
Register Allocation in the SPUR Lisp Compiler? 

James R. Larus 
Paul N. Hilfnger 

Computer Science Division 
Department of Electrical Engineering and Computer Sciences 

University of California 
Berkeley, California 94720 

ABSTRACT 
Register allocation is an important component of most 

compilers, particularly those for RISC machines. The SPUR 
Lisp compiler uses a sophisticated, graph-coloring algorithm 
developed by Fredrick Chow [Chow84]. This paper describes 
the algorithm and the techniques used to implement it 
efficiently and evaluates its performance on several large pro- 
grams. The allocator successfully assigned most temporaries 
and local variables to registers in a wide variety of functions. 
Its execution cost is moderate. 

1. Introduction 

Assigning local variables and compiler-produced tem- 
poraries to a limited set of hardware registers is an important 
task in most compilers.’ The importance of register allocation 
is magnified when compiling code that will run on a Reduced 
Instruction Set Computer (RISC) [Patterson85]. Many RISCs 
(including MIPS [Hennessy84], RISC II [Patterson82], SOAR 
[Ungar84], and SPUR [Hi1185]) have load-store architectures 
in which instructions operate only on values that are in regis- 
ters. The latter three machines also have overlapping register 
windows, which require many temporaries to evaluate nested 
function calls properly. For example, to evaluate: f&(x), 
h(y)), a compiler must save the result from g(x) in a tem- 
porary, so that the evaluation of h(y) can use the single set of 
outgoing argument registers. 

’ SPUR is sponsored by DARPA under contract N00039-85-C-M69. The first author 
was supported by a California MICRO Fellowship. Much of ibis work was done on equip 
meet supplied by a Digital Equipment Corpaation CAD/CAM grant. 

’ For convenience, we will refer to both user-defined variables and compiler-produced 
temporaries as “temporaries” UuoughoU this paper. This simplification is justified since the 
SPUR Lisp compiler makes no distinUion between tie two. 

Permission to copy without fee all or part of thii material is granted provided 
that the copies are not made or distributed for direct commercial advantage, 
the ACM copyright notice and the title of the publication and its date appear, 
and notice is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, requires a fee and/ 
or specific permission. 

@ 1986 ACM 0-89791-197-O/86/0600-0255 75~ 

Register allocation can be viewed as the process of map- 
ping an unlimited number of temporaries into the finite set of 
registers provided by a computer. An elegant formalization Of 
this problem is the graph-coloring approach first used by 
Chaitin [Chaitin81; Chaitin821. In this method, the nodes in 
an interference graph represent temporaries that must be 
assigned to registers. Two nodes are connected by an edge if 
their respective values are live, in the usual dataflow sense, at 
a statement in the program. The coloring problem is to assign 
a fixed set of colors to the nodes, subject to the constraint that 
two nodes connected by an edge cannot be given the same 
color. When the number of colors is equal to the number of 
machine registers, a successful coloring will produce an 
assignment of the temporaries to registers. 

Graph coloring is an NP-complete problem, so that a fast 
and general solution is unlikely to be found. In addition, 
many graphs cannot be colored because the minimum number 
of colors required (the chromatic nwnber) is greater than the 
number of available registers. A practical register allocator 
must produce an assignment in spite of this limitation. Hence, 
graph coloring register allocators do not look for an optimal 
coloring, but rather for a correct and feasible one. In particu- 
lar, they produce an assignment even when a graph’s 
chromatic number exceeds the number of machine registers by 
causing some temporties to reside in memory, rather than a 
register, and introducing spill code to load and store these 
temporaries’ values as needed. Thus, the graph coloring allo- 
cation problem is really two problems: finding a correct color- 
ing of a given graph and, failing that, deciding which tem- 
poraries to spill to enable a coloring. 

