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Large vs. Small Live Ranges
• A large live range has less spill code. 

Values are directly read from and 
written to a register.
But, a large live range is harder to 
allocate, since it may conflict with 
many other register candidates.

• A small live range is easier to allocate 
since it competes with fewer register 
candidates.
But, more spill code is needed to load 
and save register values across live 
ranges.

• In the limit a live range can shrink to a 
single definition or use of a register.
But, then we really don�’t have an 
effective register allocation at all!

330CS 701  Fall 2014©

Terminology
In an Interference Graph:
• A node with fewer neighbors than 

colors is termed unconstrained. It is 
trivial to color.

• A node that is not unconstrained is 
termed constrained. It may need to be 
split or spilled.
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Reading Assignment
• Read �“Minimum Cost Interprocedural 

Register Allocation,�” by S. Kurlander 
et al. (linked from class Web page).

• Read David Wall�’s paper, �“Global 
Register Allocation at Link Time.�”
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PriorityRegAlloc(proc, regCount) {
    ig  buildInterferenceGraph(proc)
   unconstrained  
         { n  nodes(ig)  neighborCount(n) < regCount }
   constrained  
        { n  nodes(ig)  neighborCount(n)  regCount }

    while( constrained  ) {
         for ( c  constrained such that not colorable(c)   

and canSplit(c) ) {
c1, c2  split(c)
constrained  constrained - {c}
if ( neighborCount(c1) < regCount )

                         unconstrained  unconstrained U { c1}

               else  constrained  constrained U {c1}
              if ( neighborCount(c2) < regCount )
                         unconstrained  unconstrained U { c2}
               else  constrained  constrained U {c2}
               for ( d  neighbors(c) such that
                     d  unconstrained and 
                       neighborCount(d)  regCount ){
                        unconstrained  unconstrained - {d}
                        constrained  constrained U {d}
        }      } // End of both for loops
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      /* At this point all nodes in constrained are
           colorable or can�’t be split */

      Select p  constrained such that 
                     priority(p) is maximized
      if ( colorable(p) )

                color(p)
       else  spill(p)
  } // End of While
 color all nodes  unconstrained
}
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How to Split a Constrained 
Node
• There are many possible partitions of a 

live range; too many to fully explore.
• Heuristics are used instead. One simple 

heuristic is:
1. Remove the first basic block
   (or instruction) of the live range. 

Put it into a new live range, NR.
2. Move successor blocks 
   (or instructions) from the original
   live range into NR, as long as NR
   remains colorable.
3. Single Basic Blocks
    (or instructions) that can�’t be
    colored are spilled.
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Example
int sum(int a[], int b[]) {
  int sum = 0;
  for (int i=0; i<1000; i++)
     sum += a[i];
  for (int j=0; j<1000; j++)
     sum += b[j];
  return sum;
}

Assume we want a 3-coloring.

a b

sum

i j
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We first simplify the graph by 
removing unconstrained nodes 
(those with < 3 neighbors). 
Node j is removed. We now have:

At this point, each node has 3 
neighbors, so either spilling or 
splitting is necessary.
A spill really isn�’t attractive as each 
of the 4 register candidates is used 
within a loop, magnifying the costs 
of accessing memory.

a b

sum

i
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Coloring by Priorities
We�’ll color constrained nodes by 
priority values, with preference 
given to large priority values.
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a b sum i

