
277CS 701 Fall 2014 ©

Scheduling Expression Trees
Reference: S. Kurlander, T.
Proebsting and C. Fischer,
�“Efficient Instruction Scheduling
for Delayed-Load Architectures,�”
ACM Transactions on Programming
Languages and Systems, 1995.
(Linked from class Web page)

The Sethi-Ullman Algorithm
minimizes register usage, without
regard to code scheduling.

On machines with Delayed Loads,
we also want to avoid stalls.

278CS 701 Fall 2014©

What is a Delayed Load?
Most pipelined processors require a
delay of one or more instructions
between a load of register R and the
first use of R.

If a register is used �“too soon,�” the
processor may stall execution until
the register value becomes
available.

ld [a],%r1

add %r1,1,%r1
 Stall!

We try to place an instruction that
doesn�’t use register R immediately
after a load of R.

279CS 701 Fall 2014 ©

This allows useful work instead of a
wasteful stall.
The Sethi-Ullman Algorithm
generates code that will stall:

In fact, if we use the fewest possible
registers, stalls are Unavoidable!

+2

+2

A1 B1

C1

ld [A], %l0
ld [B], %l1
add %l0,%l1,%l0
ld [C], %l1
add %l0,%l1,%l0

Stall!

Stall!

280CS 701 Fall 2014©

Why?
Loads increase the number of
registers in use.
Binary operations decrease the
number of registers in use
(2 Operands, 1 Result).

The load that brings the number of
registers in use up to the minimum
number needed must be followed by
an operator that uses the just-
loaded value. This implies a stall.

We�’ll need to allocate an extra
register to allow an independent
instruction to fill each delay slot
of a load.

281CS 701 Fall 2014 ©

Extended Register Needs
Abbreviated as ERN
ERN(Identifier) = 2
ERN(Literal) = 1
ERN(Op) =
 If ERN(Left) = ERN(Right)
 Then ERN(Left) + 1
 Else Max(ERN(Left),
ERN(Right))

282CS 701 Fall 2014©

Example

Idea of the Algorithm
1. Generate instructions in the same

order as Sethi-Ullman, but use
Pseudo-Registers instead of actual
machine registers.

2. Put generated instructions into a
�“Canonical Order�” (as defined
below).

3. Map pseudo-registers to actual
machine registers.

+3

+3

B2 C2

D2

+3

A2 +3

+2

B2 1231

C2

+3

A2

283CS 701 Fall 2014 ©

What are Pseudo-Registers?
They are unique temporary
locations, unlimited in number and
generated as needed, that are used
to model registers prior to register
allocation.

Canonical Form for
Expression Code

(Assume R registers will be used)
Desired instruction ordering:
1. R load instructions
2. Pairs of Operator/Load instructions
3. Remaining operators

284CS 701 Fall 2014©

This canonical form is obtained by
�“sliding�” load instructions upward
(earlier) in the original code
ordering.
Note that:

• Moving loads upward is always safe,
since each pseudo-register is assigned
to only once.

• No more than R registers are ever live.

285CS 701 Fall 2014 ©

Example

Let R = 3, the minimum needed for
a delay-free schedule.
Put into Canonical Form:

+3

+3

B2 C2

D2

+3

A2

ld [B], PR1
ld [C], PR2
add PR1,PR2,PR3
ld [D], PR4
add PR3,PR4,PR5
ld [A], PR6
add PR6,PR5,PR7

ld [B], PR1
ld [C], PR2
ld [D], PR4
add PR1,PR2,PR3
ld [A], PR6
add PR3,PR4,PR5
add PR6,PR5,PR7

(Before Register
Assignment)

ld [B], %l0
ld [C], %l1
ld [D], %l2
add %l0,%l1,%l0
ld [A], %l1
add %l0,%l2,%l0
add %l1,%l0,%l0

(After Register Assignment)

No Stalls!

286CS 701 Fall 2014©

Does This Algorithm Always
Produce a Stall-Free,
Minimum Register Schedule?

Yes�—if one exists!

For very simple expressions (one or
two operands) no stall-free schedule
exists.
For example: a=b;

ld [b], %l0
st %l0, [a]

287CS 701 Fall 2014 ©

Why Does the Algorithm
Avoid Stalls?

