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Example
int p(int lim1, int lim2) {
  for (i=0; i<lim1 && A[i]>0;i++){}
  for (j=0; j<lim2 && B[j]>0;j++){}
  return i+j;
}

We optimize array accesses by 
placing &A[0] and &B[0] in 
temporaries:

int p(int lim1, int lim2) {
  int *T1 = &A[0];
  for (i=0; i<lim1 && *(T1+i)>0;i++){}
  int *T2 = &B[0];
  for (j=0; j<lim2 && *(T2+j)>0;j++){}
  return i+j;
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}

Register Allocation via Graph 
Coloring

We model global register allocation 
as a Coloring Problem on the 
Interference Graph

We wish to use the fewest possible 
colors (registers) subject to the rule 
that two connected nodes can�’t 
share the same color.

lim1 lim2

T1 T2

i j
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Optimal Graph Coloring is 
NP-Complete
Reference:

�“Computers and Intractability,�”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

We�’ll use a Heuristic Algorithm 
originally suggested by Chaitin et. al. 
and improved by Briggs et. al.
References:

�“Register Allocation Via Coloring,�”
G. Chaitin et. al., Computer 
Languages, 1981.

�“Improvement to Graph Coloring 
Register Allocation,�” P. Briggs et. 
al., PLDI, 1989.
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Coloring Heuristic
To R-Color a Graph (where R is the 
number of registers available)
1. While any node, n, has < R 

neighbors:
     Remove n from the Graph.
     Push n onto a Stack.

2. If the remaining Graph is non-
empty:
     Compute the Cost of each node.
     The Cost of a Node (a Live Range)

is the number of extra instructions
     needed if the Node isn�’t assigned a
     register, scaled by 10loop_depth. 
     Let NB(n) = 
            Number of Neighbors of n.
     Remove that node n that has the
     smallest Cost(n)/NB(n) value.
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     Push n onto a Stack.
     Return to Step 1.

3. While Stack is non-empty:
     Pop n from the Stack.

   If n�’s neighbors are assigned fewer
      than R colors
   Then assign n any unassigned 
color
   Else leave n uncolored.
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Example
  int p(int lim1, int lim2) {
  int *T1 = &A[0];
  for (i=0; i<lim1 && *(T1+i)>0;i++){}
  int *T2 = &B[0];
  for (j=0; j<lim2 && *(T2+j)>0;j++){}
  return i+j;
}

Do a 3 coloring

lim1 lim2 T1 T2 i j

Cost 11 11 11 11 42 42

Cost/
Neighbors

11/3 11/5 11/3 11/3 42/5 42/3

lim1 lim2

T1 T2

i j
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Since no node has fewer than 3 
neighbors, we remove a node based 
on the minimum Cost/Neighbors 
value.

lim2 is chosen.
We now have:

Remove (say) lim1, then T1, T2, j 
and i (order is arbitrary).

lim1

T1 T2

i j
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The Stack is:

Assuming the colors we have are 
R1, R2 and R3, the register 
assignment we choose is
i:R1, j:R2, T2:R3, T1:R2, lim1:R3, 
lim2:spill

lim2
lim1
T1
T2
j
i

lim1 lim2

T1 T2

i j
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Color Preferences
Sometimes we wish to assign a 
particular register (color) to a 
selected Live Range (e.g., a 
parameter or return value) if 
possible.

We can mark a node in the 
Interference Graph with a Color 
Preference.

When we unstack nodes and assign 
colors, we will avoid choosing color 
c if an uncolored neighbor has 
indicted a preference for it. If only 
color c is left, we take it (and ignore 
the preference).
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Example
Assume in our previous example 
that lim1 has requested register R1 
and lim2 has requested register R2 
(because these are the registers the 
parameters are passed in).
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Now when i, j and T1 are 
unstacked, they respect lim1�’s and 
lim2�’s preferences:
i:R3, j:R1, T2:R2, T1:R2, lim1:R1, 
lim2:spill

lim1(R1) lim2(R2)

T1 T2

i j

lim2
lim1
T1
T2
j
i
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Using Coloring to Optimize 
Register Moves

A nice �“fringe benefit�” of allocating 
registers via coloring is that we can 
often optimize away register to 
register moves by giving the source 
and target the same color.
Consider

We�’d like x, t1 and q to get the same 
color. How do we �“force�” this?

a b

x t1

y q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q
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We can �“merge�” x, t1 and q 

together:
Now a 2-coloring that optimizes 
away both register to register moves 
is trivial.

a b

y x,t1,q

Live in: a,b

t1 = a + b

x = t1

y = x + 1

q = t1

Live out: y,q
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Reckless Coalescing
Originally, Chaitin suggested 
merging all move-related nodes that 
don�’t interfere.