Cost 11 11 42 41

Cost/Size 11/3 11/6 42/7 41/3

i < 1000 

1

2 3

4

a = parm1
b = parm2
sum = 0
i = 0

sum += a[i]
i++

j = 0

j < 1000 5 6

7

sum += b[j]
j++

return sum
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Variables i, sum and a are assigned 
colors R1, R2 and R3.
Variable b can�’t be colored, so we 
will try to split it. b�’s live range is 
blocks 1 to 6, with 1 as b�’s entry 
point.
Blocks 1 to 3 can�’t be colored, so b is 
spilled in block 1. However, blocks 4 
to 6 form a split live range that can 
be colored (using R3).
We will reload b into R3 in block 4, 
and it will be register-allocated 
throughout the second loop. The 
added cost due to the split is 
minor�—a store in block 1 and a 
reload in block 4.
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Choice of Spill Heuristics
We have seen a number of heuristics 
used to choose the live ranges to be 
spilled (or colored).
These heuristics are typically 
chosen using one�’s intuition of what 
register candidates are most (or 
least) important. Then a heuristic is 
tested and �“fine tuned�” using a 
variety of test programs.
Recently, researchers have 
suggested using machine learning 
techniques to automatically 
determine effective heuristics.
In �“Meta Optimization: Improving 
Compiler Heuristics with Machine 
Learning,�” Stephenson, 
Amarasinghe, et al, suggest using 
genetic programming techniques in 
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which priority functions (like choice 
of spill candidates) are mutated and 
allowed to �“evolve.�” 
Although the approach seems 
rather random and unfocused, it 
can be effective. Priority functions 
better than those used in real 
compilers have been reported, with 
research still ongoing.
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Interprocedural Register 
Allocation

The goal of register allocation is to 
keep frequently used values in 
registers.

Ideally, we�’d like to go to memory 
only to access values that may be 
aliased or pointed to.

For example, array elements and 
heap objects are routinely loaded 
from and stored to memory each 
time they are accessed.
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With alias analysis, optimizations 
like Scalarization are possible.
  
for (i=0; i<1000; i++)
     for (j=0; j<1000; j++)
        a[i] += i * b[j];
 

is optimized to

for (i=0; i<1000; i++){
     int Ai = a[i];
     for (j=0; j<1000; j++)
        Ai += i * b[j];
     a[i] = Ai; 
}
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Attacking Call Overhead
• Even with good global register 

allocation calls are still a problem.
• In general, the caller and callee may 

use the same registers, requiring saves 
and restores across calls.

• Register windows help, but they are 
inflexible, forcing all subprograms to 
use the same number of registers.

• We�’d prefer a register allocator that is 
sensitive to the calling structure of a 
program.
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Call Graphs
A Call Graph represents the calling 
structure of a program.

• Nodes are subprograms (procedures 
and functions).

• Arcs represent calls between 
subprograms. An arc from A to B 
denotes that a call to B appears within 
A.

• For an indirect call (a function 
parameter or a function pointer) an 
arc is added to all potential callees.
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Example

main() {
  if (pred(a,b))
       subr1(a)
  else subr2(b);}

bool pred(int a, int b){
   return a==b; }

subr1(int a){ print(a);}

subr2(int x){ print(2*x);}

main

pred subr1 subr2

print
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Wall�’s Interprocedural 
Register Allocator
Operates in two phases:
1. Register candidates are identified at   

  the subprogram level. 
Each candidate (a single variable or 

a set of non-interfering live ranges) is 
compiled as if it won�’t get a register.
At link-time unnecessary loads and 
stores are edited away if the 
candidate is allocated a register.

2. At link-time, when all subprograms 
are known and available, register 
candidates are allocated registers.
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Identifying Interprocedural 
Register Sharing

If two subprograms are not 
connected in the call graph, a 
register candidate in each can share 
the same register without any 
saving or restoring across calls.

A register candidate from pred, 
subr1 and subr2 can all share one 
register.

main

pred subr1 subr2

print
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At the interprocedural level we must 
answer 2 questions:
1. A local candidate of one subprogram  

can share a register with candidates 
of what other subprograms?

2. Which local register candidates will 
yield the greatest benefit if given a 
register?

Wall designed his allocator for a 
machine with 52 registers. This is 
enough to divide all the registers 
among the subprograms without any 
saves or restores at call sites.
With fewer registers, spills, saves and 
restores will often be needed (if 
registers are used aggressively within a 
subprogram).

350CS 701  Fall 2014©

Restrictions on the Call 
Graph

Wall limited calls graphs to DAGs 
since cycles in a call graph imply 
recursion, which will force saves 
and restores (why?)