Previously, certain �“critical�” loads
had to appear just before an
operation that used their value.

Now, we have an �“extra�” register.
This allows critical loads to move up
one or more places, avoiding any
stalls.

288CS 701 Fall 2014©

How Do We Schedule Small
Expressions?

Small expressions (one or two
operands) are common. We�’d like to
avoid stalls when scheduling them.

Idea�—Blend small expressions
together into larger expression
trees, using �“,�” and �“;�” like binary
operators.

289CS 701 Fall 2014 ©

Example
a=b+c; d=e;

+3

b2 c2

=3

a0
e2

=2

d0

;3

ld [b], PR1
ld [c], PR2
add PR1,PR2,PR3
st PR3, [a]
ld [e], PR4
st PR4, [d]

Orginal Code

ld [b], PR1
ld [c], PR2
ld [e], PR4
add PR1,PR2,PR3
st PR3, [a]
st PR4, [d]

In Canonical Form

ld [b], %l0
ld [c], %l1
ld [e], %l2
add %l0,%l1,%l0
st %l0, [a]
st %l2, [d]

After Register Assignment

290CS 701 Fall 2014©

Global Register Allocation
Allocate registers across an entire
subprogram.
A Global Register Allocator must
decide:
• What values are to be placed in

registers?
• Which registers are to be used?
• For how long is each Register Candidate

held in a register?

291CS 701 Fall 2014 ©

Live Ranges
Rather than simply allocate a value
to a fixed register throughout an
entire subprogram, we prefer to
split variables into Live Ranges.

What is a Live Range?
It is the span of instructions (or
basic blocks) from a definition of a
variable to all its uses.

Different assignments to the same
variable may reach distinct &
disjoint instructions or basic blocks.
If so, the live ranges are
Independent, and may be assigned
Different registers.

292CS 701 Fall 2014©

Example
a = init();
for (int i = a+1; i < 1000; i++){
 b[i] = 0; }
a = f(i);
print(a);

The two uses of variable a comprise
Independent live ranges.
Each can be allocated separately.

If we insisted on allocating variable
a to a fixed register for the whole
subprogram, it would conflict with
the loop body, greatly reducing its
chances of successful allocation.

293CS 701 Fall 2014 ©

Granulatity of Live Ranges
Live ranges can be measured in
terms of individual instructions or
basic blocks.

Individual instructions are more
precise but basic blocks are less
numerous (reducing the size of sets
that need to be computed).

We�’ll use basic blocks to keep
examples concise.

You can define basic blocks that
hold only one instruction, so
computation in terms of basic
blocks is still fully general.

294CS 701 Fall 2014©

Computation of Live Ranges
First construct the Control Flow
Graph (CFG) of the subprogram.

For a Basic Block b and Variable V:
 Let DefsIn(b) = the set of basic

blocks that contain definitions of V
that reach (may be used in) the
beginning of Basic Block b.

Let DefsOut(b) = the set of basic
blocks that contain definitions of V
that reach (may be used in) the end
of Basic Block b.

295CS 701 Fall 2014 ©

If a definition of V reaches b, then
the register that holds the value of
that definition must be allocated to
V in block b.
Otherwise, the register that holds
the value of that definition may be
used for other purposes in b.

The sets Preds and Succ are derived
from the structure of the CFG.
They are given as part of the definition
of the CFG.

296CS 701 Fall 2014©

DefsIn and DefsOut must be computed,
using the following rules:
1. If Basic Block b contains a definition

of V then
 DefsOut(b) = {b}

2. If there is no definition to V in b then
 DefsOut(b) = DefsIn(b)

3. For the First Basic Block, b0:
 DefsIn(b0) =

4. For all Other Basic Blocks
 DefsIn(b) = DefsOut p()

p Preds b()

297CS 701 Fall 2014 ©

Liveness Analysis
Just because a definition reaches a
Basic Block, b, does not mean it
must be allocated to a register at b.

We also require that the definition
be Live at b. If the definition is dead,
then it will no longer be used, and
register allocation is unnecessary.

