False Dependencies

We still have delays in the schedule that was produced because of “false dependencies.”
Both \(b \) and \(c \) are loaded into \(\%r2 \). This limits the ability to move the load of \(c \) prior to any use of \(\%r2 \) that uses \(b \).

To improve our schedule we can use a processor that renames registers or allocate additional registers to remove false dependencies.

Register Renaming

Many out of order processors automatically rename distinct uses of the same architectural register to distinct internal registers.

Thus
\[
\begin{align*}
&\text{ld} [a], \%r1 \\
&\text{ld} [b], \%r2 \\
&\text{add} \%r1, \%r2, \%r1 \\
&\text{ld} [c], \%r2
\end{align*}
\]

is executed as if it were
\[
\begin{align*}
&\text{ld} [a], \%r1 \\
&\text{ld} [b], \%r2 \\
&\text{add} \%r1, \%r2, \%r3 \\
&\text{ld} [c], \%r4
\end{align*}
\]

Now the final load can be executed prior to the add, eliminating a stall.

Compiler Renaming

A compiler can also use the idea of renaming to avoid unnecessary stalls.
An extra register may be needed (as was the case for scheduling expression trees).
Also, a round-robin allocation policy is needed. Registers are reused in a cyclic fashion, so that the most recently freed register is reused last, not first.

Example

\[
\begin{align*}
1. &\text{ld} [a], \%r1 & \text{Stall} \\
2. &\text{ld} [b], \%r2 \\
3. &\text{add} \%r1, \%r2, \%r1 \\
4. &\text{ld} [c], \%r3 \\
5. &\text{ld} [d], \%r4 \\
6. &\text{smul} \%r3, \%r4, \%r5 & \text{Stall} \\
7. &\text{add} \%r1, \%r5, \%r2 \\
8. &\text{add} \%r3, \%r4, \%r3 \\
9. &\text{smul} \%r3, \%r4, \%r3 & \text{Stall*2} \\
10. &\text{add} \%r2, \%r3, \%r2 & \text{Stall*2} \\
11. &\text{st} \%r2, [a] & (6 Stalls Total)
\end{align*}
\]
After Scheduling:
4. ld [c], %r3 //Longest path
5. ld [d], %r4 //Exposes a root
1. ld [a], %r1 //Stalls succ.
2. ld [b], %r2 //Exposes a root
6. smul %r3, %r4, %r5 //Stalls succ.
8. add %r1, %r2, %r1 //Only choice
9. smul %r3, %r4, %r3 //Stalls succ.
3. add %r1, %r2, %r1 //Only choice
7. add %r1, %r5, %r2 //Only choice
10. add %r2, %r3, %r2 //Only choice
11. st %r2, [a] (0 Stalls Total)

Reading Assignment
- Read Goodman and Hsu’s paper, “Code Scheduling and Register Allocation in Large Basic Blocks.”
- Read Bernstein and Rodeh’s paper, “Global Instruction Scheduling for Superscalar Machines.” (Linked from the class Web page.)

Balanced Scheduling
When scheduling a load, we normally anticipate the best case, a hit in the primary cache.

On older architectures this makes sense, since we stall execution on a cache miss.

Many newer architectures are non-blocking. This means we can continue execution after a miss until the loaded value is used.

Assume a Cache miss takes N cycles (N can be from 3 to 100 or more).

Do we schedule a load anticipating a 1 cycle delay (a hit) or an N cycle delay (a miss)?

Neither Optimistic Scheduling (expect a hit) nor Pessimistic Scheduling (expect a miss) is always better.

Consider

An Optimistic Schedule is
load Fine for a hit;
Inst2 inferior for a miss.
Inst3
Inst4

A Pessimistic Schedule is
load Fine for a hit;
Inst2 better for a miss.
Inst3
Inst4
Inst1
Inst4
But things become more complex with multiple loads

\[
\text{load1} \rightarrow \text{Inst1} \rightarrow \text{Inst3} \\
\text{load2} \rightarrow \text{Inst2} \\
\]

An Optimistic Schedule is
- load1: Better for hits; same for misses.
- Inst1: Better for hits; same for misses.
- load2: Better for hits; same for misses.
- Inst2: Better for hits; same for misses.
- Inst3: Better for hits; same for misses.

A Pessimistic Schedule is
- load1: Worse for hits; same for misses.
- Inst1: Worse for hits; same for misses.
- load2: Worse for hits; same for misses.
- Inst2: Worse for hits; same for misses.
- Inst3: Worse for hits; same for misses.

Balance Placement of Loads

Eggers suggests a *balanced scheduler* that spaces out loads, using available independent instructions as “filler.”

The insight is that scheduling should not be driven by worst-case latencies but rather by available *independent* Instructions.

For

\[
\text{load} \rightarrow \text{Inst1} \rightarrow \text{Inst3} \\
\text{load} \rightarrow \text{Inst2} \rightarrow \text{Inst4} \\
\]

it produces
- load: Good; maximum distance between load and Inst1 in case of a miss.
- Inst2: Distance between load and Inst1 in case of a miss.
- Inst3: Load and Inst1 in case of a miss.
- Inst4: Load and Inst1 in case of a miss.

Idea of the Algorithm

Look at each Instruction, i, in the Dependency DAG.

Determine which loads can run in parallel with i and use all (or part) of i’s execution time to cover the latency of these loads.
Compute available latency of each load:

Give each load instruction an initial latency of 1.