Cost Computations
Each register candidate is given a 
per-call cost, based on the number 
of saves and restores that can be 
removed, scaled by 10loop_depth.
This benefit is then multiplied by 
the expected number of calls, 
obtained by summing the total 
number of call sites, scaled by loop 
nesting depth.

351CS 701  Fall 2014 ©

Grouping Register Candidates
We now have an estimate of the 
benefit of allocating a register to a 
candidate. Call this estimate

 cost(candidate)
We estimate potential 
interprocedural sharing of register 
candidates by assigning each 
candidate to a Group.
All candidates within a group can 
share a register. No two candidates 
in any subprogram are in the same 
group.
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Groups are assigned during a reverse 
depth-first traversal of the call graph.
 AsgGroup(node n) {
    if (n is a leaf node)
        grp = 0
    else { for (each c  children(n)) {
                AsgGroup(c) }
        grp = 
             1+ Max (Max group used in c)
                  c  children(n)

     }

    for (each r  registerCandidates(n)){
          assign r to grp
          grp++  }
 }
Global variables are assigned to a 
singleton group.
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Example

At Print: grp(i)=0, grp(j)=1
At subr1: Max grp used in print is 1

grp(x)=2, grp(y)=3
At subr2: Max grp used in print is 1

grp(t)=2
At main: Max grp used in children is 3

grp(a)=4, grp(b)=5, grp(c)=6

main
Cand: a, b, c

subr1
Cand: x, y

subr2
Cand: t

Print
Cand: i, j
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If A calls B (directly or indirectly), 
then none of A�’s register candidates 
are in the same group as any of B�’s 
register candidates.

This guarantees that A and B will 
use different registers.

Thus no saves or restores are 
needed across a call from A to B.
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Assigning Registers to Groups

 Cost(group) =  cost(candidates)
                               candidates 

 

group

  
We assign registers to groups based 
on the cost of each group, using an 
�“auction.�”

for (r=0; r < RegisterCount; r++) {
     Let G be the group with the
        greatest cost that has not yet
        been assigned a register.
     Assign r to G
}
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Example (3 Registers)

Group Members Cost
0 i 40
1 j 5
2 x, t 15
3 y 15
4 a 20
5 b 10
6 c 30

main
Cand: a:20, b:10, c:30

subr1
Cand: x:5, y:15

subr2
Cand: t:10

Print
Cand: i:40, j:5
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The 3 registers are given to the groups 
with the highest weight,
i (40), c(30), a(20).
Is this optimal?
No! If y and t are grouped together, y 
and t (cost=25) get the last register.

main
Cand: a:20, b:10, c:30

subr1
Cand: x:5, y:15

subr2
Cand: t:10

Print
Cand: i:40, j:5
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Recursion
To handle recursion, any call to a 
subprogram �“up�” in the call graph 
must save and restore all registers 
possibly in use between the caller 
and callee.

A  call from E to B   saves r3 to r5.                       

A:r1,r2

B:r3

C:r4 D:r4

E:r5
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Performance
Wall found interprocedural register 
allocation to be very effective (given 
52 Registers!).

Speedups of 10-28% were reported. 
Even with only 8 registers, speedups 
of 5-20% were observed.
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Optimal Interprocedural 
Register Allocation

Wall�’s approach to interprocedural 
register allocation isn�’t optimal 
because register candidates aren�’t 
grouped to achieve maximum 
benefit.

Moreover, the placement of save 
and restore code if needed isn�’t 
considered.

These limitations are addressed by 
Kurlander in �“Minimum Cost 
Interprocedural Register 
Allocation.�”
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Optimal Save-Free 
Interprocedural Register 
Allocation
• Allocation is done on a cycle-free call 

graph.
• Each subprogram has one or more 

register candidates, ci.

• Each register candidate, ci, has a cost 
(or benefit), wi, that is the 
improvement in performance if ci is 
given a register. (This wi value is scaled 
to include nested loops and expected 
call frequencies.)
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Interference Between Register 
Candidates
The notion of interference is extended 
to include interprocedural register 
candidates:
• Two Candidates in the same 

subprogram always interfere.
(Local non-interfering variables and 
values have already been grouped into 
interprocedural register candidates.)

