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Abstract

Past register allocators have applied heuristics to allocate

registers at the local, global, and interprocedural levels. This

paper presents a polynomial time interprocedural register

allo cater that models the cost of al lo cat ing registers to pro-

cedures and spilling registers across calls. To find the min-

imum cost allocation, our allocator maps solutions from a

dual network flow problem that can be solved in polynomial

time. Experiments show that our interprocedural register

allocator can yield significant improvements in execution

time.

1 Introduction

Effectively using registers can significantly decrease the ex-
ecution time of a program. Common policy in current com-
pilers using only intraprocedural register allocation is to spill

at call sites registers that might be used by both the caller
and callee[CHKW86].

The goal of rmterprocedural register allocation is to min-
imize execution time given the register requirements of in-
dividual procedures in a program. Based on these require-

ments, an interprocedural register allocator selects which
registers are available to each procedure and, correspond-
ingly, around which calls registers are spilled. An inter-

procedurai alIocator aims to spill registers across infrequent

calls (or not at all).
This paper presents both a save-free interprocedural reg-

ister allocator (which never spills registers across calls), and

an interprocedural register allocator that spills registers as
necessary across calls. Our save-free allocator models the
cost of allocating registers to procedures and finds a mini-

mum cost allocation. A profile is used to estimate the benefit
of allocating different levels of registers to each procedure.

Our interprocedural register allocator that spills regis-
ters across calls minimizes the cost of allocating registers to
procedures as well as spill cost. The cost of spdling a register
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across a call is a function of the call’s frequency, Register
spilling allows registers to be reassigned along a path in the

call graph when profitable.
To generate a save-free interprocedural register alloca-

tion of a call graph, we use Cameron’s algorithm for finding
a maximum weight k-antichain in a partially ordered set

[Cam85]. To find a maximum weight k-antichain, Cameron
maps solutions from a dual minimum cost flow probleml, A
dual minimum cost flow problem can be transformed into a

minimum cost flow problem and solved in polynomial time.

In Section 4, we generalize our allocation model to allow for
register spilling across calls. To find these allocations, we

map solutions from a more general dual minimum cost flow

problem.

Our approach can be used with conventional compilers

that translate one procedure at a time. Each procedure
may be translated using any of the well-known, high-quality,
intraprocedural register allocators [B CKT89] [CK91] [Pl?92].
Then using profile information our minimum cost interpro-
cedural register allocator determines how many registers
each procedure will be given and where spills will be placed.
A minimum cost interprocedural register allocation may not

allocate registers to all locals in a procedure. For each of
these procedures, an intraprocedural register allocator will
generate a revised allocation using the procedure’s inter-

procedurally allocated registers and the temporary registers

available to each procedure.
The algorithm we describe can be part of a more general

interprocedural register allocator. Such an interprocedural

allocator can select global candidates to be allocated reg-
isters across procedure calls. In addition, an interprocedu-
ral allocator need not follow a predefine parameter passing
convention. This allows the allocator to pass additional pa-
rameters in registers as well as to choose which registers to

use (the registers selected need not always be caller-save).

2 Related Work

Past interprocedural register allocators have relied on heuris-
tics. Wall [Wa186] observes that two procedures that are not

simultaneously active can share the same registers for their

locals. With this in mind. Wall groups locals that can be

‘ Cameron refers fo the dual minimum cost flow problem as a. dual

tramportation systen? of linear inequalities. When we transform this
clual problem into the primal problem, tile ne%work flow graph is uot
bipartite and, thus, tbe ~rinlal problem is not a transportation prob-
lem However, the primal problem is a minimum cost flow problem.

We, therefore, refer to the dual rLs a dual minimum cost flow problem.
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assigned a common register. The locals of’ a procedure are
always placed in different groups than those of its descen-

dants and ancestors in a call graph. In addition, each in-

terprocedurally shared global is placed in a singleton group,

as globals are allocated registers throughout the entire pro-

gram. Groups are then allocated registers based on the total
frequency in which their members are referenced. Walls’ al-

locator may not find the best allocation with respect to his

model, since he allows locals infrequently referenced to be

grouped together with locals frequently referenced.
Steenkiste and Hennessy [SH89] design an interprocedu-

ral register allocator for LISP programs. Their approach

allocates registers to locals in a bottom-up fashion over the
call graph. Since the,y find that LISP programs tend to

spend their time in the leaf procedures of a call graph, their
method first allocates registers in the leaves lVhile registers

are available, a procedure is assigned registers that are not
already assigned to its descendants in the call graph. When
the registers are exhausted, they switch to an intraprocerlu-
ral allocation, This approach may introduce register spilling

around calls in frequently executed procedures near the top

of a call graph. The approach we propose avoids register
spilling across frequently executed calls.

Santhanam and Odnert [S090] perform interprocedural
register allocation over clusters of frequently executed pro-

cedures. Their heuristic aims to move spill code to the root
node of a cluster. The approach we propose examines the en-

ttre call graph to generate a minimum cost allocation spilling
registers as inexpensively as possible.

3 Save-free Interprocedural Register Allo-

cation

In this section, we describe a save-free interprocedural reg-
ister allocator that determines the number of registers to al-

locate to the locals of each procedure for acyclic call graphs

(cycles in call graphs normally force sa~’es across recursive

calls). Our solution is based on Cameron’s algorithm for
finding a maximum weight k-antichain in a partially ordered
set, [Clam85]. In Section 4, we generalize our allocation model

to compute a minimum cost allocation that may include reg-
ister spilling across calls in (possibly cyclic) call graphs.

