
389CS 701 Fall 2014©

False Dependencies
We still have delays in the schedule
that was produced because of �“false
dependencies.�”
Both b and c are loaded into %r2.
This limits the ability to move the
load of c prior to any use of %r2 that
uses b.
To improve our schedule we can use
a processor that renames registers
or allocate additional registers to
remove false dependencies.

390CS 701 Fall 2014©

Register Renaming
Many out of order processors
automatically rename distinct uses
of the same architectural register to
distinct internal registers.

Thus
 ld [a],%r1
 ld [b],%r2
 add %r1,%r2,%r1
 ld [c],%r2

is executed as if it were
 ld [a],%r1
 ld [b],%r2
 add %r1,%r2,%r3
 ld [c],%r4

Now the final load can be executed
prior to the add, eliminating a stall.

391CS 701 Fall 2014©

Compiler Renaming
A compiler can also use the idea of
renaming to avoid unnecessary
stalls.
An extra register may be needed (as
was the case for scheduling
expression trees).
Also, a round-robin allocation policy
is needed. Registers are reused in a
cyclic fashion, so that the most
recently freed register is reused last,
not first.

392CS 701 Fall 2014©

Example
1. ld [a], %r1
2. ld [b], %r2
3. add %r1,%r2,%r1
4. ld [c], %r3
5. ld [d], %r4
6. smul %r3,%r4,%r5
7. add %r1,%r5,%r2
8. add %r3,%r4,%r3
9. smul %r3,%r4,%r3
10. add %r2,%r3,%r2
11. st %r2,[a]

Stall

Stall
Stall*2

Stall*2

(6 Stalls Total)

1 2

3 4

5

6

7

8 9

10

11

393CS 701 Fall 2014©

After Scheduling:
4. ld [c], %r3 //Longest path
5. ld [d], %r4

2. ld [b], %r2

7. add %r1,%r5,%r2

8. add %r3,%r4,%r3
9. smul %r3,%r4,%r3

10. add %r2,%r3,%r2
11. st %r2,[a] (0 Stalls Total)

1. ld [a], %r1

6. smul %r3,%r4,%r5

//Exposes a root
//Stalls succ.

//Stalls succ.

//Stalls succ.

//Only choice
//Only choice

//Exposes a root

//Longest path

3. add %r1,%r2,%r1 //Only choice

1 2

3 4

5

6

7

8 9

10

11
1

23

56684

866

394CS 701 Fall 2014©

Reading Assignment
• Read Goodman and Hsu�’s paper,

�“Code Scheduling and Register
Allocation in Large Basic Blocks.�”

• Read Bernstein and Rodeh�’s paper,
�“Global Instruction Scheduling for
Superscalar Machines.�”
(Linked from the class Web page.)

395CS 701 Fall 2014©

Balanced Scheduling
When scheduling a load, we
normally anticipate the best case, a
hit in the primary cache.
On older architectures this makes
sense, since we stall execution on a
cache miss.
Many newer architectures are non-
blocking. This means we can
continue execution after a miss until
the loaded value is used.
Assume a Cache miss takes N cycles
(N can be from 3 to 100 or more).
Do we schedule a load anticipating a
1 cycle delay (a hit) or an N cycle
delay (a miss)?

396CS 701 Fall 2014©

Neither Optimistic Scheduling (expect a
hit) nor Pessimistic Scheduling (expect a
miss) is always better.
Consider

An Optimistic Schedule is

A Pessimistic Schedule is

load
Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst1
Inst3
Inst4

Fine for a hit;
inferior for a miss.

load
Inst2
Inst3
Inst1
Inst4

Fine for a hit;
better for a miss.

397CS 701 Fall 2014©

But things become more complex with
multiple loads

An Optimistic Schedule is

A Pessimistic Schedule is

load1
load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Better for hits;
same for misses.

load1
Inst1
Inst2
load2
Inst3

Worse for hits;
same for misses.

398CS 701 Fall 2014©

Balance Placement of Loads
Eggers suggests a balanced scheduler
that spaces out loads, using available
independent instructions as �“filler.�”
The insight is that scheduling should
not be driven by worst-case latencies
but rather by available Independent
Instructions.
For

it produces

load
Inst1

Inst2

Inst3

Inst4

load
Inst2
Inst3
Inst1
Inst4

Good; maximum
distance between
load and Inst1 in
case of a miss.