• If subprogram P calls subprogram Q 
(directly or indirectly) then register 
candidates within P always interfere 
with register candidates within Q.
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Example 

The algorithm can group candidate 
p with either t or u (since they don�’t 
interfere). It can also group 
candidate q with either t or u. 

If two registers are available, it 
must �“discover�” that assigning R1 
to q&t, and R2 to m is optimal.

V
Cand: m:6

W
Cand: p:3, q:4

X
Cand: t:5, u:1
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Non-interfering register candidates are 
grouped into registers so as to solve:

That is, we wish to group sets of non-
interfering register candidates into k 
registers such that the overall benefit is 
maximized.
But how do we solve this?
Certainly examining all possible 
groupings will be prohibitively 
expensive!

Maximize  wj
cj  U Ri

k

i=1
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Kurlander solved this problem by 
mapping it to a known problem in 
Integer Programming:
the Dual Network Flow Problem.

Solution techniques for this problem 
are well known�—libraries of standard 
solution algorithms exist.

Moreover, this problem can be solved 
in polynomial time.

That is, it is �“easier�” than optimal 
global (intraprocedural) register 
allocation, which is NP-complete!
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Adding Saves & Restores
Wall designed his save-free 
interprocedural allocator for a 
machine with 52 registers.

Most computers have far fewer 
registers, and hence saving and 
restoring across calls, when 
profitable, should be allowed.

Kurlander�’s Technique can be 
extended to include save/restore 
costs. If the cost of saving and 
restoring is less than the benefit of 
allocating an extra register, saving is 
done. Moreover, saving is done 
where it is cheapest (not closest!).

367CS 701  Fall 2014 ©

Example
main() { ... p(); ...}

p(){ ...
     for (i=0; i<1000000; i++){
         q():
   }
}
 

We first allocate registers in a save-
free mode. After all Registers have 
been allocated, q may need 
additional registers.
Most allocators would add save/
restore code at q�’s call site (or q�’s 
prologue and epilogue).
An optimal allocator will place save/
restore code at p�’s call site, freeing a 
register that p doesn�’t even want 
(but that q does want!)
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Extending the Cost Model
• As before, we group register 

candidates of different subprograms 
into registers.

• Now only candidates within the same 
subprogram automatically interfere.

• Saves are placed on the edges of the 
call graph.

• We aim to solve

where  sm is the per/register save/
restore cost and  Savedm is the number 
of registers saved on edge em.

Maximize  wj
cj  U Ri

k
sm

em  

 - *Savedm
Edges

i=1



369CS 701  Fall 2014 ©

• As registers are saved, they may be 
reused in child subprograms.

• This optimization problem can be 
solved as a Network Dual Flow 
Problem.

• Again, the solution algorithm is 
polynomial. 
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Example (One Register)

P1 gets R1 save-free for m.
A save on P1 P4 costs 1 and gives a 
register to n (net profit =2), so we do it.
A save on P1 P2 for z costs 2, and yields 
1, which isn�’t profitable.
A save on P2 P3  for q costs 4, and yields 
3, which isn�’t profitable.
A save on P1 P2  for q costs 2, and yields 
3, which is a net gain.

P1
Cand: m:7

Cand: z:1

P 4
Cand: n:3

P 3

Cand: q:3

s=2 s=1

s=4

P2
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Handling Global Variables
• Wall�’s technique handled globals by 

assuming they interfere with all 
subprograms and all other globals.

• Kurlander�’s approach is incremental 
(and non-optimal):

First, an optimal allocation for r 
registers is computed.
Next, one register is �“stolen�” and 
assigned interprocedurally to the 
most beneficial global.
(Subprograms that don�’t use the 
global can save and restore it 
locally, allowing local reuse).
An optimal allocation using R-1 
registers is computed. If this 
solution plus the shared global is 
more profitable than the R register 
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solution, the global allocation is 
�“locked in.�”
Next, another register is �“stolen�” for 
a global, leaving R-2 for 
interprocedural allocation.
This process continues until stealing 
another register for a global isn�’t 
profitable.