1.1. Graph Coloring Allocators 

Chaitin’s technique for finding a coloring is to remove 
nodes from the interference graph that have fewer than R (the 
number of registers) neighbors since these nodes can be trivi- 
ally colored. Removing these nodes reduces the number of 
neighbors of some of the remaining nodes. The process con- 
tinues until no nodes are left, in which case the graph can be 
colored by examining the nodes in the reverse of the order in 
which they were removed, or until all remaining nodes have 
more than R neighbors. In such a situation, Chaitin chooses to 
spill the temporary with the minimum estimated cost for the 
added spill &de. The spilled node is removed.from the graph 
and the coloring process continues. This technique is success- 
ful, in part, because of the large number of registers available 
to Chaitin: 16 in [ChaitinSl] and 32 in [Chaitin82]. 

255 



Another technique, called priority-based coloring, was 
developed by Chow [Chow83; Chow84J. In this scheme, each 
temporary is assigned a priority that is the estimated addi- 
tional cost if the temporary resides in memory rather than in a 
register. Temporaries with more than R neighbors are 
assigned to registers in decreasing order of priority. A tem- 
porary that cannot be assigned to a register because R or more 
of its neighbors have been colored must be split and spill code 
introduced. A temporary is split by dividing the set of blocks 
in which the temporary is live into two sets and allocating 
separately in each. This process is described in detail in Sec- 
tion 2. 

1.2. SPUR and SPUR Lisp 

SPUR Lisp is an implementation of Common Lisp 
[Steele841 for the SPUR multiprocessor workstation [Hi1185]. 
Further details of the architecture and Lisp system can be 
found in the paper by Zom [Zorn86]. Each SPUR processor is 
a RISC with a simple load-store architecture. 

SPUR’s overlapping register windows provide 4 sets of 
registers for each function. The 10 global registers are dedi- 
cated to specific usages and are not allocated on a per-function 
basis. However, 2 of the global registers are used to load and 
store values for the spill code. 

The register allocator uses 9 of the 10 local registers. 
The tenth register holds a pointer to a vector containing a 
function’s constants. The allocator also uses any empty 
incoming argument registers. 4 of the 6 incoming argument 
registers hold arguments (the others hold a return address and 
an argument count) and so can be used for allocation if they 
do not contain actual arguments. 

The allocator does not use the outgoing argument regis- 
ters for two reasons. First, these registers overlap the incom- 
ing argument registers of the next call frame and are used to 
store temporaries in that frame. Second, the allocator 
currently assumes that a temporary uses a register for an entire 
basic block in which the temporary is live. If the allocator 
used the outgoing registers between functions calls to store 
short-lived temporaries, it would have to allocate over a range 
of statements that did not coincide with basic blocks, which 
would complicate the allocation. This change would probably 
not improve the allocation because short-lived temporaries, 
having few neighbors, are the easiest type of variables to allo- 
cate. 

X.3. Overview of the Paper 

The rest of this paper describes an implementation of 
Chow’s algorithm and presents measurements that confirm the 
practicality and effectiveness of this approach. Section 2 
briefly describes Chow’s algorithm for readers who are 
unfamiliar with it. Section 3 discusses the efficient implemen- 
tation of the technique. The final section presents measure- 
ments of the allocator’s effectiveness and speed. 

2. Priority-Based Coloring 

Chow’s register allocator operates on an interference 
graph built out of live-ranges rather than temporaries. A live 
range is a pair: (T, BB) where T is a temporary and BB is the 
set of basic blocks in which T is live. The interference graph 
is a graph G = (LR, E), where the vertices, LR, are the live 
ranges corresponding to the temporaries in the program and 

the arcs are defined: 

Figure 1 below contains the algorithm that is the heart of 
the allocator. It divides the set of live ranges in an interfer- 
ence graph into two sets. Constrained nodes are live ranges 
that have at least R neighbors. Unconstrained live ranges 
have fewer than R neighbors and so can be trivially colored. 

The algorithm orders the constrained live ranges by the 
projected savings if a live range’s temporary resided in a 
register instead of memory throughout the basic blocks in the 
live range. The highest priority live range is either colored, if 
it has fewer than R distinctly colored neighbors, or is split. 

