
201CS 701 Fall 2014 ©

Partitioning SSA Variables
Initially, all SSA variables will be
partitioned by the form of the
expression assigned to them.
Expressions involving different
constants or operators won�’t (in
general) be equivalent, even if their
operands happen to be equivalent.
Thus
 v1 = 2 and w1 = a2 + 1
are always considered inequivalent.
But,
 v3 = a1 + b2 and w1 = d1 + e2
may possibly be equivalent since
both involve the same operator.

202CS 701 Fall 2014©

Phi functions are potentially
equivalent only if they are in the
same basic block.
All variables are initially considered
equivalent (since they all initially
are considered uninitialized until
explicit initialization).
After SSA variables are grouped by
assignment form, groups are split.
If ai op by and ck op dl
are in the same group (because they
both have the same operator, op)
and ai / ck or bj / dl
then we split the two expressions
apart into different groups.
We continue splitting based on
operand inequivalence, until no
more splits are possible. Values still
grouped are equivalent.

203CS 701 Fall 2014 ©

Example

Now b4 isn�’t equivalent to anything,
so split a5 and b5. In G7 split
operands b3, a5 and b5. We have

if (...) {
 a1=0
 if (...)

b1=0
 else {

a2=x0
b2=x0 }

 a3= (a1,a2)
 b3= (b1,b2)
 c2=*a3
 d2=*b3 }
else {
 b4=10 }
a5= (a0,a3)
b5= (b3,b4)
c3=*a5
d3=*b5
e3=*a5

Initial Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3= (a1,a2),
 b3= (b1,b2)]
G6=[a5= (a0,a3),

b5= (b3,b4)]
G7=[c2=*a3,
 d2=*b3,
 d3=*b5,
 c3=*a5,
 e3=*a5]

204CS 701 Fall 2014©

Variable e3 can use c3�’s value and
d2 can use c2�’s value.

if (...) {
 a1=0
 if (...)

b1=0
 else {

a2=x0
b2=x0 }

 a3= (a1,a2)
 b3= (b1,b2)
 c2=*a3
 d2=*b3 }
else {
 b4=10 }
a5= (a0,a3)
b5= (b3,b4)
c3=*a5
d3=*b5
e3=*a5

Final Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3= (a1,a2),
 b3= (b1,b2)]
G6a=[a5= (a0,a3)]
G6b=[b5= (b3,b4)]
G7a=[c2=*a3,
 d2=*b3]
G7b=[d3=*b5]
G7c=[c3=*a5,
 e3=*a5]

205CS 701 Fall 2014 ©

Limitations of Global Value
Numbering

As presented, our global value
numbering technique doesn�’t
recognize (or handle) computations
of the same expression that produce
different values along different
paths.
Thus in

variable a3 isn�’t equivalent to either
a1 or a2.

a1=1
t1=a1+b0

a2=2
t2=a2+b0

a3= (a1,a2)
t3=a3+b0

206CS 701 Fall 2014©

But,
we can still remove a redundant
computation of a+b by moving the
computation of t3 to each of its
predecessors:

Now a redundant computation of
a+b is evident in each predecessor
block. Note too that this has a nice
register targeting effect�—e1, e2 and
e3 can be readily mapped to the
same live range.

a1=1
t1=a1+b0

a2=2
t2=a2+b0

e3= (e1,e2)
t3=e3

e1=a1+b0 e2=a2+b0

207CS 701 Fall 2014 ©

The notion of moving expression
computations above phi functions also
meshes nicely with notion of partial
redundancy elimination. Given

moving a+b above the phi produces

Now a+b is computed only once on
each path, an improvement.

a1=1
t1=a1+b0

a2=2

a3= (a1,a2)
t3=a3+b0

a1=1
t1=a1+b0

a2=2
t2=a2+b0

t3= (t1,t2)

208CS 701 Fall 2014©

Reading Assignment
• Read "Pointer Analysis,�” by Susan

Horwitz.
(Linked from the class Web page.)

209CS 701 Fall 2014 ©

Points-To Analysis
All compiler analyses and
optimizations are limited by the
potential effects of assignments
through pointers and references.
Thus in C:
b = 1;
*p = 0;
print(b);

is 1 or 0 printed?
Similarly, in Java:

a[1] = 1;
b[1] = 0;
print(a[1]);

is 1 or 0 printed?

210CS 701 Fall 2014©

Points-to analysis aims to determine
what variables or heap objects a
pointer or reference may access.

To simplify points-to analysis, a
number of reasonable assumptions
are commonly made:
• Points to analysis is usually flow-

insensitive. We don�’t analyze flow
of control within a subprogram, but
rather gather points-to information
for the subprogram as a whole.
Thus in
if (b)

p = &a;
else p = &c;

we conclude p may point to
either a or c.