399CS 701 Fall 2014©

For

balanced scheduling produces

load1
load2

Inst1

Inst2

Inst3

load1
Inst1
load2
Inst2
Inst3

Good for hits;
as good as
possible for misses

400CS 701 Fall 2014©

Idea of the Algorithm
Look at each Instruction, i, in the
Dependency DAG.
Determine which loads can run in
parallel with i and use all (or part)
of i�’s execution time to cover the
latency of these loads.

401CS 701 Fall 2014©

Compute available latency of each
load:
 Give each load instruction an initial

latency of 1.
 For (each instruction i in the
 Dependency DAG) do:
 Consider Instructions Independent

of i:
 Gind = DepDAG -
 (AllPred(i) U AllSucc(i) U {i})
 For (each connected subgraph c
 in Gind) do:
 Find m = maximum number of
 load instructions on any
 path in c.
 For (each load d in c) do:
 add 1/m to d�’s latency.

402CS 701 Fall 2014©

Computing the Schedule
Using Adjusted Latencies

Once latencies are assigned to each
load (other instructions have a
latency of 1), we annotate each
instruction in the Dependency DAG
with its critical path weight: the
maximum latency (along any path)
from the instruction to a Leaf of the
DAG.

Instructions are scheduled using
critical path values; the root with
the highest critical path value is
always scheduled next. In cases of
ties (same critical path value),
operations with the longest latency
are scheduled first.

403CS 701 Fall 2014©

Example

Ld
1

Ld
2

Ld
3

Ld
4 I1 I2 I3 I4 I5 Latency

Load1 1+0 = 1

Load2 1/2 1/2 1/2 1/2 1+2 = 3

Load3 1/2 1/2 1/2 1/2 1+2 = 3

Load4 1 1 1 1+3 = 4

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End0

1

1

5

4 6

77

8

9

404CS 701 Fall 2014©

Using the annotated Dependency Dag,
instructions can be scheduled:

Load1

Inst1

Load2 Inst2 Inst4

Load3 Inst3

Load4

Inst5

End0

1

1

5

4 6

77

8

9

Load1
Inst1
Load2
Inst2
Inst3
Load4
Load3
Inst4
Inst5

(0 latency; unavoidable)

(3 instruction latency)

(2 instruction latency)
(1 instruction latency)

405CS 701 Fall 2014©

Goodman/Hsu Integrated
Code Scheduler

Prepass Schedulers:
 Schedule code prior to register

allocation.
 Can overuse registers�—Always

using a �“fresh�” register maximizes
 freedom to rearrange Instructions.

Postpass Schedulers:
 Schedule code after register

allocation.
Can be limited by �“false
dependencies�” induced by
register reuse.

 Example is Gibbons/Muchnick
heuristic.

406CS 701 Fall 2014©

Integrated Schedulers
Capture best of both approaches.

When registers are plentiful, use
additional registers to avoid stalls.
Goodman & Hsu call this CSP:
 Code Scheduling for Pipelines.

When registers are scarce, switch to
a policy that frees registers.
Goodman & Hsu call this CSR:
 Code Scheduling to free Registers.

407CS 701 Fall 2014©

Assume code is generated in single
assignment form, with a unique
pseudo-register for each computed
value.

We schedule from a DAG where
nodes are operations (to be mapped
to instructions), and arcs represent
data dependencies.

Each node will have an associated
Cost, that measures the execution
and stall time of the instruction that
the node represents.

Nodes are labeled with a critical
path cost, used to select the �“most
critical�” instructions to schedule.

408CS 701 Fall 2014©

Definitions
Leader Set:

Set of DAG nodes ready to be
scheduled, possibly with an
interlock.

Ready Set:
Subset of Leader Set; Nodes ready
to be scheduled without an
interlock.

AvailReg:
A count of currently unused
registers.

MinThreshold:
Threshold at which heuristic will
switch from avoiding interlocks to
reducing registers in use.

409CS 701 Fall 2014©

Goodman/Hsu Heuristic:
 while (DAG) {
 if (AvailReg > MinThreshold)
 if (ReadySet)
 Select Ready node with Max cost
 else Select Leader node with Max cost
 else // Reduce Registers in Use
 if (node ReadySet that frees registers){
 Select node that frees most registers
 If (selected node isn�’t unique)
 Select node with Max cost }
 elsif (node LeaderSet that frees regs){
 Select node that frees most registers
 If (selected node isn�’t unique)
 Select node with fewest interlocks}
 else find a partially evaluated path and

select a leader from this path
 else Select any node in ReadySet
 else Select any node in LeaderSet
Schedule Selected node
Update AvailReg count }//end while

410CS 701 Fall 2014©

Example
We�’ll again consider
a = ((a+b) + (c*d)) + ((c+d) * d);

Again, assume a 1 cycle stall between a
load and use of its value and a 2 cycle
stall between a multiplication and first
use of the product.