This is reckless�—the merged node 
may not be colorable!

(Is it worth a spill to save a move??)

This Graph is 2-colorable before the 
reckless merge, but not after.

e fc

a

b

d
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Reading Assignment
• Read George and Appel�’s paper, 

�“Iterated Register Coalescing.�” 
(Linked from Class Web page)

• Read Larus and Hilfinger�’s paper, 
�“Register Allocation in the SPUR Lisp 
Compiler.�”
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Iterated Coalescing
This is an intermediate approach, 
that seeks to be safer than reckless 
coalescing and more effective than 
conservative coalescing. It was 
proposed by George and Appel.
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1. Build:
Create an Interference Graph, as 
usual. Mark source-target pairs 
with a special move-related arc 
(denoted as a dashed line).

2. Simplify:
Remove and stack non-move-
related nodes with < R neighbors.

3. Coalesce:
Combine move-related pairs that 
will have < R neighbors after 
coalescing.

Repeat steps 2 and 3 until only nodes 
with R or more neighbors or move-
related nodes remain or the graph is 
empty.
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4. Freeze:
If the Interference Graph is
    non-empty:
Then If there exists a move-related

 node with < R neighbors
        Then: �“Freeze in�” the move and
                 make the node 
                 non-move-related.
                Return to Steps 2 and 3.
         Else: Use Chaitin�’s 
                Cost/Neighbors criterion
                 to remove and stack
                 a node.
                 Return to Steps 2 and 3.

5. Unstack:
Color nodes as they are unstacked 
as per Chaitin and Briggs.
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Example

Assume we want a 4-coloring.
Note that neither j&b nor d&c can 
be conservatively colored.

Live in: k,j
g = mem[j+12]
h = k-1
f = g*h
e = mem[j+8]
m = mem[j+16]
b = mem[f]
c = e+8
d = c
k = m+4
j = b
goto d
Live out: d,k,j

f

e

mj k b

d c

h g
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We simplify by removing nodes with 
fewer than 4 neighbors.
We remove and stack: g, h, k, f, e, m

f

e

mj k b

d c

h g
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The remaining Interference Graph 
is

We can now conservatively coalesce 
the move-related pairs to obtain

These remaining nodes can now be 
removed and stacked.

j b

d c

j&b d&c
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We can now unstack and color:
d&c:R1, j&b:R2, m:R3, e:R4, f:R1, 
k:R3, h:R1, g:R4

No spills were required and both 
moves were optimized away.

d&c
j&b
m
e
f
k
g
h
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Priority-Based Register 
Allocation

Alternatives to Chaitin-style 
register allocation are presented in: 

• Hennessy and Chow, �“The priority-
based coloring approach to register 
allocation,�” ACM TOPLAS, 
October 1990.

 
• Larus and Hilfinger, �“Register 

allocation in the SPUR Lisp 
compiler,�” SIGPLAN symposium 
on Compiler Construction, 1986.
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These papers suggest two innovations: 
1. Use of a Priority Value to choose 

nodes to color in an Interference 
Graph.

A Priority measures 
   (Spill cost)/(Size of Live Range)
The idea is that small live ranges 
with a high spill cost are ideal 
candidates for register allocation. 
As the size of a live range grows, it 
becomes less attractive for register 
allocation (since it �“ties up�” a 
register for a larger portion of a 
program).

2. Live Range Splitting
Rather than spill an entire live range 
that can�’t be colored, the live range is 
split into two or more smaller live 
ranges that may be colorable.
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Large vs. Small Live Ranges
• A large live range has less spill code. 

Values are directly read from and 
written to a register.
But, a large live range is harder to 
allocate, since it may conflict with 
many other register candidates.

• A small live range is easier to allocate 
since it competes with fewer register 
candidates.
But, more spill code is needed to load 
and save register values across live 
ranges.

