the

number of delay slots unfilled in R after using L’s available unary operators to fill

delay slots. T.need = L.need + MAX(O, R.need – L.ha?le).

Case 2d. R.minReg > L.mtnReq + 1 and R.mmReg = L.mznReg + 1. Symmetric

to cases 2b and 2c. ❑

ACM TransactIons on Programmmg Languages and Systems, Vol 17, No 5, September 1995.

Instruction Scheduling for Delayed-Load Architectures o 755

(On, Oh) .

/’\
(On, Oh) + + (On, Oh)

AOnA Ii(in, Oh) ,
+ + c n15

A ‘lnflh;\(On’Oh)(’n’oh)
~~ ~~ ln3 m4

(in, Oh) \ln, Oh) (in, Oh) (in, Oh)

Cycle#

1
2

3.

4

5

6

7

8.

9

10.

11.
12

DLS Schedule

load ml, rl

load m2, r2

load m3, r3

add rl, r2, rl

load m4, r2

neg r3, r3

add r3, r2, r3

load m5, r2

add rl, r3, rl

loadi c, r3

add r2, r3, r2

add rl, r2, rl

Fig. 10. Minimizing register usage m the presence of unary operators and delay-free loads

8.3 Example

Figure 10 is an example of the UnaryCalc algorithm. The symbol N is unary minus;

ml through m5 are addresses; and c is a constant. Each node is labeled with a

pair indicating the number of unary operators needed and available for a delay-free

schedule using T. minReg registers. Leaves ml through m5 will require delayed

loads. The constant leaf, c, requires a nondelayed load. At the N node above m3,

one unary operator becomes available.

The variables lcount and rcount in routine UnaryCalc (Figure 9) represent the

number of delay slots needed to be filled if the left or right subtree, respectively, is

scheduled first. At the the parent of N, the left and right subtrees have equal minReg

counts. Here we have lcount = O and rcount = 1; the left subtree is scheduled before

the right. Moving up another level in the tree, we find the left subtree needs one

unary operator. Again, lcount = O and rcount = 1; the left subtree is scheduled first

since an additional register is available to eliminate its unfilled delay slot. Moving

to the root of the tree, neither operand needs unary operators to fill delay slots, so

the entire tree may be scheduled with minReg number of registers (= 3).

9. MAPPING EXPRESSIONS TO SINGLE NODES

In this section, we expand the machine model to include register variables and

immediate operands. A register variable is a register that has been defined in a

prior expression. We assume that a register variable does not free a register after it

is referenced. An immediate operand is a small literal value that can be referenced

directly without moving its value to a register; a loadi instruction can be avoided.

Register variables and immediate operands are treated identically. Operators

with register variables or immediate operands are scheduled either as nondelayed

loads or unary operators. A binary operator with one register variable operand

may be treated as a unary operator. The binary operator can reuse the register

belonging to its nonregister valiable operand and may potentially fill a load’s dela~

slot. A unary or binary operator with only register variables is equivalent to a

nondelayed load—the operator may fill a delay slot and requu-es one register.

ACM Transactions on Programmmg Languages and Systems, Vol 17, No 5, September 1995

756 . Steven M. Kurlanderet al.

1
2

3

4

5

6

7
8
9

10
11
12

13

14

15

16

17

18

19
20

21

22

23

24
25

26

27

28

29

procedure MapNodes(Tree T)

if IsLeaf (1“) then

if asDelayedLoad(T) thenT. sched-op & DelayedLoad;

elsif zsNonDelayedLoad(T) then T.sched-op ~ NonDelayedLoad;

else T.sched_oph RegisterVariable: // node is a register variable

end if // or small literal value

elsif ZSCJnary (T) then

Tree C6 T.sched-unary;

MapNodes (C);

if tsRegzster Varzable(C) then T.sched-op ~ NonDelayedLoad;

else T. sched.op ~ Unary;

end if

else

Tree L +- T.sched-left; Tree R i- T.sched-rtght;

MapNodes(L); MapNodes(R);

if zsRegzster Varzable (L) AtsRegaster Varzable (R) then

T. sched_op e NonDelayedLoad,

elsif zsRegzster Vartable(R) then

T.sched-oph Unary; T.sched-unary i- L;

elsif zsRegzster Varzable(L) then

T.sched-op+ Unary; T.sched-unary + R,

else T.sched_op - Binary;

end if

end if

end procedure

I?]g. 11 MapNodes schedules nodes that reference register variables or lmmed}ate operands as

nondelayed loads or unary operators.

Algorithm MapNode.s in Figure 11 marks which operators should be treated as

nondelayed loads or unary operators by setting the node’s sched_op field. On some

architectures immediate operands are only allowed as the rightmost operand of an

instruction. MapNodes can readily be modified to treat only a small literal value

occurring as the rightmost operand of a node as an immediate operand.

In Figure 12 the unary operator and constant of Figure 10 are replaced, respec-

tively, by a binary operator with an identifier and small constant (c,) as operands

and a unary operator with a register variable operand Each subtree is scheduled in

the same manner as the subtree it replaces. The new schedule substitutes instruc-

tions 6 and 10 of Figure 10 with these corresponding instructions. This schedule is

in extended canonical form, which is described in Section 10.3. Single lines separate

the subsequences in extended canonical form.

10. THE FINAL SCHEDULE

After running MapNodes and ~JnaryCalc, DLS produces the final schedule for T.

This version of DLS returns a delay-free schedule, if one exists, using the minimum

ACM TransactIons on Programmmg Languages and Systems, Vol. 17, No 5, September 1995

Instruction Scheduling for Delayed-Load Architectures . 757

(On, Oh)
+

/\

(On, Oh) + + (On, Oh)

/(..$’O’;-\(in, Oh) ,

0/\ (ln,lh)+\\4

o

r5
m5

(in, Oh)

ml rn2 m

(in, Oh) (in, Oh) mj c~ (in, Oh)

(in, Oh)

Cycle#

1.
2.

3

4.

5.

6.

7.

8.

9.

10.

11.
12.

DLS Schedule

load ml, rl

load m2, r2
load m3, r3

add rl, r2, rl

load m4, r2
add r3, c~, r3

add r3, r2, r3

load m5, r2

add rl, r3, rl
neg r5, r3

add r2, r3, r2

add rl, r2, rl

Fig, 12. Minimizing register usage in the presence of register variables and immediate operands.