211CS 701 Fall 2014 ©

• Points to analysis is usually context-
insensitive (with respect to calls).
This means individual call sites for
the same subprogram are not
differentiated.
Therefore in
 *int echo (*int r) {

 return r; }
 p = echo (&a);
 q = echo (&b);

we determine that r may point to
either a or b and therefore p
can point to either a or b.

212CS 701 Fall 2014©

• Heap objects are named by the call
site at which they are created. In:
 p = new int; //Site 1
 q = new int; //Site2

we know p and q can�’t interfere
since each refers to distinct call site.

• Aggregates (arrays, structs, classes) are
collapsed. Pointers or references to
individual components are not
distinguished. Given

 p = &a[1];
 q = &a[2];
pointers p and q are assumed to
interfere.
Similarly in
 p = Obj.a;
 q = Obj.b;
pointers p and q are assumed to
interfere.

213CS 701 Fall 2014 ©

• Complex pointer expressions are
assumed to be simplified prior to
points-to analysis.
For example,

 **p = 1;
 is transformed into
 temp = *p;
 *temp = 1;

214CS 701 Fall 2014©

Points-To Representation
There are several ways to represent
points-to information. We will use a
points-to graph, which is concise and
easy to understand.
Nodes are pointer variables and
�“pointed to�” locations.
An arc connects a pointer to a
location it may potentially
reference.

Given
 p = &a
we create:

p a

215CS 701 Fall 2014 ©

Therefore in

we see p and q may both point to b,
but p and r can�’t interfere (since
their points-to sets are disjoint).

p a

q b

r c

216CS 701 Fall 2014©

Simple Point-To Information
A primitive points-to analysis can
be done using type or �“address
taken�” information.
In a type-safe language like Java, a
reference to type T can only point to
objects of type T (or a subtype of T).
Given
 ref1 = new Integer();
 ref2 = new Float();

we trivially know ref1 and ref2
can�’t interfere.

217CS 701 Fall 2014 ©

Similarly, in C no pointer can access
a variable v unless its address is
taken (using the & operator). With
very little effort we can limit the
points-to sets of pointer p to only
those variables of the correct type
(excluding casting) whose address
has been explicitly taken.

In practice both of these
observations are too broad to be of
much use.

218CS 701 Fall 2014©

Andersen�’s Algorithm
An algorithm to build a points-to
graph for a C program is presented
in:
�“Program Analysis and
Specialization for the C
programming Language,�” L.O.
Andersen, 1994.

The algorithm examines statements
that create pointers, one by one, in
textual order (the algorithm is flow-
insensitive). Each statement updates
the points-to graph if it can create
new points-to relationships.

219CS 701 Fall 2014 ©

Six kinds of statements are
considered:
• p = &a;

• p = q;

• p = *r;

• *p = &a;

• *p = q;

• *p = *r;

We will detail the points-to graph
updates each of the statements
induces.

1. p = &a;
We add an arc from p to a, showing
p can possibly point to a:

p a

220CS 701 Fall 2014©

2. p = q;

We add arcs from p to everything q
points to. If new arcs from q are
later added, corresponding arcs
from p must also be added (this
implies an iterative or worklist
algorithm).
For example (the dashed arc is
newly added):
p a

qb

c

221CS 701 Fall 2014 ©

3. p = *r;

Let S be all the nodes r points to.
Let T be all the nodes members of S
point to. We add arcs from p to all
nodes in T. If later pointer
assignments increase S or T, new
arcs from p must also be added (this
again implies an iterative or
worklist algorithm).
For example (dashed arcs are newly
added):
p e

rf

c

a

b

d

222CS 701 Fall 2014©

4. *p = &a;

Add an arc to a from all nodes p
points to. If new arcs from p are
later added, new arcs to a must be
added (this implies an iterative or
worklist algorithm).

For example (dashed arcs are
newly added):
p q a

r

223CS 701 Fall 2014 ©

5. *p = q;

Nodes pointed to by p must be
linked to all nodes pointed to by
q. If later pointer assignments
add arcs from p or q, this
assignment must be revisited
(this again implies an iterative or
worklist algorithm).
For example (dashed arcs are
newly added):
p e

qf

c

r

s

224CS 701 Fall 2014©

6. *p = *r;

Let S be all the nodes r points to.
Let T be all the nodes members
of S point to. We add arcs from
all nodes p points to to all nodes
in T. If later pointer assignments
increase S or T or link new nodes
to p, this assignment must be
revisited (this again implies an
iterative or worklist algorithm).
For example (dashed arcs are
newly added):

p w

rx

c

u

v
d

a

b

225CS 701 Fall 2014 ©

Example
Consider the following pointer
manipulations:
p1 = &a;
p2 = &b;
p1 = p2;
r = &p1;
*r = &c;
p3 = *r;
p2 = &d;

