What is a Delayed Load?

Most pipelined processors require a delay of one or more instructions between a load of register R and the first use of R.

If a register is used “too soon,” the processor may stall execution until the register value becomes available.

```
ld [a],%r1
add %r1,1,%r1
```

← Stall!

We try to place an instruction that doesn’t use register R immediately after a load of R.
This allows useful work instead of a wasteful stall.

The Sethi-Ullman Algorithm generates code that will stall:

```
+ 2
+ 2  C
A  B

ld [A], %10
ld [B], %11
add %10,%11,%10
ld [C], %11
add %10,%11,%10
```

Stall!

Stall!

In fact, if we use the fewest possible registers, stalls are Unavoidable!
Why?

Loads increase the number of registers in use.

Binary operations decrease the number of registers in use (2 Operands, 1 Result).

The load that brings the number of registers in use up to the minimum number needed must be followed by an operator that uses the just-loaded value. This implies a stall.

We’ll need to allocate an extra register to allow an independent instruction to fill each delay slot of a load.
Extended Register Needs

Abbreviated as ERN

ERN(Identifier) = 2
ERN(Literal) = 1
ERN(Op) =

If ERN(Left) = ERN(Right)
Then ERN(Left) + 1
Else Max(ERN(Left), ERN(Right))
Example

Idea of the Algorithm

1. Generate instructions in the same order as Sethi-Ullman, but use Pseudo-Registers instead of actual machine registers.

2. Put generated instructions into a “Canonical Order” (as defined below).

What are Pseudo-Registers?

They are unique temporary locations, unlimited in number and generated as needed, that are used to model registers prior to register allocation.

Canonical Form for Expression Code

(Assume R registers will be used)

Desired instruction ordering:
1. R load instructions
2. Pairs of Operator/Load instructions
3. Remaining operators
This canonical form is obtained by “sliding” load instructions upward (earlier) in the original code ordering.

Note that:

• Moving loads upward is always safe, since each pseudo-register is assigned to only once.

• No more than R registers are ever live.
Example

Let $R = 3$, the minimum needed for a delay-free schedule.

Put into Canonical Form:

(Before Register Assignment)

$A^2 + B^2 C^2 + D^2$

ld $[B]$, PR1
ld $[C]$, PR2
add PR1, PR2, PR3
ld $[D]$, PR4
add PR3, PR4, PR5
ld $[A]$, PR6
add PR6, PR5, PR7

(After Register Assignment)

ld $[B]$, %10
ld $[C]$, %11
ld $[D]$, %12
add %10, %11, %10
ld $[A]$, %11
add %10, %12, %10
add %11, %10, %10

No Stalls!
Does This Algorithm Always Produce a Stall-Free, Minimum Register Schedule?

Yes—if one exists!

For very simple expressions (one or two operands) no stall-free schedule exists.

For example: \(a = b; \)

\[
\begin{align*}
 &\text{ld} & [b], &%10 \\
 &\text{st} & &%10, [a]
\end{align*}
\]
Why Does the Algorithm Avoid Stalls?

Previously, certain “critical” loads had to appear just before an operation that used their value.

Now, we have an “extra” register. This allows critical loads to move up one or more places, avoiding any stalls.
How Do We Schedule Small Expressions?

Small expressions (one or two operands) are common. We’d like to avoid stalls when scheduling them.

Idea—Blend small expressions together into larger expression trees, using “,” and “;” like binary operators.
Example

\[
a = b + c; \quad d = e;
\]

\[
\begin{array}{c}
 a^3 + b^2 + c^2 = 3 \\
 d^0 + e^2 = 2
\end{array}
\]

Original Code

\[
\begin{align*}
 &\text{ld} [b], \text{PR1} \\
 &\text{ld} [c], \text{PR2} \\
 &\text{add} \text{PR1,PR2,PR3} \\
 &\text{st} \text{PR3, [a]} \\
 &\text{ld} [e], \text{PR4} \\
 &\text{st} \text{PR4, [d]}
\end{align*}
\]

In Canonical Form

\[
\begin{align*}
 &\text{ld} [b], \%l0 \\
 &\text{ld} [c], \%l1 \\
 &\text{ld} [e], \%l2 \\
 &\text{add} \%l0,\%l1,\%l0 \\
 &\text{st} \%l0, [a] \\
 &\text{st} \%l2, [d]
\end{align*}
\]

After Register Assignment
Global Register Allocation

Allocate registers across an entire subprogram.

A Global Register Allocator must decide:

- What values are to be placed in registers?
- Which registers are to be used?
- For how long is each Register Candidate held in a register?
Live Ranges

Rather than simply allocate a value to a fixed register throughout an entire subprogram, we prefer to split variables into Live Ranges.

What is a Live Range?

It is the span of instructions (or basic blocks) from a definition of a variable to all its uses.

Different assignments to the same variable may reach distinct & disjoint instructions or basic blocks.

If so, the live ranges are Independent, and may be assigned Different registers.
Example

```c
a = init();
for (int i = a+1; i < 1000; i++){
    b[i] = 0; }
a = f(i);
print(a);
```

The two uses of variable `a` comprise *Independent live ranges.*

Each can be allocated separately.

