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Example
block1:
1.   ld   [a],Pr1
2.   ld   [b],Pr2
3.   add  Pr1,Pr2,Pr3    
4.   st   Pr3,[d]
5.   cmp  Pr3,0
6.   be   block3
block2:
7.   mov  1,Pr4
8.   st   Pr4,[flag]
9.   b    block4
block3:
10.  st   0,[flag]
block4:
11.  ld   [d],Pr5
12.  ld   [g],Pr6
13.  sub  Pr5,Pr6,Pr7  
14.  st   Pr7,[f]
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We�’ll schedule without speculation; 
highest D values first, then highest CP 
values. 

block1:
1.   ld   [a],Pr1
2.   ld   [b],Pr2
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12.  ld   [g],Pr6
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Next, come Instructions 3 and 4. 
block1:
1.   ld   [a],Pr1
2.   ld   [b],Pr2
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12.  ld   [g],Pr6
3.   add  Pr1,Pr2,Pr3 
4.   st   Pr3,[d]
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Now 11 can issue (D=1), followed by 5, 
13, 6 and 14. Block B4 is now empty, so 
B2 and B3 are scheduled.  

There are no stalls. In fact, if we 
equivalence Pr3 and Pr5, Instruction 
11 can be removed.

block1:
1.   ld   [a],Pr1
2.   ld   [b],Pr2
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12.  ld   [g],Pr6
3.   add  Pr1,Pr2,Pr3 
4.   st   Pr3,[d]

5.   cmp  Pr3,0
11.  ld   [d],Pr5

14.  st   Pr7,[f]
block2:
7.   mov  1,Pr4
8.   st   Pr4,[flag]
9.   b    block4
block3:
10.  st   0,[flag]
block4:

13.  sub  Pr5,Pr6,Pr7  
6.   be   block3
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Hardware Support for Global 
Code Motion

We want to be aggressive in scheduling 
loads, which incur high latencies when 
a cache miss occurs.
In many cases, control and data 
dependencies may force us to restrict 
how far we may move a critical load.
Consider

p = Lookup(Id);
  ...
if (p != null) 

print(p.a);
It may well be that the object returned 
by Lookup is not in the L1 cache. Thus 
we�’d like to schedule the load 
generated by p.a as soon as possible; 
ideally right after the lookup. 
But moving the load above the p != 
null check is clearly unsafe.

450CS 701  Fall 2014©

A number of modern machine 
architectures, including Intel�’s 
Itanium, have proposed a speculative 
load to allow freer code motion when 
scheduling.
A speculative load,
ld.s  [adr],%reg

acts like an ordinary load as long as 
the load does not force an interrupt. If 
it does, the interrupt is suppressed and 
a special NaT (not a thing) bit is set in 
the register (a hidden 65th bit). A NaT 
bit can be propagated through 
instructions before being tested.
In some cases (like our table lookup 
example), a register containing a NaT 
bit may simply not be used because 
control doesn�’t reach its intended uses.
However a NaT bit need not indicate an 
outright error. A load may force a TLB 
(translation lookaside buffer) fault or a 
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page fault. These interrupts are 
probably too costly to do speculatively, 
but if we decide the loaded value is 
really needed, we will want to allow 
them.
A special check instruction, of the 
form,
chk.s  %reg,adr

checks whether %reg has its NaT bit 
set. If it does, control passes to adr, 
where user-supplied �“fixup�” code is 
placed. This code can redo the load 
non-speculatively, allowing necessary 
interrupts to occur.
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Hardware Support for Data 
Speculation

In addition to supporting control 
speculation (moving instructions 
above conditional branches), it is 
useful to have hardware support for 
data speculation.
In data speculation, we may move a 
load above a store if we believe the 
chance of the load and store 
conflicting is slim.
Consider a variant of our earlier 
lookup example, 

p = Lookup(Id);
  ...
q.a = init(); 
print(p.a);
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We�’d like to move the load implied by 
p.a above the assignment to q.a. This 
allows p to miss in the L1 cache, using 
the execution of init() to cover the 
miss latency.
But, we need to be sure that q and p 
don�’t reference the same object and 
that init() doesn�’t indirectly change 
p.a. Both possibilities may be remote, 
but proving non-interference may be 
difficult.
The Intel Itanium provides a special 
�“advanced load�” that supports this sort 
of load motion.
The instruction
ld.a  [adr],%reg