We start with:
p1 = &a;
p2 = &b;

p1 a

p2 b

226CS 701 Fall 2014©

Next:
p1 = p2;

Then:
r = &p1;

p1 a

p2 b

p1 a

p2 b

r

227CS 701 Fall 2014 ©

Next:
*r = &c;

Then:
p3 = *r;

p1 a

p2 b

r

c

p1 a

p2 b

r

c

p3

228CS 701 Fall 2014©

Finally:
p2 = &d;

But we aren�’t quite done yet. This
algorithm is flow-insensitive, so we
must consider other execution
orders (and iterative re-execution).
If we make another pass through
the assignments, we see that the

p1 a

p2 b

r

c

p3

d

229CS 701 Fall 2014 ©

final assignment to p2 can flow to
p1, and then to p3 through r:

This points-to graph is rather dense,
but it does capture all the ways
pointer values might propagate
through the various pointer
assignments.

p1 a

p2 b

r

c

p3

d

230CS 701 Fall 2014©

Calls are handled by treating
pointer parameters and pointer
returns as assignments, done at the
points of call and return.
Subprogram bodies are effectively
inlined to capture the points-to
relations they induce.
Given
 *int echo (*int r) {

 return r; }
 p = echo (&a);

we see the implicit assignments
 r = &a;
 p = r;

and add the following points-to
information:
p a r

231CS 701 Fall 2014 ©

As an optimization, libraries can be
pre-analyzed to determine the
points-to relations they induce.
Most may use (read) pointers but
don�’t create any new points-to
relations visible outside their bodies.
Call to such library routines can be
ignored as far as the caller�’s points-
to graph is concerned.

232CS 701 Fall 2014©

Performance of Andersen�’s
Algorithm

Experience has shown that
Andersen�’s Algorithm gives useful
points-to data and is far superior to
the naive address-taken approach.
Interestingly, experiments show that
making the technique flow-sensitive
or calling context-sensitive doesn�’t
improve results very much on
typical benchmarks.

But execution time for moderate to
large programs can be a problem.
Careful analysis shows that
Andersen�’s Algorithm can require
O(n3) time (where n is the number
of nodes in the points-to graph).

233CS 701 Fall 2014 ©

The reason for this larger-than-
expected analysis time is that a
statement like

p = *q;

can force the algorithm to visit n2
nodes (q may point to n nodes and
each of these nodes may point to n
nodes). The number of pointer
statements analyzed can be O(n),
leading to an O(n3) execution time.

234CS 701 Fall 2014©

Steensgaard�’s Algorithm
It would be useful to have a
reasonably accurate points-to
analysis that runs in essentially
linear time so that really large
programs could be handled.
This is what Steensgaard�’s
Algorithm offers.
(Points-to Analysis in Almost
Linear Time, B. Steensgaard, 1996
Principles of Programming
Languages Conference.)
Steensgaard�’s Algorithm is
essentially Andersen�’s Algorithm,
simplified by merging nodes a and b
if any pointer can reference both.

235CS 701 Fall 2014 ©

That is, in Andersen�’s Algorithm we
might have

In Steensgaard�’s Algorithm we
would instead have

In effect any two locations that
might be pointed to by the same
pointer are placed in a single
equivalence class.

p a

b

p a
b

236CS 701 Fall 2014©

Steensgaard�’s Algorithm is
sometimes less accurate than
Andersen�’s Algorithm. For
example, the following points-to
graph, created by Andersen�’s
Algorithm, shows that p may point
to a or b whereas q may only point
to a:

In Steensgaard�’s Algorithm we get

incorrectly showing that if p may
point to a or b then so may q.

p a

b

q

p a
b q

237CS 701 Fall 2014 ©

But now statements like
p = *q;

can�’t force the algorithm to visit n2
nodes, because multiple nodes
referenced by the same pointer are
always merged. Using the fast
union-find algorithm, we can get an
execution time of O(n (n)) which is
essentially linear in n. Now very
large programs can be analyzed,
and without too much of a loss in
precision.

238CS 701 Fall 2014©

Andersen vs. Steensgaard in
Practice

• Horwitz and Shapiro examined 61
C programs, ranging in size from
300 to 24,300 lines.

• As expected, Steensgaard is less
precise: On average points-to sets
are 4 times bigger; at worst 15 times
bigger.

• As expected, Andersen is slower. On
average 1.5 times slower: at worst
31 times slower.

• Both are much better than the naive
�“address taken�” approach.

• Bottom line: Use Andersen for small
programs, use Steensgaard (or
something else) for large programs.

239CS 701 Fall 2014 ©

Reading Assignment
• Read "Fast and Accurate Flow-

Insensitive Points-To Analysis,�” by
Shapiro and Horwitz.
(Linked from the class Web page.)