For- each procedure, we assume an intraprocedural regis-

ter allocator has already grouped locals that can be assigned

the same register. We refer to each group as a regtster can-
dzdate. An interprocedural register allocator selects which

candidates are allocated registers. Each procedure has a few

temporary registers available. Locals assigned these reg-
isters do not require interprocedurally allocated registers.
These locals are correctly allocated at register allocation

time.
Initially, we assume that a register candidates is live

across all calls in a procedure. However, in Section 6 we
distingmsh between candidates not live across calls and can-
didates live across one or more calls.

Our interprocedural register allocator may give fewer
registers to a procedure than the number of candidates it

has. An intraprocedural register allocator can produce a

vahd allocation when given fewer registers. The mtraproce-
dural Tegister allocator will spill values internally as neces-
sary.

IV{. assume there is a positive benefit associated with
allocating a register to a register candidate. As more can-
didates are allocated registers the benefit of the allocation

increases (and, equivalently, the cost associated with the

allocation decreases). In our interprocedural register allo-

cation, a benefit estimates the decrease in loads and stores
from allocating a register to a candidate. Given k regis-

ters, our save-free interprocedural register allocator selects
an allocation in which the benefits of register allocated can-
didates sum to a maximum (across all procedures). That is,

registers are given to procedures that benefit the most,

3.1 Defining a partial ordering on the can-

didates of a call graph

Let G = (P, ,?3) be an acyclic call graph, where P is a set

of procedures and E is a set of call edges. We represent the

calls from procedure p. c P to P., c P as a single edge in
the call graph. Let S be the set of register candidates in
P. For procedure P. c P, let C(P,, ) be the set of register

candidates in Po.

We define the following partial order (~) on candidates
in an acyclic call graph such that there is an ordering be-

tween two candidates if and only if they cannot be assigned

the same register in a save-free interprocedural register al-
location:

1.

2.

In the partial order, assume the relation between can-

didates in a procedure is an arbitrary chain; that is,
there is an ordering between every two candidates in
the same procedure.

Let c, & C(P,, ), CW c C(PW), and P,, # PW. If there is., ,,
a path from procedure P“ to PW, then c?” ~ CU.

For Ci, Cj E ,S, c, E c1 is defined as ~i ~ CJ and c, # Cj.

Given (1) and (2), there is an ordering only between two
candidates of the same procedure or between candidates in

separate procedures connected along a path in the acyclic

call graph. Thus, either CU c CW or CW E c,, for candidates

c~, c,, E S if and only if cU, and c. cannot be assigned the
same register in the call graph.

In Figure 1(a), procedure P,,, has two candidates, p and

q, and procedure Pc has two candidates t and v. A partial
order on the candidates in the call graph appears in (b).

We assume the ordering between p and q is q c p and the
ordering between t and v is v c t. Since Pu calls P,., q c m
and p K m, and since P,, calls P,z, v c m and t C m.

Throughout Section 3, we assume (~) refers to the par-

tial order defined by (1) and (2).

3.2 Interference Graphs

Let 7’ be a set on which there is some partial order. Define

a comparability digraph D(T) as having an edge from u to
v when u is less than v in the partial order [Cam85]. If q is
the set of candidates of a call graph G and the partial order
is ( ~), then D(S) is the interference graph for a save-fre~

interprocedural register allocation of G. if there is an edge
between CU and c., in D(,$), then either c, and c,, are can-

didates in the same procedure, or c,, and c, are candidates
in procedures along a path m the call graph. Candidates c,,

and c,, cannot be assigned the same re.gmter.
Since a partial order defines the interference relatlon blJ-

tween candidates m a save-free mterprocedurai register allo-
cation, the interference graph 1s translt,ive. The interference
graph for mtraprocedural register allocation, however, can
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Pw

(a)

Partial Order on
Candidates in G

(b)

Figure 1: An example call graph, allowing for multiple candidates in a procedure, and a

the call graph

be non-transitive[ Cha82]. In an intraprocedural register al-

location, two live ranges that interfere are assigned different

registers. Assume live ranges la and lb interfere and live
ranges lfi and 1. interfere. Live range la does not necessar-

ily interfere with lc. In a save-free interprocedural register
allocation, if procedure P“ calls P,” and Pw calls Pz, then

execution will normally return to P.. To avoid overwriting
the registers hve across a call, candidates in P“, PW, and Pr

are all assigned different registers.

Figure 2 displays a call graph G, the partial order (~)

on the set of candidates, S, of G, and the comparability

digraph D(S). The number below a candidate is the benefit

of allocating a register to that candidate. Since q E p and

p c m, there is an edge in D(S) between q and p, p and m,
and q and m. These three candidates can never be assigned

the same register. Candidate t can be assigned the same
register as p or q, as there is no edge joining either t and p
or t and q.

3.3 Antichains

We call a set of nodes in a digraph independent if none of
the nodes in the set are joined by an edge. Let S be a
set and assume some partial order on S. An unticham in

S is an independent set of nodes in II(S). For example,
in Figure 2(c), {p, t}, {p, v}, and {q, v} are antichains, as
the candidates in each set are not joined by an edge in the
comparability digraph. A k-anticham is the union of at most

k antichains [Cam85]. Both {p, t, q, v} and {p, t, v} are 2-

ant Ichains.
Let S be the set of candidates of a call graph G and

assume partial order (~) on S. II(S) represents an interfer-

ence graph for a save-free interprocedural register allocation
of G and, thus, the candidates of an antichain in D(S) can

be assigned the same register. A k-anticham in D(S) is a set
of candidates that can be allocated using at most k registers
in G.

Assume each register candidate CJ c S has a positive
integer wel,ghting, Wj. Let (~) be a partial order on S. If

V+ is the benefit of allocating a register to candidate CJ ~

then a maximum weight

partial order on the candidates of

k-antichain in S corresponds to a

k-register save-free interprocedural register allocation whose

elements sum to the maximum benefit; that is, a save-free
mimmum cost interprocedural register allocation using at

most k registers.
In Figure 2(c), assume k = 2 antichains. .4mong the

possible allocations of candidates to antichains, the choice
with the greatest benefit allocates candidate m to an an-
tichain (Az), and candidates q and t to an antichain (Al).
Each antichain maps to an arbitrary, but different register.

