
22CS 701 Fall 2014©

Review of Compiler
Optimizations
1. Redundant Expression Elimination

(Common Subexpression Removal)
Use an address or value that has been
previously computed. Consider control
and data dependencies.

2. Partially Redundant Expression
(PRE) Elimination

A variant of Redundant Expression
Elimination. If a value or address is
redundant along some execution paths,
add computations to other paths to create
a fully redundant expression (which is
then removed).
Example:
 if (i > j)

a[i] = a[j];
a[i] = a[i] * 2;

23CS 701 Fall 2014©

3. Constant Propagation
If a variable is known to contain a
particular constant value at a particular
point in the program, replace references
to the variable at that point with the
constant value.

4. Copy Propagation
After the assignment of one variable to
another, a reference to one variable may
be replaced with the value of the other
variable (until one or the other of the
variables is reassigned).
(This may also �“set up�” dead code
elimination. Why?)

24CS 701 Fall 2014©

5. Constant Folding
An expression involving constant (literal)
values may be evaluated and simplified to
a constant result value. Particularly
useful when constant propagation is
performed.

6. Dead Code Elimination
Expressions or statements whose values
or effects are unused may be eliminated.

7. Loop Invariant Code Motion
An expression that is invariant in a loop
may be moved to the loop�’s header,
evaluated once, and reused within the
loop.
Safety and profitability issues may be
involved.

25CS 701 Fall 2014©

8. Scalarization (Scalar Replacement)
A field of a structure or an element of an
array that is repeatedly read or written
may be copied to a local variable,
accessed using the local, and later (if
necessary) copied back.
This optimization allows the local
variable (and in effect the field or array
component) to be allocated to a register.

9. Local Register Allocation
Within a basic block (a straight line
sequence of code) track register contents
and reuse variables and constants from
registers.

10. Global Register Allocation
Within a subprogram, frequently
accessed variables and constants are
allocated to registers. Usually there are
many more register candidates than
available registers.

26CS 701 Fall 2014©

11. Interprocedural Register Allocation
Variables and constants accessed by more
than one subprogram are allocated to
registers. This can greatly reduce call/
return overhead.

12. Register Targeting
Compute values directly into the
intended target register.

13. Interprocedural Code Motion
Move instructions across subprogram
boundaries.

14. Call Inlining
At the site of a call, insert the body of a
subprogram, with actual parameters
initializing formal parameters.

27CS 701 Fall 2014©

15. Code Hoisting and Sinking
If the same code sequence appears in two
or more alternative execution paths, the
code may be hoisted to a common
ancestor or sunk to a common successor.
(This reduces code size, but does not
reduce instruction count.)

16. Loop Unrolling
Replace a loop body executed N times
with an expanded loop body consisting of
M copies of the loop body. This expanded
loop body is executed N/M times,
reducing loop overhead and increasing
optimization possibilities within the
expanded loop body.

28CS 701 Fall 2014©

17. Software Pipelining
A value needed in iteration i of a loop is
computed during iteration i-1 (or i-2, ...).
This allows long latency operations
(floating point divides and square roots,
low hit-ratio loads) to execute in parallel
with other operations. Software
pipelining is sometimes called symbolic
loop unrolling.

18. Strength Reduction
Replace an expensive instruction with an
equivalent but cheaper alternative. For
example a division may be replaced by
multiplication of a reciprocal, or a list
append may be replaced by cons
operations.

29CS 701 Fall 2014©

19. Data Cache Optimizations
• Locality Optimizations

Cluster accesses of data values both
spacially (within a cache line) and
temporally (for repeated use).
Loop interchange and loop tiling
improve temporal locality.

• Conflict Optimizations
Adjust data locations so that data used
consecutively and repeatedly don�’t
share the same cache location.

20. Instruction Cache Optimizations
Instructions that are repeatedly executed
should be accessed from the instruction
cache rather than the secondary cache or
memory. Loops and �“hot�” instruction
sequences should fit within the cache.

Temporally close instruction sequences
should not map to conflicting cache

30CS 701 Fall 2014©

Basic Blocks
A basic block is a linear sequence of
instructions containing no branches
except at the very end.
A basic block is always executed
sequentially as a unit.

31CS 701 Fall 2014©

Control Flow Graphs
A Control Flow Graph (CFG)
models possible execution paths
through a program.
Nodes are basic blocks and arcs are
potential transfers of control.

For example,
 if (a > 0)
 b = 1;
 else b = 2;
 a = c + b;

a > 0

b = 1 b = 2

a = c + b

32CS 701 Fall 2014©

For a Basic Block b:
Let Preds(b) = the set of basic
blocks that are Immediate
Predecessors of b in the CFG.

Let Succ(b) = the set of basic blocks
that are Immediate Successors to b
in the CFG.

33CS 701 Fall 2014©

Data Flow Problems
A data flow problem is a program

analysis computed on a control flow
graph.

A data flow problem may be forward
(following a program�’s control flow)
or reverse (opposite a program�’s
control flow).

Informally, forward analyses
�“remember the past�” while reverse
analyses �“predict the future.�”

Some analyses determine that an
event may have occurred, while
others determine that an event must
have occurred.

Some analyses compute a set of
values, while others are Boolean-
valued.

34CS 701 Fall 2014©

Two important data flow problems
are Reaching Definitions and
Liveness.

