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Partitioning SSA Variables
Initially, all SSA variables will be 
partitioned by the form of the 
expression assigned to them.
Expressions involving different 
constants or operators won�’t (in 
general) be equivalent, even if their 
operands happen to be equivalent.
Thus
  v1 = 2  and w1 = a2 + 1
are always considered inequivalent.
But,
 v3 = a1 + b2 and w1 = d1 + e2
may possibly be equivalent since 
both involve the same operator.
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Phi functions are potentially 
equivalent only if they are in the 
same basic block.
All variables are initially considered 
equivalent (since they all initially 
are considered uninitialized until 
explicit initialization).
After SSA variables are grouped by 
assignment form, groups are split.
If ai op by and ck op dl
are in the same group (because they 
both have the same operator, op)
and ai /  ck or bj /  dl
then we split the two expressions 
apart into different groups.
We continue splitting based on 
operand inequivalence, until no 
more splits are possible. Values still 
grouped are equivalent.
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Example

Now b4 isn�’t equivalent to anything, 
so split a5 and b5. In G7 split 
operands b3, a5 and b5. We  have

if (...) {
  a1=0
  if (...)

b1=0
  else {

a2=x0
b2=x0 }

  a3= (a1,a2)
  b3= (b1,b2)
  c2=*a3
  d2=*b3 } 
else {
  b4=10 }
a5= (a0,a3)
b5= (b3,b4)
c3=*a5
d3=*b5
e3=*a5

Initial Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3= (a1,a2),
       b3= (b1,b2)]
G6=[a5= (a0,a3),       

b5= (b3,b4)]
G7=[c2=*a3,
       d2=*b3,
       d3=*b5,
       c3=*a5,
       e3=*a5]
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Variable e3 can use c3�’s value and 
d2 can use c2�’s value.

if (...) {
  a1=0
  if (...)

b1=0
  else {

a2=x0
b2=x0 }

  a3= (a1,a2)
  b3= (b1,b2)
  c2=*a3
  d2=*b3 } 
else {
  b4=10 }
a5= (a0,a3)
b5= (b3,b4)
c3=*a5
d3=*b5
e3=*a5

Final Groupings:

G1=[a0,b0,c0,d0,e0,x0]
G2=[a1=0, b1=0]
G3=[a2=x0, b2=x0]
G4=[b4=10]
G5=[a3= (a1,a2),
       b3= (b1,b2)]
G6a=[a5= (a0,a3)]       
G6b=[b5= (b3,b4)]
G7a=[c2=*a3,
        d2=*b3]
G7b=[d3=*b5]
G7c=[c3=*a5,
         e3=*a5]
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Limitations of Global Value 
Numbering

As presented, our global value 
numbering technique doesn�’t 
recognize (or handle) computations 
of the same expression that produce 
different values along different 
paths.
Thus in 

variable a3 isn�’t equivalent to either 
a1 or a2.

a1=1
t1=a1+b0

a2=2
t2=a2+b0

a3= (a1,a2)
t3=a3+b0
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But, 
we can still remove a redundant 
computation of a+b by moving the 
computation of t3 to each of its 
predecessors: 

Now a redundant computation of 
a+b is evident in each predecessor 
block. Note too that this has a nice 
register targeting effect�—e1, e2 and 
e3 can be readily mapped to the 
same live range.

a1=1
t1=a1+b0

a2=2
t2=a2+b0

e3= (e1,e2)
t3=e3

e1=a1+b0 e2=a2+b0
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The notion of moving expression 
computations above phi functions also 
meshes nicely with notion of partial 
redundancy elimination. Given 

moving a+b above the phi produces

Now a+b is computed only once on 
each path, an improvement.

a1=1
t1=a1+b0

a2=2

a3= (a1,a2)
t3=a3+b0

a1=1
t1=a1+b0

a2=2
t2=a2+b0

t3= (t1,t2)
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Reading Assignment
• Read "Pointer Analysis,�” by Susan 

Horwitz.
(Linked from the class Web page.)
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Points-To Analysis
All compiler analyses and 
optimizations are limited by the 
potential effects of assignments 
through pointers and references.
Thus in C:
b = 1;
*p = 0;
print(b);

is 1 or 0 printed?
Similarly, in Java:

a[1] = 1;
b[1] = 0;
print(a[1]);

is 1 or 0 printed?
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Points-to analysis aims to determine 
what variables or heap objects a 
pointer or reference may access.