In Figure 2(a), m is assigned register TZ, and q and t are as-
signed register rl. Since candidates p and 7J are not allocated
registers, an intraprocedural register allocator will spill reg-

isters as necessary in procedures PW and Pz to generate a
valid register allocation.

3.4 Finding a maximum weight k-antichain

sequence

A k-antichain can be partitioned into a k-antichain sequence.

A k-antichain sequence A = (Al,. ., , Ak), where A, ~ S,

and if c, 6 AP, CJ E Aq, and c, c c,?, then p < q [Cam85].
Each A,, 1 < i ~ k, corresponds to an antichain—if c, K c~.

then c, and Cj cannot be members of the same antichain.

Given the 2-antichain {q, t, m}, and the partial order t E m
and q c m, then antichain Al = {q, t} and Az = {m}, as
shown in Figure 2(c).

Given partial order (~) on a set of candidates in a call
graph G, we can view each antichain A,, as an abstract
register R,. An abstract register is an equivalence class of

candidates that can be assigned the same register. Each

abstract register maps to a different hardware register.

Let CU c C(PO), CW E C(PU, ), and assume CW c cl-there

is a call path from P. to PW or Pu = PW. Assume we assign

registers to candidates m a topological ordering over the

partial order—if CW E CV, then we visit c,, before CW. If we

assign register l%. to c,,, then CW can only be assigned register

l?p, such that O < p < q. This register ordering models the

sequence in which antichains are assigned to candidates.
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Call graph G

1 t

(rl)

Partial Order on Comparability Digraph
Candidates in G

(a) (b) (c)

Figure 2: A call graph G, a partial order on the candidates in G, and the comparability digraph of the candidates in G.

To find a maximum weight k-antichain sequence in a

partially ordered set, we solve the following dual minimum
cost flow problem[Cam85].

Dual Variables

‘1> ~J ‘OrcJ’s

Constraints
A.1 forcj CS, OSXJ, gJ ~k.
A.2 if c%,cl E S and c%c cl, then x, +yJ ~ k.

A.3 forcJ6S, zJ+yJ~k+l.

Ob]ectwe Function

A.4 Maximize ~C, ~~ W3 * (xj + y~).

For each candidate in c1 ~ S, there is a pair of integer

dual variables, XJ and yj, and an integer weight w~ >0 in
the dual minimum cost flow problem. A solution to this

dual minimum cost flow problem maximizes the objective
function A.4, given the constraints A. 1–A.3 on the dual vari-

ables. Whereas a minimum cost flow problem minimizes an

objective function, a dual minimum cost flow problem maxi-

mizes an objective function. If a candidate Cf is allocated to

an antichain, the variable XJ will specify the antichain that
Cj is assigned. The variable yj constrains the value of z,
for c, C CJ to prevent both candidates c, and CJ from being
assigned to the same antichain,

Figure 3(a) shows a call graph G. Let S be the set of
candidates in G. A representation of the partial order on

S appears in (b). Based on this partial order, a representa-
tion of the dual minimum cost flow problem appears in (c).
Each node represents a dual variable. Solid edges represent

constraint A.2. Dashed edges represent constraint A.3.
Intuitively, a correspondence exists between a maximum

weight k-antichain sequence and assignments to the dual

variables of the dual minimum cost flow problem. In solu-
tions to the dual minimum cost flow problem, one can prove
that for c, ~ S, ZJ + y, = k + 1 or XJ + yj = k [Cam85].
If zj + yj = k + 1, then we map C3 to the antichain whose
number in the sequence equals the value of XJ. Otherwise,
if Zf + yj = k, c: is not mapped to an antichain.

Assume that (a) ZJ + yj = k + 1, and let c, E CJ. By
constraint A.2, (b) x,+ yj < k. Equations (a) and (b) imply

that x, < xl. Assume z] = h. We map cj to antichain
Ak. All candidates c, c Cj can only map to antichains Am,

O<m <h.

Let ZJ + yj = k for Cj 6 S. If c, E CJ, then by constraint
A.2, X, + yj < k. Thus, x, s XJ. Assume XJ = h. Thus, we

do not map Cj to antichain Ah, as c, may be mapped to Ah.

Candidates c, and C3 can never share the same antichain.
There exists a l-l and onto mapping (a bijection) from

maximum weight k-antichain sequences to solutions of the

dual minimum cost flow problem above. A solution to the

dual minimum cost flow problem is represented by a se-

quence of tuples z = ((xl, yl), . . . . (xlsl,ylsl)).
Let Q“ (k, S) be the maximum weight k-antichain se-

quences in S, and let P“ (k, S) be the solutions to the dual

minimum cost flow problem. For .4 E Q* (k, S) there is a bi-
jection z(A) onto z c F’* (k, S), and for .z ~ P+ (k, S), there
is an inverse function A(z) [Cam85]. A(z) maps z c P“ (k, S)

onto a maximum weight k-antichain sequence (A I,... , A~).

Mapping A(z) is defined as (AI(z),..., A~(.z)). For 1 s p s
k, Ap(z), which maps candidates to antichain Ap, is defined

as
Ap(z)={ct lz, =p; zi+yi=k+ l}.