Splitting a live range requires creating a new live range 
for the same temporary and moving a subset of the basic 
blocks from the old to the new live range. This process should 
reduce the number of colored neighbors of the old live range, 
thereby facilitating coloring the graph but also requiring the 
introduction of spill code (see Figure 2). However, creation of 
a new live range can constrain previously unconstrained nodes 
and so the algorithm may have to move live ranges between 
the unconstrained and constrained sets. When all constrained 
live ranges have been either colored or split into uncon- 
strained pieces, the algorithm trivially colors the uncon- 
strained live ranges. 

3. Implementation 

This section discusses an implementation of Chow’s 
algorithm. As is usual with this type of algorithm, the data 
structures used to represent the live ranges and interference 
graph must be efficient in both time and space so that pro- 
grams that produce large and complex graphs can be com- 
piled. The structures described below have proven effective 
in the SPUR Lisp compiler. 

3.1. Structure of the Allocator 

The SPUR Lisp compiler’s register allocator assigns 
compiler-produced temporaries and user-visible local 
(lexically-scoped) variables in functions to the available 
machine registers on a function-by-function basis. The alloca- 
tor operates directly on assembly code rather than on an inter- 
mediate form. The allocator has three distinct sections (see 
Figure 3). 

The allocator first creates a control-flow graph of the 
function and calculates USE, DEF, and LIVE dataflow infor- 
mation for each basic block. It then creates an interference 
graph describing the constraints on the allocation of registers 
and colors it using Chow’s algorithm. Finally, it inserts the 

256 



Unconstrained c {g E G I #neighbors (g) < R}; 
Constrained t G - Unconstrained; 

while Constrained # { } do 
foreach c E Constrained do 

if #colored-neighbors (c) 2 R then 
split live range c into live ranges c, n; 
if #neighbors (n) c R then 

Unconstrained c Unconstrained u {n}; 
else 

Constrained t Constrained u {n}; 
fi 

I* Splitting a node can constrain previously unconstrained nodes */ 
foreach u E Unconstrained do 

if #neighbors (u) > R then 
Unconstrained t Unconstrained - {u}; 
Constrained c Constrained u {u}; 

fi 
od 

c c high-savings (Constrained); 
Constrained c Constrained - {c); 
color c if possible, otherwise c will have spill code added later; 

od 

foreach u E Unconstrained do 
color u; 

#neighbors (lr) Number of neighbors of lr in G 
#colored neighbors (lr) 
high-sav%rgs (s) 

Number of colored neighbors of lr in G 
Returns the uncolored lr with the 

largest savings if it is not spilled 

Figure 1. Chow’s graph coloring algorithm. The algorithm splits constrained nodes (those with more than R colored 
neighbors) and assigns a color to the live range that would benefit most from being in a register. The process terminates 
when alt live ranges have been colored or split into uncolorable and unconstrained pieces. 

257 



0 
Live Range 1 

Spill Code 
Inserted 

Figure 2. A live range before and after splitting. A live range is split into two live ranges to reduce the number of arcs 
incident on it. However, when control flow jumps between the two parts of the live range, the temporary must be saved in 

load and store instructions needed to spill temporaries. 

3.2. Live Ranges 

Each node in the interference graph corresponds to a live 
range and has the structure shown in Figure 4. 

The interference graph nodes do not contain a list of arcs. 
Rather, each live range holds a list of the basic blocks in the 

live range. Each of these blocks must contain dataflow infor- 
mation about the live variables within the block. This infor- 
mation is conveniently represented as a set of live ranges. 
Hence, the neighbors of a live range LR are simply the union 
of the live variables in the blocks from LR minus LR itself. 
Live variable information is stored as bit-vectors so that this 
union can be efficiently calculated. 

The number-neighbors, number-colored-neighbors, 
and cost-savings fields in the structure save frequently refer- 
enced and infrequently modified information. This informa- 
tion can be calculated in a single pass over the neighbors of a 
live range or the statements in its basic blocks. However, the 
numbers change only when a live range is split and arc refer- 
enced frequently in the allocation process, so that it saves time 
to cache the values. 

3.3. Limiting Basic Block Size 

Although Chow’s algorithm allocates registers on a per- 
basic block basis, its performance can be improved by allocat- 
ing over a smaller piece of the program. Smaller blocks allow 
a more precise delimitation of the lifetime of a variable and 
hence produce a less dense and more easily colored interfer- 
ence graph. 