1
2

3

4

5

6

7

8

9

10
11
12

13

14

15

16

17

18

19

20
21
22

function DLS(Tree T): nodeLzst

nodeLzst loads ~ NULL; // list of loads of tree T

nodeLtst ops +- NULL; // list of operators of tree T

nodeLtst sched +- NULL; // schedule in extended canonical form

nodeLzst jinal.sched +- NULL; // schedule with unary operators

// filling delay slots

MapNodes (T);

label(T);

UnaryCalc(T);

OrderNodes(T, loads, ops, NULL);

if T.need = O then

// A delay-free schedule exists with mvnRe,q registers

sched +- EztendedCanontca lForm(loads, ops,

jkal_sched +- Schedule Unarys(sched);

else

// If a delay-free schedule exists, mmReg + 1

jinal.sched G Extended CanonicalForm(loads,

end if

return final_ sched;

end function

T. mznReg);

registers are needed

ops, T.mmReg + 1);

Fig 13 Algorithm to schedule trees

number of registers and, therefore. subsumes the version of DLS presented in Sec-

tion 7.2. In the following sections we classify instructions in the manner they are

scheduled. For example, we will refer to a binary operator whose two operands are

register variables as a delay-free load.

10.1 DLS Algorithm

Algorithm DLS is shown in Figure 13. Initially, DLS calls MapNodes, label. and

UnaryCalc. label computes mmReg for each node of a tree. UnaryCalc determines

ACM Transactions on Programmmg Languages and Systems, Vol 17, No. 5, September 1995.

758 . Steven M, Kurlander et al.

1 procedure OrderNodes (Tree T, nodeLzst loads, nodeLZst ops, node parent)

2

3 if zsLeaf(T) then

4 // An operator with only register variables is considered a leaf

5 loads & loads II T;

6 elsif ZSUnary(T) then

7 OrderNodes (T.sched-unary, loads, ops, parent);

8 T.parent i- parent; ops + ops /l T;

9 else

10 Tree L e T, sched-left; Tree R ~ T.sched_rtght; // left and right subtrees

11 if T.sched-first = left then

12 OrderNodes(L, loads, Opsj T); OrderNodes(R, loads, ops, T);

13 else

14 OrderNodes (R, loads, ops, T); OrderNodes (L, loads, ops, T);

15 end if

16 ops+- ops II T;

17 end if

18 end function

Fig 14. Create lists of loads and operators

(1) the number of unary operators the tree needs for a delay-free schedule with

mLnReg registers and (2) an ordering to schedule the subtrees. DLS calls OrderN-

odes to divide T’s nodes into two lists: a list of the tree’s loads (loads) and a list

of operators (ops). Instructions equivalent to loads because of register variables

or immediate operands are included in list loads. To assist a later phase in filling

delay slots with unary operators, DLS passes a third argument,

that represents the parent of a chain of unary operators.

10,2 OrderNodes

initially NULL,

Function OrderNodes is shown in Figure 14. OrderNodes walks the tree in the

order determined by Unary Calc, adding loads to list loads, and operators to list

ops. The root of a chain of unary operators is contained in parent. OrderNodes

assigns parent to each node in the sequence to assist a later phase in filling empt,y

delay slots with unary operators.

Figure 15 illustrates OrderNodes’s operation. Node – acts as a unary operator

since one operand is a register variable. The other nodes and the labels beside each

node are described in the example of Section 8.3. A delay-free schedule exists for

this tree with minReg = 3 registers. The lists of operators and loads computed by

OrderNodes is shown below the tree in Figure 15.

After calling OrderNodes, DLS examines the value of T.need. If T.need = 0,

then a delay-free schedule exists with mmReg registers. Otherwise, if a delay-free

schedule exists, mznReg + 1 registers are needed. In both cases, DLS produces a

delay-free schedule, if one exists.

Routine ExtendedCanonzcalForm puts the lists of loads and operators into an

extended canonical form schedule, as described in the following section. The com-

ACM TransactIons on Programmmg Languages and Systems, Vol 17, No. 5, September 1995

Instruction Scheduling for Delayed-Load Architectures . 759

(On, Oh)

,1n,2h)_/“\
.4 (2n,0h)

/\

(in, lh)-~

/
\

(in, Oh)+l r4
/’

/\

(in, Oh) +3 rn6

/\

(in, Oh)

(ln~~h)(l~~Oh) (0n0h)+2 rnb

/

\

(in, Oh)

(ln,lh)-2

/

m3 m4

(in, Oh) (in, Oh)

OPERATORS

EXTENDED
CANONICAL FORM

Fig. 15. Example tree, list oftree’s loads and operators returned by routine OrderNodes, and an

extended canonical-form schedule of the tree.

ACM Transactions on Pro~amming LanWages and Systems, Vol. 17, No.5, September 1995.

760 . Steven M, Kurlander et al

puted schedule is delay free when mr,nReg + 1 registers are required. If only mznReg

registers are needed, Schedule Unarys generates the final schedule.

103 Extended Canonical Form

DLS produces schedules in extended canonical form. Whereas canonical form (as

defined in Section 5.1) includes only loads and binary operators, extended canonical

form includes unary operators too. Extended canonical form is comprised of four

subsequences. The first subsequence consists of r loads, where r 1s the number of

a~’ailable registers. As in canonical form, loads are moved as early as possible in the

schedule, such that the number of available registers is not exceeded. The second

subsequence consists of triples of the form

< unary operator’, b~nary operator, load >,

where n is a number of adjacent unary operators (n > O). Letting bznops be the

number of binary operators in the tree, there are bznop,s + 1 – r triples. Extended

canonical form’s third subsequence includes r – 1 pairs of the form

< unary operator”, binary operator >,

where again n is a number of unary operators (n ~ O). The final subsequence

consists of zero or more unary operators. This final subsequence contains those

unary operators appearing at the root of the tree (and hence evaluated last) that

extends down to a binary operator or leaf.

The schedule in Figure 12 is in extended canonical form. Recall that we treat the

binary operator in cycle 6 as a unary operator and the unary operator in cycle 10

as a nondelayed load instruction because both operators reference register variables

or immediate operands. Each subsequence is divided by a single line. Since there

are three registers available, the first subsequence, cycles 1–3, is filled by load

instructions. The second subsequence consists of three triples, cycles 4–5, cycles 6–

8, and cycles 9–10. Only the second triple, cycles 6–8, contains a unary operator.

The two binary operators at cycles 11 and 12 form the third subsequence. Since

the root of the tree is a binary operator, the fourth subsequence of unary operators

is empty.

The Extended CanontcalForm algorithm (Figure 16) 1s passed loads, a list of the

tree’s loads, ops, a list of the tree’s operators, and r, the number of available

registers. The algorithm returns a schedule in extended canonical form. First

the initial subsequence of loads is scheduled, Following these loads is the second

subsequence—triples of unary operators, one binary operator, and one load. When

all loads have been scheduled, the remaming operators are scheduled.