If we insisted on allocating variable `a` to a fixed register for the whole subprogram, it would *conflict with* the loop body, greatly reducing its chances of successful allocation.
Granulatity of Live Ranges

Live ranges can be measured in terms of individual instructions or basic blocks.

Individual instructions are more precise but basic blocks are less numerous (reducing the size of sets that need to be computed).

We’ll use basic blocks to keep examples concise.

You can define basic blocks that hold only one instruction, so computation in terms of basic blocks is still fully general.
Computation of Live Ranges

First construct the Control Flow Graph (CFG) of the subprogram.

For a Basic Block b and Variable V:

Let $\text{DefsIn}(b) =$ the set of basic blocks that contain definitions of V that reach (may be used in) the beginning of Basic Block b.

Let $\text{DefsOut}(b) =$ the set of basic blocks that contain definitions of V that reach (may be used in) the end of Basic Block b.
If a definition of V reaches b, then the register that holds the value of that definition must be allocated to V in block b.

Otherwise, the register that holds the value of that definition may be used for other purposes in b.

The sets P and S are derived from the structure of the CFG.

They are given as part of the definition of the CFG.
DefsIn and DefsOut must be computed, using the following rules:

1. If Basic Block b contains a definition of V then

 $\text{DefsOut}(b) = \{b\}$

2. If there is no definition to V in b then

 $\text{DefsOut}(b) = \text{DefsIn}(b)$

3. For the First Basic Block, b_0:

 $\text{DefsIn}(b_0) = \emptyset$

4. For all Other Basic Blocks

 $\text{DefsIn}(b) = \bigcup_{p \in \text{Preds}(b)} \text{DefsOut}(p)$
Liveness Analysis

Just because a definition reaches a Basic Block, \(b \), \textit{does not} mean it must be allocated to a register at \(b \).

We also require that the definition be \textit{Live} at \(b \). If the definition is dead, then it will no longer be used, and register allocation is unnecessary.

For a Basic Block \(b \) and Variable \(V \):
\[
\text{LiveIn}(b) = \text{true if } V \text{ is Live (will be used before it is redefined) at the beginning of } b.
\]
\[
\text{LiveOut}(b) = \text{true if } V \text{ is Live (will be used before it is redefined) at the end of } b.
\]
LiveIn and LiveOut are computed, using the following rules:

1. If Basic Block b has no successors then
 \[\text{LiveOut}(b) = \text{false} \]

2. For all Other Basic Blocks
 \[\text{LiveOut}(b) = \bigvee_{s \in \text{Succ}(b)} \text{LiveIn}(s) \]

3. LiveIn(b) =
 If V is used before it is defined in Basic Block b
 Then true
 Elsif V is defined before it is used in Basic Block b
 Then false
 Else LiveOut(b)
Merging Live Ranges

It is possible that each Basic Block that contains a definition of \(v \) creates a distinct Live Range of \(V \).

\(\forall \) Basic Blocks, \(b \), that contain a definition of \(V \):

\[
\text{Range}(b) = \{ b \} \cup \{ k \mid b \in \text{DefsIn}(k) \land \text{LiveIn}(k) \}
\]

This rule states that the Live Range of a definition to \(V \) in Basic Block \(b \) is \(b \) plus all other Basic Blocks that the definition of \(V \) reaches and in which \(V \) is live.
If two Live Ranges overlap (have one of more Basic Blocks in common), they \textit{must} share the same register too. (Why?)

Therefore,

If \(\text{Range}(b_1) \cap \text{Range}(b_2) \neq \emptyset\)

Then replace
\(\text{Range}(b_1)\) and \(\text{Range}(b_2)\)

with \(\text{Range}(b_1) \cup \text{Range}(b_2)\)
Example
Li=F
Lo=T

Li=T
Lo=T

Li=F
Lo=F

Li=T
Lo=F

Li=F
Lo=T

Li=T
Lo=F

Li=F
Lo=F

Li=F
Lo=F

Di={1}
Do={1}

Di={1}
Do={1}

Di={1,2}
Do={1,2}

Di={1,2,5,6}
Do={1,2,5,6}

Di={5}
Do={5}

Di={5}
Do={5}

Di={5,6}
Do={5,6}

Di={5,6}
Do={5,6}

Di={5,6}
Do={5,6}

Di={5,6}
Do={5,6}
The Live Ranges we Compute are

Range(1) = \{1\} \cup \{3,4\} = \{1,3,4\}

Range(2) = \{2\} \cup \{4\} = \{2,4\}

Range(5) = \{5\} \cup \{7\} = \{5,7\}

Range(6) = \{6\} \cup \{7\} = \{6,7\}

Ranges 1 and 2 overlap, so

\text{Range}(1) = \text{Range}(2) = \{1,2,3,4\}

Ranges 5 and 6 overlap, so

\text{Range}(5) = \text{Range}(6) = \{5,6,7\}
Interference Graph

An Interference Graph represents interferences between Live Ranges.

Two Live Ranges interfere if they share one or more Basic Blocks in common.

Live Ranges that interfere must be allocated different registers.