Control & Data 
l, Graph Coloring 

4 Spill Code 

Control & Data Flow 
Information 

Coloring Information 

Figure 3. Components of the register allocator. The first stage creates a control-flow graph and calculates dataflow in- 
formation. The second stage creates a register interference graph and colors it. The final stage inserts the spill code. 

258 



type live-range = 
record 

temporary: temporary: 
blocks: set of-basic blocks; 
number-neighbors: integer; 
number colored-neighbors: integer; 
cost-savings: integer; 

end; 

Figure 4. Structure of a live range node in the interference graph. 
A node’s neighbors can be calculated from the live variable inform&n 
kept in the basic blocks by the algorithm described in Section 3.2. 

Rather than change the algorithm to operate at the state- 
ment level, we can achieve a similar result by limiting the 
maximum number of statements in a basic block. A basic 
block that would naturally contain more statements is prema- 
turely ended and a new block is given the overflow. Measure- 
ments in Section 4 show that this approach is very effective in 
improving the allocator’s performance and does not have a 
large effect on the time required for allocation. 

3.4. Splitting a Live Range 

Splitting a live range is among the most important 
actions of the allocator. When a live range is split, the alloca- 
tor will later have to add spill code to save the temporary 
when leaving the old live range and restore it when reentering 
the new live range. The goal of splitting is to produce two 
large live ranges, each with fewer colored neighbors than the 
original live range, and a minimal number of jumps between 
the blocks in one live range and the other. Unfortunately, the 
problem of splitting a live range to minimize the number of 
jumps between blocks in the two live ranges is NP-complete. 

However, the heuristic shown in Figure 5 works well in 
practice. It does a breadth-first traversal of the COntrol-flow 
graph of the basic blocks in the live range being Split. The 
one unusual aspect is that blocks that were artificially Split to 
limit their size are treated as a single block. These blocks 
have a single successor, as do blocks that end in an uncondi- 
tional branch. However, distinguishing the two does not 
improve the allocator’s performance. Blocks are moved 
between the old and new live ranges as long as a block 
remains in the old live range and the number of coIored neigh- 
bors of the new live range is less than R. The algorithm can 
fail to reduce the number of colored neighbors of a node, in 
which case the node will not be colored and will have to have 
spill code introduced. 

3.5. Constrained and Unconstrained Sets 

The algorithm in Figure 1 could be simplified consider- 
ably if the live ranges were not divided into Constrained and 
Unconstrained sets but were just examined and colored or 
split in order of priority. Unfortunately, this approach pro- 
duces a significantly worse allocation, with no appreciable 
savings in execution time, 

The reason for this result is clear. Coloring an uncon- 
strained live range can unnecessarily increase the difficulty of 
coloring a constrained node, perhaps even causing it to be 
split. In addition, there is no reason to color an unconstrained 
node before a constrained one, since a color can always be 
found for an unconstrained node. 

3.6. Inserting Spill Code 

Spill code must be added to a function in two situations. 
The first, and simplest, occurs when a live range is split. At 
each entry point to a split live range in which the temporary is 
not defined before it is used, the temporary’s value must be 
loaded from memory. At each exit point from the live range 
in which the temporary is still live, its value must be saved in 
memory. 

block c An entry point to the live range lr; 
queue c (block}; 

while (queue f {} and #colored-neighbors (new-h-) 5 R - 1 and #blocks (lr) > 1) do 
block t head (queue); 
if block is in lr then 

move block from lr to new lr; 
if block has 1 successor then I* Block was split or en& with unconditional branch *I 

add successor (block) to head of queue; 
else /* Block ends with conditional branch *I 

add successor1 (block) to tail of queue; 
add successor2 (block) to tail of queue; 

fi 
od 

Figure 5. Heuristic for splitting live range. The algorithm tries to form a new, compact live range by doing a breadth- 
first traversal of the control-flow graph. It treats blocks that were split to limit their size as a single unit. 