To simplify points-to analysis, a 
number of reasonable assumptions 
are commonly made:
• Points to analysis is usually flow-

insensitive. We don�’t analyze flow 
of control within a subprogram, but 
rather gather points-to information 
for the subprogram as a whole.
Thus in
if (b)

p = &a;
else p = &c;

we conclude p may point to 
either a or c.
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• Points to analysis is usually context-
insensitive (with respect to calls). 
This means individual call sites for 
the same subprogram are not 
differentiated.
Therefore in
 *int echo (*int r) {

 return r; }
 p = echo (&a);
 q = echo (&b);

we determine that r may point to 
either a or b and therefore p 
can point to either a or b.
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• Heap objects are named by the call 
site at which they are created. In:
  p = new int; //Site 1
 q = new int; //Site2

we know p and q can�’t interfere 
since each refers to distinct call site.

• Aggregates (arrays, structs, classes) are 
collapsed. Pointers or references to 
individual components are not 
distinguished. Given

    p = &a[1];
  q = &a[2];
pointers p and q are assumed to 
interfere.
Similarly in
    p = Obj.a;
  q = Obj.b;
pointers p and q are assumed to 
interfere.
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• Complex pointer expressions are 
assumed to be simplified prior to 
points-to analysis.
For example, 

   **p = 1;
 is transformed into
   temp = *p;
  *temp = 1;
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Points-To Representation
There are several ways to represent 
points-to information. We will use a 
points-to graph, which is concise and 
easy to understand.
Nodes are pointer variables and 
�“pointed to�” locations.
An arc connects a pointer to a 
location it may potentially 
reference.

Given
  p = &a
we create:

p a
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Therefore in 

we see p and q may both point to b, 
but p and r can�’t interfere (since 
their points-to sets are disjoint).

p a

q b

r c
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Simple Point-To Information
A primitive points-to analysis can 
be done using type or �“address 
taken�” information.
In a type-safe language like Java, a 
reference to type T can only point to 
objects of type T (or a subtype of T).
Given
  ref1 = new Integer();
 ref2 = new Float();

we trivially know ref1 and ref2 
can�’t interfere.
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Similarly, in C no pointer can access 
a variable v unless its address is 
taken (using the & operator). With 
very little effort we can limit the 
points-to sets of pointer p to only 
those variables of the correct type 
(excluding casting) whose address 
has been explicitly taken.

In practice both of these 
observations are too broad to be of 
much use.
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Andersen�’s Algorithm
An algorithm to build a points-to 
graph for a C program is presented 
in:
�“Program Analysis and 
Specialization for the C 
programming Language,�” L.O. 
Andersen, 1994.

The algorithm examines statements 
that create pointers, one by one, in 
textual order (the algorithm is flow-
insensitive). Each statement updates 
the points-to graph if it can create 
new points-to relationships.
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Six kinds of statements are 
considered:
• p = &a;

• p = q;

• p = *r;

• *p = &a;

• *p = q;

• *p = *r;

We will detail the points-to graph 
updates each of the statements 
induces.

1.  p = &a;
We add an arc from p to a, showing 
p can possibly point to a:

p a
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2. p = q;

We add arcs from p to everything q 
points to. If new arcs from q are 
later added, corresponding arcs 
from p must also be added (this 
implies an iterative or worklist 
algorithm).
For example (the dashed arc is 
newly added):
p a

qb

c
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3. p = *r;

Let S be all the nodes r points to. 
Let T be all the nodes members of S 
point to. We add arcs from p to all 
nodes in T. If later pointer 
assignments increase S or T, new 
arcs from p must also be added (this 
again implies an iterative or 
worklist algorithm).
For example (dashed arcs are newly 
added):
p e

rf

c

a

b

d
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4. *p = &a;

Add an arc to a from all nodes p 
points to. If new arcs from p are 
later added, new arcs to a must be 
added (this implies an iterative or 
worklist algorithm).

For example (dashed arcs are 
newly added):
p q a

r
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5. *p = q;

Nodes pointed to by p must be 
linked to all nodes pointed to by 
q. If later pointer assignments 
add arcs from p or q, this 
assignment must be revisited 
(this again implies an iterative or 
worklist algorithm).
For example (dashed arcs are 
newly added):
p e

qf

c

r

s
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6. *p = *r;

Let S be all the nodes r points to. 
Let T be all the nodes members 
of S point to. We add arcs from 
all nodes p points to to all nodes 
in T. If later pointer assignments 
increase S or T or link new nodes 
to p, this assignment must be 
revisited (this again implies an 
iterative or worklist algorithm).
For example (dashed arcs are 
newly added):

p w

rx

c

u

v
d

a

b
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Example
Consider the following pointer 
manipulations:
p1 = &a;
p2 = &b;
p1 = p2;
r = &p1;
*r = &c;
p3 = *r;
p2 = &d;