In an Interference Graph:

- Nodes are Live Ranges
- An undirected arc connects two Live Ranges if and only if they interfere
Example

```c
int p(int lim1, int lim2) {
    for (i=0; i<lim1 && A[i]>0;i++){}
    for (j=0; j<lim2 && B[j]>0;j++){}
    return i+j;
}
```

We optimize array accesses by placing \&A[0] and \&B[0] in temporaries:

```c
int p(int lim1, int lim2) {
    int *T1 = &A[0];
    for (i=0; i<lim1 && *(T1+i)>0;i++){}
    int *T2 = &B[0];
    for (j=0; j<lim2 && *(T2+j)>0;j++){}
    return i+j;
}
```
Register Allocation via Graph Coloring

We model global register allocation as a Coloring Problem on the Interference Graph

We wish to use the fewest possible colors (registers) subject to the rule that two connected nodes can’t share the same color.
Optimal Graph Coloring is NP-Complete

Reference:

We’ll use a Heuristic Algorithm originally suggested by Chaitin et. al. and improved by Briggs et. al.

References:

“Register Allocation Via Coloring,” G. Chaitin et. al., Computer Languages, 1981.

“Improvement to Graph Coloring Register Allocation,” P. Briggs et. al., PLDI, 1989.
Coloring Heuristic

To R-Color a Graph (where R is the number of registers available)

1. While any node, n, has < R neighbors:
 Remove n from the Graph. Push n onto a Stack.

2. If the remaining Graph is non-empty:
 Compute the Cost of each node. The Cost of a Node (a Live Range) is the number of extra instructions needed if the Node isn’t assigned a register, scaled by $10^{\text{loop_depth}}$. Let $\text{NB}(n) =$ Number of Neighbors of n. Remove that node n that has the smallest $\text{Cost}(n)/\text{NB}(n)$ value.
Push n onto a Stack.
Return to Step 1.

3. While Stack is non-empty:
 Pop n from the Stack.
 If n’s neighbors are assigned fewer than R colors
 Then assign n any unassigned color
 Else leave n uncolored.
Example

```c
int p(int lim1, int lim2) {
    int *T1 = &A[0];
    for (i=0; i<lim1 && *(T1+i)>0; i++) {} 
    int *T2 = &B[0];
    for (j=0; j<lim2 && *(T2+j)>0; j++) {} 
    return i+j;
}
```

Do a 3 coloring

<table>
<thead>
<tr>
<th></th>
<th>lim1</th>
<th>lim2</th>
<th>T1</th>
<th>T2</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Cost/Neighbors</td>
<td>11/3</td>
<td>11/5</td>
<td>11/3</td>
<td>11/3</td>
<td>42/5</td>
<td>42/3</td>
</tr>
</tbody>
</table>
Since no node has fewer than 3 neighbors, we remove a node based on the minimum Cost/Neighbors value.

\(\lim_2 \) is chosen.

We now have:

Remove (say) \(\lim_1 \), then \(T_1, T_2, j \) and \(i \) (order is arbitrary).
The Stack is:

\[
\begin{array}{c}
\text{i} \\
\text{j} \\
\text{T2} \\
\text{T1} \\
\text{lim1} \\
\text{lim2}
\end{array}
\]

Assuming the colors we have are R1, R2 and R3, the register assignment we choose is

\begin{align*}
i & : R1, \\
j & : R2, \\
T2 & : R3, \\
T1 & : R2, \\
\text{lim1} & : R3, \\
\text{lim2} & : \text{spill}
\end{align*}
Color Preferences

Sometimes we wish to assign a particular register (color) to a selected Live Range (e.g., a parameter or return value) if possible.

We can mark a node in the Interference Graph with a Color Preference.

When we unstack nodes and assign colors, we will avoid choosing color c if an uncolored neighbor has indicted a preference for it. If only color c is left, we take it (and ignore the preference).
Example

Assume in our previous example that lim1 has requested register R1 and lim2 has requested register R2 (because these are the registers the parameters are passed in).
Now when i, j and T_1 are unstacked, they respect lim1’s and lim2’s preferences:

$i: R_3$, $j: R_1$, $T_2: R_2$, $T_1: R_2$, $\text{lim1}: R_1$, $\text{lim2}: \text{spill}$
Using Coloring to Optimize Register Moves

A nice “fringe benefit” of allocating registers via coloring is that we can often optimize away register to register moves by giving the source and target the same color.

Consider

Live in: a, b

\[t_1 = a + b \]

\[x = t_1 \]

\[y = x + 1 \]

\[q = t_1 \]

Live out: y, q

We’d like \(x, t_1 \) and \(q \) to get the same color. How do we “force” this?
We can “merge” x, $t1$ and q

Live in: a, b

t1 = $a + b$

x = t1

y = $x + 1$

q = t1

Live out: y, q

together:

Now a 2-coloring that optimizes away both register to register moves is trivial.
Reckless Coalescing

Originally, Chaitin suggested merging *all* move-related nodes that don’t interfere.

This is *reckless*—the merged node may not be colorable!

(Is it worth a spill to save a move??)

This Graph is 2-colorable before the reckless merge, but *not* after.