259 



LISP SLC RSIM 
Number of functions 1,993 1,288 153 
Functions needing coloring 780 (39%) 541 (42%) 71(46%) 
Functions needing spill code 104 (5%) 38 (3%) 8 (5%) 
Number of spill insts. 1,627 (1%) 862 (0.7%) 400 (3%) 
Avg. increase in function size 16 (5%) 21 (5%) 45 (10%) 
Avg. number of regs. for allocation 11.3 11.4 11.6 

Table 2. Performance of register allocator. The allocator had 9 local registers and any unused incoming argument re- 
gisters to allocate in each function. Basic blocks were limited to a maximum of 5 instructions. 

The other type of spill code is used in live ranges that 
cannot be allocated a register because they have too many 
colored neighbors and cannot be split further. On conven- 
tional architectures, the instructions in these live ranges could 
operate directly on the value of the temporary that is stored in 
memory. However, on SPUR and other RISC machines, this 
solution is not possible since instructions operate only on 
registers. In this case, we must insert a load instruction before 
each use of the temporary and a store instruction after each 
definition. To ensure that it is always possible to load both 
operands to an instruction, the allocator needs to reserve two 
registers from the allocation process. 

3.7. Differences from Chow’s Allocator 

SPUR’s allocator differs from Chow’s allocator in four 
aspects described below. These differences are not major and 
do not affect the coloring process. However, they simplify the 
allocator. 

First, SPUR’s allocator assumes that all temporaries 
reside in registers and adds spill code where necessary to Save 
or restore temporaries. Chow’s allocator, on the other hand, 
assumes that temporaries reside in memory and assigns them 
to regiskers. Chow’s approach permits his compiler to pro- 
duce functioning code without running the allocator, which is 
impossible for the SPUR compiler and also for SPUR’s load 
and store architecture. 

Second, Chow’s allocator operates on a low-level inter- 
mediate representation (instructions to a hypothetical 
machine) while the SPUR allocator processes SPUR assembly 
code. Chow’s allocator is more portable than SPUR’s since 
its representation is independent of a given machine. How- 
ever, both representations are machine instructions, their 
differences are of little importance to the allocation process. 

Chow has the advantage of following his allocation by a 
code selection phase, while the SPUR allocator has to modify 
the assembly code to reflect the location of temporaries. 
These modifications are simple for SPUR since operands must 
be in registers. The allocator can only add load and store 
instructions and does not have to change addressing modes or 
handle the special cases of non-orthogonal instructions. 

Finally, SPUR’s allocator, unlike Chow’s, does not do 
any local (within a basic block) allocation before attempting 
global allocation. Chow claimed that local allocation would 
reduce the work required of the slow global allocator, How- 
ever, he appears to have found that most basic blocks in real 
programs are short and so most of the allocation was done by 
the global allocator. Leaving out the local allocator simplified 
the program. 

4. Evaluation of the Allocator 

The performance of the allocator was measured on three 
large programs, which are summarized in Table 1. LISP is the 
Spice Lisp system from CMU [Wholey84] that has been 
modified for SPUR. This program is a complete runtime sys- 
tem and interpreter for Common Lisp. SLC is the SPUR Lisp 
compiler, which is the Spice Lisp compiler from CMU with an 
additional code generator and register allocator for SPUR. 
RSIM is a circuit simulator [Terman83]. These three pro- 
grams may not be typical of all Lisp programs, but they are 
large, well-written programs (also, they were written by a 
number of independent authors) whose performance is impor- 
tant. 

LISP SLC RSIM 
Lines of code 39,912 20,526 2,721 
Number of Functions 1,993 1,288 153 
Compiled Instructions 168,728 125,872 15,599 

Table 1. Programs used to evaluate register allocator. LISP is the 
SPUR Lisp runtime system. SLC is the SPUR Lisp compiler. RSIM is a 
circuit simulator. 

Table 2 summarizes the allocator’s performance on these 
programs. The allocator used the 9 local registers and any 
unused incoming argument registers for the temporaries in 
each function. Basic blocks were limited to a maximum of 5 
SPUR instructions. These parameters produced an excellent 
allocation at a reasonable cost. 