If the dual variables z, and y, sum to k + 1,then candidate
c1 is mapped to the antichain whose number in the sequence

equals the value of x,.
Assume z ~ P*(k, S) and A(z) = A G Q“(k, S). The

objective function A.4 maximizes ~CJ es WJ * (aJ + yj ). If

X7 +yJ = k+ 1, then CJ is mapped to an antichain; otherwise,

Z3 + Y7 = k and C$ is not mapped to an antichain. Thus,
Xj + yj — k = 1 if c~ is mapped to an antichain; otherwise,

Zj + yj — k = O. The value of the objective function for
solution z, therefore, differs from the weight of maximum

weight k-ant i chain sequence A by a constant.

3.5 Example

Figure 4(a) shows the partial order on the candidates of
call graph G of Figure 3. Candidates along a path must be
assigned to distinct abstract registers. Let Rp and Rq be
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Call graph G Partial Order on Dual Mincost Flow Problem
Candidates in G based on the Partial Order

(a) (b) (c)

Figure 3: Example call graph G, graph of a partial order on the candidates in G, and the dual minimum cost flow problem
with respect to the partial order. Each node in the dual minimum cost flow problem represents an integer-valued dual variable,

and each edge represents a constraint between two dual variables. The constant above an edge is the integer upper bound in
the corresponding constraint.
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Candidates in G
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Figure 4: Partial order on candidates in G, and graph of dual minimum cost flow problem for G
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abstract registers. If c, c CJ, c, E RP, and CJ c Rq, then

p<q.

.4 register allocation and assignment using two registers

appears in Figure 4(a). Candidate m is assigned register RZ,

and q and tare assigned register RI. This register allocation

has the maximum benefit.
Figure 4(b) shows the the graph of the dual minimum

cost flow problem based on the partial order (a) for k = 2
registers. The solution in (b) can be mapped to the solution
in (a). Since zn + y~ = k + 1, and z~ = 2, candidate m

maps to register Rz. As Xg +yq = k+ 1 and Zq = 1, q maps to

RI. Similarly, candidate t maps to RI, since zt + yi = k + 1
and Zt = 1. Since v E t, z. = O. As z. + yu = k, candidate

v is not mapped to a register.

4 Interprocedural Register Allocation with

Spilling

In this section, we consider an interprocedural register allo-

cation that allows for register spilling across calls. The call
graph can now be cyclic (save-free allocations are gener-

ally not possible for cyclic call graphs). As in the save-free
approach, we assume a benefit associated with allocating
registers to procedures, but now we also assume a cost asso-

ciated with spilling registers across calls. The cost of spilling
a register is two (for a load and a store) times the frequency

of the calls represented by the edge. To find an allocation
with maximum benefit, we again map solutions from a dual

minimum cost flow problem.

Let call graph G = (P, E), where P is a set of proce-
dures and E is a set of call edges. For P. c P, let C(PV )
represent the set of local register candidates in P., and let

C(P) represent the set of local candidates in all procedures
in the call graph, For a procedure P., let IN(PV ) be the set

of call edges incident on P., and let OUT(PV ) be the set of
outgoing call edges from P..

In the save-free approach, if there is an ordering between

two candidates, then they cannot be assigned the same reg-

ist er. However, since registers are now spilled as necessary

around calls, if CU c C(PV ), CU ~ C(PW ) and Pu calls Pw,

then CU may be assigned the same register as CU. We, there-
fore. now assume a partial order that only relates candidates
in the same procedure, as these candidates can never be as-

signed the same register. The ordering among the candi-
dates in a procedure is a chain, as in (1) of Section 3.1. We
refer to this partial order as (~) throughout Section 4.

Since partial order (C) only relates candidates in the
same procedure, there is an ordering between q and m in
Figure 5. Let q E m. We represent this ordering by an
undirected edge between q and m. For t c C(P2), t~ t.

Let an abstract register Rh, 1 ~ h ~ k, be a set com-

posed of candidates assigned that register. Each abstract
register is mapped to a hardware register after interprocedu-

ral register allocation. Let R be the sequence (RI, . . . . R~).

To model spills along the edges of a call graph, two in-

teger variables are introduced for each edge. For ej 6 E,

the variable ~ree.in~ represents the number of unallocated
registers on entrance to edge ej, and the variable ~ree.outj
represents the number of unallocated registers on exit from
edge eJ. The number of registers spilled along edge eJ is,

therefore, free.outj – ~ree_inf. Let ~ree.in be the se-
quence (free.in,, . . . . free_inl E[ ) and free.out be the se-
quence (~ree.-outl, . . . . ~ree.outl~l).

Call graph G

Figure 5: Example call graph G. A partial order exists only

among candidates in each procedure.

Assume k registers are available for an interprocedural
register allocation. Allowing for register spilling along the

call edges, an interprocedural register allocation J for a call

graph G is represented by 1 = (R, free-in, free-out), and
has the following constraints and maximization function:

Constraints

1.1 for el c E, free-inj s freesutj.

1.2 for ej E E, O S free-inj, free-outl ~ k.

1.3 if c~ 6 RP, c, c C(PU), and e] E IN(PU),

then p ~ free.outj.

1.4 if ci c RP, ci G C(PU), and ej E OUT(PV),

then p > free-in~.

1.5 if e, c IN(PV) and e, 6 OUT(PO),

then f ree-outJ z free -in,.

1.6 let Ci, cj c C(PU). if c, 6 Rp, cl G RQ, and c, E C3,

then p < q.

