
329CS 701 Fall 2014 ©

Large vs. Small Live Ranges
• A large live range has less spill code.

Values are directly read from and
written to a register.
But, a large live range is harder to
allocate, since it may conflict with
many other register candidates.

• A small live range is easier to allocate
since it competes with fewer register
candidates.
But, more spill code is needed to load
and save register values across live
ranges.

• In the limit a live range can shrink to a
single definition or use of a register.
But, then we really don�’t have an
effective register allocation at all!

330CS 701 Fall 2014©

Terminology
In an Interference Graph:
• A node with fewer neighbors than

colors is termed unconstrained. It is
trivial to color.

• A node that is not unconstrained is
termed constrained. It may need to be
split or spilled.

331CS 701 Fall 2014 ©

Reading Assignment
• Read �“Minimum Cost Interprocedural

Register Allocation,�” by S. Kurlander
et al. (linked from class Web page).

• Read David Wall�’s paper, �“Global
Register Allocation at Link Time.�”

332CS 701 Fall 2014©

PriorityRegAlloc(proc, regCount) {
 ig buildInterferenceGraph(proc)
 unconstrained
 { n nodes(ig) neighborCount(n) < regCount }
 constrained
 { n nodes(ig) neighborCount(n) regCount }

 while(constrained) {
 for (c constrained such that not colorable(c)

and canSplit(c)) {
c1, c2 split(c)
constrained constrained - {c}
if (neighborCount(c1) < regCount)

 unconstrained unconstrained U { c1}

 else constrained constrained U {c1}
 if (neighborCount(c2) < regCount)
 unconstrained unconstrained U { c2}
 else constrained constrained U {c2}
 for (d neighbors(c) such that
 d unconstrained and
 neighborCount(d) regCount){
 unconstrained unconstrained - {d}
 constrained constrained U {d}
 } } // End of both for loops

333CS 701 Fall 2014 ©

 /* At this point all nodes in constrained are
 colorable or can�’t be split */

 Select p constrained such that
 priority(p) is maximized
 if (colorable(p))

 color(p)
 else spill(p)
 } // End of While
 color all nodes unconstrained
}

334CS 701 Fall 2014©

How to Split a Constrained
Node
• There are many possible partitions of a

live range; too many to fully explore.
• Heuristics are used instead. One simple

heuristic is:
1. Remove the first basic block
 (or instruction) of the live range.

Put it into a new live range, NR.
2. Move successor blocks
 (or instructions) from the original
 live range into NR, as long as NR
 remains colorable.
3. Single Basic Blocks
 (or instructions) that can�’t be
 colored are spilled.

335CS 701 Fall 2014 ©

Example
int sum(int a[], int b[]) {
 int sum = 0;
 for (int i=0; i<1000; i++)
 sum += a[i];
 for (int j=0; j<1000; j++)
 sum += b[j];
 return sum;
}

Assume we want a 3-coloring.

a b

sum

i j

336CS 701 Fall 2014©

We first simplify the graph by
removing unconstrained nodes
(those with < 3 neighbors).
Node j is removed. We now have:

At this point, each node has 3
neighbors, so either spilling or
splitting is necessary.
A spill really isn�’t attractive as each
of the 4 register candidates is used
within a loop, magnifying the costs
of accessing memory.

a b

sum

i

337CS 701 Fall 2014 ©

Coloring by Priorities
We�’ll color constrained nodes by
priority values, with preference
given to large priority values.

338CS 701 Fall 2014©

a b sum i

Cost 11 11 42 41

Cost/Size 11/3 11/6 42/7 41/3

i < 1000

1

2 3

4

a = parm1
b = parm2
sum = 0
i = 0

sum += a[i]
i++

j = 0

j < 1000 5 6

7

sum += b[j]
j++

return sum

339CS 701 Fall 2014 ©

Variables i, sum and a are assigned
colors R1, R2 and R3.
Variable b can�’t be colored, so we
will try to split it. b�’s live range is
blocks 1 to 6, with 1 as b�’s entry
point.
Blocks 1 to 3 can�’t be colored, so b is
spilled in block 1. However, blocks 4
to 6 form a split live range that can
be colored (using R3).
We will reload b into R3 in block 4,
and it will be register-allocated
throughout the second loop. The
added cost due to the split is
minor�—a store in block 1 and a
reload in block 4.

