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Performance of Andersen�’s 
Algorithm

Experience has shown that 
Andersen�’s Algorithm gives useful 
points-to data and is far superior to 
the naive address-taken approach.
Interestingly, experiments show that 
making the technique flow-sensitive 
or calling context-sensitive doesn�’t 
improve results very much on 
typical benchmarks.

But execution time for moderate to 
large programs can be a problem.
Careful analysis shows that 
Andersen�’s Algorithm can require 
O(n3) time (where n is the number 
of nodes in the points-to graph).
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The reason for this larger-than-
expected analysis time is that a 
statement like
p = *q;

can force the algorithm to visit n2 
nodes (q may point to n nodes and 
each of these nodes may point to n 
nodes). The number of pointer 
statements analyzed can be O(n), 
leading to an O(n3) execution time.
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Steensgaard�’s Algorithm
It would be useful to have a 
reasonably accurate points-to 
analysis that runs in essentially 
linear time so that really large 
programs could be handled. 
This is what Steensgaard�’s 
Algorithm offers. 
(Points-to Analysis in Almost 
Linear Time, B. Steensgaard, 1996 
Principles of Programming 
Languages Conference.)
Steensgaard�’s Algorithm is 
essentially Andersen�’s Algorithm, 
simplified by merging nodes a and b 
if any pointer can reference both.
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That is, in Andersen�’s Algorithm we 
might have

In Steensgaard�’s Algorithm we 
would instead have

In effect any two locations that 
might be pointed to by the same 
pointer are placed in a single 
equivalence class.

p a

b

p a
b
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Steensgaard�’s Algorithm is 
sometimes less accurate than 
Andersen�’s Algorithm. For 
example, the following points-to 
graph, created by Andersen�’s 
Algorithm, shows that p may point 
to a or b whereas q may only point 
to a:

In Steensgaard�’s Algorithm we get

incorrectly showing that if p may 
point to a or b then so may q.

p a

b

q

p a
b q
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But now statements like
p = *q;

can�’t force the algorithm to visit n2 
nodes, because multiple nodes 
referenced by the same pointer are 
always merged. Using the fast 
union-find algorithm, we can get an 
execution time of O(n (n)) which is 
essentially linear in n. Now very 
large programs can be analyzed, 
and without too much of a loss in 
precision.
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Andersen vs. Steensgaard in 
Practice

• Horwitz and Shapiro examined 61 
C programs, ranging in size from 
300 to 24,300 lines.

• As expected, Steensgaard is less 
precise: On average points-to sets 
are 4 times bigger; at worst 15 times 
bigger.

• As expected, Andersen is slower. On 
average 1.5 times slower: at worst 
31 times slower.

• Both are much better than the naive 
�“address taken�” approach.

• Bottom line: Use Andersen for small 
programs, use Steensgaard (or 
something else) for large programs.
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Reading Assignment
• Read "Fast and Accurate Flow-

Insensitive Points-To Analysis,�” by 
Shapiro and Horwitz.
(Linked from the class Web page.)
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The Horwitz-Shapiro 
Approach

It would be nice to have a points-to 
analysis that is parameterizable, 
ranging between the accuracy of 
Andersen and the speed of 
Steensgaard.
Horwitz and Shapiro (Fast and 
Accurate Flow-Insensitive Points-To 
Analysis, 1997 Principles of 
Programming Languages 
Conference) present a technique 
intermediate to those proposed by 
Andersen and Steensgaard.
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Horwitz and Shapiro suggest each 
node in the points-to graph be 
limited to out degree k, where
 1  k  n.
If k =1 then they have Steensgaard�’s 
approach.
If k =n (n is number of nodes in 
points to graph), then they have 
Andersen�’s approach.