The unary operators have not yet filled all delay slots: in Figure 15, the delay

slots between m5 and +3 and m6 and +4 are still unfilled as indicated by the

notches between these nodes. Function Sched/de Unarys fills them by sliding unary

operators to the right.

10.4 Schedule Unarys

When scheduling unarys, we view a list of instructions as beads on a string. .4s

chains of unary operators are encountered they may be pushed along the string. Ff’e

allow unary operator chains to slide past loads and binar,v operators (moving from

ACM TransactIons on Programmmg Languages and Systems, VO1 17, No. 5, September 1995

Instruction Scheduling for Delayed-Load Architectures . 761

1

2

3

4

5

6

7

8

9

10
11
12

13

14

15

16

17

18

19

20
21

22

23

function EztendedCanon~calFo rm(nodeLtst loads, nodeLtst ops, integer r): nodeLtst

nodeLzst sched+- NULL; // final schedule

znteger mitialLoads ~ MIN(r,length(loads));

// number of loads in first subsequence

// schedule the first subsequence

for ~+- 1 to mtttalLoads do

sched i- sched II popHead(loads);

end for

// schedule the second subsequence

while not Empty (loads) do

while is Unary(Head(ops)) do

sched +- sched II popHead(ops);

end while

sched h sched [1 popHead(ops);

sched +- sched [1 popHead(loads);

end while

// append third and fourth subsequences and return final schedule

return sched II ops;

end function

Fig. 16. Produce a schedule m extended canonical form.

one subtree to another). Notches in the string model unfilled delay slots between

instructions. Notches are points where a unary operator can be usefully scheduled.

A unary operator must always be scheduled within the range of nodes in a tree

beginning at its child and ending at its parent. Since routine ExtendedCanonical-

Form does not change the relative ordering among the operators, we check for an

unfilled delay slot in this range by sliding each chain of unary operators to the right

in the schedule.

We must decide which available chain will supply a unary operator to fill a given

delay slot. The parent of the most-recent chain encountered is included within the

ranges of the other chains (except the previous one if they have the same parent).

Therefore, the range of the most-recent chain cannot extend beyond the ranges of

the others, and so we schedule unary operators from the most-recent chain first.

Among this chain’s unary operators, we choose the earliest unscheduled one to

avoid violating dependencies between instructions.

Figure 17 shows the extended canonical-form schedule from Figure 15. This

example also illustrates sliding unary operators through the schedule. The tree has

two chains of unary operators: WI and – form the first chain, and Wz forms the

second. The first unary chain is shown below schedule (1) and the second chain

above schedule (1). The range of the second chain ends before the first. Notches

represent empty delay slots. Schedule (1) includes delay slots that must be filled by

unary operators. Since unary operators were already filling the delay slots between

m4 and +2, adding these unary operators to the two chains results in an additional

ACM TransactIons on Programming Languages and Systems, Vol 17, No 5, September 1995.

762 . Steven M. Kurlanderet al.

EXTENDEDCANONICAL FORM

SLIDING UNARY OPERATORS

o

-j

Rangeof Chain2

00

(1) ml m2–

Range of Chain 1

0-0.—

0-0._

Fig, 17. Filhng delay slots with unary operators.

ACM TransactIons on Programmmg Languages and Systems, Vol 17, No. 5, September 1995

Instruction Scheduling for Delayed-Load Architectures . 763

1
2

3

4

5

6

7

8

9

10
11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

function Schedule Unarys(nodeLtst sched): nodeLtst

no~eL”tfinal-sched+-Num ;;
nodeLzst unylzst i- NULL;

node curr-entry +- Head(sched); //

node next-en,try; II

while curr-entry # NULL do

next_ entry +-- curr_entry.next;

// Check for unfilled delay slot

schedule with all delay slots filled

list of unary operators to fill delay slots

current entry examined in sched

next entry to be examined

if (jinal-sched# NULL) A EmptyDelaySlot (last (jinal-sched), curr. entry) then

// Schedule unary from unykst to fill delay slot

final_sched +- jinal.sched [1 popHead(unylzst);

end if

if ts Unary(curr-entry) then
// Remove all unary operators in a single chain

unylzst A Remove Unarys (cum-entry) II unylzst;

else // Schedule unary operators before their parent in the tree

while (unykst# NULL) AMParent (cw-r_entry, Head (unylwt)) do

jinal_sched +- jinal-sched II popHead(unylast);

end while

jinal_sched - finaLsched II curr_entry;

curr_entry +- next. entry;

end if

end while

final-sched+ jinai-schedll unykt;

return jinal-sched;

end function

Fig. 18. Fill empty delay slots with unary operators.

empty delay slot in schedule (1). We fill each delay slot with the first unary operator

in the chain whose range ends the earliest. Thus, Nz fills the first slot as shown in

schedule (2). Schedule (4) is the final delay-free schedule.

Figure 18 presents Schedule Unarys, which uses unary operators to fill empty

delay slots of sched. Schedule Unarys computes jinal-sched: the delay-free schedule.

Variable curr_entry points to the current entry in sched. Empty delay slots are

filled by unary operators in list unylist,

Schedule Unarys checks for an empty delay slot at line 11. If routine EmptyDe-

laySlot determines that the last entry in jinal.sched is a delayed load, and curr_entry

references that load, then the first unary operator from unylist is removed to fill

the empty delay slot. Placing chains at the beginning of unylzst allows the first

unary operator in the last chain to be easily removed.

If curr-entry is a unary operator (line 16), Schedule Unarys calls Remove [Jnarys

to remove a chain of unary operators. .4ny unary operator after the first in a chain

must be the parent of the previous one in the chain. Remove Unarys checks for this

condition to isolate the unary operator chain.

ACM Transactions on Programmmg Languages and Systems, Vol 17, No 5, September 1995.

764 . Steven M, Kurlander et al

Cycle# DLS Schedule

1 load ml, rl

2 load m2, r2

3 load m3, r3

4 add rl, r2, rl

5 load m4, r2

6 neg r3, r3

7 add r3, r2, r3

8. load m5, r2

9 neg rl, rl

10. add r3, r2, r3

11 load m6, r2

12 sub rl, r4, rl

13 add r3, r2, r3

14 add rl, r3, rl

Fig 19 Delay-free schedule of our example tree

If curr-entry is not a unary operator, and curr.entry is the parent of unary

operator chains in unylist (lines 20 to 22), then all the unary operators from these

chains must be scheduled immediately. Routine zsParent indicates if curr_entry

is the parent of the unary chain that includes the first unary operator on unyhst.

If the first unary operator’s parent field, assigned in routine OrderNodes, has the

value curr_entry, then zsParent returns true.

