
232CS 701 Fall 2014©

Performance of Andersen�’s
Algorithm

Experience has shown that
Andersen�’s Algorithm gives useful
points-to data and is far superior to
the naive address-taken approach.
Interestingly, experiments show that
making the technique flow-sensitive
or calling context-sensitive doesn�’t
improve results very much on
typical benchmarks.

But execution time for moderate to
large programs can be a problem.
Careful analysis shows that
Andersen�’s Algorithm can require
O(n3) time (where n is the number
of nodes in the points-to graph).

233CS 701 Fall 2014©

The reason for this larger-than-
expected analysis time is that a
statement like
p = *q;

can force the algorithm to visit n2
nodes (q may point to n nodes and
each of these nodes may point to n
nodes). The number of pointer
statements analyzed can be O(n),
leading to an O(n3) execution time.

234CS 701 Fall 2014©

Steensgaard�’s Algorithm
It would be useful to have a
reasonably accurate points-to
analysis that runs in essentially
linear time so that really large
programs could be handled.
This is what Steensgaard�’s
Algorithm offers.
(Points-to Analysis in Almost
Linear Time, B. Steensgaard, 1996
Principles of Programming
Languages Conference.)
Steensgaard�’s Algorithm is
essentially Andersen�’s Algorithm,
simplified by merging nodes a and b
if any pointer can reference both.

235CS 701 Fall 2014©

That is, in Andersen�’s Algorithm we
might have

In Steensgaard�’s Algorithm we
would instead have

In effect any two locations that
might be pointed to by the same
pointer are placed in a single
equivalence class.

p a

b

p a
b

236CS 701 Fall 2014©

Steensgaard�’s Algorithm is
sometimes less accurate than
Andersen�’s Algorithm. For
example, the following points-to
graph, created by Andersen�’s
Algorithm, shows that p may point
to a or b whereas q may only point
to a:

In Steensgaard�’s Algorithm we get

incorrectly showing that if p may
point to a or b then so may q.

p a

b

q

p a
b q

237CS 701 Fall 2014©

But now statements like
p = *q;

can�’t force the algorithm to visit n2
nodes, because multiple nodes
referenced by the same pointer are
always merged. Using the fast
union-find algorithm, we can get an
execution time of O(n (n)) which is
essentially linear in n. Now very
large programs can be analyzed,
and without too much of a loss in
precision.

238CS 701 Fall 2014©

Andersen vs. Steensgaard in
Practice

• Horwitz and Shapiro examined 61
C programs, ranging in size from
300 to 24,300 lines.

• As expected, Steensgaard is less
precise: On average points-to sets
are 4 times bigger; at worst 15 times
bigger.

• As expected, Andersen is slower. On
average 1.5 times slower: at worst
31 times slower.

• Both are much better than the naive
�“address taken�” approach.

• Bottom line: Use Andersen for small
programs, use Steensgaard (or
something else) for large programs.

239CS 701 Fall 2014©

Reading Assignment
• Read "Fast and Accurate Flow-

Insensitive Points-To Analysis,�” by
Shapiro and Horwitz.
(Linked from the class Web page.)

240CS 701 Fall 2014©

The Horwitz-Shapiro
Approach

It would be nice to have a points-to
analysis that is parameterizable,
ranging between the accuracy of
Andersen and the speed of
Steensgaard.
Horwitz and Shapiro (Fast and
Accurate Flow-Insensitive Points-To
Analysis, 1997 Principles of
Programming Languages
Conference) present a technique
intermediate to those proposed by
Andersen and Steensgaard.

241CS 701 Fall 2014©

Horwitz and Shapiro suggest each
node in the points-to graph be
limited to out degree k, where
 1 k n.
If k =1 then they have Steensgaard�’s
approach.
If k =n (n is number of nodes in
points to graph), then they have
Andersen�’s approach.

Their worst case run-time is
O(k2 n), which is not much worse
than Steensgaard if k is kept
reasonably small.

242CS 701 Fall 2014©

To use their approach assign each
variable that may be pointed to to
one of k categories.
Now if p may point to x and p may
also point to y, we merge x and y
only if they both are in the same
category.
If x and y are in different categories,
they aren�’t merged, leading to more
accurate points-to estimates.