In the Lisp system (and similarly in the other two pro- 
grams), 39% of the functions had more temporaries than regis- 
ters. The other 61% of the functions did not require alloca- 
tion. The allocator failed to color 13% of these functions (5% 
of all functions) and needed to add an average of 17.8 instruc- 
tions to these functions to save and restore values. The aver- 
age function that required spill code increased 5% in size. 

The number of registers available for allocation in a 
function varied since empty input argument registers are used 
by the allocator. An average function had 1.7 incoming argu- 
ments, so that the allocator had 11.3 registers to allocate. The 
results for SLC and RSIM are similar. 

4.1. Effect of the Number of Registers 

To test the allocator’s performance with different 
numbers of registers, we compiled SLC with the number of 
local registers artificially limited or increased. Programs com- 
piled with a limited number of registers would execute prop- 
erly, albeit slowly. However, code compiled with an 
increased number of registers would not run on the proposed 
SPUR hardware. Table 3 summarizes the results. 

260 



Number of Local Registers I 

Funct. needing coloring 
Funct needing spill code 
Number of spill insts. 

- 3 6 9 12 15 
831(64%) 664 (52%) 541(42%) 435 (34 %) 381(30%) 
388 (30%) 109 (8%) 38 (3%) 12 (0.9%) 0 (0%) 
7503 (6%) 2587 (2%) 862 (0.7%) 237 (0.2%) 0 (0%) 

Avg. increase in funct. size 7.7% 6.7% 4.7% 3.4% 0% 
Allocation time (CPU min) 10.0 (39%) 8.1 (33%) 6.7 (31%) 5.6 (27%) 5.3 (26%) 

Table 3. Measurements of compiling SLC with different numbers of local registers. (The allocator also used empty 
incoming argument registers.) The first two rows report the number of functions that had more temporaries than registers and 
the number that required spill code (the percentage is the percentage of all functions.) The third row reports the number of 
spill instructions (and percentage of all instructions). The fourth row reports the average increase in function size of the 
functions that required spill code. The last row reports the time (CPU seconds on a VAX 8650 and percentage of total time 
to compile and assemble the program) to calculate control and dataflow information, create the interference graph, and allo- 
cate the registers. 

As expected, the allocator performs better and runs faster 
when given more registers to allocate. However, its perfor- 
mance is acceptable even when given only a few registers. 

4.2. Effect of Basic Block Size 

The allocator’s effectiveness is strongly affected by the 
size of the basic blocks in the assembly code. A smaller piece 
of code generally has fewer live variables, and hence fewer 
neighbors in the interference graph, and is easier to color. 
Table 4 shows that when basic blocks are limited to smaller 
numbers of statements, less spill code is needed. The amount 
of spill code increases dramatically with larger basic blocks, 
however the absolute amount is still a small percentage of the 
instructions in the program. 

Because of two opposite effects, the running time of the 
allocator is not reduced by smaller basic blocks. On one hand, 
smaller blocks mean fewer live ranges must be split and fewer 
spill instructions inserted, both of which reduce the work that 
the allocator must do. On the other hand, small blocks also 

mean that there are more blocks, which increases the time 
required for flow analysis and to do the calculations men- 
tioned in Section 3.2. However, for a broad range of block 
sizes, the execution time is roughly constant, so that smaller 
sized blocks can be used to increase the allocator’s perfor- 
mance. 

4.3. Number of Split Live Ranges 

Table 5 displays the increase in the number of live 
ranges after the splitting required to color the test programs. 
As can be seen, the average increase is small. However, it is 
the maximum that determines the size of the allocator’s 
fixed-length data structures and the allocator’s worst-case run- 
ning time. In the experiments described in Tables 2 and 3, the 
maximum increase in the number of live ranges never 
exceeded 70 or 80%. Although pathological cases that require 
more splitting can be constructed, they do not appear in prac- 
tice. 