Schedule Unarys adds curr-entry to the final schedule (line 23). After registers

are assigned, the delay-free schedule for our example tree is shown in Figure 19.

105 Proof of Correctness

We must show that all delay slots are filled if a delay-free schedule exists given either

mtnReg or mtnReg + 1 registers. Theorem 7.3.3 holds for a schedule in extended

canonical form, since both canonical form and extended canonical form move loads

ahead of operators, as loads are assigned the earliest available registers. Assume a

delay-free schedule exists for a tree given mznReg + 1 registers. With mznReg + 1

registers, each load has at least two registers available in a Sethi-Ullman evaluation

This schedule is delay free, applying the argument in the proof of Theorem 7.3.3 to

this schedule’s loads.

Assume a delay-free schedule exists given mznReg registers. Since the proof of

Theorem 7.3.3 holds for a schedule in extended canonical form, loads with two

available registers have their delay slots filled. Since Unary Calc and OrderNodes

determine the relative ordering of the loads in a delay-free schedule, the delay-free

loads are scheduled correctly. As we know by Theorem 8.2.1 that a posltlonmg of

the unary operators yields a delay-free schedule, all that remains is scheduling the

unary operators to fill all remaining empty delay slots. Each unary operator must

be scheduled after its child and before its parent. Since rolltine ExtendedCanon-

zcalForm maintains the relative ordering among operators, we slide each chain of

unary operators to the right, checking for unfilled delay slots.

Among the unary operators available to fill a delay slot, Schedule Un,arys chooses

one from the last chain added to unylzst. These unary operators have the short-

est range in which they can be scheduled. Among the unar~ operators in the

ACM Transactions on Programmmg Languages and Systems, Vol 17, No 5, September 1995

Instruction Scheduling for Delayed-Load Architectures . 765

last chain, Schedule Unarys chooses the first unscheduled one to avoid violating

dependencies between them. Following this procedure, Schedule Unarys returns a

delay-free schedule.

10.6 Algorithm Complexity

The complexity of DLS is O(n), where n is the number of nodes in the tree. Routines

UnaryCalc, MapNodes, and OrderNodes perform a constant number of operations

at each node visited, ExtendedCanonicalForm is also linear since removing a node

from a list and appending it to a schedule takes constant time. Schedule Unarys is

linear since we add and remove an instruction from the unary list in constant time

for each scheduled node. Adding each node to the final schedule is also in constant

time. DLS, which is composed of these routines, is thus linear in the number of

nodes scheduled.

11. SPILLING

For the DLS algorithm to be practical, it must also be able to produce good sched-

ules when too few registers are available for allocation, Suppose, for example, that

exactly minRxg registers are available, but they are insufficient for a delay-free

schedule. Should the algorithm introduce spill code so that subtrees may be com-

puted without unfilled delay slots? If so, where should the spills be introduced?

If not, will the computation incur excessively many unfilled delay slots’? The best

solution depends on the form of the expression-tree.

The tree in Figure 20 can be best handled by allowing the canonical execution

order (with mmReg = 4 registers) and incurring a single load delay of one cycle.

Having no unfilled delay slots would have required a spill and hence cost, two extra

instructions: a store and load. The tree in Figure 21 will incur three delay cycles,

but would incur only the cost of a single load and store if a spill were introduced.

Ordering code so that spill/delay costs will be minimized requires extending the

DLS algorithm. Given an expression with two subtrees that have identical minReg

values, the algorithm orders the subtrees such that the subtree having fewer empty

delay slots is scheduled last. The number of delay slots corresponding to a subtree

T is represented by T.need in routine UnaryCalc (Section 8.2).

The decision to spill a node is made when calculating the mmRe,g and need

values. A node is spilled if its mznReg value is equal to the number of available

registers and if its need value is greater than two (the cost of a store and load). If

a node has a minReg value greater than the number of available registers, then its

operand with the greater number of unfilled delay slots should be spilled. Spilling

information is calculated bottom-up in the tree while calculating minReg and need.

The algorithm avoids spilling until absolutely necessary or until it is advantageous.

1
2

3

4

5

6

7

8

if (node .mmReg = Regtsters A node. need > 2) V node. mmReg > Regtsters then

if node. left need > node .rtght need then

Spill node. left; Make node .left a Leaf temporary;

Set node.left. need i- 1; Set node.left. mmReg e 1;

Set node need +- node. raght. need; Set node. mmReg +- node. rtght. mmReg:
else // Spill node .rvght, etc...

end if

end if

ACM TransactIons on Programmmg Languages and Systems, Vol. 17, No 5, September 1995

766 . Steven M. Kurlander et al

/\
. 4

*
1
2.

3

4

5.

6.

7.

8.

9.

10.
11.
12.
13.

14.

15.

16.

17.

/\ /\
+ + + +

ml m~ m3 m4 m5 m6 m7 m8

No Spill—Unfilled Delay Slots

load ml, rl

load m2, r2

load m3, r3

load m4, r4

add rl, r2, r2

load m5, rl

add r3, r4, r4

load m6, r3

add r2, r4, r4

load m7, r2

add rl, r3, r3

load m8, rl

add r2, rl’, rl

add r3, rl, i-l

add r4, rl, rl

Spill—Filled Delay Slots

load ml, rl

load m2, r2

load m3, r3

load m4, r4

add rl, r2, r2

load m5, rl

add r3, r4, r4

load m6, r3

add r2, r4, r4

load m7, r2

store r4, T13MP

load m8, r4

add rl, r3, r3

load TEMP, rl

add r2, r4, r4

add r3, r4, r4

add rl, r4, r4

Flg 20. Spdling may be more expensive than delay slots—example with four registers

Loads introduced by spills will not have unfilled delay slots because they will

occur only at a node whose sibling has a mmReg value of at least Regzsters – 1.

This ensures that the load will be part of a tree whose root has mznReg of at least

Registers – 1.Since this new leaf (spill) node has a mtnReg of 1, it cannot increase

the minReg or number of unfilled delay slots of the entire tree. The cost of the spill

is restricted to the cost of the store/load and with the unfilled delay slots associated

with evaluating the subtree below the spilled node (which cannot be greater than

two)

12. BEHAVIOR FOR Delay >1

In this section we study the behavior of DLS for machines where the load delay

exceeds one cycle. For example, the HP PA-8000 processor has a load delay of

two cycles [Gwennap 1994]. For this study we restrict our model to our original

machine model, which included only binary operations and delayed loads.

ACM TransactIons on Programmmg Languages and Systems, Vol 17, No 5, September 1995

Instruction Scheduling for Delayed-Load Architectures . 767

-#_
1.
2.

3.

4.

5.

6.

7.

8.

9.

10.
11.
12.