Their worst case run-time is
O(k2 n), which is not much worse 
than Steensgaard if k is kept 
reasonably small.
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To use their approach assign each 
variable that may be pointed to to 
one of k categories.
Now if p may point to x and p may 
also point to y, we merge x and y 
only if they both are in the same 
category.
If x and y are in different categories, 
they aren�’t merged, leading to more 
accurate points-to estimates.
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Example
p1 = &a;
p1 = &b;
p1 = &c;
p2 = &c;

Say we have k = 2 and place a and b 
in category 1 and c in category 2.
We then build:

This points-to graph is just as 
accurate as that built by Andersen�’s 
approach.

p1 a,b

p2 c
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But...
What if we chose to place a in 
category 1 and b and c in category 
2.
We now have: 

This graph is inexact, since it tells us 
p2 may point to b, which is false.
(Steensgaard would have been 
worse still, incorrectly telling us p2 
may point to a as well as b and c).

p1 a

p2 b,c
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Another Good Idea
What if we ran Shapiro and 
Horwitz�’s points-to analysis twice, 
each with different category 
assignments?
Each run may produce a different 
points-to graph. One may say p2 
points to b whereas the other says it 
does not.
Which do we believe?
Neither analysis misses a genuine 
points-to relation. Rather, merging 
of nodes sometimes creates false 
points-to information.
So we will believe p2 may point to b 
only if all runs say so. This means 
multiple runs may �“filter out�” false 
points-to relations due to merging.
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How Many Runs are Needed?

How are Categories to be Set?
We want to assign categories so that 
during at least one run, any pair of 
pointed-to variables are in different 
categories.
This guarantees that if all the runs 
tell us p may point to a and b, it is 
not just because a and b always 
happened to be assigned the same 
category.
To force different category 
assignments for each pair of 
variables, we assign each pointed-to 
variable an index and write that 
index in base k (the number of 
categories chosen).
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For example, if we had variables a, 
b, c and d, and chose k = 2, we�’d use 
the following binary indices:
a 00
b    01
c    10
d    11

Note that the number of base k 
digits needed to represent indices 
from 0 to n-1 is just ceiling(logk n).
This number is just the number of 
runs we need!
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Why?
In the first run, we�’ll use the right 
most digit in a variable�’s index as its 
category.
In the next run, we�’ll use the second 
digit from the right, then the third 
digit from the right, ...
Any two distinct variables have 
different index values, so they must 
differ in at least digit position.
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Returning to our example,
a 00
b    01
c    10
d    11
On run #1 we give a and c category 
0 and b and d category 1.
On run #2, a and b get category 0 
and c and d get category 1.
So using just 2 runs in this simple 
case, we eliminate much of the 
inaccuracy Steensgaard�’s merging 
introduces.

Run time is now O(logk(n) k2 n).
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How Well does this Approach 
Work?

On 25 tests, using 3 categories, 
Horwitz & Shapiro points-to sets on 
average are 2.67 larger than those of 
Andersen (Steensgaard�’s are 4.75 
larger).

This approach is slower than 
Steensgaard but on larger programs 
it is 7 to 25 times faster than 
Andersen.
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How Well do Points-to 
Analyses Work in Real Data 
Flow Problems?

In �“Which Pointer Analysis Should 
I Use,�” Hind and Pioli survey the 
effectiveness of a number of points-
to analyses in actual data flow 
analyses (mod/ref, liveness, reaching 
defs, interprocedural constant 
propagation).
Their conclusions are essentially the 
same across all these analyses:
• Steensgaard�’s analysis is 

significantly more precise than 
address-taken analysis and not 
significantly slower.

•
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• Andersen�’s analysis produces 
modest, but consistent, 
improvements over Steensgaard�’s 
analysis.

• Both context-sensitive points-to 
analysis and flow-sensitive points-to 
analysis give little improvement 
over Andersen�’s analysis.
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Reading Assignment
• Section 13.3 of Crafting a Compiler 
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�“On the Fly�” Local Register 
Allocation

Allocate registers as needed during 
code generation.
Partition registers into 3 classes.

• Allocatable
Explicitly allocated and freed; used to 
hold a variable, literal or temporary.
On SPARC: Local registers & unused 
In registers.