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

411CS 701 Fall 2014©

We�’ll try 4 registers (the minimum),
then 5 registers.
Should MinThreshold be 0 or 1?

At MinThreshold = 1, we always
have a register to hold a result, but
we may force a register to be
spilled too soon!

At MinThreshold = 0, we may be
forced to spill a register to free a
result register.
But, we�’ll also be able to schedule
more aggressively.
Is a spill or stall worse?
Note that we may be able to �“hide�”
a spill in a delay slot!

We�’ll be aggressive and use
MinThreshold = 0.

412CS 701 Fall 2014©

4 Registers Used (1 Stall)

Instruction Comment Regs
Used

ld [c], %r1 Choose ready, cost=8 1
ld [d], %r2 Choose ready, cost=8 2
ld [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add %r1,%r2,%r1 Free a register 4
smul %r1,%r2,%r1 Free a register 3
ld [b], %r2 Choose ready, cost=6 4
add %r3,%r2,%r3 Choose a leader 3
add %r3,%r4,%r3 No choice 2
add %r3,%r1,%r3 No choice 1
st %r3,[a] No choice 0

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

413CS 701 Fall 2014©

 5 Registers Used (No Stalls)

Instruction Comment Regs
Used

ld [c], %r1 Choose ready, cost=8 1
ld [d], %r2 Choose ready, cost=8 2
ld [a], %r3 Choose ready, cost=6 3
smul %r1,%r2,%r4 Choose ready, cost=6 4
add %r1,%r2,%r1 Choose ready, cost=6 4
ld [b], %r5 Choose ready, cost=6 5
smul %r1,%r2,%r1 Free a register 4
add %r3,%r5,%r3 Choose ready, cost=4 3
add %r3,%r4,%r3 No choice 2
add %r3,%r1,%r3 No choice 1
st %r3,[a] No choice 0

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

414CS 701 Fall 2014©

Scheduling for Superscalar &
Multiple Issue Machines

A number of computers have the
ability to issue more than one
instruction per cycle if the
instructions are independent and
satisfy constraints on available
functional units.

Thus the instructions
 add %r1,1,%r2
 sub %r1,2,%r3

can issue and execute in parallel,
but
 add %r1,1,%r2
 sub %r2,2,%r3

 must execute sequentially.

415CS 701 Fall 2014©

Instructions that are linked by true
or output dependencies must
execute sequentially, but
instructions that are linked by an
anti dependence may execute
concurrently.
For example,
 add %r1,1,%r2
 sub %r3,2,%r1

can issue and execute in parallel.

The code scheduling techniques we�’ve
studied can be used to schedule machines
that can issue 2 or more independent
instructions simultaneously.
We select pairs (or triples or n-tuples),
verifying (with the Dependence Dag) that
they are independent or anti dependent.

416CS 701 Fall 2014©

Example: 5 Registers
(2 Wide Issue)

We need only 8 cycles rather than 11.

1 ld [c], %r1 ld [d], %r2
2 ld [a], %r3 ld [b], %r4
3 smul %r1,%r2,%r5 add %r1,%r2,%r1
4 add %r3,%r4,%r3 smul %r1,%r2,%r1
5 nop nop
6 add %r3,%r5,%r3 nop
7 add %r3,%r1,%r3 nop
8 st %r3,[a] nop

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

417CS 701 Fall 2014©

5 Registers (3 Wide Issue)

We still need 8 cycles!

1 ld [c], %r1 ld [d], %r2 ld [a],%r3
2 ld [b], %r4 nop nop
3 smul %r1,%r2,%r5 add %r1,%r2,%r1 nop
4 add %r3,%r4,%r3 smul %r1,%r2,%r1 nop
5 nop nop nop
6 add %r3,%r5,%r3 nop nop
7 add %r3,%r1,%r3 nop nop

8 st %r3,[a] nop nop

a b c d

+ * +

+ *

=

+

1

2

3 5

4 6 6

6 6 8 8

418CS 701 Fall 2014©

419CS 701 Fall 2014©

420CS 701 Fall 2014©