13.

14.

15.

16.

17.

18.

/’\
/+\ /+\
‘1/+\ m5/”\

rc

/+\ “ /’\
m3 m4 m7 ma

No Spill—Unfilled Delay Slots

load m3, rl

load m4, r2

load m2, r3

add rl, r2, r2

load ml, rl

add r3, r2, r2

load m7, r3

add i-l, r2, r2

load m8, rl

add r3, rl’, rl

load m6, r3

add rl, r3’, r3

load m5, rl

add r3, rl”, rl

add r2, rl, rl

Spill—Filled Delay Slots

load m3, rl

load m4, r2

load m2, r3

add rl, r2, r2

load ml, rl

add r3, r2, r2

load m7, r3

add rl, r2, r2

load m8, rl

store r2, TEMP

load m6, r2

add r3, rl, rl

load m5, r3

add r2, rl, rl

load TEMP, r2

add r3, rl, rl

add r2, rl, rl

Fig. 21. Spilling may save cycles—example with three registers.

The optimality results for Delay = 1 do not directly extend to meater Delav

values. DLS is, however, an excellent heuristic for la~ger Delay ‘s, retaining its
.

simplicity and linear running time. As a heuristic for instruction scheduling with

Delay > 1,DLS may require more than mznReg + 1 registers to achieve a delay-free

schedule in canonical order. If a delay-free schedule exists for a given expression, it

can be found, however, by using minReg + Delay registers with the DLS canonical

form. The same argument made for the optimality of the case Delay = 1 shows

that the number of registers needed for a delay-free schedule will never be greater

than minReg + Delay. Not all expressions require mvnReg + Delay registers for a

delay-free schedule-they may have delay-free schedules requiring fewer registers.

For this reason, a heuristic approximation to the DLS algorithm for Delay > 1

is to use a DLS-generated canonical order with mmReg + Delal~ registers. This

heuristic retains the optimal scheduling results of the mznReg + 1 case, but may.

in a few cases, overallocate registers. In Section 12.2, we give the lower bounds on

the fewest possible registers needed for a delay-free schedule when Dela{y > 1.

ACM Transactions on Programming Languagee and Systems, Vol. 17, No, 5, September 1995,

768 . Steven M. Kurlander et al

/+?

/+T /+Ym5 (21)

‘“y’)‘+:’/+\ml m2 m3
(13) (15) (17) (19) . 1(J1

/\

+ 16)

/\

/+Y) /’Y’ /+Y’)/‘r
m6 rn7 m8 m? m10 mll m12 ml>

(1) (2) {:) (4) (5) (7) (9) (11)

F]g 22 Noncontiguous optimal evaluation for Delaq = 2

12.1 Noncontiguous Operand Ordering

The Sethi-Ullman algorithm generates code that is contiguous. That is, instructions

generated for one subtree do not mix with the instructions for a sibling subtree.

The DLS algorithm does not possess this property because the loads from one

subtree may be mixed with the operations from another. The algorithm does,

however, produce schedules that exhibit some contiguity: the loads taken alone

and the binary operations taken alone do have contiguous orders. It is precisely

this property that allows a “divide-and-conquer” approach that treats each subtree

separately.

It is not always possible to generate code with this contiguous operation/load

property and still have the code be optimal with respect to unfilled delay slots and

register usage if Delay is greater than 1. Figure 22 is the smallest example of a tree

that does not have an optimal schedule in which the operations/loads are ordered

contiguously for Delay = 2—the tree is labeled with the optimal evaluation order.

Lacking the contiguous property for optimal results, it is unlikely that a linear-

time algorithm exists for optimally scheduling trees with Delay > 1.Whether the

optimal algorithm is polynomial time or exponential time, it will be much more

expensive to run than DLS (and in practice not all that more effecti~-e).

12,2 Register Bounds

The fact that mznReg + Delay registers and a canonical ordering will always pro-

duce a delay-free schedule (when one exists) gives an upper bound on the number of

registers necessary to find such an evaluation. The optimality proof in Section 7.3

gives a lower (and upper) bound of minReg + Delay for the case where Delay = 1.

The previous section showed that minReg + Delay is not a lower bound when

Delay >1.

Given any Sethi-Ullman order evaluation of an expression, it is not difficult to

show, however, that minReg + (Delay / 21 is a lower bound on the registers needed

for delay-free evaluation when put into canonical form (when Delay > 1). Given

the canonical evaluation order with exactly mmReg registers, it must be the case

that some operation immediately follows the load of one of its operands. Adding a

single register shifts the loads earlier and operations later in the schedule. For each

additional register, each load moves at most one instruction earlier in the schedule,

ACM Transactions on Programmmg Languages and Systems, Vol. 17, No. 5, September 1995

InstructIon Scheduling for Delayed-Load Architectures . 769

DLS

Optimal

1,015,481

1,015,481

1,007,509

1,007,509

1,007,511

1,007,535

1,007,703

1,008,631

DLS

Suboptlmal

17,930

17,930

25,902

25,902

25,900

25,876

25)708

24,780

Tot al

1,033,411

1,033,411

1)033,411

1,033,411

1,033,411

1,033,411

1,033,411

1,033,411

3%DLS
Optlmai

3

98.3

q8 3

975

975

975

975

97.5

97.6

Fig 23. Heuristic results for all binary trees of 25 or fewer nodes

and each operation moves at most one instruction later. (Loads in the initial

(nonalternating) sequence of loads do not move at all—likewise for the operations

in the latter part of the schedule.) Thus, the addition of each register can move a

load/operation pair at most two instructions further apart.

Therefore, if Delay instructions are necessary to fill a delay slot, and each register

will move at most two instructions between any pair, it will be necessary to use a

minimum of [Delay / 21 registers in addition to the original minReg.

It is possible to find the minimal number of registers needed for a particular

combination of operation and load orders in linear time. This can be done by

computing the schedule (in canonical order) for each possible number of registers.

Starting with mmReg + Delag – 1 registers and working down, the canonical or-

ders are created and tested to make certain that the loads are separated from their

successors by at least Delay instructions. Because the lower bound on number of

registers for a legal canonical order is minReg + [Delay / 21, this process will re-

quire at most [Delay / 21 iterations. With this inexpensive extra step, it is possible

to fine-tune DLS further to use even fewer registers in many cases when Delay > 1.

