
374CS 701 Fall 2014©

Reading Assignment
• Read Section 15.4 (Code Scheduling) of

Crafting a Compiler.
• Read Gibbon�’s and Muchnick�’s paper,

�“Efficient Instruction Scheduling for a
Pipelined Architecture.�”

• Read Kerns and Eggers�’ paper,
�“Balanced Scheduling: Instruction
Scheduling When Memory Latency is
Uncertain.�”

375CS 701 Fall 2014©

Code Scheduling
Modern processors are pipelined.
They give the impression that all
instructions take unit time by
executing instructions in stages
(steps), as if on an assembly line.
Certain instructions though (loads,
floating point divides and square
roots, delayed branches) take more
than one cycle to execute.
These instructions may stall (halt
the processor) or require a nop (null
operation) to execute properly.
A Code Scheduling phase may be
needed in a compiler to avoid stalls
or eliminate nops.

376CS 701 Fall 2014©

Scheduling Expression DAGs
After generating code for a DAG or
basic block, we may wish to
schedule (reorder) instructions to
reduce or eliminate stalls.

A Postpass Scheduler is run after
code selection and register
allocation.

Postpass schedulers are very general
and flexible, since they can be used
with code generated by any compiler
with any degree of optimization

But, since they can�’t modify register
allocations, they can�’t always avoid
stalls.

377CS 701 Fall 2014©

Dependency DAGs
Obviously, not all reorderings of
generated instructions are
acceptable.

Computation of a register value
must precede all uses of that value.
A store of a value must precede all
loads that might read that value.

A Dependency Dag reflects essential
ordering constraints among
instructions:
• Nodes are Instructions to be scheduled.
• An arc from Instruction i to

Instruction j indicates that i must be
executed before j may be executed.

378CS 701 Fall 2014©

Kinds of Dependencies
We can identify several kinds of
dependencies:
• True Dependence:

An operation that uses a value has a
true dependence (also called a flow
dependence) upon an earlier
operation that computes the value.
For example:

mov 1, %l2
add %l2, 1, %l2

• Anti Dependence:
An operation that writes a value has
a anti dependence upon an earlier
operation that reads the value. For
example:

add %l2, 1, %l0
mov 1, %l2

379CS 701 Fall 2014©

• Output Dependence:
An operation that writes a value has
a output dependence upon an
earlier operation that writes the
value. For example:

mov 1, %l2
mov 2, %l2

Collectively, true, anti and output
dependencies are called data
dependencies. Data dependencies
constrain the order in which
instructions may be executed.

380CS 701 Fall 2014©

Example
Consider the code that might be
generated for
a = ((a+b) + (c*d)) + ((c+d) * d);

We�’ll assume 4 registers, the
minimum possible, and we�’ll reuse
already loaded values.
Assume a 1 cycle stall between a
load and use of the loaded value and
a 2 cycle stall between a
multiplication and first use of the
product.

381CS 701 Fall 2014©

1. ld [a], %r1
2. ld [b], %r2
3. add %r1,%r2,%r1
4. ld [c], %r2
5. ld [d], %r3
6. smul %r2,%r3,%r4
7. add %r1,%r4,%r1
8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2
10. add %r1,%r2,%r1
11. st %r1,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)

1 2

3 4

5

6

7

8 9

10

11

382CS 701 Fall 2014©

Scheduling Requires
Topological Traversal

Any valid code schedule is a
Topological Sort of the dependency
dag.

To create a code schedule you
(1) Pick any root of the Dag.
(2) Remove it from the Dag and

schedule it.
(3) Iterate!

Choosing a Minimum Delay schedule
is NP-Complete:
 �“Computers and Intractability,�”
M. Garey and D. Johnson,
W.H. Freeman, 1979.

383CS 701 Fall 2014©

Dynamically Scheduled
(Out of Order) Processors

To avoid stalls, some processors can
execute instructions Out of Program
Order.
If an instruction can�’t execute
because a previous instruction it
depends upon hasn�’t completed yet,
the instruction can be �“held�” and a
successor instruction executed
instead.
When needed predecessors have
completed, the held instruction is
released for execution.