Maximization Function

1.7 maximize ~
C,elJ;=, R, “-

x s * (f ree-outj – free-inj )
eJ6E J

Constraints 1.1 -1.6 define how registers are spilled along
the call edges and consumed within procedures. Constraint
1.1 states that the number of free registers on exit from a
call edge is greater than or equal to the number of free reg-
isters on entry to that edge (the difference is the number

of registers spilled along the edge). Constraint 1.2 bounds
the number of free registers on entrance to and exit from an

edge by the number of registers available for allocation. Con-
straint 1.3 asserts that if candidate c, is assigned to register

RP, then there must be at least p registers free on entry to

the procedure from each incoming edge (ci is assigned one of
the free registers). Similarly, 1.4 asserts that if c, is assigned
to register RP, then there must be fewer than p registers
free upon exit from the procedure along each outgoing call

edge. By L5, there cannot be more registers upon exiting a
procedure than there are upon entering it (all saving is done
on the edges).
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Call graph G

1 reg!ster ava!lable

&
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‘1 ~ (R,)
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free_out, = 1

‘2& “Q ‘~~””=’

free_m z= 1
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h

4

0c1
(R,) P3 3

Figure 6: Interprocedural register allocation of call graph G.

Two candidates c,, Cj c C(PO ) cannot be assigned the

same register. By 1.6, registers are assigned in a decreasing
sequence within a procedure. If candidates c, and c1 are

both allocated registers in procedure P. and c, c C3, then

the register assigned to c, occurs before the register assigned
to CJ in the sequence. As in the case for save-free interpro-
cedural register allocation, if there is no register spilling,

registers are assigned in a decreasing sequence across calls.

Assume CL,E C(PU), CW G C’(PW), and Pu calls PW (we model

the call as edge ej in the call graph). If CUis assigned register
RF, then by constraint 1.4, there are fewer than p registers
free on entry to e~ (~ree.znj < p). Assume no registers
are spilled around the call. Thus, free.outj = free.inj in

1.1. If CW is assigned register Rq, then by constraint 1.3,

q < free.outj. Therefore, since free-outj = free-inj and

free-in, <p, then q <p,
Each candidate C3 E C(P) has a positive integer weight,

UJj. Each call edge eJ E E has a positive integer cost, SJ, for
spilling a register, and spills free. outj — free-inj registers.

Assume ej is the call edge from PV to PW. Abstract register

R,, i ~ f ree_znJ, is available on exit from P“. By constraint
1.3, register R,,, z ~ ~ree-outj is available to candidates

in PW. Our algorithm spills register R, along edge e] if
free.in~ <2’ ~ free.outJ.

We want to find a k-register interprocedural register allo-
cation that maximizes function 1.7. Since spilling decreases
the value of 1.7, candidates are assigned a spilled register

only if the sum of their weights is at least as large as the
cost of spilling that register.

Figure 6 presents an interprocedural register allocation
assuming one available register. The number below each
candidate is the benefit of allocating that candidate a reg-
ister. The number below a call edge is the cost of spilling a
register on that edge. Candidate m is assigned register RI

Since the benefit of allocating a register to p is Iess than
the spill cost along edge el, p is not allocated a register.
However, the benefit of allocating a register to q exceeds the
spill cost along edge el (but not the spill cost along edge
e~ ). Thus, register RI is spilled along edge el, and RI is
assigned to q. Since the cost of spilling a register along edge

Dual Varvables

(z,, y, for c, C C(P)), (r,, t, for e, E E)

Constraints

D.1

D.2

D.3

D,4

D.5

D.6

D.7

D.8

Ob]ecttve Functton

D.9 Maximize ~
C,6C(P)W3 * (X3 +YJ) +

LGE% * (rf +~~)

Figure 7: Dual minimum cost flow problem whose solutions
are mapped to an mterprocedural register allocation with

spilling.

es is less than the benefit of allocating a register to n, RI is

spilled along es and assigned to n.

4.1 Finding a Minimum Cost Allocation

To find a minimum cost interprocedural register allocation

for a call graph, we solve the dual minimum cost flow prob-
lem of Figure 7.

In this dual minimum cost flow problem, there is a pair

of integer dual variables (z,, y,) for each candidate c, E

C(P) and a pair of integer dual variables (T1, tj ) for each
edge ej E E. As before, for c, E C(P), integer w, > 0
represents the benefit of allocating a register to a candidate.

For e~ ~ E, integer s~ > 0 represents the cost of spilling

a register on edge ej in the call graph. As in the save-free
approach if z, +y, = k +1, then candidate c, will be assigned
the register whose value is z,. For ej E E, rj represents the
number of free registers on entry to edge e~, and tjrepresents
the number of registers allocated on exit from ej. For ej c

IN(PC), ti constrains the registers that can be allocated to
candidates in procedure P= (constraint D.,5), the number of
free registers on outgoing edges from PC (constraint D.7),
and the number of free registers on entry to ej (constraint
D.8). Also, candidates in P. constrain the number of free

registers on outgoing edges from P. (constraint D.6).

We define zy to be the sequence of tuples

((~i, yl), . . . (~lC(P)l IYIC(P)l)),

and rt to be the sequence of tuples

((rl, tl),... >(~lEl, tEl)).

A solution to the dual minimum cost flow problem is repre-

sented by tuple z = (zy, rt). For a call graph G on which we
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define partial order (~), and given k registers, let P“ (k, G)

be solutions to the dual minimum cost flow problem of Fig-

ure 7. Let Q* (k, G) be solutions to interprocedural register

allocation with spilling. In [Kur95], we prove that there ex-
ists a bijection z(1), from 16 Q* (k, G) onto z 6 P“(k, G),

and an inverse function 1(z) for z c P* (k, G). I(z) is defined
below.

. I(z) = (R(z), f7-ee-in(2), free-out(z)).

eforl~h~k,

R~(Z)={Cj IZ] +lJj ‘k+l, Zf ‘h,., ~C(P)};

R(z) = (RI(Z),... ,Rk(2)).
● for ej E E, free.inj (z) = rj;

free.in(,3) = (free-inl (2), . . . . free-in~l (.z)).

o for e~ E E, free.outj (z) = k — tj;

free-out(z) = (f7-ee_outl (z),..., f7-ee_outl~l (z)).