For (each instruction i in the Dependency DAG) do:

Consider Instructions Independent of i:

$$G_{ind} = \text{DepDAG} - (\text{AllPred}(i) \cup \text{AllSucc}(i) \cup \{i\})$$

For (each connected subgraph c in G_{ind}) do:

Find $m =$ maximum number of load instructions on any path in c.

For (each load d in c) do:

add $1/m$ to d's latency.

Computing the Schedule Using Adjusted Latencies

Once latencies are assigned to each load (other instructions have a latency of 1), we annotate each instruction in the Dependency DAG with its critical path weight: the maximum latency (along any path) from the instruction to a Leaf of the DAG.

Instructions are scheduled using critical path values; the root with the highest critical path value is always scheduled next. In cases of ties (same critical path value), operations with the longest latency are scheduled first.

Example

Using the annotated Dependency Dag, instructions can be scheduled:

Table

<table>
<thead>
<tr>
<th></th>
<th>Ld</th>
<th>D</th>
<th>Ld</th>
<th>D</th>
<th>Ld</th>
<th>D</th>
<th>Ld</th>
<th>D</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load1</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
<td>1+0 = 1</td>
</tr>
<tr>
<td>Load2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1+2 = 3</td>
</tr>
<tr>
<td>Load3</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1+2 = 3</td>
</tr>
<tr>
<td>Load4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1+3 = 4</td>
</tr>
<tr>
<td>Load5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inst1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inst2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inst3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inst4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inst5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Load1 (0 latency; unavoidable)

Inst1

Load2 (3 instruction latency)

Inst2

Inst3

Load4 (2 instruction latency)

Inst4

Load3 (1 instruction latency)

Inst5
Goodman/Hsu Integrated Code Scheduler

Prepass Schedulers:
Schedule code prior to register allocation.
Can overuse registers—Always using a “fresh” register maximizes freedom to rearrange Instructions.

Postpass Schedulers:
Schedule code after register allocation.
Can be limited by “false dependencies” induced by register reuse.
Example is Gibbons/Muchnick heuristic.

Integrated Schedulers
Capture best of both approaches.

When registers are plentiful, use additional registers to avoid stalls.
Goodman & Hsu call this CSP: Code Scheduling for Pipelines.

When registers are scarce, switch to a policy that frees registers.
Goodman & Hsu call this CSR: Code Scheduling to free Registers.

Assume code is generated in single assignment form, with a unique pseudo-register for each computed value.

We schedule from a DAG where nodes are operations (to be mapped to instructions), and arcs represent data dependencies.

Each node will have an associated Cost, that measures the execution and stall time of the instruction that the node represents.

Nodes are labeled with a critical path cost, used to select the “most critical” instructions to schedule.

Definitions

Leader Set:
Set of DAG nodes ready to be scheduled, possibly with an interlock.

Ready Set:
Subset of Leader Set; Nodes ready to be scheduled without an interlock.

AvailReg:
A count of currently unused registers.

MinThreshold:
Threshold at which heuristic will switch from avoiding interlocks to reducing registers in use.
Goodman/Hsu Heuristic:

while (DAG ≠ φ) {
 if (AvailReg > MinThreshold)
 if (ReadySet ≠ φ)
 Select Ready node with Max cost
 else Select Leader node with Max cost
 else // Reduce Registers in Use
 if (∃ node ∈ ReadySet that frees registers){
 Select node that frees most registers
 If (selected node isn’t unique)
 Select node with Max cost
 } elsif (∃ node ∈ LeaderSet that frees regs){
 Select node that frees most registers
 If (selected node isn’t unique)
 Select node with fewest interlocks
 } else find a partially evaluated path and
 select a leader from this path
 else Select any node in ReadySet
 else Select any node in LeaderSet
 Schedule Selected node
 Update AvailReg count
} //end while

Example

We’ll again consider
\[a = ((a+b) + (c*d)) + ((c+d) * d); \]

Again, assume a 1 cycle stall between a load and use of its value and a 2 cycle stall between a multiplication and first use of the product.

We’ll try 4 registers (the minimum), then 5 registers.

Should MinThreshold be 0 or 1?

At MinThreshold = 1, we always have a register to hold a result, but we may force a register to be spilled too soon!

At MinThreshold = 0, we may be forced to spill a register to free a result register.

But, we’ll also be able to schedule more aggressively.

Is a spill or stall worse?

Note that we may be able to “hide” a spill in a delay slot!

We’ll be aggressive and use MinThreshold = 0.

4 Registers Used (1 Stall)
Scheduling for Superscalar & Multiple Issue Machines

A number of computers have the ability to issue more than one instruction per cycle if the instructions are independent and satisfy constraints on available functional units.

Thus the instructions
\[
\text{add } %r1,1,%r2 \\
\text{sub } %r1,2,%r3
\]
can issue and execute in parallel, but
\[
\text{add } %r1,1,%r2 \\
\text{sub } %r1,2,%r3
\]
must execute sequentially.

Instructions that are linked by true or output dependencies must execute sequentially, but instructions that are linked by an anti dependence may execute concurrently.

For example,
\[
\text{add } %r1,1,%r2 \\
\text{sub } %r3,2,%r1
\]
can issue and execute in parallel.

The code scheduling techniques we’ve studied can be used to schedule machines that can issue 2 or more independent instructions simultaneously.

We select pairs (or triples or n-tuples), verifying (with the Dependence Dag) that they are independent or anti dependent.

Example: 5 Registers (2 Wide Issue)

We need only 8 cycles rather than 11.
5 Registers (3 Wide Issue)

We still need 8 cycles!