12.3 Empirical Results

The DLS algorithm works extremely well as a heuristic for Delay values greater

than 1. By enumerating all possible expression-trees of 25 or fewer nodes, and

testing the algorithm against an exhaustive search algorithm, the effectiveness of

the algorithm as a heuristic can be easily verified. We ran trials for Delay’s of 2

through 9 to obtain the results given in Figure 23. A schedule produced by DLS

is considered suboptimal if it uses r registers but contains no unfilled delay slots

when there exists a delay-free schedule needing fewer than r registers, or if it uses

r registers and contains z unfilled delay slots when there exists a schedule using T-

registers that contains fewer than i unfilled delay slots. DLS never uses more than

minReg + Delay registers and produces a delay-free schedule for all but a finite

number of trees for any given Delay.

In Section 13.6, we compare schedules produced by DAG-DLS, a DAG scheduler

based on DLS, with optimal schedules generated using branch and bound.

12.4 Anomaly

Using DLS for Delay = 2, an interesting (and surprising) counterint,uitive result

has been found. It, is possible for an expression-tree to have a subtree whose op-

timal (delay-free) evaluation requires more registers than the entire tree’s optimal

ACM Transactions on Programming Languages and Systems, Vol 17, No 5, September 1995

770 . Steven M. Kurlanderet al.

“?+\

“3)m’7+\ 7+\
(lo)+ (15) + (11) + (14) +

/\ /\ /\ /\

“)+\ ‘8)+\ “?)+\ ‘l,Y+\ ‘7)+\ “)+\ ‘17+\ “7+\
=,2 ~j ~~ m5 m6 m7 m8 m9 m2 m3 m4 X15 rn6 m7 *g ~g

(1) (2) (3) (4) (5) (7) (9) (11) (1) (2) (3) (4) (5) (6) (2) (lo)

llg 24 Armmalv for Delay = 2 Entree tree needs five registers—Right subtree alone needs SIX

(The respective optimal evaluation orders are given)

evaluation. The left tree of Figure 24 can be evaluated optimally with five reg-

isters; however its right subtree taken alone requires six registers for a delay-free

evaluation. (No delay-free evaluation exists using fewer than six registers, and DLS

will find this optimal evaluation.) Note also that the full tree has mtnReg = 4, and

Delay = 2, yet it needs only five registers for a spill-free, delay-free evaluation.

13. DAG.DLS

This section outlines scheduler DAG_DLS (Figure 25), which schedules a DAG that

represents a basic block (a more-detailed discussion of DAG_DLS will be provided

in a subsequent paper). DLS assumes that each expression is a tree in which (1)

loads appear only at the leaves and (2) all operators are delay free. DAG-DLS

lifts these restrictions, allowing for common subexpressions, internal loads, and

operators with delay slots. DAG_DLS is a heuristic, as finding an optimal schedule

for a DAG whose nodes can have an arbitrary number of delay slots is NP-Complete

[Hennessy and Gross 1982; Palem and Simons 1990].

DAG.DLS is based on DLS. DLS uses the fewest number of registers to generate

an optimal schedule for an expression-tree. Similarly, DAG_DLS aims to use as few

registers as possible to generate a delay-free schedule. To fill empty delay slots.

DAG-DLS slides nodes earlier in the schedule just as DLS does in producing a

canonical-form schedule.

131 Forming Expressions whose Edges are True Dependence

DLS routines MapNodes, label, and Unary Calc assume that each edge in an ex-

pression is a true dependence. False dependence, however, can affect the ordering

of operands in an expression. For example, if the left operand of a node reads a

register variable that is to be written to by its right operand, then the left operand

must be scheduled first.

Routine TrueDependences of DAG-DLS (line 7 of Figure 25) divides a DAG into

a list of expressions eLzst. The only edges between nodes within each expression

in eList are true dependence. If there is a false dependence between two nodes,

then these nodes are part of separate expressions in eLzst. Given a false dependence

from node nl in expression el to node n~ in expression ez, el occurs before e~ in the

list. Scheduling expressions in eLzst in the order they appear generates a schedule

that does not violate false dependence.

ACM Transactions on Programmmg Languages and Systems, Vol 17, No 5, September 1995

InstructIon scheduling for Delayed-Load Arcnnecwres . [(1

1
2

3

4

5

6

7

8

9

10
11
12

13

14

15

16

17

18

19

20
21
22
23
~~

25

function DAG_DLS(DAG n): nodeList

DAG e;

DA GLzst eList; !!
nodeLzst sched +- NULL; II

// divide a DAG into a list of expressions

eLzst i-- TrueDependences (n);

// for each expression in eList

for e G Fzrst(eLzst) to Last(eLzst) do

current expression

list of expressions

linearized schedule

whose edges are true dependence.

// schedule nodes within each expression to limit register pressure

// and fill delay slots

D.MapNodes (e); // map nodes whose operands are register variables

// or small literal values to other nodes

D.Label(e); // estimate register pressure

D. UnaryCalc(e); // find an ordering to fill delay slots and

// minimize register pressure

// forma list of nodes from the current expression and append to list sched

sched +- sched II Lmearzze(e);

end for;

// slide nodes in sched earlier in the schedule to fill empty delay slots

return SltdeNodes (sched);

end function

Fig. 25. Routine to schedule a DAG that represents a basic block,

13.2 Finding a Node Ordering that Limits Register Pressure and Fills Delay Slots

The next phase of DAG-DLS orders nodes within each expression in eList to limit

register pressure and enable unary operators and literals to fill delay slots. Since

finding a schedule that minimizes register pressure for an expression is NP-Complete

[Garey and Johnson 1979], our approach is heuristic.

The expressions in eList are scheduled in the order they occur (lines 10 to 21

of Figure 25). In DLS, MapNodes maps nodes whose operands include register

variables or small literal values to nondelayed loads or unary operators; label com-

putes the minimum number of registers needed to evaluate an expression-tree; and

UnargCalc determines a preliminary node ordering for a tree to minimize register

pressure and allow unary operators and literals to fill delay slots. DAG-DLS rou-

tines D. MapNodes, D_Label, and D- UnaryCalc are similar to those in DLS, but

the DAG-DLS routines traverse expressions that may contain common subexpres-

sions. The results of D-Label and D. UnaryCalc are only approximations of optimal

solutions if the expression is not a tree.

D_ MapNodes, D-Label, and D- UnaryCalc visit each common subexpression once.

After D-MapNodes, D-Label, and D_ UnaryCalc are called, routine Lmeartze gen-

erates a list of nodes based on the ordering determined by D- UnaryCalc.

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 5, September 1995.

772 . Steven M, Kurlanderet al.

store @

(a) m

(b) m3

(c) I-n3

(#\~
(?/’‘\@ ‘i’@

ml m2 m3

m2 ~ + m3 ~ ‘D ~ store

ml m2 ~ + LD ~~ store

ml m2 LD + store

Fig. 26. Deciding how far to slide a node

13.3 Sliding Nodes to Fill Delay Slots

To fill empty delay slots, both DLS and DAG.DLS slide nodes toward the front

of the schedule. DLS assumes that only loads can have delay slots and that loads

occur only at the leaves. Sliding only loads; DLS optimally fills all delay slots. In

DAG-DLS expressions can have internal loads, and operators can have delay slots—

simply moving loads at the leaves may leave delay slots unfilled in the schedule.