For z c P* (k, G), function 1(z) maps z to an interproce-
dural register allocation defined as (R, free-in, free-out).

Functions R(z), free.in(z), and free-out(z) map to se-

quences R, free_irz, and jree_out, respectively. Rh (z) maps
candidate CJ to register Rk if XJ + yj = k + 1 and XJ = h.
For ej E E, free_inJ (z) maps the value of variable rj to

free-inj. For ej E E, free_outJ (z) maps k–tl to free-outj.

The variable tj, therefore, represents the number of unavail-

able registers on exit from edge e~. The number of register

spills along edge ej is free-outj – free.-inj = k – tj – rj.

The number of registers spilled along an edge includes those
not free on entry to the edge (k – rj ) but made available

on exit from the the edge (k – rJ – tj).Thus, rj + tj is the
number of registers not spilled along edge ej.

Constraints D. 1 - D.3 of Figure 7 are similar to con-
straints A.1 – A.3 of the dual minimum cost flow problem
for a save-free allocation. As in the dual minimum cost flow

problem of Section 3, if z c P* (k, S), then for c, c C(P),

Zj+yj = k or ZJ+VJ = .k+l. Assume (a) XJ+YJ = k+l and
c, L C3. If c, E CJ, then by constraint D.2, (b) Z, + yj ~ k.

Equations (a) and (b) imply z, < X3 and, thus, c, and CJ
can never be assigned the same register.

Constraint D.4 bounds the value of TJ and tffor e] ~ E

by the number of available registers. By constraint D.5,
for ej E IN(PU ), k – tj bounds the number of registers
available to candidates in C(PU ). For c, E C(PU ), assume

z, +u, = k+ 1 and a, = p. Candidate c, is mapped to register
RP. By constraint D.5, x, ~ k – tj.Mapping I(z) assigns
free-out~ the value k – t].Thus, p ~ free.outl, which is
constraint 1.3 in our definition of an interprocedural register

allocation.
By constraint D.6, the value of k – y, for c, c C(PU )

bounds the value of r~ for ej E OUT(PU ). Mapping 1(.z)

assigns free-in] the value of r]. Thus, k – y, bounds the
number of free registers on entrance to ej. Assume Z* + y~ =

k + 1 and z, = p. Candidate c~ is mapped to register RP.

By D.6, rj + y, ~ k. Thus, rj < z,. Since 1(z) maps the
value of r~ to free_inj and z, = p; therefore, free_inj < p,

which is constraint 1.4.
By constraint D.7, k – tjbounds r, for ej < IN(PU ) and

e, c OUT(PU). By D.7, r, s k – tj.By mapping 1(z),
free_inz ~ f Tee-outl, which is constraint 1.5.

By constraint D.8, for e~ c E, r, + t, < k. As mentioned

above, ri + ttis the number of registers not spilled along et.
AS r, + t, s k, then r, < k – t,.Applying mapping I(z),

f Tee-in, s fr.emd,, wh~ch is constraint 1.1.

The objective function D.9 is

and the maximization function 1.7 is

The value of the objective function for z c P* (k, G) (D.9)

and the value of the maximization function for 1(z) = 1 c

Q* (k, G) (1.7) differ by a constant. As in Section 3, by sub-

tracting the constant ZC, ~C(P1 k * WJ from ~C, ~C(P1 WJ *

(z, + y,) in D.9 yields (a) ~ ,,e~(pj wj * ($f +yJ — k). Since

Xl + y] – k = 1 if CJ is mapped to a register and, other-
wise, X3 + yj – k = O, equation (a) is equal in value to

Xc, eu:=l ~t W3 in 17

Moreover, for eJ E E, (b) rj + tj in D.9 is the num-
ber of registers not spilled along ej, and (c) – ( f ree..outJ –

f ree_inJ ) in 1.7 is the negative of the number of registers
spilled along ef. Thus, r~ + tj– k = – (f ree.-outj – f ree-.irzj ).

As (b) and (c) differ by the constant k, ~e, ● E S3 * (rJ + tj)

in D.9 differs from – ~ ~ =E SJ * (free-outJ – ~ree_i7zj ) in
)

1.7 by the constant ~, CE s, * k.
J

4.2 Example

Figure 8(a) shows call graph G of Figure 6 with the same in-
terprocedural register allocation. Variable allot, represents
the register that c, may be assigned. Only one register is

available. Register Rl is assigned to m, q, and n and spilled
along edges el and e3.

Figure 8(b) displays the graph of the dual minimum cost
flow problem for G. There is a pair of nodes for each candi-

date and call edge in G. For clarity, variable zi is renamed
allocz for Ci c C(P). Since mapping 1(z) for e, ~ E assigns

f ree_in, the value of r,, we rename r, in (b) as free-in,.
The dashed edges in Figure 8(b) represent constraints

between pairs of nodes and solid edges represent constraints
between nodes from separate pairs. The k or k + 1 along an

edge represents the bound in the corresponding constraint.
Assume k = 1 in Figure 8(b). Since alloc~ + Y~ =

k + 1, and by constraint D.5, free.inl + y~ S k, then

f ree_inl < alloc~. Since the number of available registers
decreases from 1 to O, we assign candidate m to register RI

(atloc~ = 1). As there are O free registers on entrance to

el (free-inl = O) and O unavailable registers on exit from
el (t 1 = O), then the number of register spills a~ong el is

k – tl– free_inl = 1. Therefore, candidate p may be as-
signed register R1, as allocP = 1. Since ailocP + 9P = k, P is

not allocated a register.
Since p is not allocated a register, there is a register free

on entry to ez (f ree.-inz = 1).By constraint D.8, f ree.-im +

t2 ~ k. Thus, tz = O—there are O unavailable registers out of

e~. Candidate Q is allocated a register, as ulloc~ +yg = k +1.
A register is spilled along es, since k – free-ins - t3 = 1.

