
305CS 701 Fall 2014 ©

Example
int p(int lim1, int lim2) {
 for (i=0; i<lim1 && A[i]>0;i++){}
 for (j=0; j<lim2 && B[j]>0;j++){}
 return i+j;
}

We optimize array accesses by
placing &A[0] and &B[0] in
temporaries:

int p(int lim1, int lim2) {
 int *T1 = &A[0];
 for (i=0; i<lim1 && *(T1+i)>0;i++){}
 int *T2 = &B[0];
 for (j=0; j<lim2 && *(T2+j)>0;j++){}
 return i+j;

306CS 701 Fall 2014©

}

Register Allocation via Graph
Coloring

We model global register allocation
as a Coloring Problem on the
Interference Graph

We wish to use the fewest possible
colors (registers) subject to the rule
that two connected nodes can�’t
share the same color.

lim1 lim2

T1 T2

i j

307CS 701 Fall 2014 ©

Optimal Graph Coloring is
NP-Complete
Reference:

�“Computers and Intractability,�”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

We�’ll use a Heuristic Algorithm
originally suggested by Chaitin et. al.
and improved by Briggs et. al.
References:

�“Register Allocation Via Coloring,�”
G. Chaitin et. al., Computer
Languages, 1981.

�“Improvement to Graph Coloring
Register Allocation,�” P. Briggs et.
al., PLDI, 1989.

308CS 701 Fall 2014©

Coloring Heuristic
To R-Color a Graph (where R is the
number of registers available)
1. While any node, n, has < R

neighbors:
 Remove n from the Graph.
 Push n onto a Stack.

2. If the remaining Graph is non-
empty:
 Compute the Cost of each node.
 The Cost of a Node (a Live Range)

is the number of extra instructions
 needed if the Node isn�’t assigned a
 register, scaled by 10loop_depth.
 Let NB(n) =
 Number of Neighbors of n.
 Remove that node n that has the
 smallest Cost(n)/NB(n) value.

309CS 701 Fall 2014 ©

 Push n onto a Stack.
 Return to Step 1.

3. While Stack is non-empty:
 Pop n from the Stack.

 If n�’s neighbors are assigned fewer
 than R colors
 Then assign n any unassigned
color
 Else leave n uncolored.

310CS 701 Fall 2014©

Example
 int p(int lim1, int lim2) {
 int *T1 = &A[0];
 for (i=0; i<lim1 && *(T1+i)>0;i++){}
 int *T2 = &B[0];
 for (j=0; j<lim2 && *(T2+j)>0;j++){}
 return i+j;
}

Do a 3 coloring

lim1 lim2 T1 T2 i j

Cost 11 11 11 11 42 42

Cost/
Neighbors

11/3 11/5 11/3 11/3 42/5 42/3

lim1 lim2

T1 T2

i j

311CS 701 Fall 2014 ©

Since no node has fewer than 3
neighbors, we remove a node based
on the minimum Cost/Neighbors
value.

lim2 is chosen.
We now have:

Remove (say) lim1, then T1, T2, j
and i (order is arbitrary).

lim1

T1 T2

i j

312CS 701 Fall 2014©

The Stack is:

Assuming the colors we have are
R1, R2 and R3, the register
assignment we choose is
i:R1, j:R2, T2:R3, T1:R2, lim1:R3,
lim2:spill

lim2
lim1
T1
T2
j
i

lim1 lim2

T1 T2

i j

313CS 701 Fall 2014 ©

Color Preferences
Sometimes we wish to assign a
particular register (color) to a
selected Live Range (e.g., a
parameter or return value) if
possible.

We can mark a node in the
Interference Graph with a Color
Preference.

When we unstack nodes and assign
colors, we will avoid choosing color
c if an uncolored neighbor has
indicted a preference for it. If only
color c is left, we take it (and ignore
the preference).

314CS 701 Fall 2014©

Example
Assume in our previous example
that lim1 has requested register R1
and lim2 has requested register R2
(because these are the registers the
parameters are passed in).

315CS 701 Fall 2014 ©

Now when i, j and T1 are
unstacked, they respect lim1�’s and
lim2�’s preferences:
i:R3, j:R1, T2:R2, T1:R2, lim1:R1,
lim2:spill

lim1(R1) lim2(R2)

T1 T2

i j

lim2
lim1
T1
T2
j
i

316CS 701 Fall 2014©

Using Coloring to Optimize
Register Moves

A nice �“fringe benefit�” of allocating
registers via coloring is that we can
often optimize away register to
register moves by giving the source
and target the same color.
Consider

We�’d like x, t1 and q to get the same
color. How do we �“force�” this?

a b

x t1

y q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q

317CS 701 Fall 2014 ©

We can �“merge�” x, t1 and q

together:
Now a 2-coloring that optimizes
away both register to register moves
is trivial.

a b

y x,t1,q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q

318CS 701 Fall 2014©

Reckless Coalescing
Originally, Chaitin suggested
merging all move-related nodes that
don�’t interfere.