The distance to move a node depends not only on the empty delay slots occurring

earlier than the node in the schedule, but also on the nodes dependent on it. Fig-

ure 26 shows an expression. Node LD represents an internal load in the expression.

An ordering of the nodes of this tree is shown in row (a). Underscores represent

empty delay slots. Since m2 does not depend on the value of ml, m2 fills the delay

slot following ml.

The distance to move m3 in the schedule depends on LD, whose operand is m3,

and the empty delay slot after m2 in the schedule. If node m3 in row (a) slides to

the delay slot following m2, then the node LD, which is dependent on m3, may be

unable to slide far enough in the schedule to have its delay slot filled. However,

if m3 slides past the delay slot following m2, then no node may fill the delay slot

following m2.

To gauge how far to move a node, a cumulative cost for each node is computed.

The concept of cumulative cost is borrowed from Goodman and Hsu’s widely used

scheduler Integrated Prepass Scheduling (IPS) [Goodman and Hsu 1988]. The cu-

mulative cost for a node z is computed by taking the maximum cumulative cost of

its successors in the DAG and adding the cost of executing node z. Scheduling a

ACM Transactions on Programmmg Languages and Systems, Vol 17, No 5, September 1995

InstructIon Scheduling for Delayed-Load Architectures . 773

node early with a large cumulative cost will often improve the chance of filling the

delay slots of those nodes dependent on it.

In Figure 26, each node in the subtree is marked by its cumulative cost-loads

have a cumulative cost of two, and all other nodes have a cumulative cost of one.

When sliding a node earlier in the schedule, the node may fill an empty delay slot

only when the next node to be passed has a greater or equal cumulative cost than

the current node, or a node with greater or equal cumulative cost has already been

passed. The nodes to be moved after the current node can potentially fill the dela7-

slots that the current node passed over. Also, moving the current, node far enough

may allow the nodes moved subsequently to have their own empty delay slots filled.

For example, in row (b) m3 has a larger cumulative cost than ml, m2, and +, so it

passes the empty delay slot, after m2 and moves to the beginning of the schedule.

In row (c), node LD, which has a smaller cumulative cost than m2, but a larger

cumulative cost than +, slides ahead of + and into the empty delav slot following

m2. All delay slots are filled.

DAG-DLS calls SlidelVodes (line 24 of Figure 25) to move nodes in the schedule.

While sliding a node, the node may pass at most a constant number of other nodes.

This restriction allows SltdeNodes to have an Cl(n) time complexity. where n is

the number of nodes in the DAG. In addition, since sliding nodes earlier in the

schedule can increase register pressure, SlzdeNodes updates the register pressure

at the positions a node slides past. To avoid overallocating registers, the routine

stops moving a node if there are an insufficient number of registers a~’ailable for

allocation to nodes.

13,4 Complexity

The time complexity of DAG-DLS is 0(n), where n is the number of nodes in the

DAG. DAG-DLS calls TrueDependences, D-MapNodes, D-Label, D- UnaryCalc, and

Linearwe which are all linear, since (1) each node is visited once by each routine

and (2) the number of dependence between nodes is linear in the number of nodes

in the DAG. DAG-DLS calls SlzdeNodes, which is also linear, as nodes slide past

at most a constant number of other nodes, and computing the cumulative cost for

each node requires a single pass over the nodes.

13.5 Performance of DAG_DLS and IPS

We implemented DAG-DLS and IPS in the back end of lcc [Fraser and Hanson

1991], which generates code for a DECstation 5000 with R3000/R3010 processors.

A node is allowed to slide past at most 10 nodes in DAG-DLS, as this number

works well in practice.

Figure 27 presents the execution-time improvement on selected SPEC bench-

marks when scheduling with DAG-DLS as a replacement for IPS. Benchmarks eqn -

tott, espresso, and xlisp are C benchmarks and the others are Fortran benchmarks

coverted to C using the utility ~2c. DAG_DLS performs significantly better than

IPS on the Fortran benchmarks, whereas IPS performs slightly better on average

for the C benchmarks.

Fortran benchmarks often compute multiple expressions in a single basic block.

DAG_DLS performs better on Fortran benchmarks because it effectively schedules

each expression and only schedules nodes from the next expression when there are

ACM Transactions on Programmmg Languages and Systems, Vol. 17, No. 5, September 1995

774 . Steven M. Kurlander et al

Execut%on-tzme improvement

benchmark Improvement

dnasa 1.270

doduc 2.8%

eqntott 0070

espresso -0.3%
fpppp 5 3~o

spice 0.4~o

tomcatv 3.1%

xlisp -0.270

Fig. 27. Execution-time Improvement on SPEC benchmarks when scheduling with DAG.DLS as

a replacement for IPS.

Comparmg Executton Ttmes of DA G.DLS and IPS

benchmark ezecut.ton ttme of DA G.DLS executton tame of IPS as a percentage

of the ezecutton tzrne of DA G_DLS

dnasa 4 5s 84.7%

doduc 16 7s 113.9%

eqntott 3.7s 97.4%

espresso 24.8s 99 1%

fpppp 10.2s 172 8%

spice 40.1s 118.9y0

tomcatv 0.5s 106.6%
Yli=m 1?1< 97,107.

Fig. 28. Time spent scheduling by DAG_DLS and time spent by IPS as a percentage of the

execut]on time of DAG_DLS.

available registers. IPS may try to intermix evaluation of expressions. This can

increase the register pressure beyond the threshold allowed by IPS. To decrease

register pressure, IPS may search for nodes that can free registers at the expense

of not filling delay slots, and if nodes that free registers cannot be found, register

spilling can occur.

When there is less of a demand for registers, as in the case for the C benchmarks,

IPS performs well. IPS can select nodes individually from a larger section of the

DAG. DAG_DLS only slides nodes earlier in the schedule. Sliding a node earlier

in the schedule cannot fill an empty delay slot occurring at a later position in the

schedule.

Figure 28 presents the execution time of DAG_DLS and the percentage improve-

ment this represents over IPS, an 0(n2) scheduler. DAG.DLS is significantly faster

than IPS on benchmarks doduc, fpppp, and spice, all of which have large basic

blocks. On benchmark ~pppp, DAG.DLS spends about 10 seconds; IPS spends ap-

proximately 70% more time than is required by DAG.DLS. For benchmarks with

smaller basic blocks, the scheduling times for both schedulers are competitive.