Maximum Instructions Allowed in a Basic Block 
2 5 10 20 100 

Functs. needing coloring 541(42%) 541(42%) 541(42%) 541(42%) 541(42%) 
Functs. needing spill code 33 (3%) 38 (3%) 49 (4%) 107 (8%) 166 (13%) 
Number of spill insts. 775 (0.6%) 862 (0.7%) 1174 (0.9%) 1875 (1.5%) 4141 (3.2%) 
Avg. increase in funct. size 5.1% 4.7% 5.4% 5.0% 9.0% 
Allocation time (CPU min) 8.3 (35%) 6.8 (31%) 6.3 (29%) 6.3 (29%) 6.7 (31%) 
I-graph time (CPU min) 3.9 3.1 2.8 2.6 2.7 
Coloring time (CPU min) 3.3 2.9 2.7 2.9 3.2 

Table 4. Measurements of compiling SLC with different limits on basic block size. Small blocks reduce the number 
of live variables in a block and increase the allocator’s effectiveness. The first two rows report the number of functions that 
had more temporaries than registers and the number that required spill code (the percentage is the percentage of at1 func- 
tions.) The third row reports the number of spill instructions (and percentage of all instructions). The fourth row reports the 
average increase in function size of the functions that required spill code. The fifth row reports the CPU time (CPU seconds 
on a VAX 8650 and percentage of total time to compile and assemble the program) to calculate control and dataflow infor- 
mation, create the interference graph, and allocate the registers, The last two rows split the allocator’s time between creating 
the interference graph (including flow analysis) and coloring it. 

261 



4.4. Execution Time Performance of Allocation 

The SPUR Lisp compiler currently produces code that 
runs on an instruction-level simulator of SPUR. By adding 
two new instructions to the simulator, we were able to count 
the number of load and store instructions that moved spilled 
values between memory and the processor. 

Unfortunately, SLC does not yet run on the simulator, so 
we had to use simpler benchmarks. Three of the well-known 
Gabriel Lisp benchmarks [Gabriel851 had spill code inserted. 
The static and dynamic counts of the spill instructions in them 
and in RSIM is shown in Table 6. Note that the dynamic 
figures measure the spill code in the benchmarks and any Lisp 
runtime routines that they invoke. No firm conclusions can be 
drawn from this small sample. However, it appears that the 
allocator does a reasonable job of inserting spill instructions to 
reduce the execution cost of this additional code. 

I 1 Number of Live Ranges After Coloring 1 
Program Avg. Increase Max. Increase 
LISP 11% 84% 
SLC 5% 22% 
RSIM 1 3% 60% 

Table 5. Percentage of live ranges that were split. The lirst column 
is the average increase in the number of live ranges after coloring. The 
second column is the maximum increase. Note that these numbers do not 
measure the percentage of live ranges that were split, since in most pro- 
grams a few heavily constrained live ranges are repeatedly split. 

Static Dynamic 
Program 1 Spill Inst. / Total Inst. Spill Inst. / Total Inst. 

BROWSE 1 1.0% < 0.01% 

PUZZLE 
RSIM 

10.0% 3% 
1.2% < 0.01% 
2.6% 3% 

Table 6. Percentage of instruction cycles consumed by the spill 
code. The benchmarks are the programs from the Gabriel Lisp bench- 
marks that required register allocation and from the RSIM circuit simula- 
tor. 

4.6. Other Measurements 

Chow measured the performance of his allocator on six 
small benchmark programs. His results are difficult to com- 
pare to these results because of the differences in the architec- 
tures of the target machines. He found that a small number of 
registers (about 6, depending on the benchmark) reduced the 
running time of the benchmarks to a minimum. Because the 
target machines (PDPIO, M68000) were not load/store archi- 
tectures, his optimal allocation did not put all temporaries into 
registers. On SPUR, execution time is minimized when all 
temporaries reside in registers, which appears to require more 
than 6 registers for “real” programs. 

5. Conclusion 

The SPUR Lisp register allocator is very successful in 
placing temporaries in registers. The allocation algorithm is 
simple to understand and performs well on real programs. Its 
execution cost is moderate for most programs, though particu- 
lar, complex functions may require considerable time. 