This is reckless�—the merged node
may not be colorable!

(Is it worth a spill to save a move??)

This Graph is 2-colorable before the
reckless merge, but not after.

e fc

a

b

d

319CS 701 Fall 2014 ©

Reading Assignment
• Read George and Appel�’s paper,

�“Iterated Register Coalescing.�”
(Linked from Class Web page)

• Read Larus and Hilfinger�’s paper,
�“Register Allocation in the SPUR Lisp
Compiler.�”

320CS 701 Fall 2014©

Iterated Coalescing
This is an intermediate approach,
that seeks to be safer than reckless
coalescing and more effective than
conservative coalescing. It was
proposed by George and Appel.

321CS 701 Fall 2014 ©

1. Build:
Create an Interference Graph, as
usual. Mark source-target pairs
with a special move-related arc
(denoted as a dashed line).

2. Simplify:
Remove and stack non-move-
related nodes with < R neighbors.

3. Coalesce:
Combine move-related pairs that
will have < R neighbors after
coalescing.

Repeat steps 2 and 3 until only nodes
with R or more neighbors or move-
related nodes remain or the graph is
empty.

322CS 701 Fall 2014©

4. Freeze:
If the Interference Graph is
 non-empty:
Then If there exists a move-related

 node with < R neighbors
 Then: �“Freeze in�” the move and
 make the node
 non-move-related.
 Return to Steps 2 and 3.
 Else: Use Chaitin�’s
 Cost/Neighbors criterion
 to remove and stack
 a node.
 Return to Steps 2 and 3.

5. Unstack:
Color nodes as they are unstacked
as per Chaitin and Briggs.

323CS 701 Fall 2014 ©

Example

Assume we want a 4-coloring.
Note that neither j&b nor d&c can
be conservatively colored.

Live in: k,j
g = mem[j+12]
h = k-1
f = g*h
e = mem[j+8]
m = mem[j+16]
b = mem[f]
c = e+8
d = c
k = m+4
j = b
goto d
Live out: d,k,j

f

e

mj k b

d c

h g

324CS 701 Fall 2014©

We simplify by removing nodes with
fewer than 4 neighbors.
We remove and stack: g, h, k, f, e, m

f

e

mj k b

d c

h g

325CS 701 Fall 2014 ©

The remaining Interference Graph
is

We can now conservatively coalesce
the move-related pairs to obtain

These remaining nodes can now be
removed and stacked.

j b

d c

j&b d&c

326CS 701 Fall 2014©

We can now unstack and color:
d&c:R1, j&b:R2, m:R3, e:R4, f:R1,
k:R3, h:R1, g:R4

No spills were required and both
moves were optimized away.

d&c
j&b
m
e
f
k
g
h

327CS 701 Fall 2014 ©

Priority-Based Register
Allocation

Alternatives to Chaitin-style
register allocation are presented in:

• Hennessy and Chow, �“The priority-
based coloring approach to register
allocation,�” ACM TOPLAS,
October 1990.

• Larus and Hilfinger, �“Register

allocation in the SPUR Lisp
compiler,�” SIGPLAN symposium
on Compiler Construction, 1986.

328CS 701 Fall 2014©

These papers suggest two innovations:
1. Use of a Priority Value to choose

nodes to color in an Interference
Graph.

A Priority measures
 (Spill cost)/(Size of Live Range)
The idea is that small live ranges
with a high spill cost are ideal
candidates for register allocation.
As the size of a live range grows, it
becomes less attractive for register
allocation (since it �“ties up�” a
register for a larger portion of a
program).

2. Live Range Splitting
Rather than spill an entire live range
that can�’t be colored, the live range is
split into two or more smaller live
ranges that may be colorable.

329CS 701 Fall 2014 ©

Large vs. Small Live Ranges
• A large live range has less spill code.

Values are directly read from and
written to a register.
But, a large live range is harder to
allocate, since it may conflict with
many other register candidates.

• A small live range is easier to allocate
since it competes with fewer register
candidates.
But, more spill code is needed to load
and save register values across live
ranges.