We start with:
p1 = &a;
p2 = &b;

p1 a

p2 b
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Next:
p1 = p2;

Then:
r = &p1;

p1 a

p2 b

p1 a

p2 b

r
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Next:
*r = &c;

Then:
p3 = *r;

p1 a

p2 b

r

c

p1 a

p2 b

r

c

p3
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Finally:
p2 = &d;

But we aren�’t quite done yet. This 
algorithm is flow-insensitive, so we 
must consider other execution 
orders (and iterative re-execution). 
If we make another pass through 
the assignments, we see that the 

p1 a

p2 b

r

c

p3

d
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final assignment to p2 can flow to 
p1, and then to p3 through r:

This points-to graph is rather dense, 
but it does capture all the ways 
pointer values might propagate 
through the various pointer 
assignments.

p1 a

p2 b

r

c

p3

d
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Calls are handled by treating 
pointer parameters and pointer 
returns as assignments, done at the 
points of call and return. 
Subprogram bodies are effectively 
inlined to capture the points-to 
relations they induce.
Given
 *int echo (*int r) {

 return r; }
 p = echo (&a);

we see the implicit assignments
 r = &a;
 p = r;

and add the following points-to 
information:
p a r
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As an optimization, libraries can be 
pre-analyzed to determine the 
points-to relations they induce. 
Most may use (read) pointers but 
don�’t create any new points-to 
relations visible outside their bodies. 
Call to such library routines can be 
ignored as far as the caller�’s points-
to graph is concerned.
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Performance of Andersen�’s 
Algorithm

Experience has shown that 
Andersen�’s Algorithm gives useful 
points-to data and is far superior to 
the naive address-taken approach.
Interestingly, experiments show that 
making the technique flow-sensitive 
or calling context-sensitive doesn�’t 
improve results very much on 
typical benchmarks.

But execution time for moderate to 
large programs can be a problem.
Careful analysis shows that 
Andersen�’s Algorithm can require 
O(n3) time (where n is the number 
of nodes in the points-to graph).
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The reason for this larger-than-
expected analysis time is that a 
statement like

p = *q;

can force the algorithm to visit n2 
nodes (q may point to n nodes and 
each of these nodes may point to n 
nodes). The number of pointer 
statements analyzed can be O(n), 
leading to an O(n3) execution time.
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Steensgaard�’s Algorithm
It would be useful to have a 
reasonably accurate points-to 
analysis that runs in essentially 
linear time so that really large 
programs could be handled. 
This is what Steensgaard�’s 
Algorithm offers. 
(Points-to Analysis in Almost 
Linear Time, B. Steensgaard, 1996 
Principles of Programming 
Languages Conference.)
Steensgaard�’s Algorithm is 
essentially Andersen�’s Algorithm, 
simplified by merging nodes a and b 
if any pointer can reference both.
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That is, in Andersen�’s Algorithm we 
might have

In Steensgaard�’s Algorithm we 
would instead have

In effect any two locations that 
might be pointed to by the same 
pointer are placed in a single 
equivalence class.

p a

b

p a
b
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Steensgaard�’s Algorithm is 
sometimes less accurate than 
Andersen�’s Algorithm. For 
example, the following points-to 
graph, created by Andersen�’s 
Algorithm, shows that p may point 
to a or b whereas q may only point 
to a:

In Steensgaard�’s Algorithm we get

incorrectly showing that if p may 
point to a or b then so may q.

p a

b

q

p a
b q
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But now statements like
p = *q;

can�’t force the algorithm to visit n2 
nodes, because multiple nodes 
referenced by the same pointer are 
always merged. Using the fast 
union-find algorithm, we can get an 
execution time of O(n (n)) which is 
essentially linear in n. Now very 
large programs can be analyzed, 
and without too much of a loss in 
precision.
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Andersen vs. Steensgaard in 
Practice

• Horwitz and Shapiro examined 61 
C programs, ranging in size from 
300 to 24,300 lines.

• As expected, Steensgaard is less 
precise: On average points-to sets 
are 4 times bigger; at worst 15 times 
bigger.

• As expected, Andersen is slower. On 
average 1.5 times slower: at worst 
31 times slower.

• Both are much better than the naive 
�“address taken�” approach.

