
1CS 701 Fall 2014©

CS 701

Charles N. Fischer

Fall 2014

 http://www.cs.wisc.edu/~fischer/cs701.html

2CS 701 Fall 2014©

In Memoriam

Susan B. Horwitz
1955 - 2014

3CS 701 Fall 2014©

Class Meets
Mondays and Wednesdays,
11:00 — 12:15

2540 Engineering Hall

Instructor
Charles N. Fischer

5393 Computer Sciences

Telephone: 262-1204

E-mail: fischer@cs.wisc.edu

Office Hours:

10:30 - Noon, Tuesdays and
Thursdays, or by appointment

4CS 701 Fall 2014©

Key Dates
• September 22: Project 1 due

• October 15: Project 2 due

• November 5: Project 3 due

• November 27: Midterm (tentative)

• December 12: Project 4 due

• December ??: Final Exam, date to be
determined

5CS 701 Fall 2014©

Class Text
• Crafting a Compiler

Fischer, Cytron, LeBlanc
ISBN-10: 0136067050
ISBN-13: 9780136067054
Publisher: Addison-Wesley

• Handouts and Web-based reading will
also be used.

Reading Assignment
• Section 14.1 - 14.2.2 of CaC
• Pages 1 - 30 of “Automatic Program

Optimization”
• Assignment 1

6CS 701 Fall 2014©

Class Notes
• The lecture notes used in each lecture

will be made available prior to that
lecture on the class Web page (under the
“Lecture Nodes” link).

7CS 701 Fall 2014©

Piazza
Piazza is an interactive online platform
used to share class-related information.
We recommend you use it to ask
questions and track course-related
information. If you are enrolled (or on
the waiting list) you should have
already received an email invitation to
particapate (about one week ago).

8CS 701 Fall 2014©

Instructional Computers
We have access to departmental 64
bit Linux boxes (macaroni-01 to
macaroni-09) for general class-
related computing. These machines
have access to LLVM 3.3 at

/unsup/llvm-3.3

If you have access to a Linux box in
your office connected to AFS, it will
probably work fine for class
projects.

9CS 701 Fall 2014©

CS701 Projects
1. Introduction to LLVM and Simple

Local Optimization
2. Dataflow Analysis and Optimization
3. Natural Loops and Loop-Invariant

Code Motion
4. Graph Coloring Register Allocation

10CS 701 Fall 2014©

Academic Misconduct Policy
• You must do your assignments—no

copying or sharing of solutions.

• You may discuss general concepts and
Ideas, especially on Piazza.

• All cases of Misconduct must be
reported.

• Penalties may be severe.

11CS 701 Fall 2014©

Partnership Policy
Projects may be done individually
or by two person teams (your
choice).

12CS 701 Fall 2014©

Guest Lecturers

1. Tom Reps

2. Somesh Jha

3. Ben Liblit

13CS 701 Fall 2014©

Overview of Course Topics
1. Register Allocation

Local Allocation
Avoid unnecessary loads and stores
within a basic block. Remember and
reuse register contents.
Consider effects of aliasing.

Global Allocation
Allocate registers within a single
subprogram. Choose “most
profitable” values. Map several values
to the same register.

Interprocedural Allocation
Avoid saves and restores across calls.
Share globals in registers.

14CS 701 Fall 2014©

2. Code Scheduling
We can reorder code to reduce latencies
and to maximize ILP (Instruction Level
Parallelism). We must respect data
dependencies and control dependencies.

ld [a],%r1 ld[a],%r1

add %r1,1,%r2 mov 3,%r3

mov 3,%r3 add %r1,1,%r2

 (before) (after)

15CS 701 Fall 2014©

3. Automatic Instruction Selection
How do we map an IR (Intermediate
Representation) into Machine
Instructions?
Can we guarantee the best instruction
sequence?

Idea—Match instruction patterns
(represented as trees) against an IR that
is a low-level tree. Each match is a
generated instruction; the best overall
match is the best instruction sequence.

16CS 701 Fall 2014©

Example:
 a=b+c+1;
In IR tree form:

Generated code:
ld [%fp+boffset],%r1

ld [cadr],%r2

add %r1,%r2,%r3

add %r3,1,%r4

st %r4,[aadr]

Why use four different registers?

=

aadr
+

��

+ 1

cadr
+

%fp b offset

17CS 701 Fall 2014©

4. Peephole Optimization
Inspect generated code sequences and
replace pairs/triples/tuples with better
alternatives.

ld [a],%r1 ld [a],%r1
mov const,%r2 add %r1,const,%r3
add %r1,%r2,%r3

(before) (after)

mov 0,%r1 OP %g0,%r2,%r3
OP %r1,%r2,%r3

(before) (after)

But why not just generate the better code
sequence to begin with?

18CS 701 Fall 2014©

5. Cache Improvements
We want to access data & instructions
from the L1 cache whenever possible;
misses into the L2 cache (or memory) are
expensive!

We will layout data and program code
with consideration of cache sizes and
access properties.

6. Local & Global Optimizations
Identify unneeded or redundant code.
Decide where to place code.
Worry about debugging issues (how
reliable are current values and source
line numbers after optimization?)

