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False Dependencies
We still have delays in the schedule 
that was produced because of �“false 
dependencies.�”
Both b and c are loaded into %r2. 
This limits the ability to move the 
load of c prior to any use of %r2 that 
uses b. 
To improve our schedule we can use 
a processor that renames registers 
or allocate additional registers to 
remove false dependencies.
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Register Renaming
Many out of order processors 
automatically rename distinct uses 
of the same architectural register to 
distinct internal registers.

Thus 
  ld [a],%r1
  ld [b],%r2
  add %r1,%r2,%r1
  ld [c],%r2
    

is executed as if it were
  ld [a],%r1
  ld [b],%r2
  add %r1,%r2,%r3
  ld [c],%r4

Now the final load can be executed 
prior to the add, eliminating a stall.
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Compiler Renaming
A compiler can also use the idea of 
renaming to avoid unnecessary 
stalls.
An extra register may be needed (as 
was the case for scheduling 
expression trees).
Also, a round-robin allocation policy 
is needed. Registers are reused in a 
cyclic fashion, so that the most 
recently freed register is reused last, 
not first.
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Example
1.   ld   [a], %r1
2.   ld   [b], %r2
3.  add  %r1,%r2,%r1
4.   ld   [c], %r3
5.   ld   [d], %r4
6.  smul %r3,%r4,%r5
7.  add  %r1,%r5,%r2
8.  add  %r3,%r4,%r3
9.  smul %r3,%r4,%r3
10. add  %r2,%r3,%r2
11.  st   %r2,[a] 
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After Scheduling:
4.   ld   [c], %r3  //Longest path
5.   ld   [d], %r4

2.   ld   [b], %r2

7.   add  %r1,%r5,%r2

8.   add  %r3,%r4,%r3
9.  smul %r3,%r4,%r3

10.  add  %r2,%r3,%r2
11.   st   %r2,[a] (0 Stalls Total)

 
1.   ld   [a], %r1

6.  smul %r3,%r4,%r5

//Exposes a root 
//Stalls succ.

//Stalls succ.

//Stalls succ.

//Only choice
//Only choice

//Exposes a root

//Longest path

3.   add  %r1,%r2,%r1 //Only choice
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Reading Assignment
• Read Goodman and Hsu�’s paper, 

�“Code Scheduling and Register 
Allocation in Large Basic Blocks.�”

• Read Bernstein and Rodeh�’s paper, 
�“Global Instruction Scheduling for 
Superscalar Machines.�”
(Linked from the class Web page.)
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Balanced Scheduling
When scheduling a load, we 
normally anticipate the best case, a 
hit in the primary cache.
On older architectures this makes 
sense, since we stall execution on a 
cache miss.
Many newer architectures are non-
blocking. This means we can 
continue execution after a miss until 
the loaded value is used.
Assume a Cache miss takes N cycles 
(N can be from 3 to 100 or more).
Do we schedule a load anticipating a 
1 cycle delay (a hit) or an N cycle 
delay (a miss)?
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Neither Optimistic Scheduling (expect a 
hit) nor Pessimistic Scheduling (expect a 
miss) is always better.
Consider

An Optimistic Schedule is

A Pessimistic Schedule is

load
Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst1
Inst3
Inst4

Fine for a hit;
inferior for a miss.

load
Inst2
Inst3
Inst1
Inst4

Fine for a hit;
better for a miss.
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But things become more complex with 
multiple loads

An Optimistic Schedule is

A Pessimistic Schedule is

load1
load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Better for hits;
same for misses.