• In the limit a live range can shrink to a 
single definition or use of a register.
But, then we really don�’t have an 
effective register allocation at all!
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Terminology
In an Interference Graph:
• A node with fewer neighbors than 

colors is termed unconstrained. It is 
trivial to color.

• A node that is not unconstrained is 
termed constrained. It may need to be 
split or spilled.
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PriorityRegAlloc(proc, regCount) {
    ig  buildInterferenceGraph(proc)
   unconstrained  
         { n  nodes(ig)  neighborCount(n) < regCount }
   constrained  
        { n  nodes(ig)  neighborCount(n)  regCount }

    while( constrained  ) {
         for ( c  constrained such that not colorable(c)   

and canSplit(c) ) {
c1, c2  split(c)
constrained  constrained - {c}
if ( neighborCount(c1) < regCount )

                         unconstrained  unconstrained U { c1}

               else  constrained  constrained U {c1}
              if ( neighborCount(c2) < regCount )

                         unconstrained  unconstrained U { c2}
               else  constrained  constrained U {c2}
               for ( d  neighbors(c) such that
                     d  unconstrained and 
                       neighborCount(d)  regCount ){
                        unconstrained  unconstrained - {d}
                        constrained  constrained U {d}
        }      } // End of both for loops
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      /* At this point all nodes in constrained are
           colorable or can�’t be split */

      Select p  constrained such that 
                     priority(p) is maximized
      if ( colorable(p) )
                color(p)
       else  spill(p)
  } // End of While
 color all nodes  unconstrained
}
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How to Split a Constrained 
Node
• There are many possible partitions of a 

live range; too many to fully explore.
• Heuristics are used instead. One simple 

heuristic is:
1. Remove the first basic block
   (or instruction) of the live range. 

Put it into a new live range, NR.
2. Move successor blocks 
   (or instructions) from the original
   live range into NR, as long as NR
   remains colorable.
3. Single Basic Blocks
    (or instructions) that can�’t be
    colored are spilled.
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Example
int sum(int a[], int b[]) {
  int sum = 0;
  for (int i=0; i<1000; i++)
     sum += a[i];
  for (int j=0; j<1000; j++)
     sum += b[j];
  return sum;
}

Assume we want a 3-coloring.

a b

sum

i j
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We first simplify the graph by 
removing unconstrained nodes 
(those with < 3 neighbors). 
Node j is removed. We now have:

At this point, each node has 3 
neighbors, so either spilling or 
splitting is necessary.
A spill really isn�’t attractive as each 
of the 4 register candidates is used 
within a loop, magnifying the costs 
of accessing memory.

a b

sum

i
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Coloring by Priorities
We�’ll color constrained nodes by 
priority values, with preference 
given to large priority values.
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a b sum i

Cost 11 11 42 41

Cost/Size 11/3 11/6 42/7 41/3

i < 1000 

1

2 3

4

a = parm1
b = parm2
sum = 0
i = 0

sum += a[i]
i++

j = 0

j < 1000 5 6

7

sum += b[j]
j++

return sum
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Variables i, sum and a are assigned 
colors R1, R2 and R3.
Variable b can�’t be colored, so we 
will try to split it. b�’s live range is 
blocks 1 to 6, with 1 as b�’s entry 
point.
Blocks 1 to 3 can�’t be colored, so b is 
spilled in block 1. However, blocks 4 
to 6 form a split live range that can 
be colored (using R3).
We will reload b into R3 in block 4, 
and it will be register-allocated 
throughout the second loop. The 
added cost due to the split is 
minor�—a store in block 1 and a 
reload in block 4.
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Choice of Spill Heuristics
We have seen a number of heuristics 
used to choose the live ranges to be 
spilled (or colored).
These heuristics are typically 
chosen using one�’s intuition of what 
register candidates are most (or 
least) important. Then a heuristic is 
tested and �“fine tuned�” using a 
variety of test programs.
Recently, researchers have 
suggested using machine learning 
techniques to automatically 
determine effective heuristics.
In �“Meta Optimization: Improving 
Compiler Heuristics with Machine 
Learning,�” Stephenson, 
Amarasinghe, et al, suggest using 
genetic programming techniques in 
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which priority functions (like choice 
of spill candidates) are mutated and 
allowed to �“evolve.�” 
Although the approach seems 
rather random and unfocused, it 
can be effective. Priority functions 
better than those used in real 
compilers have been reported, with 
research still ongoing.