243CS 701 Fall 2014©

Example
p1 = &a;
p1 = &b;
p1 = &c;
p2 = &c;

Say we have k = 2 and place a and b
in category 1 and c in category 2.
We then build:

This points-to graph is just as
accurate as that built by Andersen�’s
approach.

p1 a,b

p2 c

244CS 701 Fall 2014©

But...
What if we chose to place a in
category 1 and b and c in category
2.
We now have:

This graph is inexact, since it tells us
p2 may point to b, which is false.
(Steensgaard would have been
worse still, incorrectly telling us p2
may point to a as well as b and c).

p1 a

p2 b,c

245CS 701 Fall 2014©

Another Good Idea
What if we ran Shapiro and
Horwitz�’s points-to analysis twice,
each with different category
assignments?
Each run may produce a different
points-to graph. One may say p2
points to b whereas the other says it
does not.
Which do we believe?
Neither analysis misses a genuine
points-to relation. Rather, merging
of nodes sometimes creates false
points-to information.
So we will believe p2 may point to b
only if all runs say so. This means
multiple runs may �“filter out�” false
points-to relations due to merging.

246CS 701 Fall 2014©

How Many Runs are Needed?

How are Categories to be Set?
We want to assign categories so that
during at least one run, any pair of
pointed-to variables are in different
categories.
This guarantees that if all the runs
tell us p may point to a and b, it is
not just because a and b always
happened to be assigned the same
category.
To force different category
assignments for each pair of
variables, we assign each pointed-to
variable an index and write that
index in base k (the number of
categories chosen).

247CS 701 Fall 2014©

For example, if we had variables a,
b, c and d, and chose k = 2, we�’d use
the following binary indices:
a 00
b 01
c 10
d 11

Note that the number of base k
digits needed to represent indices
from 0 to n-1 is just ceiling(logk n).
This number is just the number of
runs we need!

248CS 701 Fall 2014©

Why?
In the first run, we�’ll use the right
most digit in a variable�’s index as its
category.
In the next run, we�’ll use the second
digit from the right, then the third
digit from the right, ...
Any two distinct variables have
different index values, so they must
differ in at least digit position.

249CS 701 Fall 2014©

Returning to our example,
a 00
b 01
c 10
d 11
On run #1 we give a and c category
0 and b and d category 1.
On run #2, a and b get category 0
and c and d get category 1.
So using just 2 runs in this simple
case, we eliminate much of the
inaccuracy Steensgaard�’s merging
introduces.

Run time is now O(logk(n) k2 n).

250CS 701 Fall 2014©

How Well does this Approach
Work?

On 25 tests, using 3 categories,
Horwitz & Shapiro points-to sets on
average are 2.67 larger than those of
Andersen (Steensgaard�’s are 4.75
larger).

This approach is slower than
Steensgaard but on larger programs
it is 7 to 25 times faster than
Andersen.

251CS 701 Fall 2014©

How Well do Points-to
Analyses Work in Real Data
Flow Problems?

In �“Which Pointer Analysis Should
I Use,�” Hind and Pioli survey the
effectiveness of a number of points-
to analyses in actual data flow
analyses (mod/ref, liveness, reaching
defs, interprocedural constant
propagation).
Their conclusions are essentially the
same across all these analyses:
• Steensgaard�’s analysis is

significantly more precise than
address-taken analysis and not
significantly slower.

•

252CS 701 Fall 2014©

• Andersen�’s analysis produces
modest, but consistent,
improvements over Steensgaard�’s
analysis.

• Both context-sensitive points-to
analysis and flow-sensitive points-to
analysis give little improvement
over Andersen�’s analysis.

253CS 701 Fall 2014©

Reading Assignment
• Section 13.3 of Crafting a Compiler

254CS 701 Fall 2014©

�“On the Fly�” Local Register
Allocation

Allocate registers as needed during
code generation.
Partition registers into 3 classes.

• Allocatable
Explicitly allocated and freed; used to
hold a variable, literal or temporary.
On SPARC: Local registers & unused
In registers.

• Reserved
Reserved for specific purposes by OS
or software conventions.
On SPARC: %fp, %sp, return address
register, argument registers, return
value register.