This register is assigned to n. The register allocation and

assignment of (b) correctly corresponds to the allocation and
assignment described in (a).

237



Call graph G

1 reg[steravailable

Dual Mincost Flow Problem

k = 1 reg!ster

dIOCm = 1
(R,)

K31

m
‘1 ~

free_in 1= O VT free_in ~= O

/

(SpiII R,) el

free_out 1=1 2

plallocp =1 ~

‘2 1

A
free_m2=l ez

free_out2=l 4

allocq = I o~@l)P3 ~

(a)

)3
e3 (spill RI)

1 free_out ~= 1

0n allocn = 1

P~ cJ (R,)

~

free_in3.0 J——— t3=o
k

allOCn .1 ‘+L— —

-0

Yn=l

(D)

Figure8: Example call graph Gandgraph representation of thedual minimum cost flow problem for G.

5 Complexity

For p candidates and edges in a call graph, the number of

dual variables in the dual minimum cost flow problem of Sec-
tion 4 is O(p). However, the number of constraints between

dual variables is 0(p2 ), as a dual variable for a candidate

or edge can have constraints with O(p) other dual variables.

Our dual minimum cost flow problem can be transformed
into an unconstrained minimum cost flow problem, in which
there are O(p) nodes and O(p2) arcs.

Letting n be the number of nodes and m be the number

of arcs, an unconstrained minimum cost flow problem can
be solved in O(n log n(m +n log n) [Or193], which is indepen-
dent of k, WJ, and SJ in our dual minimum cost flow problem.
The complexity of solving our minimum cost flow problem
is, therefore, O((p log p (pz + p log p)), which is 0(p3 log p).

6 Liveness

Before performing interprocedural register allocation, we can
modify the call graph to avoid spilling registers assigned to
candidates not live across any call. Our interprocedural reg-
ister allocation model assumes that a candidate live across
a call is live across all calls.

In a procedure, let L be the set of candidates that are
live across a call, and let NL be the set of candidates not
live across any call. In each procedure, we move the can-
didates in NL below the candidates L in the partial order.
Constraints are not added between the candidates in NL

and the outgoing edges of the procedure. All candidates in
the procedure compete for registers as before, but as there
are no constraints between the outgoing edges from the pro-
cedure and the candidates in NL, the registers assigned to
these candidates are not spilled.

In Figure 9, we assume candidates m and n are not live
across the call to PZ. In (b), m and n are moved below q

in the partial order. By moving m and n below q, q is now
assigned R3, and m and n are assigned 1% and RI. Since

!
m

‘1 n

q

e

(R3)

(R2)

(~+

(spill R,)

(spill R2)

(R3)

%

PI

q
(R2)

m (RI)e

B

n
u (R2)

P2

v (Rl)

i

u (R2)

P2

v (Rl)

(.) (b)

Figure 9: By distinguishing between candidates live and not
live across calls, fewer registers are spilled.

we also remove the constraints between candidates m and n
and edge e, we can assjgn w. and w in P2 the same registers
as m and n, without spilling registers across the call,

7 Library Routines

We assume that library routines have been pre-compiled us-
ing a caller-save/ callee-save convention for spilling registers
across calls[CHKW86]. Any caller-save register live across a
call to a library routine must be spilled across the call.

To allow for pre-compiled library routines, we create a

pseudo library routine that allocates the abstract registers
that we will map to the pre-defined caller-save registers. All
procedures that call library routines have a call edge to this
pseudo library routine. As all caller-save registers are allo-
cated in this pseudo routine, a caller-save register live across
a call to this routine will be spilled.



Assume there are n caller-save registers and k total reg-

isters. Since abstract registers are assigned in a decreas-
ing sequence, we let abstract registers RI, . . . . Rn map to
the caller-save registers. Only if more than k – n registers

are live across the call to the pseudo library routine will a

caller-save register be spilled. To ensure that the n candi-

dates in the library routine are assigned abstract registers
RI,. . . . R., we modify the dual minimum cost flow problem

in Figure 7 such that z, = Z; z, + ~, = k + 1 for candidates
c,, 1 < i ~ n, allocated in the pseudo library routine.

8 Indirect Calls

Indirect calls use the same caller-save/callee-save convention
followed by library routines. When building a call graph, we
assume that each procedure that can perform an indirect call
can invoke any aliased procedure. The number of call edges
representing indirect calls would, therefore, be the product

of the number of routines that can make an indirect call and
the number of aliased routines.

Since we assume a fixed calling convention it is not nec-

essary to include these call edges. Instead, we add a call

edge from a routine making an indirect call to the pseudo
library routine. Caller-save registers allocated by the proce-

dure making an indirect call must be spilled around the call.

We remove the call edges incident on the aliased routines
(for simplicity all indirect and non-indirect calls to aliased

routines will use the fixed calling convention), and add one
call edge eJ from a newly generated pseudo procedure to
the aliased routine. We assign the number of caller-save
registers, n, to dual variable rJ, the number of registers free

on entry to edge e~ as defined by the dual minimum cost
flow problem of Figure 7. Registers can be spilled along efl

(spilled on entry to the aliased routine), as the number of

register spills, k — rj — tj, along ej can be positive.

9 Implementation

We generate code for a DECstation 5000/125, with MIPS
R3000/R3010 processors. We assume that three general
purpose integer registers, two general purpose floating-point
registers, and the pre-defined parameter registers are work
registers that are not allocated interprocedurally and hence

are available to each routine.