For a given use of a variable v
reaching definitions tell us which
assignments to v may reach (affect)
the current value of v. Reaching
definition analysis is useful in both
optimization and debugging.

Liveness analysis tells us at a
particular point in a program
whether the current value of
variable v will ever be used. A
variable that is not live is dead. A
dead value need not be kept in
memory, or perhaps even be
computed.

35CS 701 Fall 2014©

Reaching Definitions
For a Basic Block b and Variable V:
 Let DefsIn(b) = the set of basic

blocks that contain definitions of V
that reach (may be used in) the
beginning of Basic Block b.

Let DefsOut(b) = the set of basic
blocks that contain definitions of V
that reach (may be used in) the end
of Basic Block b.

The sets Preds and Succ are derived
from the structure of the CFG.
They are given as part of the definition
of the CFG.

36CS 701 Fall 2014©

DefsIn and DefsOut must be computed,
using the following rules:
1. If Basic Block b contains a definition

of V then
 DefsOut(b) = {b}

2. If there is no definition to V in b then
 DefsOut(b) = DefsIn(b)

3. For the First Basic Block, b0:
 DefsIn(b0) =

4. For all Other Basic Blocks
 DefsIn(b) = DefsOut p()

p Preds b()

37CS 701 Fall 2014©

Liveness Analysis
For a Basic Block b and Variable V:

LiveIn(b) = true if V is Live (will be
used before it is redefined) at the
beginning of b.

LiveOut(b) = true if V is Live (will
be used before it is redefined) at the
end of b.

LiveIn and LiveOut are computed,
using the following rules:
1. If Basic Block b has no successors

then
 LiveOut(b) = false

2. For all Other Basic Blocks

 LiveOut(b) =
s Succ(b)

 LiveIn(s)

38CS 701 Fall 2014©

3. LiveIn(b) =
 If V is used before it is defined in

Basic Block b
 Then true
 Elsif V is defined before it is
 used in Basic Block b
 Then false
 Else LiveOut(b)

39CS 701 Fall 2014©

Example

x

x

x

x

x

x

1

2 3

4

5

6

7

8

40CS 701 Fall 2014©

x

x

x

x

x

x

1

2 3

4

5

6

7

8

Li=F

Li=F

Li=F

Li=F

Li=F

Li=T

Li=T

Li=T

Lo=T

Lo=T
Lo=T

Lo=T

Lo=T

Lo=F

Lo=F

Lo=F

Di={ }

Di={1} Di={1}

Di={1,2}

Di={1,2,5,6}

Di={5}

Di={5,6}

Di={5,6}

Do={1}

Do={2}

Do={1,2}

Do={5}

Do={6}

Do={5,6}

Do={5,6}

Do={1}

41CS 701 Fall 2014©

Reading Assignment
• Section 14.3 - 14.4 of CaC

42CS 701 Fall 2014©

Data Flow Frameworks
• Data Flow Graph:

Nodes of the graph are basic blocks
or individual instructions.
Arcs represent flow of control.
Forward Analysis:

Information flow is the same
direction as control flow.

Backward Analysis:
Information flow is the opposite
direction as control flow.

Bi-directional Analysis:
Information flow is in both
directions. (Not too common.)

43CS 701 Fall 2014©

• Meet Lattice
Represents solution space for the
data flow analysis.

• Meet operation
(And, Or, Union, Intersection, etc.)
Combines solutions from
predecessors or successors in the
control flow graph.

T

.

44CS 701 Fall 2014©

• Transfer Function
Maps a solution at the top of a node
to a solution at the end of the node
(forward flow)
or
Maps a solution at the end of a node
to a solution at the top of the node
(backward flow).

45CS 701 Fall 2014©

Example: Available
Expressions

This data flow analysis determines
whether an expression that has been
previously computed may be
reused.

Available expression analysis is a
forward flow problem�—computed
expression values flow forward to
points of possible reuse.

The best solution is True�—the
expression may be reused.

The worst solution is False�—the
expression may not be reused.

46CS 701 Fall 2014©

The Meet Lattice is:

As initial values, at the top of the
start node, nothing is available.
Hence, for a given expression,
AvailIn(b0) = F
We choose an expression, and
consider all the variables that
contribute to its evaluation.
Thus for e1=a+b-c, a, b and c are
e1�’s operands.

T (Expression is Available)

F (Expression is Not Available)

47CS 701 Fall 2014©

The transfer function for e1 in block
b is defined as:
If e1 is computed in b after any

assignments to e1�’s operands in b
Then AvailOut(b) = T
Elsif any of e1�’s operands are
changed
 after the last computation of e1 or
 e1�’s operands are changed without
 any computation of e1
Then AvailOut(b) = F
Else AvailOut(b) = AvailIn(b)

The meet operation (to combine
solutions) is:

 AvailIn(b) = AND
p Pred(b)

 AvailOut(p)

48CS 701 Fall 2014©

Example: e1=v+w

v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F

49CS 701 Fall 2014©

Circularities Require Care
Since data flow values can depend
on themselves (because of loops),
care is required in assigning initial
�“guesses�” to unknown values.

Consider
If the flow value on the loop
backedge is initially set to false, it
can never become true. (Why?)
Instead we should use True, the
identity for the AND operation.

z=v+w

T

T

50CS 701 Fall 2014©

v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F

F F

F

F

T

T
T

T T

F