255CS 701 Fall 2014©

• Work
Volatile�—used in short code sequences
that need to use a register.
On SPARC: %g1 to %g4, unused out
registers.

Register Targeting
Allow �“end user�” of a value to state
a register preference in AST or IR.

or
Use Peephole Optimization to
eliminate unnecessary register
moves.

or
Use preferencing in a graph coloring
register allocator.

256CS 701 Fall 2014©

Register Tracking
Improve upon standard getReg/
freeReg allocator by tracking
(remembering) register contents.

Remember the value(s) currently
held within a register; store
information in a Register Association
List.

Mark each value as Saved (in
memory) or Unsaved (in memory).

Each value in a register has a Cost.
This is the cost (in instructions) to
restore the value to a register.

257CS 701 Fall 2014©

The cost of allocating a register is
the sum of the costs of the values it
holds.

 Cost(register) = cost(values)

values

 register

When we allocate a register, we will
choose the cheapest one.

If 2 registers have the same cost, we
choose that register whose values
have the most distant next use.
(Why most distant?)

258CS 701 Fall 2014©

Costs for the SPARC
0 Dead Value
1 Saved Local Variable
1 Small Literal Value (13 bits)
2 Saved Global Variable
2 Large Literal Value (32 bits)
2 Unsaved Local Variable
4 Unsaved Global Variable

259CS 701 Fall 2014©

Register Tracking Allocator
reg getReg() {
 if (r regSet and cost(r) == 0)
 choose(r)
 else {
 c = 1;
 while(true) {
 if (r regSet and cost(r) == c){
 choose r with cost(r) == c and
 most distant next use of
 associated values;
 break;
 }
 c++;
 }
 Save contents of r as necessary;
 }
 return r;
}

260CS 701 Fall 2014©

• Once a value becomes dead, it may be
purged from the register association
list without any saves.

• Values no longer used, but unsaved,
can be purged (and saved) at zero cost.

• Assignments of a register to a simple
variable may be delayed�—just add the
variable to the Register�’s Association
List entry as unsaved.

The assignment may be done later or
made unnecessary (by a later
assignment to the variable)

• At the end of a basic block all unsaved
values are stored into memory.

261CS 701 Fall 2014©

Example
int a,b,c,d; // Globals
a = 5;
b = a + d;
c = b - 7;
b = 10;

Naive Code
mov 5,%l0
st %l0,[a]
ld [a],%l0
ld [d],%l1
add %l0,%l1,%l1
st %l1,[b]
ld [b],%l1
sub %l1,7,%l1
st %l1,[c]
mov 10,%l1
st %l1,[b]

18 instructions are needed (memory
references take 2 instructions)

262CS 701 Fall 2014©

With Register Tracking

12 instructions (rather than 18)

Instruction Generated %l0 %l1

mov 5,%l0 5(S)

! Defer assignment to a 5(S), a(U)

ld [d], %l1 5(S), a(U) d(S)

!d unused after next inst

add %l0,%l1,%l1 5(S), a(U) b(U)

!b is dead after next inst

sub %l1,7,%l1 5(S), a(U) c(U)

! %l1 has lower cost

st %l1, [c] 5(S), a(U)

mov 10, %l1 5(S), a(U) b(U), 10(S)

! save unsaved values

st %l0, [a] b(U), 10(S)

st %l1,[b]

263CS 701 Fall 2014©

Pointers, Arrays and
Reference Parameters

When an array, reference
parameter or pointed-to variable is
read, all unsaved register values
that might be aliased must be stored.

When an array, reference
parameter or pointed-to variable is
written, all unsaved register values
that might be aliased must be stored,
then cleared from the register
association list.

Thus if a[3] is in a register and
a[i] is assigned to, a[3] must be
stored (if unsaved) and removed
from the association list.

264CS 701 Fall 2014©

Optimal Expression Tree
Translation�—Sethi-Ullman
Algorithm

Reference: R. Sethi & J. D. Ullman,
�“The generation of optimal code for
arithmetic expressions,�” Journal of
the ACM, 1970.
Goal: Translate an expression tree
using the fewest possible registers.

Approach: Mark each tree node, N,
with an Estimate of the minimum
number of registers needed to
translate the tree rooted by N.

Let RN(N) denote the Register
Needs of node N.

