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Scheduling Expression Trees
Reference:  S. Kurlander, T. 
Proebsting and C. Fischer, 
�“Efficient Instruction Scheduling 
for Delayed-Load Architectures,�” 
ACM Transactions on Programming 
Languages and Systems, 1995. 
(Linked from class Web page)

The Sethi-Ullman Algorithm 
minimizes register usage, without 
regard to code scheduling.

On machines with Delayed Loads, 
we also want to avoid stalls.
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What is a Delayed Load?
Most pipelined processors require a 
delay of one or more instructions 
between a load of register R and the 
first use of R.

If a register is used �“too soon,�” the 
processor may stall execution until 
the register value becomes 
available.

ld   [a],%r1 

add  %r1,1,%r1
  Stall!

We try to place an instruction that 
doesn�’t use register R immediately 
after a load of R. 
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This allows useful work instead of a 
wasteful stall.
The Sethi-Ullman Algorithm 
generates code that will stall: 

In fact, if we use the fewest possible 
registers, stalls are Unavoidable!

+2

+2

A1 B1

C1

ld  [A], %l0
ld  [B], %l1
add %l0,%l1,%l0
ld  [C], %l1
add %l0,%l1,%l0

Stall!

Stall!
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Why? 
Loads increase the number of 
registers in use.
Binary operations decrease the 
number of registers in use 
(2 Operands, 1 Result).

The load that brings the number of 
registers in use up to the minimum 
number needed must be followed by 
an operator that uses the just-
loaded value. This implies a stall.

We�’ll need to allocate an extra 
register to allow an independent 
instruction to fill each delay slot 
of a load.
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Extended Register Needs
Abbreviated as ERN
ERN(Identifier) = 2
ERN(Literal) = 1
ERN(Op) = 
   If ERN(Left) = ERN(Right)
       Then ERN(Left) + 1
       Else Max(ERN(Left), 
ERN(Right))
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Example

Idea of the Algorithm
1. Generate instructions in the same 

order as Sethi-Ullman, but use 
Pseudo-Registers instead of actual 
machine registers.

2. Put generated instructions into a 
�“Canonical Order�” (as defined 
below).

3. Map pseudo-registers to actual 
machine registers.

+3

+3

B2 C2

D2

+3

A2 +3

+2

B2 1231

C2

+3

A2
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What are Pseudo-Registers?
They are unique temporary 
locations, unlimited in number and 
generated as needed, that are used 
to model registers prior to register 
allocation.

Canonical Form for 
Expression Code

(Assume R registers will be used)
Desired instruction ordering:
1. R load instructions
2. Pairs of Operator/Load instructions
3. Remaining operators
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This canonical form is obtained by 
�“sliding�” load instructions upward 
(earlier) in the original code 
ordering.
Note that:

• Moving loads upward is always safe, 
since each pseudo-register is assigned 
to only once.

• No more than R registers are ever live.
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Example
                                     

Let R = 3, the minimum needed for 
a delay-free schedule.
Put into Canonical Form:

+3

+3

B2 C2

D2

+3

A2

ld  [B], PR1
ld  [C], PR2
add PR1,PR2,PR3
ld  [D], PR4
add PR3,PR4,PR5
ld  [A], PR6
add PR6,PR5,PR7

ld  [B], PR1
ld  [C], PR2
ld  [D], PR4
add PR1,PR2,PR3
ld  [A], PR6
add PR3,PR4,PR5
add PR6,PR5,PR7

(Before Register 
Assignment)

ld  [B], %l0
ld  [C], %l1
ld  [D], %l2
add %l0,%l1,%l0
ld  [A], %l1
add %l0,%l2,%l0
add %l1,%l0,%l0

(After Register Assignment)

No Stalls!
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Does This Algorithm Always 
Produce a Stall-Free, 
Minimum Register Schedule?

Yes�—if one exists!

For very simple expressions (one or 
two operands) no stall-free schedule 
exists.
For example:  a=b;

ld  [b], %l0
st  %l0, [a]
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Why Does the Algorithm 
Avoid Stalls?

Previously, certain �“critical�” loads 
had to appear just before an 
operation that used their value.

Now, we have an �“extra�” register. 
This allows critical loads to move up 
one or more places, avoiding any 
stalls.
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How Do We Schedule Small 
Expressions?

Small expressions (one or two 
operands) are common. We�’d like to 
avoid stalls when scheduling them.

Idea�—Blend small expressions 
together into larger expression 
trees, using �“,�” and �“;�” like binary 
operators.
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Example
a=b+c; d=e;

+3

b2 c2

=3

a0
e2

=2

d0

;3

ld  [b], PR1
ld  [c], PR2
add PR1,PR2,PR3
st  PR3, [a]
ld  [e], PR4
st  PR4, [d]

Orginal Code

ld  [b], PR1
ld  [c], PR2
ld  [e], PR4
add PR1,PR2,PR3
st  PR3, [a]
st  PR4, [d]

In Canonical Form

ld  [b], %l0
ld  [c], %l1
ld  [e], %l2
add %l0,%l1,%l0
st  %l0, [a]
st  %l2, [d]

After Register Assignment
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Global Register Allocation
Allocate registers across an entire 
subprogram.
A Global Register Allocator must 
decide:
• What values are to be placed in 

registers?
• Which registers are to be used?
• For how long is each Register Candidate 

held in a register?
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Live Ranges
Rather than simply allocate a value 
to a fixed register throughout an 
entire subprogram, we prefer to 
split variables into Live Ranges. 

