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Class Meets
Mondays and Wednesdays,
11:00 — 12:15

2540 Engineering Hall

Instructor
Charles N. Fischer

5393 Computer Sciences

Telephone:    262-1204

E-mail:       fischer@cs.wisc.edu

Office Hours: 

10:30 - Noon, Tuesdays and  
Thursdays, or by appointment
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Key Dates
• September 22: Project 1 due

• October 15:    Project 2 due

• November 5:   Project 3 due 

• November 27:    Midterm (tentative)

• December 12:   Project 4 due

• December ??:   Final Exam, date to be 
determined
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Class Text
• Crafting a Compiler

Fischer, Cytron, LeBlanc
ISBN-10: 0136067050
ISBN-13:  9780136067054
Publisher:  Addison-Wesley

• Handouts and Web-based reading will 
also be used.

Reading Assignment
• Section 14.1 - 14.2.2 of CaC 
• Pages 1 - 30 of “Automatic Program   

Optimization”
• Assignment 1
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Class Notes
• The lecture notes used in each lecture 

will be made available prior to that 
lecture on the class Web page (under the 
“Lecture Nodes” link).
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Piazza
Piazza is an interactive online platform 
used to share class-related information. 
We recommend you use it to ask 
questions and track course-related 
information. If you are enrolled (or on 
the waiting list) you should have 
already received an email invitation to 
particapate (about one week ago).
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Instructional Computers
We have access to departmental 64 
bit Linux boxes (macaroni-01 to 
macaroni-09) for general class-
related computing. These machines 
have access to LLVM 3.3 at

/unsup/llvm-3.3

If you have access to a Linux box in 
your office connected to AFS, it will 
probably work fine for class 
projects.
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CS701 Projects
1. Introduction to LLVM and Simple 

Local Optimization 
2. Dataflow Analysis and Optimization
3. Natural Loops and  Loop-Invariant  

Code Motion
4. Graph Coloring Register Allocation 
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Academic Misconduct Policy
• You must do your assignments—no 

copying or sharing of solutions.

• You may discuss general concepts and 
Ideas, especially on Piazza.

• All cases of Misconduct must be 
reported.

• Penalties may be severe.
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Partnership Policy
Projects may be done individually 
or by two person teams (your 
choice). 
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Guest Lecturers

1.  Tom Reps

2.  Somesh Jha

3.  Ben Liblit
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Overview of Course Topics
1. Register Allocation

Local Allocation
Avoid unnecessary loads and stores 
within a basic block. Remember and 
reuse register contents. 
Consider effects of aliasing.

Global Allocation
Allocate registers within a single 
subprogram. Choose “most 
profitable” values. Map several values 
to the same register.

Interprocedural Allocation
Avoid saves and restores across calls. 
Share globals in registers.
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2. Code Scheduling
We can reorder code to reduce latencies 
and to maximize ILP (Instruction Level 
Parallelism). We must respect data 
dependencies and control dependencies.

ld  [a],%r1     ld[a],%r1

add %r1,1,%r2   mov 3,%r3

mov 3,%r3       add %r1,1,%r2

 (before)                    (after)
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3. Automatic Instruction Selection
How do we map an IR (Intermediate 
Representation) into Machine 
Instructions?
Can we guarantee the best instruction 
sequence?

Idea—Match instruction patterns 
(represented as trees) against an IR that 
is a low-level tree. Each match is a 
generated instruction; the best overall 
match is the best instruction sequence.
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Example:
    a=b+c+1;
In IR tree form:

Generated code:
ld  [%fp+boffset],%r1

ld  [cadr],%r2

add %r1,%r2,%r3

add %r3,1,%r4

st  %r4,[aadr]

Why use four different registers?

=

aadr
+

��

+ 1

cadr
+

%fp b offset
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4. Peephole Optimization
Inspect generated code sequences and 
replace pairs/triples/tuples with better 
alternatives.

ld  [a],%r1     ld  [a],%r1
mov const,%r2   add %r1,const,%r3
add %r1,%r2,%r3

(before)                 (after)

mov 0,%r1        OP  %g0,%r2,%r3
OP  %r1,%r2,%r3

(before)                 (after)

But why not just generate the better code 
sequence to begin with?
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5. Cache Improvements
We want to access data & instructions 
from the L1 cache whenever possible; 
misses into the L2 cache (or memory) are 
expensive!

We will layout data and program code 
with consideration of cache sizes and 
access properties.

6. Local & Global Optimizations
Identify unneeded or redundant code.
Decide where to place code.
Worry about debugging issues (how 
reliable are current values and source 
line numbers after optimization?)
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7. Program representations

•  Control Flow Graphs

•  Program Dependency Graphs

•  Static Single Assignment Form 
(SSA)

Each program variable is assigned to 
in only one place.
After an assignment  xi = yj, the 
relation xi = yj always holds.