340CS 701 Fall 2014©

Choice of Spill Heuristics
We have seen a number of heuristics
used to choose the live ranges to be
spilled (or colored).
These heuristics are typically
chosen using one�’s intuition of what
register candidates are most (or
least) important. Then a heuristic is
tested and �“fine tuned�” using a
variety of test programs.
Recently, researchers have
suggested using machine learning
techniques to automatically
determine effective heuristics.
In �“Meta Optimization: Improving
Compiler Heuristics with Machine
Learning,�” Stephenson,
Amarasinghe, et al, suggest using
genetic programming techniques in

341CS 701 Fall 2014 ©

which priority functions (like choice
of spill candidates) are mutated and
allowed to �“evolve.�”
Although the approach seems
rather random and unfocused, it
can be effective. Priority functions
better than those used in real
compilers have been reported, with
research still ongoing.

342CS 701 Fall 2014©

Interprocedural Register
Allocation

The goal of register allocation is to
keep frequently used values in
registers.

Ideally, we�’d like to go to memory
only to access values that may be
aliased or pointed to.

For example, array elements and
heap objects are routinely loaded
from and stored to memory each
time they are accessed.

343CS 701 Fall 2014 ©

With alias analysis, optimizations
like Scalarization are possible.

for (i=0; i<1000; i++)
 for (j=0; j<1000; j++)
 a[i] += i * b[j];

is optimized to

for (i=0; i<1000; i++){
 int Ai = a[i];
 for (j=0; j<1000; j++)
 Ai += i * b[j];
 a[i] = Ai;
}

344CS 701 Fall 2014©

Attacking Call Overhead
• Even with good global register

allocation calls are still a problem.
• In general, the caller and callee may

use the same registers, requiring saves
and restores across calls.

• Register windows help, but they are
inflexible, forcing all subprograms to
use the same number of registers.

• We�’d prefer a register allocator that is
sensitive to the calling structure of a
program.

345CS 701 Fall 2014 ©

Call Graphs
A Call Graph represents the calling
structure of a program.

• Nodes are subprograms (procedures
and functions).

• Arcs represent calls between
subprograms. An arc from A to B
denotes that a call to B appears within
A.

• For an indirect call (a function
parameter or a function pointer) an
arc is added to all potential callees.

346CS 701 Fall 2014©

Example

main() {
 if (pred(a,b))
 subr1(a)
 else subr2(b);}

bool pred(int a, int b){
 return a==b; }

subr1(int a){ print(a);}

subr2(int x){ print(2*x);}

main

pred subr1 subr2

print

347CS 701 Fall 2014 ©

Wall�’s Interprocedural
Register Allocator
Operates in two phases:
1. Register candidates are identified at

 the subprogram level.
Each candidate (a single variable or

a set of non-interfering live ranges) is
compiled as if it won�’t get a register.
At link-time unnecessary loads and
stores are edited away if the
candidate is allocated a register.

2. At link-time, when all subprograms
are known and available, register
candidates are allocated registers.

348CS 701 Fall 2014©

Identifying Interprocedural
Register Sharing

If two subprograms are not
connected in the call graph, a
register candidate in each can share
the same register without any
saving or restoring across calls.

A register candidate from pred,
subr1 and subr2 can all share one
register.

main

pred subr1 subr2

print

349CS 701 Fall 2014 ©

At the interprocedural level we must
answer 2 questions:
1. A local candidate of one subprogram

can share a register with candidates
of what other subprograms?

2. Which local register candidates will
yield the greatest benefit if given a
register?

Wall designed his allocator for a
machine with 52 registers. This is
enough to divide all the registers
among the subprograms without any
saves or restores at call sites.
With fewer registers, spills, saves and
restores will often be needed (if
registers are used aggressively within a
subprogram).

350CS 701 Fall 2014©

Restrictions on the Call
Graph

Wall limited calls graphs to DAGs
since cycles in a call graph imply
recursion, which will force saves
and restores (why?)