For a Basic Block b and Variable V:
LiveIn(b) = true if V is Live (will be
used before it is redefined) at the
beginning of b.

LiveOut(b) = true if V is Live (will
be used before it is redefined) at the
end of b.

298CS 701 Fall 2014©

LiveIn and LiveOut are computed,
using the following rules:
1. If Basic Block b has no successors

then
 LiveOut(b) = false

2. For all Other Basic Blocks

 LiveOut(b) =

3. LiveIn(b) =
 If V is used before it is defined in

Basic Block b
 Then true
 Elsif V is defined before it is
 used in Basic Block b
 Then false
 Else LiveOut(b)

s Succ(b)
 LiveIn(s)

299CS 701 Fall 2014 ©

Merging Live Ranges
It is possible that each Basic Block
that contains a definition of v
creates a distinct Live Range of V.

 Basic Blocks, b, that contain a
definition of V:

 Range(b) =
 {b} {k | b DefsIn(k) & LiveIn(k)}

This rule states that the Live Range
of a definition to V in Basic Block b
is b plus all other Basic Blocks that
the definition of V reaches and in
which V is live.

300CS 701 Fall 2014©

If two Live Ranges overlap (have
one of more Basic Blocks in
common), they must share the same
register too. (Why?)

Therefore,

If Range(b1) Range(b2)
Then replace
 Range(b1) and Range(b2)
 with Range(b1) Range(b2)

301CS 701 Fall 2014 ©

Example

x

x

x

x

x

x

1

2 3

4

5

6

7

8

302CS 701 Fall 2014©

x

x

x

x

x

x

1

2 3

4

5

6

7

8

Li=F

Li=F

Li=F

Li=F

Li=F

Li=T

Li=T

Li=T

Lo=T

Lo=T
Lo=T

Lo=T

Lo=T

Lo=F

Lo=F

Lo=F

Di={ }

Di={1} Di={1}

Di={1,2}

Di={1,2,5,6}

Di={5}

Di={5,6}

Di={5,6}

Do={1}

Do={2}

Do={1,2}

Do={5}

Do={6}

Do={5,6}

Do={5,6}

Do={1}

303CS 701 Fall 2014 ©

The Live Ranges we Compute are

Range(1) = {1} U {3,4} = {1,3,4}

Range(2) = {2} U {4} = {2,4}

Range(5) = {5} U {7} = {5,7}

Range(6) = {6} U {7} = {6,7}

Ranges 1 and 2 overlap, so

Range(1) = Range(2) = {1,2,3,4}

Ranges 5 and 6 overlap, so

Range(5) = Range(6) = {5,6,7}

304CS 701 Fall 2014©

Interference Graph
An Interference Graph represents
interferences between Live Ranges.

Two Live Ranges interfere if they
share one or more Basic Blocks in
common.

Live Ranges that interfere must be
allocated different registers.

In an Interference Graph:
• Nodes are Live Ranges
• An undirected arc connects two Live

Ranges if and only if they interfere

305CS 701 Fall 2014 ©

Example
int p(int lim1, int lim2) {
 for (i=0; i<lim1 && A[i]>0;i++){}
 for (j=0; j<lim2 && B[j]>0;j++){}
 return i+j;
}

We optimize array accesses by
placing &A[0] and &B[0] in
temporaries:

int p(int lim1, int lim2) {
 int *T1 = &A[0];
 for (i=0; i<lim1 && *(T1+i)>0;i++){}
 int *T2 = &B[0];
 for (j=0; j<lim2 && *(T2+j)>0;j++){}
 return i+j;

306CS 701 Fall 2014©

}

Register Allocation via Graph
Coloring

We model global register allocation
as a Coloring Problem on the
Interference Graph

We wish to use the fewest possible
colors (registers) subject to the rule
that two connected nodes can�’t
share the same color.

lim1 lim2

T1 T2

i j

307CS 701 Fall 2014 ©

Optimal Graph Coloring is
NP-Complete
Reference:

�“Computers and Intractability,�”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

We�’ll use a Heuristic Algorithm
originally suggested by Chaitin et. al.
and improved by Briggs et. al.
References:

�“Register Allocation Via Coloring,�”
G. Chaitin et. al., Computer
Languages, 1981.