• In the limit a live range can shrink to a
single definition or use of a register.
But, then we really don�’t have an
effective register allocation at all!

330CS 701 Fall 2014©

Terminology
In an Interference Graph:
• A node with fewer neighbors than

colors is termed unconstrained. It is
trivial to color.

• A node that is not unconstrained is
termed constrained. It may need to be
split or spilled.

331CS 701 Fall 2014 ©

PriorityRegAlloc(proc, regCount) {
 ig buildInterferenceGraph(proc)
 unconstrained
 { n nodes(ig) neighborCount(n) < regCount }
 constrained
 { n nodes(ig) neighborCount(n) regCount }

 while(constrained) {
 for (c constrained such that not colorable(c)

and canSplit(c)) {
c1, c2 split(c)
constrained constrained - {c}
if (neighborCount(c1) < regCount)

 unconstrained unconstrained U { c1}

 else constrained constrained U {c1}
 if (neighborCount(c2) < regCount)

 unconstrained unconstrained U { c2}
 else constrained constrained U {c2}
 for (d neighbors(c) such that
 d unconstrained and
 neighborCount(d) regCount){
 unconstrained unconstrained - {d}
 constrained constrained U {d}
 } } // End of both for loops

332CS 701 Fall 2014©

 /* At this point all nodes in constrained are
 colorable or can�’t be split */

 Select p constrained such that
 priority(p) is maximized
 if (colorable(p))
 color(p)
 else spill(p)
 } // End of While
 color all nodes unconstrained
}

333CS 701 Fall 2014 ©

How to Split a Constrained
Node
• There are many possible partitions of a

live range; too many to fully explore.
• Heuristics are used instead. One simple

heuristic is:
1. Remove the first basic block
 (or instruction) of the live range.

Put it into a new live range, NR.
2. Move successor blocks
 (or instructions) from the original
 live range into NR, as long as NR
 remains colorable.
3. Single Basic Blocks
 (or instructions) that can�’t be
 colored are spilled.

334CS 701 Fall 2014©

Example
int sum(int a[], int b[]) {
 int sum = 0;
 for (int i=0; i<1000; i++)
 sum += a[i];
 for (int j=0; j<1000; j++)
 sum += b[j];
 return sum;
}

Assume we want a 3-coloring.

a b

sum

i j

335CS 701 Fall 2014 ©

We first simplify the graph by
removing unconstrained nodes
(those with < 3 neighbors).
Node j is removed. We now have:

At this point, each node has 3
neighbors, so either spilling or
splitting is necessary.
A spill really isn�’t attractive as each
of the 4 register candidates is used
within a loop, magnifying the costs
of accessing memory.

a b

sum

i

336CS 701 Fall 2014©

Coloring by Priorities
We�’ll color constrained nodes by
priority values, with preference
given to large priority values.

337CS 701 Fall 2014 ©

a b sum i

Cost 11 11 42 41

Cost/Size 11/3 11/6 42/7 41/3

i < 1000

1

2 3

4

a = parm1
b = parm2
sum = 0
i = 0

sum += a[i]
i++

j = 0

j < 1000 5 6

7

sum += b[j]
j++

return sum

338CS 701 Fall 2014©

Variables i, sum and a are assigned
colors R1, R2 and R3.
Variable b can�’t be colored, so we
will try to split it. b�’s live range is
blocks 1 to 6, with 1 as b�’s entry
point.
Blocks 1 to 3 can�’t be colored, so b is
spilled in block 1. However, blocks 4
to 6 form a split live range that can
be colored (using R3).
We will reload b into R3 in block 4,
and it will be register-allocated
throughout the second loop. The
added cost due to the split is
minor�—a store in block 1 and a
reload in block 4.

339CS 701 Fall 2014 ©

Choice of Spill Heuristics
We have seen a number of heuristics
used to choose the live ranges to be
spilled (or colored).
These heuristics are typically
chosen using one�’s intuition of what
register candidates are most (or
least) important. Then a heuristic is
tested and �“fine tuned�” using a
variety of test programs.
Recently, researchers have
suggested using machine learning
techniques to automatically
determine effective heuristics.
In �“Meta Optimization: Improving
Compiler Heuristics with Machine
Learning,�” Stephenson,
Amarasinghe, et al, suggest using
genetic programming techniques in

340CS 701 Fall 2014©

which priority functions (like choice
of spill candidates) are mutated and
allowed to �“evolve.�”
Although the approach seems
rather random and unfocused, it
can be effective. Priority functions
better than those used in real
compilers have been reported, with
research still ongoing.