• Reserved
Reserved for specific purposes by OS 
or software conventions.
On SPARC: %fp, %sp, return address 
register, argument registers, return 
value register. 
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• Work
Volatile�—used in short code sequences 
that need to use a register.
On SPARC: %g1 to %g4, unused out 
registers. 

Register Targeting
Allow �“end user�” of a value to state 
a register preference in AST or IR.

or
Use Peephole Optimization to 
eliminate unnecessary register 
moves.

or
Use preferencing in a graph coloring 
register allocator.
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Register Tracking
Improve upon standard getReg/
freeReg allocator by tracking 
(remembering) register contents.

Remember the value(s) currently 
held within a register; store 
information in a Register Association 
List.

Mark each value as Saved (in 
memory) or Unsaved (in memory).

Each value in a register has a Cost. 
This is the cost (in instructions) to 
restore the value to a register.
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The cost of allocating a register is 
the sum of the costs of the values it 
holds.

  Cost(register) =  cost(values)

                      

values 

 

 register

When we allocate a register, we will 
choose the cheapest one.

If 2 registers have the same cost, we 
choose that register whose values 
have the most distant next use.
(Why most distant?)
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Costs for the SPARC
0     Dead Value
1     Saved Local Variable
1     Small Literal Value (13 bits)
2     Saved Global Variable
2     Large Literal Value (32 bits)
2     Unsaved Local Variable
4     Unsaved Global Variable
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Register Tracking Allocator
reg getReg() {
  if (  r  regSet and cost(r) == 0)
      choose(r)
  else {
      c = 1;
      while(true) {
         if (  r  regSet and cost(r) == c){
            choose r with cost(r) == c and
                  most distant next use of
                  associated values;
            break;
         }
         c++;
      }
      Save contents of r as necessary;
  }
  return r;
}
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• Once a value becomes dead, it may be 
purged from the register association 
list without any saves.

• Values no longer used, but unsaved, 
can be purged (and saved) at zero cost.

• Assignments of a register to a simple 
variable may be delayed�—just add the 
variable to the Register�’s Association 
List entry as unsaved.

The assignment may be done later or 
made unnecessary (by a later 
assignment to the variable)

• At the end of a basic block all unsaved 
values are stored into memory.
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Example
int a,b,c,d; // Globals
a = 5;
b = a + d;
c = b - 7;
b = 10;

Naive Code
mov   5,%l0
st    %l0,[a]
ld    [a],%l0
ld    [d],%l1
add   %l0,%l1,%l1
st    %l1,[b]
ld    [b],%l1
sub   %l1,7,%l1
st    %l1,[c]
mov   10,%l1
st    %l1,[b]

18 instructions are needed (memory 
references take 2 instructions) 
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With Register Tracking

12 instructions (rather than 18)

Instruction Generated %l0 %l1

mov 5,%l0 5(S)

! Defer assignment to a 5(S), a(U)

ld  [d], %l1 5(S), a(U) d(S)

!d unused after next inst

add %l0,%l1,%l1 5(S), a(U) b(U)

!b is dead after next inst

sub %l1,7,%l1 5(S), a(U) c(U)

! %l1 has lower cost

st  %l1, [c] 5(S), a(U)

mov 10, %l1 5(S), a(U) b(U), 10(S)

! save unsaved values

st %l0, [a] b(U), 10(S)

st %l1,[b]
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Pointers, Arrays and 
Reference Parameters

When an array, reference 
parameter or pointed-to variable is 
read, all unsaved register values 
that might be aliased must be stored.

When an array, reference 
parameter or pointed-to variable is 
written, all unsaved register values 
that might be aliased must be stored, 
then cleared from the register 
association list.

Thus if a[3] is in a register and 
a[i] is assigned to, a[3] must be 
stored (if unsaved) and removed 
from the association list.
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Optimal Expression Tree 
Translation�—Sethi-Ullman 
Algorithm

Reference: R. Sethi & J. D. Ullman, 
�“The generation of optimal code for 
arithmetic expressions,�” Journal of 
the ACM, 1970.
Goal: Translate an expression tree 
using the fewest possible registers.

Approach: Mark each tree node, N, 
with an Estimate of the minimum 
number of registers needed to 
translate the tree rooted by N.