loads the contents of memory location 
adr into %reg. It also stores adr into 
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special ALAT (Advanced Load Address 
Table) hardware.
When a store to address X occurs, an 
ALAT entry corresponding to address 
X is removed (if one exists).
When we wish to use the contents of 
%reg, we execute a
ld.c  [adr],%reg

instruction (a checked load).
If an ALAT entry for adr is present, 
this instruction does nothing; %reg 
contains the correct value. If there is no 
corresponding ALAT entry, the ld.c 
simply acts like an ordinary load.
(Two versions of ld.c exist; one 
preserves an ALAT entry while the 
other purges it).
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And yes, a speculative load (ld.s) and 
an advanced load (ld.a) may be 
combined to form a speculative 
advanced load (ld.sa).

456CS 701  Fall 2014©

Speculative Multi-threaded 
Processors
The problem of moving a load above a 
store that may conflict with it also 
appears in multi-threaded processors.
How do we know that two threads 
don�’t interfere with one another by 
writing into locations both use?
Proofs of non-interference can be 
difficult or impossible. Rather than 
severely restrict what independent 
threads can do, researchers have 
proposed speculative multi-threaded 
processors.
In such processors, one thread is 
primary, while all other threads are 
secondary and speculative. Using 
hardware tables to remember locations 
read and written, a secondary thread 
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can commit (make its updates 
permanent) only if it hasn�’t read 
locations the primary thread later 
wrote and hasn�’t written locations the 
primary thread read or wrote. Access 
conflicts are automatically detected, 
and secondary threads are 
automatically restarted as necessary to 
preserve the illusion of serial memory 
accesses.
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Software Pipelining
Often loop bodies are too small to allow 
effective code scheduling. But loop 
bodies, being �“hot spots,�” are exactly 
where scheduling is most important.
Consider

void f (int a[],int last) {
  for (p=&a[0];p!=&a[last];p++) 
     (*p)++;
}

The body of the loop might be:
L: ld   [%g3],%g2
   nop
   add  %g2,1,%g2   
   st   %g2,[%g3]
   add  %g3,4,%g3   
   cmp  %g3,%g4
   bne  L
   nop
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Scheduling this loop body in isolation is 
ineffective�—each instruction depends 
upon its immediate predecessor.
So we have a loop body that takes 8 
cycles to execute 6 �“core�” instructions.

We could unroll the loop body, but for 
how many iterations? What if the loop 
ends in the �“middle�” of an expanded 
loop body? Will extra registers be a 
problem?
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In this case software pipelining offers a 
nice solution. We expand the loop body 
symbolically, intermixing instructions 
from several iterations. Instructions 
can overlap, increasing parallelism and 
forming a �“tighter�” loop body:

   ld   [%g3],%g2
   nop
   add  %g2,1,%g2   
L: st   %g2,[%g3]
   add  %g3,4,%g3 
   ld   [%g3],%g2
   cmp  %g3,%g4
   bne  L
   add  %g2,1,%g2   

Now the loop body is ideal�—exactly 6 
instructions. Also, no extra registers 
are needed!
But, we do �“overshoot�” the end of the 
loop a bit, loading one element past the 
exit point. (How serious is this?)
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Key Insight of Software 
Pipelining
Software pipelining exploits the fact 
that a loop of the form {A B C}n, where 
A, B and C are individual instructions, 
and n is the iteration count, is 
equivalent to A {B C A}n-1 B C and is 
also equivalent to A B {C A B}n-1 C.
Mixing instructions from several 
iterations may increase the 
effectiveness of code scheduling, and 
may perhaps allow for more parallel 
execution.
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Software Pipelining is Hard
In fact, it is NP-complete:

Hsu and Davidson, �“Highly 
concurrent scalar processing,�” 13th 
ISCA (1986).
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The Iteration Interval
We seek to initiate the next iteration 
of a loop as soon as possible, 
squeezing each iteration of the loop 
body into as few machine cycles as 
possible.
The general form of a software 
pipelined loop is:

Prologue Code

Kernel Code

Epilogue Code

464CS 701  Fall 2014©

The prologue code �“sets up�” the 
main loop, and the epilogue code 
�“cleans up�” after loop termination. 
Neither the prolog nor the epilogue 
need be optimized, since they 
execute only once.
Optimizing the kernel is key in 
software pipelining. The kernel�’s 
execution time (in cycles) is called 
the initiation interval (II); it 
measures how quickly the next 
iteration of a loop can start.
We want the smallest possible 
initiation interval. Determining the 
smallest viable II is itself NP-
complete. Because of parallel issue 
and execution in superscalar and 
multiple issue processors, very small 
II values are possible (even less than 
1!)
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Factors that Limit the Size of 
the Initiation Interval

We want the initiation interval to be 
as small as possible. Two factors 
limit how small the II can become:
• Resource Constraints
• Dependency Constraints
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Resource Constraints
A small II normally means that we 
are doing steps of several iterations 
simultaneously. The number of 
registers and functional units (that 
execute instructions) can become 
limiting factors of the size of II.
For example, if a loop body contains 
4 floating point operations, and our 
processor can issue and execute no 
more than 2 floating point 
operations per cycle, then the loop�’s 
II can�’t be less than 2.
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Dependency Constraints
A loop body can often contain a loop-
carried dependence. This means one 
iteration of a loop depends on values 
computed in an earlier iteration. For 
example, in

void f (int a[]) {
  for (i=1;i<1000;i++) 
     a[i]=(a[i-1]+a[i])/2;
}

there is a loop carried dependence 
from the use of a[i-1] to the 
computation of a[i] in the previous 
iteration. This means the computation 
of a[i] can�’t begin until the 
computation of a[i-1] is completed. 
Let�’s look at the code that might be 
generated for this loop:
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f:
   mov   %o0, %o2       !a in %o2
   mov   1, %o1         !i=1 in %o1
L:
   sll   %o1, 2, %o0    !i*4 in %o0
   add   %o0, %o2, %g2  !&a[i] in %g2
* ld [%g2-4], %g2   !a[i-1] in %g2
   ld   [%o2+%o0], %g3 !a[i] in %g3
* add %g2, %g3, %g2  !a[i-1]+a[i]
* srl   %g2, 31, %g3   !s=0 or 1=sign
* add   %g2, %g3, %g2  !a[i-1]+a[i]+s
* sra   %g2, 1, %g2    !a[i-1]+a[i]/2
   add   %o1, 1, %o1    !i++
   cmp   %o1, 999
  ble   L
* st    %g2, [%o2+%o0] !store a[i]
   retl
   nop

The 6 marked instructions form a 
cyclic dependency chain from a use of 
a[i-1] to its computation (as a[i]) in 
the previous cycle. This cycle means that 
the loop�’s II can never be less than 6.
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Modulo Scheduling
There are many approaches to 
software pipelining. One of the 
simplest, and best known, is modulo 
scheduling. Modulo scheduling 
builds upon the postpass basic block 
schedulers we�’ve already studied.
First, we estimate the II of the loop 
we will create. How?
We can compute the minimum II 
based on resource considerations 
(IIres) and the minimum II based on 
cyclic loop-carried dependencies 
(IIdep). Then max(IIres,IIdep) is a 
reasonable estimate of the best 
possible II. We�’ll try to build a loop 
with a kernel size of II. If this fails, 
we�’ll try II+1, II+2, etc.
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In modulo scheduling we�’ll schedule 
instructions one by one, using the 
dependency dag and whatever 
heuristic we prefer to choose among 
multiple roots.
Now though, if we place an 
instruction at cycle c (many 
independent instructions may 
execute in the same cycle), then 
we�’ll place additional copies of the 
instruction at cycle c+II, c+2*II, etc. 
Placement must respect dependency 
constraints and resource limits at all 
positions. We consider placements 
only until a kernel (of size II) forms. 
The kernel must begin before cycle 
s-1, where s is the size of the loop 
body (in instructions). The loop�’s 
conditional branch is placed after 
the kernel is formed.
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If we can�’t form a kernel of size II 
(because of dependency or resource 
conflicts), we increase II by 1 and 
try again. At worst, we get a kernel 
equal in size to the original loop 
body, which guarantees that the 
modulo scheduler eventually 
terminates. 
Depending on how many iterations 
are intermixed in the kernel, the 
loop termination condition may 
need to be adjusted (since the initial 
and final iterations may appear as 
part of the loop prologue and 
epilogue).
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Example
Consider the following simple 
function which adds an array index 
to each element of an array and 
copies the results into a second 
array:
void f (int a[],int b[]) {
  t1 = &a[0];
  t2 = &b[0];
  for (i=0;i<1000;i++,t1++,t2++) 
     *t1 = *t2 + i;
}