240CS 701 Fall 2014©

The Horwitz-Shapiro
Approach

It would be nice to have a points-to
analysis that is parameterizable,
ranging between the accuracy of
Andersen and the speed of
Steensgaard.
Horwitz and Shapiro (Fast and
Accurate Flow-Insensitive Points-To
Analysis, 1997 Principles of
Programming Languages
Conference) present a technique
intermediate to those proposed by
Andersen and Steensgaard.

241CS 701 Fall 2014 ©

Horwitz and Shapiro suggest each
node in the points-to graph be
limited to out degree k, where
 1 k n.
If k =1 then they have Steensgaard�’s
approach.
If k =n (n is number of nodes in
points to graph), then they have
Andersen�’s approach.

Their worst case run-time is

O(k2 n), which is not much worse
than Steensgaard if k is kept
reasonably small.

242CS 701 Fall 2014©

To use their approach assign each
variable that may be pointed to to
one of k categories.
Now if p may point to x and p may
also point to y, we merge x and y
only if they both are in the same
category.
If x and y are in different categories,
they aren�’t merged, leading to more
accurate points-to estimates.

243CS 701 Fall 2014 ©

Example
p1 = &a;
p1 = &b;
p1 = &c;
p2 = &c;

Say we have k = 2 and place a and b
in category 1 and c in category 2.
We then build:

This points-to graph is just as
accurate as that built by Andersen�’s
approach.

p1 a,b

p2 c

244CS 701 Fall 2014©

But...
What if we chose to place a in
category 1 and b and c in category
2.
We now have:

This graph is inexact, since it tells us
p2 may point to b, which is false.
(Steensgaard would have been
worse still, incorrectly telling us p2
may point to a as well as b and c).

p1 a

p2 b,c

245CS 701 Fall 2014 ©

Another Good Idea
What if we ran Shapiro and
Horwitz�’s points-to analysis twice,
each with different category
assignments?
Each run may produce a different
points-to graph. One may say p2
points to b whereas the other says it
does not.
Which do we believe?
Neither analysis misses a genuine
points-to relation. Rather, merging
of nodes sometimes creates false
points-to information.
So we will believe p2 may point to b
only if all runs say so. This means
multiple runs may �“filter out�” false
points-to relations due to merging.

246CS 701 Fall 2014©

How Many Runs are Needed?

How are Categories to be Set?
We want to assign categories so that
during at least one run, any pair of
pointed-to variables are in different
categories.
This guarantees that if all the runs
tell us p may point to a and b, it is
not just because a and b always
happened to be assigned the same
category.
To force different category
assignments for each pair of
variables, we assign each pointed-to
variable an index and write that
index in base k (the number of
categories chosen).

247CS 701 Fall 2014 ©

For example, if we had variables a,
b, c and d, and chose k = 2, we�’d use
the following binary indices:
a 00
b 01
c 10
d 11

Note that the number of base k
digits needed to represent indices
from 0 to n-1 is just ceiling(logk n).
This number is just the number of
runs we need!

248CS 701 Fall 2014©

Why?
In the first run, we�’ll use the right
most digit in a variable�’s index as its
category.
In the next run, we�’ll use the second
digit from the right, then the third
digit from the right, ...
Any two distinct variables have
different index values, so they must
differ in at least digit position.

249CS 701 Fall 2014 ©

Returning to our example,
a 00
b 01
c 10
d 11
On run #1 we give a and c category
0 and b and d category 1.
On run #2, a and b get category 0
and c and d get category 1.
So using just 2 runs in this simple
case, we eliminate much of the
inaccuracy Steensgaard�’s merging
introduces.

Run time is now O(logk(n) k2 n).

250CS 701 Fall 2014©

How Well does this Approach
Work?

On 25 tests, using 3 categories,
Horwitz & Shapiro points-to sets on
average are 2.67 larger than those of
Andersen (Steensgaard�’s are 4.75
larger).

This approach is slower than
Steensgaard but on larger programs
it is 7 to 25 times faster than
Andersen.

251CS 701 Fall 2014 ©

How Well do Points-to
Analyses Work in Real Data
Flow Problems?

In �“Which Pointer Analysis Should
I Use,�” Hind and Pioli survey the
effectiveness of a number of points-
to analyses in actual data flow
analyses (mod/ref, liveness, reaching
defs, interprocedural constant
propagation).
Their conclusions are essentially the
same across all these analyses:
• Steensgaard�’s analysis is

significantly more precise than
address-taken analysis and not
significantly slower.

• Andersen�’s analysis produces
modest, but consistent,

252CS 701 Fall 2014©

improvements over Steensgaard�’s
analysis.

• Both context-sensitive points-to
analysis and flow-sensitive points-to
analysis give little improvement
over Andersen�’s analysis.