�“Improvement to Graph Coloring
Register Allocation,�” P. Briggs et.
al., PLDI, 1989.

308CS 701 Fall 2014©

Coloring Heuristic
To R-Color a Graph (where R is the
number of registers available)
1. While any node, n, has < R

neighbors:
 Remove n from the Graph.
 Push n onto a Stack.

2. If the remaining Graph is non-
empty:
 Compute the Cost of each node.
 The Cost of a Node (a Live Range)

is the number of extra instructions
 needed if the Node isn�’t assigned a
 register, scaled by 10loop_depth.
 Let NB(n) =
 Number of Neighbors of n.
 Remove that node n that has the
 smallest Cost(n)/NB(n) value.

309CS 701 Fall 2014 ©

 Push n onto a Stack.
 Return to Step 1.

3. While Stack is non-empty:
 Pop n from the Stack.

 If n�’s neighbors are assigned fewer
 than R colors
 Then assign n any unassigned
color
 Else leave n uncolored.

310CS 701 Fall 2014©

Example
 int p(int lim1, int lim2) {
 int *T1 = &A[0];
 for (i=0; i<lim1 && *(T1+i)>0;i++){}
 int *T2 = &B[0];
 for (j=0; j<lim2 && *(T2+j)>0;j++){}
 return i+j;
}

Do a 3 coloring

lim1 lim2 T1 T2 i j

Cost 11 11 11 11 42 42

Cost/
Neighbors

11/3 11/5 11/3 11/3 42/5 42/3

lim1 lim2

T1 T2

i j

311CS 701 Fall 2014 ©

Since no node has fewer than 3
neighbors, we remove a node based
on the minimum Cost/Neighbors
value.

lim2 is chosen.
We now have:

Remove (say) lim1, then T1, T2, j
and i (order is arbitrary).

lim1

T1 T2

i j

312CS 701 Fall 2014©

The Stack is:

Assuming the colors we have are
R1, R2 and R3, the register
assignment we choose is
i:R1, j:R2, T2:R3, T1:R2, lim1:R3,
lim2:spill

lim2
lim1
T1
T2
j
i

lim1 lim2

T1 T2

i j

313CS 701 Fall 2014 ©

Color Preferences
Sometimes we wish to assign a
particular register (color) to a
selected Live Range (e.g., a
parameter or return value) if
possible.

We can mark a node in the
Interference Graph with a Color
Preference.

When we unstack nodes and assign
colors, we will avoid choosing color
c if an uncolored neighbor has
indicted a preference for it. If only
color c is left, we take it (and ignore
the preference).

314CS 701 Fall 2014©

Example
Assume in our previous example
that lim1 has requested register R1
and lim2 has requested register R2
(because these are the registers the
parameters are passed in).

315CS 701 Fall 2014 ©

Now when i, j and T1 are
unstacked, they respect lim1�’s and
lim2�’s preferences:
i:R3, j:R1, T2:R2, T1:R2, lim1:R1,
lim2:spill

lim1(R1) lim2(R2)

T1 T2

i j

lim2
lim1
T1
T2
j
i

316CS 701 Fall 2014©

Using Coloring to Optimize
Register Moves

A nice �“fringe benefit�” of allocating
registers via coloring is that we can
often optimize away register to
register moves by giving the source
and target the same color.
Consider

We�’d like x, t1 and q to get the same
color. How do we �“force�” this?

a b

x t1

y q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q

317CS 701 Fall 2014 ©

We can �“merge�” x, t1 and q

together:
Now a 2-coloring that optimizes
away both register to register moves
is trivial.

a b

y x,t1,q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q

318CS 701 Fall 2014©

Reckless Coalescing
Originally, Chaitin suggested
merging all move-related nodes that
don�’t interfere.

This is reckless�—the merged node
may not be colorable!

(Is it worth a spill to save a move??)

This Graph is 2-colorable before the
reckless merge, but not after.

e fc

a

b

d

319CS 701 Fall 2014 ©
320CS 701 Fall 2014©