Cost Computations
Each register candidate is given a
per-call cost, based on the number
of saves and restores that can be
removed, scaled by 10loop_depth.
This benefit is then multiplied by
the expected number of calls,
obtained by summing the total
number of call sites, scaled by loop
nesting depth.

351CS 701 Fall 2014 ©

Grouping Register Candidates
We now have an estimate of the
benefit of allocating a register to a
candidate. Call this estimate

 cost(candidate)
We estimate potential
interprocedural sharing of register
candidates by assigning each
candidate to a Group.
All candidates within a group can
share a register. No two candidates
in any subprogram are in the same
group.

352CS 701 Fall 2014©

Groups are assigned during a reverse
depth-first traversal of the call graph.
 AsgGroup(node n) {
 if (n is a leaf node)
 grp = 0
 else { for (each c children(n)) {
 AsgGroup(c) }
 grp =
 1+ Max (Max group used in c)
 c children(n)

 }

 for (each r registerCandidates(n)){
 assign r to grp
 grp++ }
 }
Global variables are assigned to a
singleton group.

353CS 701 Fall 2014 ©

Example

At Print: grp(i)=0, grp(j)=1
At subr1: Max grp used in print is 1

grp(x)=2, grp(y)=3
At subr2: Max grp used in print is 1

grp(t)=2
At main: Max grp used in children is 3

grp(a)=4, grp(b)=5, grp(c)=6

main
Cand: a, b, c

subr1
Cand: x, y

subr2
Cand: t

Print
Cand: i, j

354CS 701 Fall 2014©

If A calls B (directly or indirectly),
then none of A�’s register candidates
are in the same group as any of B�’s
register candidates.

This guarantees that A and B will
use different registers.

Thus no saves or restores are
needed across a call from A to B.

355CS 701 Fall 2014 ©

Assigning Registers to Groups

 Cost(group) = cost(candidates)
 candidates

group

We assign registers to groups based
on the cost of each group, using an
�“auction.�”

for (r=0; r < RegisterCount; r++) {
 Let G be the group with the
 greatest cost that has not yet
 been assigned a register.
 Assign r to G
}

356CS 701 Fall 2014©

Example (3 Registers)

Group Members Cost
0 i 40
1 j 5
2 x, t 15
3 y 15
4 a 20
5 b 10
6 c 30

main
Cand: a:20, b:10, c:30

subr1
Cand: x:5, y:15

subr2
Cand: t:10

Print
Cand: i:40, j:5

357CS 701 Fall 2014 ©

The 3 registers are given to the groups
with the highest weight,
i (40), c(30), a(20).
Is this optimal?
No! If y and t are grouped together, y
and t (cost=25) get the last register.

main
Cand: a:20, b:10, c:30

subr1
Cand: x:5, y:15

subr2
Cand: t:10

Print
Cand: i:40, j:5

358CS 701 Fall 2014©

Recursion
To handle recursion, any call to a
subprogram �“up�” in the call graph
must save and restore all registers
possibly in use between the caller
and callee.

A call from E to B saves r3 to r5.

A:r1,r2

B:r3

C:r4 D:r4

E:r5

359CS 701 Fall 2014 ©

Performance
Wall found interprocedural register
allocation to be very effective (given
52 Registers!).

Speedups of 10-28% were reported.
Even with only 8 registers, speedups
of 5-20% were observed.

360CS 701 Fall 2014©

Optimal Interprocedural
Register Allocation

Wall�’s approach to interprocedural
register allocation isn�’t optimal
because register candidates aren�’t
grouped to achieve maximum
benefit.

Moreover, the placement of save
and restore code if needed isn�’t
considered.

These limitations are addressed by
Kurlander in �“Minimum Cost
Interprocedural Register
Allocation.�”

361CS 701 Fall 2014 ©

Optimal Save-Free
Interprocedural Register
Allocation
• Allocation is done on a cycle-free call

graph.
• Each subprogram has one or more

register candidates, ci.

• Each register candidate, ci, has a cost
(or benefit), wi, that is the
improvement in performance if ci is
given a register. (This wi value is scaled
to include nested loops and expected
call frequencies.)

362CS 701 Fall 2014©

Interference Between Register
Candidates
The notion of interference is extended
to include interprocedural register
candidates:
• Two Candidates in the same

subprogram always interfere.
(Local non-interfering variables and
values have already been grouped into
interprocedural register candidates.)