19CS 701 Fall 2014©

7. Program representations

• Control Flow Graphs

• Program Dependency Graphs

• Static Single Assignment Form
(SSA)

Each program variable is assigned to
in only one place.
After an assignment xi = yj, the
relation xi = yj always holds.

Example:

if (a) if (a)
 x = 1 x1 =1

else x = 2; else x2 =2;

print(x) x3 = �(x1,x2)
 print(x3)

20CS 701 Fall 2014©

8. Data Flow Analysis
Determine invariant properties of
subprograms; analysis can be extended
to entire programs.

Model abstract execution.

Prove correctness and efficiency
properties of analysis algorithms.

9. Points-To Analysis
All compiler analyses and optimizations
are limited by the potential effects of
assignments through pointers and
references.
Thus in C:
 b = 1;

 *p = 0;

 print(b);

is 1 or 0 printed?

21CS 701 Fall 2014©

Similarly, in Java:
 a[1] = 1;

 b[1] = 0;

 print(a[1]);

is 1 or 0 printed?

Points-to analysis aims to determine what
variables or heap objects a pointer or
reference may access. Exact analysis is
impossible (why?). But fast and
reasonably accurate analyses are known.

22CS 701 Fall 2014©

Review of Compiler
Optimizations
1. Redundant Expression Elimination

(Common Subexpression Removal)
Use an address or value that has been
previously computed. Consider control
and data dependencies.

2. Partially Redundant Expression
(PRE) Elimination

A variant of Redundant Expression
Elimination. If a value or address is
redundant along some execution paths,
add computations to other paths to create
a fully redundant expression (which is
then removed).
Example:
 if (i > j)

a[i] = a[j];

a[i] = a[i] * 2;

23CS 701 Fall 2014©

3. Constant Propagation
If a variable is known to contain a
particular constant value at a particular
point in the program, replace references
to the variable at that point with the
constant value.

4. Copy Propagation
After the assignment of one variable to
another, a reference to one variable may
be replaced with the value of the other
variable (until one or the other of the
variables is reassigned).
(This may also “set up” dead code
elimination. Why?)

24CS 701 Fall 2014©

5. Constant Folding
An expression involving constant (literal)
values may be evaluated and simplified to
a constant result value. Particularly
useful when constant propagation is
performed.

6. Dead Code Elimination
Expressions or statements whose values
or effects are unused may be eliminated.

7. Loop Invariant Code Motion
An expression that is invariant in a loop
may be moved to the loop’s header,
evaluated once, and reused within the
loop.
Safety and profitability issues may be
involved.

25CS 701 Fall 2014©

8. Scalarization (Scalar Replacement)
A field of a structure or an element of an
array that is repeatedly read or written
may be copied to a local variable,
accessed using the local, and later (if
necessary) copied back.
This optimization allows the local
variable (and in effect the field or array
component) to be allocated to a register.

9. Local Register Allocation
Within a basic block (a straight line
sequence of code) track register contents
and reuse variables and constants from
registers.

10. Global Register Allocation
Within a subprogram, frequently
accessed variables and constants are
allocated to registers. Usually there are
many more register candidates than
available registers.

26CS 701 Fall 2014©

11. Interprocedural Register Allocation
Variables and constants accessed by more
than one subprogram are allocated to
registers. This can greatly reduce call/
return overhead.

12. Register Targeting
Compute values directly into the
intended target register.

13. Interprocedural Code Motion
Move instructions across subprogram
boundaries.

14. Call Inlining
At the site of a call, insert the body of a
subprogram, with actual parameters
initializing formal parameters.

27CS 701 Fall 2014©

15. Code Hoisting and Sinking
If the same code sequence appears in two
or more alternative execution paths, the
code may be hoisted to a common
ancestor or sunk to a common successor.
(This reduces code size, but does not
reduce instruction count.)

16. Loop Unrolling
Replace a loop body executed N times
with an expanded loop body consisting of
M copies of the loop body. This expanded
loop body is executed N/M times,
reducing loop overhead and increasing
optimization possibilities within the
expanded loop body.

28CS 701 Fall 2014©

17. Software Pipelining
A value needed in iteration i of a loop is
computed during iteration i-1 (or i-2, ...).
This allows long latency operations
(floating point divides and square roots,
low hit-ratio loads) to execute in parallel
with other operations. Software
pipelining is sometimes called symbolic
loop unrolling.

18. Strength Reduction
Replace an expensive instruction with an
equivalent but cheaper alternative. For
example a division may be replaced by
multiplication of a reciprocal, or a list
append may be replaced by cons
operations.

29CS 701 Fall 2014©

19. Data Cache Optimizations

• Locality Optimizations
Cluster accesses of data values both
spacially (within a cache line) and
temporally (for repeated use).
Loop interchange and loop tiling
improve temporal locality.

• Conflict Optimizations
Adjust data locations so that data used
consecutively and repeatedly don’t
share the same cache location.

20. Instruction Cache Optimizations
Instructions that are repeatedly executed
should be accessed from the instruction
cache rather than the secondary cache or
memory. Loops and “hot” instruction
sequences should fit within the cache.
Temporally close instruction sequences
should not map to conflicting cache
locations.