Let RN(N) denote the Register 
Needs of node N.
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In a Load/Store architecture 
(ignoring immediate operands):
RN(leaf) = 1

RN(Op) = 
      If RN(Left) = RN(Right)
           Then RN(Left) + 1
           Else Max(RN(Left), 
RN(Right))
Example:

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1
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Key Insight of SU Algorithm
Translate subtree that needs more 
registers first.
Why?
After translating one subtree, we�’ll 
need a register to hold its value.
If we translate the more complex 
subtree first, we�’ll still have enough 
registers to translate the less 
complex expression (without spilling 
register values into memory).
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Specification of SU Algorithm

TreeCG(tree *T,  regList RL);

Operation:
• Translate expression tree T using 

only registers in RL.
• RL must contain at least 2 registers.
• Result of T will be computed into 

head(RL).
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Summary of SU Algorithm
if T is a node (variable or literal)
     load T into R1 = head(RL)
else  (T is a binary operator)
   Let R1 = head(RL)
   Let R2 = second(RL)
   if  RN(T.left) >= Size(RL) and
       RN(T.right) >= Size(RL)
       (A spill is unavoidable)
        TreeCG(T.left, RL)
        Store R1 into a memory temp
        TreeCG(T.right, RL)
        Load memory temp into R2
        Generate (OP R2,R1,R1)
  elsif RN(T.left) >= RN(T.right)
        TreeCG(T.left, RL)
        TreeCG(T.right, tail(RL))
        Generate (OP R1,R2,R1)
  else
        TreeCG(T.right, RL)
        TreeCG(T.left, tail(RL))
        Generate (OP R2,R1,R1)
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Example (with Spilling)

Assume only 2 Registers;
 RL = [%l0,%l1]
We Translate the left subtree first 
(using 2 registers), store its result 
into memory, translate the right 
subtree, reload the left subtree�’s 
value, then do the final operation.

+3

-2

A1 B1

+2

C1 D1
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ld  [A], %l0
ld  [B], %l1
sub %l0,%l1,%l0
st  %l0, [temp]
ld  [C], %l0
ld  [D], %l1
add %l0,%l1,%l0
ld  [temp], %l1
add %l1,%l0,%l0

+3

-2

A1 B1

+2

C1 D1
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Larger Example

Assume 3 Registers;
 RL = [%l0,%l1,%l2]
Since right subtree is more complex, 
it is translated first.

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1
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ld  [C], %l0
ld  [D], %l1
add %l0,%l1,%l0
ld  [E], %l1
ld  [F], %l2
mul %l1,%l2,%l1
add %l0,%l1,%l0
ld  [A], %l1
ld  [B], %l2
sub %l1,%l2,%l1
add %l1,%l0,%l0

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1
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Refinements & Improvements
• Register needs rules can be modified to 

model various architectural features.

For example, Immediate operands, 
that need not be loaded into registers, 
can be modeled by the following rule:

RN(literal) = 0 if literal may be used as
                     an immediate operand

• Commutativity & Associativity of 
operands may be exploited:

+3

+2

A1 B1

+2

C1 D1

+2

A1 B1 C1 D1
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Is Minimizing Register Use 
Always Wise?

SU minimizes the number of 
registers used but at the cost of 
reduced ILP.

Since only 2 registers are used, there 
is little possibility of parallel 
evaluation.

+2

+2

A1 B1

C1

D1

+2
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When more registers are used, there 
is often more potential for parallel 
evaluation:

Here as many as four registers may 
be used to increase parallelism.

 +

+

A B

+

C D
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Optimal Translation for 
DAGs is Much Harder

If variables or expression values 
may be shared and reused, optimal 
code generation becomes NP-
Complete.

Example:  a+b*(c+d)+a*(c+d)
We must decide how long to hold 
each value in a register. Best 
orderings may �“skip�” between 
subexpressions

Reference:  R. Sethi, �“Complete 
Register Allocation Problems,�” 
SIAM Journal of Computing, 1975.