load1
Inst1
Inst2
load2
Inst3

Worse for hits;
same for misses.
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Balance Placement of Loads
Eggers suggests a balanced scheduler 
that spaces out loads, using available 
independent instructions as �“filler.�”
The insight is that scheduling should 
not be driven by worst-case latencies 
but rather by available Independent 
Instructions. 
For

it produces

load
Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst3
Inst1
Inst4

Good; maximum
distance between
load and Inst1 in
case of a miss.
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For

balanced scheduling produces

load1
load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Good for hits;
as good as
possible for misses
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Idea of the Algorithm
Look at each Instruction, i, in the 
Dependency DAG.
Determine which loads can run in 
parallel with i and use all (or part) 
of i�’s execution time to cover the 
latency of these loads.
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Compute available latency of each 
load:
 Give each load instruction an initial   

latency of 1.
 For (each instruction i in the
  Dependency DAG) do:
     Consider Instructions Independent 

of i:
         Gind = DepDAG - 
           (AllPred(i) U AllSucc(i) U {i})
        For (each connected subgraph c
             in Gind) do:
            Find m = maximum number of
                load instructions on any
                path in c.
            For (each load d in c) do:
                  add 1/m to d�’s latency.
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Computing the Schedule 
Using Adjusted Latencies

Once latencies are assigned to each 
load (other instructions have a 
latency of 1), we annotate each 
instruction in the Dependency DAG 
with its critical path weight: the 
maximum latency (along any path) 
from the instruction to a Leaf of the 
DAG.

Instructions are scheduled using 
critical path values; the root with 
the highest critical path value is 
always scheduled next. In cases of 
ties (same critical path value), 
operations with the longest latency 
are scheduled first.
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Example 

Ld
1

Ld
2

Ld
3

Ld
4 I1 I2 I3 I4 I5 Latency

Load1 1+0 = 1

Load2 1/2 1/2 1/2 1/2 1+2 = 3

Load3 1/2 1/2 1/2 1/2 1+2 = 3

Load4 1 1 1 1+3 = 4

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End0

1

1

5

4 6

77

8

9
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Using the annotated Dependency Dag, 
instructions can be scheduled:

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End0

1

1

5

4 6

77

8

9

Load1
Inst1
Load2
Inst2
Inst3
Load4
Load3
Inst4
Inst5

(0 latency; unavoidable)

(3 instruction latency)

(2 instruction latency)
(1 instruction latency)
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Goodman/Hsu Integrated 
Code Scheduler

Prepass Schedulers:
   Schedule code prior to register   

allocation.
   Can overuse registers�—Always 

using a �“fresh�” register maximizes
   freedom to rearrange Instructions.

Postpass Schedulers:
    Schedule code after register 

allocation.
Can be limited by �“false 
dependencies�” induced by  
register reuse.

    Example is Gibbons/Muchnick 
heuristic.
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Integrated Schedulers
Capture best of both approaches.

When registers are plentiful, use 
additional registers to avoid stalls.
Goodman & Hsu call this CSP:
  Code Scheduling for Pipelines.

When registers are scarce, switch to 
a policy that frees registers.
Goodman & Hsu call this CSR:  
  Code Scheduling to free Registers.
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Assume code is generated in single 
assignment form, with a unique 
pseudo-register for each computed 
value.

We schedule from a DAG where 
nodes are operations (to be mapped 
to instructions), and arcs represent 
data dependencies.

Each node will have an associated 
Cost, that measures the execution 
and stall time of the instruction that 
the node represents.

Nodes are labeled with a critical 
path cost, used to select the �“most 
critical�” instructions to schedule.
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Definitions
Leader Set:

Set of DAG nodes ready to be 
scheduled, possibly with an 
interlock.

Ready Set:
Subset of Leader Set; Nodes ready 
to be scheduled without an 
interlock.

AvailReg:
A count of currently unused 
registers.

MinThreshold:
Threshold at which heuristic will 
switch from avoiding interlocks to 
reducing registers in use.
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Goodman/Hsu Heuristic:
 while (DAG  ) {
    if ( AvailReg > MinThreshold)
        if (ReadySet  )
              Select Ready node with Max cost
        else Select Leader node with Max cost
    else  //  Reduce Registers in Use
        if (  node  ReadySet that frees registers){
           Select node that frees most registers
           If (selected node isn�’t unique)
               Select node with Max cost   }
       elsif (  node  LeaderSet that frees regs){
                Select node that frees most registers
               If (selected node isn�’t unique)
                   Select node with fewest interlocks}
       else find a partially evaluated path and

select a leader from this path
       else Select any node in ReadySet
       else Select any node in LeaderSet 
Schedule Selected node
Update AvailReg count  }//end while
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Example
We�’ll again consider
a = ((a+b) + (c*d)) + ((c+d) * d);

Again, assume a 1 cycle stall between a 
load and use of its value and a 2 cycle 
stall between a multiplication and first 
use of the product.