265CS 701 Fall 2014©

In a Load/Store architecture
(ignoring immediate operands):
RN(leaf) = 1

RN(Op) =
 If RN(Left) = RN(Right)
 Then RN(Left) + 1
 Else Max(RN(Left),
RN(Right))
Example:

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1

266CS 701 Fall 2014©

Key Insight of SU Algorithm
Translate subtree that needs more
registers first.
Why?
After translating one subtree, we�’ll
need a register to hold its value.
If we translate the more complex
subtree first, we�’ll still have enough
registers to translate the less
complex expression (without spilling
register values into memory).

267CS 701 Fall 2014©

Specification of SU Algorithm

TreeCG(tree *T, regList RL);

Operation:
• Translate expression tree T using

only registers in RL.
• RL must contain at least 2 registers.
• Result of T will be computed into

head(RL).

268CS 701 Fall 2014©

Summary of SU Algorithm
if T is a node (variable or literal)
 load T into R1 = head(RL)
else (T is a binary operator)
 Let R1 = head(RL)
 Let R2 = second(RL)
 if RN(T.left) >= Size(RL) and
 RN(T.right) >= Size(RL)
 (A spill is unavoidable)
 TreeCG(T.left, RL)
 Store R1 into a memory temp
 TreeCG(T.right, RL)
 Load memory temp into R2
 Generate (OP R2,R1,R1)
 elsif RN(T.left) >= RN(T.right)
 TreeCG(T.left, RL)
 TreeCG(T.right, tail(RL))
 Generate (OP R1,R2,R1)
 else
 TreeCG(T.right, RL)
 TreeCG(T.left, tail(RL))
 Generate (OP R2,R1,R1)

269CS 701 Fall 2014©

Example (with Spilling)

Assume only 2 Registers;
 RL = [%l0,%l1]
We Translate the left subtree first
(using 2 registers), store its result
into memory, translate the right
subtree, reload the left subtree�’s
value, then do the final operation.

+3

-2

A1 B1

+2

C1 D1

270CS 701 Fall 2014©

ld [A], %l0
ld [B], %l1
sub %l0,%l1,%l0
st %l0, [temp]
ld [C], %l0
ld [D], %l1
add %l0,%l1,%l0
ld [temp], %l1
add %l1,%l0,%l0

+3

-2

A1 B1

+2

C1 D1

271CS 701 Fall 2014©

Larger Example

Assume 3 Registers;
 RL = [%l0,%l1,%l2]
Since right subtree is more complex,
it is translated first.

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1

272CS 701 Fall 2014©

ld [C], %l0
ld [D], %l1
add %l0,%l1,%l0
ld [E], %l1
ld [F], %l2
mul %l1,%l2,%l1
add %l0,%l1,%l0
ld [A], %l1
ld [B], %l2
sub %l1,%l2,%l1
add %l1,%l0,%l0

+3

-2 +3

A1 B1 +2 *2

C1 D1 E1 F1

273CS 701 Fall 2014©

Refinements & Improvements
• Register needs rules can be modified to

model various architectural features.

For example, Immediate operands,
that need not be loaded into registers,
can be modeled by the following rule:

RN(literal) = 0 if literal may be used as
 an immediate operand

• Commutativity & Associativity of
operands may be exploited:

+3

+2

A1 B1

+2

C1 D1

+2

A1 B1 C1 D1

274CS 701 Fall 2014©

Is Minimizing Register Use
Always Wise?

SU minimizes the number of
registers used but at the cost of
reduced ILP.

Since only 2 registers are used, there
is little possibility of parallel
evaluation.

+2

+2

A1 B1

C1

D1

+2

275CS 701 Fall 2014©

When more registers are used, there
is often more potential for parallel
evaluation:

Here as many as four registers may
be used to increase parallelism.

 +

+

A B

+

C D

276CS 701 Fall 2014©

Optimal Translation for
DAGs is Much Harder

If variables or expression values
may be shared and reused, optimal
code generation becomes NP-
Complete.

Example: a+b*(c+d)+a*(c+d)
We must decide how long to hold
each value in a register. Best
orderings may �“skip�” between
subexpressions

Reference: R. Sethi, �“Complete
Register Allocation Problems,�”
SIAM Journal of Computing, 1975.