What is a Live Range?
It is the span of instructions (or 
basic blocks) from a definition of a 
variable to all its uses.

Different assignments to the same 
variable may reach distinct & 
disjoint instructions or basic blocks.
If so, the live ranges are 
Independent, and may be assigned 
Different registers.
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Example
a = init();
for (int i = a+1; i < 1000; i++){
   b[i] = 0; }
a = f(i);
print(a);

The two uses of variable a comprise 
Independent live ranges. 
Each can be allocated separately.

If we insisted on allocating variable 
a to a fixed register for the whole 
subprogram, it would conflict with 
the loop body, greatly reducing its 
chances of successful allocation.
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Granulatity of Live Ranges
Live ranges can be measured in 
terms of individual instructions or 
basic blocks.

Individual instructions are more 
precise but basic blocks are less 
numerous (reducing the size of sets 
that need to be computed).

We�’ll use basic blocks to keep 
examples concise.

You can define basic blocks that 
hold only one instruction, so 
computation in terms of basic 
blocks is still fully general.
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Computation of Live Ranges
First construct the Control Flow 
Graph (CFG) of the subprogram.

For a Basic Block b and Variable V:
  Let DefsIn(b) = the set of basic 

blocks that contain definitions of V 
that reach (may be used in) the 
beginning of Basic Block b.

Let DefsOut(b) = the set of basic 
blocks that contain definitions of V 
that reach (may be used in) the end 
of Basic Block b.
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If a definition of V reaches b, then 
the register that holds the value of 
that definition must be allocated to 
V in block b.
Otherwise, the register that holds 
the value of that definition may be 
used for other purposes in b.

The sets Preds and Succ are derived 
from the structure of the CFG. 
They are given as part of the definition 
of the CFG.
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DefsIn and DefsOut must be computed, 
using the following rules:
1. If Basic Block b contains a definition   

of V then
      DefsOut(b) = {b}

2. If there is no definition to V in b then
      DefsOut(b) = DefsIn(b) 

3. For the First Basic Block, b0:
       DefsIn(b0) = 

4. For all Other Basic Blocks
       DefsIn(b) = DefsOut p( )

p Preds b( )
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Liveness Analysis
Just because a definition reaches a 
Basic Block, b, does not mean it 
must be allocated to a register at b.

We also require that the definition 
be Live at b. If the definition is dead, 
then it will no longer be used, and 
register allocation is unnecessary.

For a Basic Block b and Variable V:
LiveIn(b) = true if V is Live (will be 
used before it is redefined) at the 
beginning of b.

LiveOut(b) = true if V is Live (will 
be used before it is redefined) at the 
end of b.
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LiveIn and LiveOut are computed, 
using the following rules:
1. If Basic Block b has no successors 

then
      LiveOut(b) = false

2. For all Other Basic Blocks

       LiveOut(b) = 

3. LiveIn(b) =
       If V is used before it is defined in 

Basic Block b
       Then  true
       Elsif V is defined before it is
                used in Basic Block b
       Then  false
       Else    LiveOut(b)

s  Succ(b)
 LiveIn(s)
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Merging Live Ranges
It is possible that each Basic Block 
that contains a definition of v 
creates a distinct Live Range of V.

 Basic Blocks, b, that contain a 
definition of V:

  Range(b) =
    {b}  {k | b  DefsIn(k) & LiveIn(k)}

This rule states that the Live Range 
of a definition to V in Basic Block b 
is b plus all other Basic Blocks that 
the definition of V reaches and in 
which V is live.
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If two Live Ranges overlap (have 
one of more Basic Blocks in 
common), they must share the same 
register too. (Why?)

Therefore,

If Range(b1)  Range(b2)  
Then replace 
    Range(b1) and Range(b2)
    with Range(b1)  Range(b2)
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Example
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303CS 701  Fall 2014 ©

The Live Ranges we Compute are

Range(1) = {1} U {3,4} = {1,3,4}

Range(2) = {2} U {4} = {2,4}

Range(5) = {5} U {7} = {5,7}

Range(6) = {6} U {7} = {6,7}

Ranges 1 and 2 overlap, so
  

Range(1) = Range(2) = {1,2,3,4}

Ranges 5 and 6 overlap, so
  

Range(5) = Range(6) = {5,6,7}
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Interference Graph
An Interference Graph represents 
interferences between Live Ranges.

Two Live Ranges interfere if they 
share one or more Basic Blocks in 
common.