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8
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We�’ll try 4 registers (the minimum), 
then 5 registers.
Should   MinThreshold be 0 or 1?

At MinThreshold = 1, we always 
have a register to hold a result, but 
we may force a register to be 
spilled too soon!

At MinThreshold = 0, we may be 
forced to spill a register to free a 
result register. 
But, we�’ll also be able to schedule 
more aggressively.
Is a spill or stall worse?
Note that we may be able to �“hide�” 
a spill in a delay slot!

We�’ll be aggressive and use 
MinThreshold = 0.
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4 Registers Used (1 Stall)

Instruction Comment Regs 
Used

ld   [c], %r1 Choose ready, cost=8 1
ld   [d], %r2 Choose ready, cost=8 2
ld   [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add  %r1,%r2,%r1 Free a register 4
smul %r1,%r2,%r1 Free a register 3
ld   [b], %r2 Choose ready, cost=6 4
add  %r3,%r2,%r3   Choose a leader 3
add  %r3,%r4,%r3 No choice 2
add  %r3,%r1,%r3 No choice 1
st   %r3,[a] No choice 0

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8
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 5 Registers Used (No Stalls)

Instruction Comment Regs 
Used

ld   [c], %r1 Choose ready, cost=8 1
ld   [d], %r2 Choose ready, cost=8 2
ld   [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add  %r1,%r2,%r1 Choose ready, cost=6 4
ld   [b], %r5 Choose ready, cost=6 5
smul %r1,%r2,%r1 Free a register 4
add  %r3,%r5,%r3    Choose ready, cost=4 3
add  %r3,%r4,%r3 No choice 2
add  %r3,%r1,%r3 No choice 1
st   %r3,[a] No choice 0

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8
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Scheduling for Superscalar & 
Multiple Issue Machines

A number of computers have the 
ability to issue more than one 
instruction per cycle if the 
instructions are independent and 
satisfy constraints on available 
functional units.

Thus the instructions
  add %r1,1,%r2
  sub %r1,2,%r3

can issue and execute in parallel,
but
    add %r1,1,%r2
  sub %r2,2,%r3

    must execute sequentially.
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Instructions that are linked by true 
or output dependencies must 
execute sequentially, but 
instructions that are linked by an 
anti dependence may execute 
concurrently.
For example,
  add %r1,1,%r2
  sub %r3,2,%r1

can issue and execute in parallel.

The code scheduling techniques we�’ve 
studied can be used to schedule machines 
that can issue 2 or more independent 
instructions simultaneously.
We select pairs (or triples or n-tuples), 
verifying (with the Dependence Dag) that 
they are independent or anti dependent.
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Example: 5 Registers
(2 Wide Issue)

We need only 8 cycles rather than 11.

1 ld   [c], %r1 ld   [d], %r2
2 ld   [a], %r3 ld   [b], %r4
3 smul %r1,%r2,%r5 add  %r1,%r2,%r1
4 add  %r3,%r4,%r3 smul %r1,%r2,%r1
5 nop nop
6 add  %r3,%r5,%r3    nop
7 add  %r3,%r1,%r3 nop
8 st   %r3,[a] nop

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8
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5 Registers (3 Wide Issue)

We still need 8 cycles!

1 ld   [c], %r1 ld   [d], %r2 ld [a],%r3
2 ld   [b], %r4 nop nop
3 smul %r1,%r2,%r5 add  %r1,%r2,%r1 nop
4 add  %r3,%r4,%r3 smul %r1,%r2,%r1 nop
5 nop nop nop
6 add  %r3,%r5,%r3    nop nop
7 add  %r3,%r1,%r3 nop nop

8 st   %r3,[a] nop nop

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8
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