4.5. Cost of Allocation 

Table 7 breaks down the execution cost of the allocator. 
As can be seen, the allocator requires between 20-30% of the 
time to compile and assemble a program. However, 40% of 
this time (8-12% of the total time) is spent calculating control 
and dataflow information, which can be used for other optimi- 
zations within the compiler. The true cost of the allocator 
appears to be between lo-20% of the execution time of the 
compiler and assembler. To put this figure in perspective, we 
should note that the SPUR Lisp compiler is not a highly 
optimizing compiler. 

Program 
LISP 
SLC 
RSIM 

Flow Analysis Coloring Total 
FG DF Total IG Color Total 

143 (6%) 150 (6%) 12% 198 (8%) 297 (11%) 19% 31% 
43 (3%) 81(6%) 9% 63 (5%) 173 (13%) 18% 27% 
4 (2%) 7 (3%) 5% 7 (2%) 31(11%) 13% 18% 

Table 7. Execution cost of the allocator. FG is the time to create a control-flow graph (CPU time in seconds on a 
VAX 8650 and percentage of total compiler and assembler time). DF is the time to calculate and propagate dataflow infor- 
mation. IG is the time to create an interference graph. Color is the time to color the graph and insert spill code. 

262 



Bibliography 

[Chaiting 11 
Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chan- 
dra, John Cocke, Martin E. Hopkins, and Peter Mark- 
stein, “Register Allocation Via Coloring,” Computer 
Languages, vol. 6, 1981, pp. 47-57. 

[Chaitin82] 
Gregory J. Chaitin, “Register Allocation & Spilling Via 
Graph Coloring,” Proceedings of the SIGPLAN ‘82 Sym- 
posium on Computer Construction, SIGPLAN Notices, 
vol. 17,no. 6, June 1982,~~. 98-105. 

[Chow831 
Fredrlck C. Chow, “A Portable Machine-Independent 
Global Optimizer-Design and Measurements,” Techni- 
cal Note no. 83-254, Computer Systems Laboratory, 
Stanford University, December 1983. 

[Chow841 
Frederick Chow and John Hennessy, “Register Alloca- 
tion by Priority-based Coloring,” in Proceedings of the 
ACM SIGPLAN ‘84 Symposium on Compiler Construc- 
tion, SIGPLAN Notices vol. 19, no. 6, June 1984, pp. 
222-232. 

[Gabriel851 
Richard P. Gabriel, Performance and Evaluation of Lisp 
Systems, MIT Press, 1985. 

[Hennessy 841 
John L. Hennessy, “VLSI Processor Architecture,” 
IEEE Transactions on Computers, vol. C-33, no. 12, 
December 1984. 

[Hi11851 
Mark D. Hill, et. al., “SPUR: A VLSI Multiprocessor 
Workstation,” Submitted to IEEE Computer. 

[Patterson821 
David A. Patterson and Carlo H. Sequin, “A VLSI 
RISC,” Computer, vol 15, no. 9, September 1982, pp. 
8-21. 

[Patterson851 
David A. Patterson, “Reduced Instruction Set Comput- 
ers,” CACM, vol. 28, no. 1, pp. 8-21. 

[Steele841 
Guy Steele Jr., Common Lisp, Digital Press, 1984. 

[Terman83] 
Chris Terman, “Simulation Tools for Digital LS1 
Design,” MIT Laboratory for Computer Science, Techn- 
ical Report #304, September, 1983. 

[UngarM] 
David Ungar, Ricki Blau, Peter Foley, Dain Samples, 
and David Patterson, “Architecture of SOAR: Smalltalk 
on a RISC,” Proceedings of the Eleventh International 
Symposium on Computer Architecture, June 1984, pp. 
188-197. 

[Wholey 841 
Skef Wholey and Scott E. Fahlman, “The Design of an 
Instruction Set for Common Lisp,” The 1984 ACM 
Symposium on LISP and Functional Programming, Aus- 
tin Texas, August 1984, pp. 150-158. 

[Zom86] 
Benjamin Zom, James Lams, George Taylor, and Paul 
Hilfinger, “SPUR Lisp: Common Lisp on a RISC Mul- 
tiprocessor,’ ’ submitted to 1986 ACM Conference on 
Lisp and Functional Programming. 

263 