384CS 701 Fall 2014©

Example
1. ld [a], %r1
2. ld [b], %r2

3. add %r1,%r2,%r1
4. ld [c], %r2

7. add %r1,%r4,%r1

8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2

10. add %r1,%r2,%r1
11. st %r1,[a]

Stall

Stall

(2 Stalls Total)

5. ld [d], %r3

6. smul %r2,%r3,%r4

1 2

3 4

5

6

7

8 9

10

11

385CS 701 Fall 2014©

Limitations of Dynamic
Scheduling
1. Extra processor complexity.
2. Register renaming (to avoid False

Dependencies) may be needed.
3. Identifying instructions to be

delayed takes time.
4. Instructions �“late�” in the program

can�’t be started earlier.

386CS 701 Fall 2014©

Gibbons & Muchnick
Postpass Code Scheduler
1. If there is only one root, schedule it.
2. If there is more than one root,

 choose that root that won�’t be
stalled by instructions already
scheduled.

3. If more than one root can be
scheduled without stalling,

 consider the following rules
 (in order);
 (a) Does this root stall any of its

successors?
 (If so, schedule it immediately.)

(b) How many new roots are
exposed if this node is scheduled?
(More is better.)

387CS 701 Fall 2014©

(c) Which root has the longest
weighted path to a leaf (using
instruction delays as the weight).
(The �“critical path�” in the DAG
gets priority.)

388CS 701 Fall 2014©

Example
1. ld [a], %r1 //Longest path
2. ld [b], %r2

3. add %r1,%r2,%r1
4. ld [c], %r2

7. add %r1,%r4,%r1

8. add %r2,%r3,%r2
9. smul %r2,%r3,%r2

10. add %r1,%r2,%r1
11. st %r1,[a] (2 Stalls Total)

5. ld [d], %r3

6. smul %r2,%r3,%r4

//Exposes a root
//Not delayed

//Only choice
//Only choice

//Stalls succ.
//Not delayed
//Not delayed

//Only choice
//Only choice

1 2

3 4

5

6

7

8 9

10

11
1

23

56689

81111

389CS 701 Fall 2014©

False Dependencies
We still have delays in the schedule
that was produced because of �“false
dependencies.�”
Both b and c are loaded into %r2.
This limits the ability to move the
load of c prior to any use of %r2 that
uses b.
To improve our schedule we can use
a processor that renames registers
or allocate additional registers to
remove false dependencies.

390CS 701 Fall 2014©

Register Renaming
Many out of order processors
automatically rename distinct uses
of the same architectural register to
distinct internal registers.

Thus
 ld [a],%r1
 ld [b],%r2
 add %r1,%r2,%r1
 ld [c],%r2

is executed as if it were
 ld [a],%r1
 ld [b],%r2
 add %r1,%r2,%r3
 ld [c],%r4

Now the final load can be executed
prior to the add, eliminating a stall.

391CS 701 Fall 2014©

Compiler Renaming
A compiler can also use the idea of
renaming to avoid unnecessary
stalls.
An extra register may be needed (as
was the case for scheduling
expression trees).
Also, a round-robin allocation policy
is needed. Registers are reused in a
cyclic fashion, so that the most
recently freed register is reused last,
not first.

392CS 701 Fall 2014©

Example
1. ld [a], %r1
2. ld [b], %r2
3. add %r1,%r2,%r1
4. ld [c], %r3
5. ld [d], %r4
6. smul %r3,%r4,%r5
7. add %r1,%r5,%r2
8. add %r3,%r4,%r3
9. smul %r3,%r4,%r3
10. add %r2,%r3,%r2
11. st %r2,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)

1 2

3 4

5

6

7

8 9

10

11

393CS 701 Fall 2014©

After Scheduling:
4. ld [c], %r3 //Longest path
5. ld [d], %r4

2. ld [b], %r2

7. add %r1,%r5,%r2

8. add %r3,%r4,%r3
9. smul %r3,%r4,%r3

10. add %r2,%r3,%r2
11. st %r2,[a] (0 Stalls Total)

1. ld [a], %r1

6. smul %r3,%r4,%r5

//Exposes a root
//Stalls succ.

//Stalls succ.

//Stalls succ.

//Only choice
//Only choice

//Exposes a root

//Longest path

3. add %r1,%r2,%r1 //Only choice

1 2

3 4

5

6

7

8 9

10

11
1

23

56684

866