• Bottom line: Use Andersen for small 
programs, use Steensgaard (or 
something else) for large programs.
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Reading Assignment
• Read "Fast and Accurate Flow-

Insensitive Points-To Analysis,�” by 
Shapiro and Horwitz.
(Linked from the class Web page.)
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The Horwitz-Shapiro 
Approach

It would be nice to have a points-to 
analysis that is parameterizable, 
ranging between the accuracy of 
Andersen and the speed of 
Steensgaard.
Horwitz and Shapiro (Fast and 
Accurate Flow-Insensitive Points-To 
Analysis, 1997 Principles of 
Programming Languages 
Conference) present a technique 
intermediate to those proposed by 
Andersen and Steensgaard.
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Horwitz and Shapiro suggest each 
node in the points-to graph be 
limited to out degree k, where
 1  k  n.
If k =1 then they have Steensgaard�’s 
approach.
If k =n (n is number of nodes in 
points to graph), then they have 
Andersen�’s approach.

Their worst case run-time is

O(k2 n), which is not much worse 
than Steensgaard if k is kept 
reasonably small.
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To use their approach assign each 
variable that may be pointed to to 
one of k categories.
Now if p may point to x and p may 
also point to y, we merge x and y 
only if they both are in the same 
category.
If x and y are in different categories, 
they aren�’t merged, leading to more 
accurate points-to estimates.
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Example
p1 = &a;
p1 = &b;
p1 = &c;
p2 = &c;

Say we have k = 2 and place a and b 
in category 1 and c in category 2.
We then build:

This points-to graph is just as 
accurate as that built by Andersen�’s 
approach.

p1 a,b

p2 c
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But...
What if we chose to place a in 
category 1 and b and c in category 
2.
We now have: 

This graph is inexact, since it tells us 
p2 may point to b, which is false.
(Steensgaard would have been 
worse still, incorrectly telling us p2 
may point to a as well as b and c).

p1 a

p2 b,c
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Another Good Idea
What if we ran Shapiro and 
Horwitz�’s points-to analysis twice, 
each with different category 
assignments?
Each run may produce a different 
points-to graph. One may say p2 
points to b whereas the other says it 
does not.
Which do we believe?
Neither analysis misses a genuine 
points-to relation. Rather, merging 
of nodes sometimes creates false 
points-to information.
So we will believe p2 may point to b 
only if all runs say so. This means 
multiple runs may �“filter out�” false 
points-to relations due to merging.
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How Many Runs are Needed?

How are Categories to be Set?
We want to assign categories so that 
during at least one run, any pair of 
pointed-to variables are in different 
categories.
This guarantees that if all the runs 
tell us p may point to a and b, it is 
not just because a and b always 
happened to be assigned the same 
category.
To force different category 
assignments for each pair of 
variables, we assign each pointed-to 
variable an index and write that 
index in base k (the number of 
categories chosen).
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For example, if we had variables a, 
b, c and d, and chose k = 2, we�’d use 
the following binary indices:
a 00
b    01
c    10
d    11

Note that the number of base k 
digits needed to represent indices 
from 0 to n-1 is just ceiling(logk n).
This number is just the number of 
runs we need!
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Why?
In the first run, we�’ll use the right 
most digit in a variable�’s index as its 
category.
In the next run, we�’ll use the second 
digit from the right, then the third 
digit from the right, ...
Any two distinct variables have 
different index values, so they must 
differ in at least digit position.



249CS 701  Fall 2014 ©

Returning to our example,
a 00
b    01
c    10
d    11
On run #1 we give a and c category 
0 and b and d category 1.
On run #2, a and b get category 0 
and c and d get category 1.
So using just 2 runs in this simple 
case, we eliminate much of the 
inaccuracy Steensgaard�’s merging 
introduces.

Run time is now O(logk(n) k2 n).
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How Well does this Approach 
Work?

On 25 tests, using 3 categories, 
Horwitz & Shapiro points-to sets on 
average are 2.67 larger than those of 
Andersen (Steensgaard�’s are 4.75 
larger).

This approach is slower than 
Steensgaard but on larger programs 
it is 7 to 25 times faster than 
Andersen.
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How Well do Points-to 
Analyses Work in Real Data 
Flow Problems?

In �“Which Pointer Analysis Should 
I Use,�” Hind and Pioli survey the 
effectiveness of a number of points-
to analyses in actual data flow 
analyses (mod/ref, liveness, reaching 
defs, interprocedural constant 
propagation).
Their conclusions are essentially the 
same across all these analyses:
• Steensgaard�’s analysis is 

significantly more precise than 
address-taken analysis and not 
significantly slower.

• Andersen�’s analysis produces 
modest, but consistent, 
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improvements over Steensgaard�’s 
analysis.

• Both context-sensitive points-to 
analysis and flow-sensitive points-to 
analysis give little improvement 
over Andersen�’s analysis.