• If subprogram P calls subprogram Q
(directly or indirectly) then register
candidates within P always interfere
with register candidates within Q.

363CS 701 Fall 2014 ©

Example

The algorithm can group candidate
p with either t or u (since they don�’t
interfere). It can also group
candidate q with either t or u.

If two registers are available, it
must �“discover�” that assigning R1
to q&t, and R2 to m is optimal.

V
Cand: m:6

W
Cand: p:3, q:4

X
Cand: t:5, u:1

364CS 701 Fall 2014©

Non-interfering register candidates are
grouped into registers so as to solve:

That is, we wish to group sets of non-
interfering register candidates into k
registers such that the overall benefit is
maximized.
But how do we solve this?
Certainly examining all possible
groupings will be prohibitively
expensive!

Maximize wj
cj U Ri

k

i=1

365CS 701 Fall 2014 ©

Kurlander solved this problem by
mapping it to a known problem in
Integer Programming:
the Dual Network Flow Problem.

Solution techniques for this problem
are well known�—libraries of standard
solution algorithms exist.

Moreover, this problem can be solved
in polynomial time.

That is, it is �“easier�” than optimal
global (intraprocedural) register
allocation, which is NP-complete!

366CS 701 Fall 2014©

Adding Saves & Restores
Wall designed his save-free
interprocedural allocator for a
machine with 52 registers.

Most computers have far fewer
registers, and hence saving and
restoring across calls, when
profitable, should be allowed.

Kurlander�’s Technique can be
extended to include save/restore
costs. If the cost of saving and
restoring is less than the benefit of
allocating an extra register, saving is
done. Moreover, saving is done
where it is cheapest (not closest!).

367CS 701 Fall 2014 ©

Example
main() { ... p(); ...}

p(){ ...
 for (i=0; i<1000000; i++){
 q():
 }
}

We first allocate registers in a save-
free mode. After all Registers have
been allocated, q may need
additional registers.
Most allocators would add save/
restore code at q�’s call site (or q�’s
prologue and epilogue).
An optimal allocator will place save/
restore code at p�’s call site, freeing a
register that p doesn�’t even want
(but that q does want!)

368CS 701 Fall 2014©

Extending the Cost Model
• As before, we group register

candidates of different subprograms
into registers.

• Now only candidates within the same
subprogram automatically interfere.

• Saves are placed on the edges of the
call graph.

• We aim to solve

where sm is the per/register save/
restore cost and Savedm is the number
of registers saved on edge em.

Maximize wj
cj U Ri

k
sm

em

 - *Savedm
Edges

i=1

369CS 701 Fall 2014 ©

• As registers are saved, they may be
reused in child subprograms.

• This optimization problem can be
solved as a Network Dual Flow
Problem.

• Again, the solution algorithm is
polynomial.

370CS 701 Fall 2014©

Example (One Register)

P1 gets R1 save-free for m.
A save on P1 P4 costs 1 and gives a
register to n (net profit =2), so we do it.
A save on P1 P2 for z costs 2, and yields
1, which isn�’t profitable.
A save on P2 P3 for q costs 4, and yields
3, which isn�’t profitable.
A save on P1 P2 for q costs 2, and yields
3, which is a net gain.

P1
Cand: m:7

Cand: z:1

P 4
Cand: n:3

P 3

Cand: q:3

s=2 s=1

s=4

P2

371CS 701 Fall 2014 ©

Handling Global Variables
• Wall�’s technique handled globals by

assuming they interfere with all
subprograms and all other globals.

• Kurlander�’s approach is incremental
(and non-optimal):

First, an optimal allocation for r
registers is computed.
Next, one register is �“stolen�” and
assigned interprocedurally to the
most beneficial global.
(Subprograms that don�’t use the
global can save and restore it
locally, allowing local reuse).
An optimal allocation using R-1
registers is computed. If this
solution plus the shared global is
more profitable than the R register

372CS 701 Fall 2014©

solution, the global allocation is
�“locked in.�”
Next, another register is �“stolen�” for
a global, leaving R-2 for
interprocedural allocation.
This process continues until stealing
another register for a global isn�’t
profitable.