We use profile information to compute the number of
calls between each procedure and the number of instructions

executed in each procedure. Profile information is gath-
ered using qpt[BL92]. When profiling, benchmarks are run

on input yielding short execution times, except for bench-
mark nasa7, in which we have only one input file. Since
the profiled code is compiled using only an intraprocedural
register allocator, some variables live across calls may not
be allocated a register because of an insufficient number of
callee-save registers. To accurately determine the number

of references to registers that can be live across a call, we
modified gcc[Sta93] to return the number of register refer-
ences assuming the non-work registers are callee-save. We
let the general-purpose registers that are non-work registers

represent candidates in our interprocedural register alloca-

tion algorithm, and their number of register references scaled
using profile information represents the candidates’ weight.

After generating an interprocedural register allocation,
the registers available to each procedure and the spills across

Execution-time Improvement

benchmark Mmtmum Cost Steenkiste and Hennessy
compress 1.4% -0.2%

doduc 4.6% 4.2%
eqntott o% 0;
espresso 8.7% 7.3%
fpppp 3.9% 3.0%

gcc 8.3% 1.1%

nasa7 0.2% -0.1%
Sc 10.7% 7.4%
suite 2.8% 1.7%

[ xiisp 11.2% -3.2% 1

Figure 10: Execution-time improvement from adding our
minimum cost interprocedural register allocator with spills
and Steenkiste and Hennessy ’s bottom-up interprocedural
register allocator to gee.

each call are written to a file. Gcc reads this file to generate

a register allocation. We assume that library routines have

been pre-compiled using a caller-save/calIee-save convention
for spilling registers around calls.

In some benchmarks, a procedure that is not called when

profiling with one input is called when using another. If

a procedure is not called, we have no information on the
frequency in which its candidates are referenced. We opti-
mistically allocate registers to these procedures’ candidates

as follows. We increase all zero edge frequencies to one. As-
sume the total spill cost along incoming and outgoing edges
of a procedure is j. Register candidates in a procedure called
zero times are assigned a benefit of 1 + j. Since the cost of

spilling a register on entry to and exit from a procedure is
less than the benefit of allocating a register to a candidate,

these candidates are always allocated a register.

Figure 10 compares the execution-time improvement of
adding our minimum cost interprocedural register allocator

with spills with Steenkiste and Hennessy’s bottom-up inter-
procedural register aIlocator[SH89] to gee. The benchmarks
are compiled at optimization level 02 with loop-unrolling
enabled. Results from a sample of SPEC92 benchmarks are
presented. Both interprocedural register allocators find a

significant improvement on benchmark doduc, as this bench-
mark has procedures with many registers live across calls.
An interprocedural register allocator can generate an alloca-

tion that spills fewer registers across calls than an intrapro-
cedural register allocator. Benchmark eqntott shows no im-

provement for either allocator, as most of its execution is in

a leaf procedure.
Benchmark zlisp shows a large improvement for our al-

locator as it has small, frequently called routines. However,
running Steenkiste and Hennessy ’s bottom-up register al-
locator results in a worse allocation than an intraprocedu-
ral register allocation. Benchmark xlzsp has many routines
at the bottom of the call graph called less frequently than
routines higher in the call graph. With a bottom-up alloca-

tion, registers are spilled across the more frequently executed
calls. Steenkiste and Hennessy[SH89] note that a better in-
terprocedural register allocation can be generated by adding

register spills in infrequently executed procedures in the bot-
tom of the call graph and then performing a bottom-up allo-
cation assuming these routines are allocated zero registers.
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benchmark procedures candidates % of compdatzon tame

floatmg-pomt ~ tnteger jloating-pomt znteger

com nress 16 n 31 < 0.1% 0.3%

0.2%

eantott I g~ I o I I 78 I 0.1% 0.8%

. . ...~. -.. 1 I 1 1 . . . . .

j doduc ii 176 27; < 0.1%
..–. 1 I t ! I

espresso 361 1 1,604 0.6% 2.9%

fDDDD 13 36 52 < 0.1% < 0.1%. . . .
gcc 1,451 4 3,204 0.7% 4.3%

nasa7 23 23 168 < 0.1% < 0.170
Sc 154 18 344 0.2% 1.2%

spice 142 158 626 0.1% 0.2%

xlisp 357 5 507 1.2% 2.3%

Figure 11: The time for solving the minimum cost flow problem for the floating-point and integer candidates as a percentage
of the m-o~ram’s compilation time without interprocedural register allocation. The number of procedures and the number of.=
integer and floating-p’oint candidates are also shown.

To solve the dual minimum cost flow problem for in-
terprocedural register allocation with spills, the problem is
transformed into a minimum cost flow problem. Solutions
to the minimum cost flow problem are found using the pri-
mal network simplex method [Zak95]. Though the primal

network simplex method is exponential in the worst case,
we found it faster in practice than a polynomial time dual
network simplex algorithm available to us. Figure 11 shows

the percentage of time spent running the network simplex

method as a percentage of the total compilation time with-
out interprocedural register allocation. For each benchmark,

we solve two minimum cost flow problems, one with inte-

ger candidates and one with floatmg-point candidates. The
number of procedures in each benchmark appears in column
2. Columns 3 and 4 show the number of available candidates
for interprocecfural register allocation. As mentioned earlier,

work registers are not included as candidates, Interestingly,

espresso, gee, and zlzsp have few floating-point candidates,
but since they have a larger call graph than benchmarks,

doduc, fpppp, and space, all of which have more floating-

point candidates, mm-e time is spent finding a solution as a

percentage of the total compilation time.

10 Conclusions

Past interprocedural register allocators have used heuristics

to determine the registers to allocate to each procedure and
to spill around each call. We have presented a polynomial
time interprocedural register allocator that uses a model of

cost to represent possible allocations. Our allocator finds
a minimum cost allocation for allocating registers to each
procedure and spilling registers around each call. This al-
locator is fast in practice and can yield significant run-time

Improvements,
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