Example:

if (a)          if (a)
     x = 1           x1 =1

else x = 2;     else x2 =2;

print(x)        x3 = �(x1,x2)
                print(x3) 
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8. Data Flow Analysis
Determine invariant properties of 
subprograms; analysis can be extended 
to entire programs.

Model abstract execution.

Prove correctness and efficiency 
properties of analysis algorithms.

9. Points-To Analysis
All compiler analyses and optimizations 
are limited by the potential effects of 
assignments through pointers and 
references.
Thus in C:
 b = 1;

 *p = 0;

 print(b);

is 1 or 0 printed?
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Similarly, in Java:
  a[1] = 1;

  b[1] = 0;

  print(a[1]);

is 1 or 0 printed?

Points-to analysis aims to determine what 
variables or heap objects a pointer or 
reference may access. Exact analysis is 
impossible (why?). But fast and 
reasonably accurate analyses are known.
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Review of Compiler 
Optimizations
1. Redundant Expression Elimination  

(Common Subexpression Removal)
Use an address or value that has been 
previously computed. Consider control 
and data dependencies.

2. Partially Redundant Expression 
(PRE) Elimination

A variant of Redundant Expression 
Elimination. If a value or address is 
redundant along some execution paths, 
add computations to other paths to create 
a fully redundant expression (which is 
then removed).
Example:
 if (i > j)

a[i] = a[j];

a[i] = a[i] * 2;
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3. Constant Propagation
If a variable is known to contain a 
particular constant value at a particular 
point in the program, replace references 
to the variable at that point with the 
constant value.

4. Copy Propagation
After the assignment of one variable to 
another, a reference to one variable may 
be replaced with the value of the other 
variable (until one or the other of the 
variables is reassigned).
(This may also “set up” dead code 
elimination. Why?)



24CS 701  Fall 2014©

5. Constant Folding
An expression involving constant (literal) 
values may be evaluated and simplified to 
a constant result value. Particularly 
useful when constant propagation is 
performed.

6. Dead Code Elimination
Expressions or statements whose values 
or effects are unused may be eliminated.

7. Loop Invariant Code Motion
An expression that is invariant in a loop 
may be moved to the loop’s header, 
evaluated once, and reused within the 
loop.
Safety and profitability issues may be 
involved. 
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8. Scalarization (Scalar Replacement)
A field of a structure or an element of an 
array that is repeatedly read or written 
may be copied to a local variable, 
accessed using the local, and later (if 
necessary) copied back. 
This optimization allows the local 
variable (and in effect the field or array 
component) to be allocated to a register.

9. Local Register Allocation
Within a basic block (a straight line 
sequence of code) track register contents 
and reuse variables and constants from 
registers.

10. Global Register Allocation
Within a subprogram, frequently 
accessed variables and constants are 
allocated to registers. Usually there are 
many more register candidates than 
available registers.
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11. Interprocedural Register Allocation
Variables and constants accessed by more 
than one subprogram are allocated to 
registers. This can greatly reduce call/
return overhead.

12. Register Targeting
Compute values directly into the 
intended target register.

13. Interprocedural Code Motion
Move instructions across subprogram 
boundaries.

14. Call Inlining
At the site of a call, insert the body of a 
subprogram, with actual parameters 
initializing formal parameters.
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15. Code Hoisting and Sinking
If the same code sequence appears in two 
or more alternative execution paths, the 
code may be hoisted to a common   
ancestor or sunk to a common successor. 
(This reduces code size, but does not 
reduce instruction count.)

16. Loop Unrolling
Replace a loop body executed N times 
with an expanded loop body consisting of 
M copies of the loop body. This expanded 
loop body is executed N/M times, 
reducing loop overhead and increasing 
optimization possibilities within the 
expanded loop body.
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17. Software Pipelining
A value needed in iteration i of a loop is 
computed during iteration i-1 (or i-2, ...). 
This allows long latency operations 
(floating point divides and square roots, 
low hit-ratio loads) to execute in parallel 
with other operations. Software 
pipelining is sometimes called symbolic 
loop unrolling.

18. Strength Reduction
Replace an expensive instruction with an 
equivalent but cheaper alternative. For 
example a division may be replaced by 
multiplication of a reciprocal, or a list 
append may be replaced by cons 
operations.
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19. Data Cache Optimizations

• Locality Optimizations
Cluster accesses of data values both 
spacially (within a cache line) and 
temporally (for repeated use).
Loop interchange and loop tiling 
improve temporal locality.

• Conflict Optimizations
Adjust data locations so that data used 
consecutively and repeatedly don’t 
share the same cache location.

20. Instruction Cache Optimizations
Instructions that are repeatedly executed 
should be accessed from the instruction 
cache rather than the secondary cache or 
memory. Loops and “hot” instruction 
sequences should fit within the cache. 
Temporally close instruction sequences 
should not map to conflicting cache 
locations.