Live Ranges that interfere must be 
allocated different registers.

In an Interference Graph:
•   Nodes are Live Ranges
•   An undirected arc connects two Live 

Ranges if and only if they interfere
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Example
int p(int lim1, int lim2) {
  for (i=0; i<lim1 && A[i]>0;i++){}
  for (j=0; j<lim2 && B[j]>0;j++){}
  return i+j;
}

We optimize array accesses by 
placing &A[0] and &B[0] in 
temporaries:

int p(int lim1, int lim2) {
  int *T1 = &A[0];
  for (i=0; i<lim1 && *(T1+i)>0;i++){}
  int *T2 = &B[0];
  for (j=0; j<lim2 && *(T2+j)>0;j++){}
  return i+j;
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}

Register Allocation via Graph 
Coloring

We model global register allocation 
as a Coloring Problem on the 
Interference Graph

We wish to use the fewest possible 
colors (registers) subject to the rule 
that two connected nodes can�’t 
share the same color.

lim1 lim2

T1 T2

i j
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Optimal Graph Coloring is 
NP-Complete
Reference:

�“Computers and Intractability,�”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

We�’ll use a Heuristic Algorithm 
originally suggested by Chaitin et. al. 
and improved by Briggs et. al.
References:

�“Register Allocation Via Coloring,�”
G. Chaitin et. al., Computer 
Languages, 1981.

�“Improvement to Graph Coloring 
Register Allocation,�” P. Briggs et. 
al., PLDI, 1989.
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Coloring Heuristic
To R-Color a Graph (where R is the 
number of registers available)
1. While any node, n, has < R 

neighbors:
     Remove n from the Graph.
     Push n onto a Stack.

2. If the remaining Graph is non-
empty:
     Compute the Cost of each node.
     The Cost of a Node (a Live Range)

is the number of extra instructions
     needed if the Node isn�’t assigned a
     register, scaled by 10loop_depth. 
     Let NB(n) = 
            Number of Neighbors of n.
     Remove that node n that has the
     smallest Cost(n)/NB(n) value.
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     Push n onto a Stack.
     Return to Step 1.

3. While Stack is non-empty:
     Pop n from the Stack.

   If n�’s neighbors are assigned fewer
      than R colors
   Then assign n any unassigned 
color
   Else leave n uncolored.
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Example
  int p(int lim1, int lim2) {
  int *T1 = &A[0];
  for (i=0; i<lim1 && *(T1+i)>0;i++){}
  int *T2 = &B[0];
  for (j=0; j<lim2 && *(T2+j)>0;j++){}
  return i+j;
}

Do a 3 coloring

lim1 lim2 T1 T2 i j

Cost 11 11 11 11 42 42

Cost/
Neighbors

11/3 11/5 11/3 11/3 42/5 42/3

lim1 lim2

T1 T2

i j
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Since no node has fewer than 3 
neighbors, we remove a node based 
on the minimum Cost/Neighbors 
value.

lim2 is chosen.
We now have:

Remove (say) lim1, then T1, T2, j 
and i (order is arbitrary).

lim1

T1 T2

i j
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The Stack is:

Assuming the colors we have are 
R1, R2 and R3, the register 
assignment we choose is
i:R1, j:R2, T2:R3, T1:R2, lim1:R3, 
lim2:spill

lim2
lim1
T1
T2
j
i

lim1 lim2

T1 T2

i j
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Color Preferences
Sometimes we wish to assign a 
particular register (color) to a 
selected Live Range (e.g., a 
parameter or return value) if 
possible.

We can mark a node in the 
Interference Graph with a Color 
Preference.

When we unstack nodes and assign 
colors, we will avoid choosing color 
c if an uncolored neighbor has 
indicted a preference for it. If only 
color c is left, we take it (and ignore 
the preference).
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Example
Assume in our previous example 
that lim1 has requested register R1 
and lim2 has requested register R2 
(because these are the registers the 
parameters are passed in).
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Now when i, j and T1 are 
unstacked, they respect lim1�’s and 
lim2�’s preferences:
i:R3, j:R1, T2:R2, T1:R2, lim1:R1, 
lim2:spill

lim1(R1) lim2(R2)

T1 T2

i j

lim2
lim1
T1
T2
j
i
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Using Coloring to Optimize 
Register Moves

A nice �“fringe benefit�” of allocating 
registers via coloring is that we can 
often optimize away register to 
register moves by giving the source 
and target the same color.
Consider

We�’d like x, t1 and q to get the same 
color. How do we �“force�” this?

a b

x t1

y q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q
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We can �“merge�” x, t1 and q 

together:
Now a 2-coloring that optimizes 
away both register to register moves 
is trivial.

a b

y x,t1,q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q
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Reckless Coalescing
Originally, Chaitin suggested 
merging all move-related nodes that 
don�’t interfere.

This is reckless�—the merged node 
may not be colorable!

(Is it worth a spill to save a move??)

This Graph is 2-colorable before the 
reckless merge, but not after.

e fc

a

b

d
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