13.6 Comparing DAG_DLS and IPS to an Optimal Scheduler

We implemented a branch-and-bound algorithm that finds a schedule requiring the

fewest number of cycles for all basic blocks with 20 or fewer instructions for the

ACM Transactions on Programming Languages and Systems, Vol. 17, No. 5, September 1995

Instruction Scheduling for Delayed-Load Architectures . 775

Comparmg performance of DA G_DLS and IPS wtth an Opttmal Scheduler

benchmark dynamtc cycle DAG.DLS IPS

count of opttmal addztzonal % above addtttonal % above

s~hedules cycles opttmal cycles optzmal

dnasa 8,890,557,534 119,482,481 1.34% 107,091,098 1.20%
eqntott 1,178,718,422 13,357 < 0.01% 333 < 0 01%

espresso 2)152)731,998 154)417 o 01% 246,478 001’70

tomcatv 773)006,807 13)231)403 1.71% 13,231,660 1.71~o

Xllsp 3,226,952,871 9,328,767 0.29% 9,328,767 0 29%

Fig. 29 The number of cycles above optimal of DAG-DLS and IPS schedules and the percentage

above optimal these additional cycles represent. Basic blocks with 20 or fewer]nstructlons are

compared.

SPEC benchmarks listed in Figure 29. These basic blocks were instrumented to

compute their dynamic cycle counts.

The second column of Figure 29 shows the dynamic cycle count for the optimal

schedules. The remaining columns present the number of cycles above optimal for

the DAG-DLS and IPS schedules and the percentage above optimal these additional

cycles represent.

As mentioned in Section 13.5, DAG_DLS outperforms IPS on benchmarks with

large basic blocks. However, the performance of both DAG-DLS and IPS are ex-

cellent for smaller blocks. For these blocks their performance is either identical or

nearly identical. On the C benchmarks (eqntott, espresso, and zlisp), both sched-

ulers are within 0.3’% of optimal. Since DAG.DLS often generates betters schedules

for large basic blocks than IPS, and both schedulers perform well on small basic

blocks, DAG_DLS seems a reasonable alternative to IPS in production compilers.

14, CONCLUSION

The DLS algorithm performs optimal code scheduling and optimal register alloca-

tion in linear time for binary expression-trees with load delays of one cycle. The

algorithm can be modified to predict optimal locations for register spilling. Unlike

other code-scheduling algorithms, it does not suffer from phase-ordering problems

with register allocation.

Extensions to the binary tree algorithm allow DLS to schedule trees optimally

with nondelayed load instructions and unary operations. DLS can also handle

register variables and constants optimally.

DAG-DLS, which schedules DAGs and is based on DLS, often generates bet-

ter schedules than Goodman and Hsu’s scheduler IPS on large basic blocks and

is significantly faster. Both schedulers generate a near-perfect schedule for small

basic blocks. As a heuristic, DAG_DLS coordinates register allocation and code

scheduling without sacrificing the algorithmic linearity of DLS.

REFERENCES

BERNSTEIN D., .JAFFE. .J M , AND RODEH. LI 1989. Scheduling arithmetic and load operations

m parallel with no spdling. SIAM J. Comput, 18, 6 (Dec.), 1098–1127.

BERNSTEIN. D., PINTER. R, Y., AND RODEH. M. 1984. Opt]mal scheduhng of arlthmet~c op-

erations]n parallel with memory access In Conference Record of the 12/h Annual ACM

Sympostum on Prznczples of Programming Languages ACM, New York, 325-333.

ACM Transactions on Programmmg Languages and Systems, Vol. 17, No, 5, September 1995.

776 . Steven M. Kurlanderet al.

COFFMAN E C+ JR Ed 1976 Computer and Job-Shop Scheduling Theory John Wdey and

Sons, New York

FRASER. C W 4ND HANSON D.R 1991 Aretargetable compder for ANSI C. ACM SIGPLAN
Not 26, 10 (Ott), 29-43

GAREY. M R AND JOHNSON D S 1979 Computers and Intractabdtty A Guarle to the Theory

of NP-Completeness. W H Freeman and Company, New York

GIBBONS. P B AND h~UCHNrC~ S S 1986 13fficlent Instruction scheduling for a pipehned

architecture In Proceedings of the SIGPL.4N ’86 Symposttim on Compder Cons frwctton

ACM, New York, 11–16

GOODMAN J R AND Hsu. W -C 1988 Code scheduhn gandregmte rallocatlo nmlargebaslc

blocks. In Proceedings of the International Conference on Supercomputmg ACL1, New

York, 442-452

GWENNAF’ L. 1994 PA-8000 combmes complexity and speed Mtcroprocess Rep 8, 15, 1,6-9

HENNESSY J. L AND GROSS T R. 1982 Code generation and reorgamzatlon m the pres-

ence of plpehne constraints In Conference Record of the Wh Annual ACM S~mposmm on

Prtncaples of Programming Languages .LCM, New York, 120-127

HENNESSY J L AND GROSS T R 1983. Postpass code opt]mizatlon of plpehne constraints

ACM Tram Program Lang Syst 5, 3 [July), 422-448

Hu. T C 1961 Parallel sequencing andassembly line problems Oper Res 9, b, 841-848

LAWLER. E., LENSTRA. J K , MARTEL C , SIMONS. B , AND STOCKMEYER L 1987 P]pellne

scheduhng A survey. Computer Science Research Rep , IBhl Research Divmon, San Jose,

Cahf.

PAL~M. K AND SIMONS. B 1990 Scheduling t]me-crlt]cal mstruct]ons on RISC machmes In

Conference Record of the 17th Annual ACM Symposaum on Prtnctples of Programming

Languages. ACL(J, New York, 270–280

PATTERSON D A AND HENNESSY J L 1990. Computer Architecture A Quantztatwe 4p-

preach. Morgan Kaufmann, Palo Alto, Cahf.

PROEBSTING T A AND FISCHER. C N 1991 Linear-time optimal code scheduling for delayed-

load architectures, In Proceedings of the SIGPLAN ’91 Conference on Programmznq Lan-

guage Destgn anrl Implementation ACIL1, New York, 256–267

SETHI R AND ULLMAN T D 1970 Thegeneratlon ofoptlmal code forarlthmetlc expressions

J. ACM 17, -4 (Oct.), 715-728

WARREN, H. S .JR, 1990 InstructIon scheduhng for the IBM RISC svstem/6000 processor

IBMJ. Res Deu. 34, 1, 85–92.

Received August 1993, Revised June 1995, Accepted July 1995

ACM Transactions on Proflamm,ng Languages and Systems. Vol 17. No 5, September 1995