The code for f (compiled as a leaf 
procedure) is:
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1.   f:   mov     0, %g3
2.   L:   ld      [%o1], %g2
3.        add     %g3, %g2, %g4
4.        st      %g4, [%o0]
5.        add     %g3, 1, %g3
6.        add     %o0, 4, %o0
7.        cmp     %g3, 999
8.        ble     L
9.        add     %o1, 4, %o1
10.       retl
11.       nop

2

3 9

4 5

6 7

Dashed arcs are
anti dependencies.
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We�’ll software pipeline the loop 
body, excluding the conditional 
branch (which is placed after the 
loop kernel is formed).
This loop body contains 2 loads/
stores, 5 arithmetic and logical 
operations (including the compare) 
and one conditional branch.
Let�’s assume the processor we are 
compiling for has 1 load/store unit, 
3 arithmetic/logic units, and 1 
branch unit. That means the 
processor can (ideally) issue and 
execute simultaneously 1 load or 
store, 3 arithmetic and logic 
instructions, and 1 branch. Thus its 
maximum issue width is 5. (Current 
superscalars have roughly this 
capability.)
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Considering resource requirements, 
we will need at least two cycles to 
process the contents of the loop 
body. There are no loop-carried 
dependencies.
Thus we will estimate this loop�’s 
best possible Initiation Interval to 
be 2.
Since the only instruction that can 
stall is the root of the dependency 
dag, we�’ll schedule using estimated 
critical path length, which is just the 
node�’s height in the tree. Hence 
we�’ll schedule the nodes in the 
order: 2,3,4,5,6,7,9.
We�’ll schedule all instructions in a 
legal execution order (respecting 
dependencies), and we�’ll try to choose 
as many instructions as possible to 
execute in the same cycle.
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Starting with the root, instruction 2, 
we schedule it at cycles 1, 3 (=1+II), 
5 (=1+2*II):
cycle     instruction
1.           ld    [%o1], %g2
2.
3.           ld    [%o1], %g2
4.
5.           ld    [%o1], %g2

No conflicts so far, since each of the 
loads starts an independent 
iteration.
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We�’ll schedule instruction 3 next. It 
must be placed at cycles 3, 5 and 7 
since it uses the result of the load.
cycle     instruction
1.           ld    [%o1], %g2
2.
3.           add   %g3, %g2, %g4
3.           ld    [%o1], %g2
4.
5.           add   %g3, %g2, %g4
5.           ld    [%o1], %g2
6.
7.           add   %g3, %g2, %g4

Note that in cycles 3 and 5 we use 
the current value of %g2 and initiate 
a load into %g2.
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Instruction 4 is next. It uses the 
result of the add we just scheduled, 
so it is placed at cycles 4 and 6.
cycle     instruction
1.           ld    [%o1], %g2
2.
3.           add   %g3, %g2, %g4
3.           ld    [%o1], %g2

   4.           st    %g4, [%o0]
5.           add   %g3, %g2, %g4
5.           ld    [%o1], %g2

   6.           st    %g4, [%o0]
7.           add   %g3, %g2, %g4
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Instruction 5 is next. It is anti 
dependent on instruction 3, so we 
can place it in the same cycles that 3 
uses (3, 5 and 7).
cycle     instruction
1.           ld    [%o1], %g2
2.
3.           add   %g3, %g2, %g4
3.           ld    [%o1], %g2

   3.           add   %g3, 1, %g3
   4.           st    %g4, [%o0]

5.           add   %g3, %g2, %g4
5.           ld    [%o1], %g2

   5.           add   %g3, 1, %g3
   6.           st    %g4, [%o0]

7.           add   %g3, %g2, %g4
   7.           add   %g3, 1, %g3
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Instruction 6 is next. It is anti 
dependent on instruction 4, so we 
can place it in the same cycles that 4 
uses (4 and 6).
cycle     instruction
1.           ld    [%o1], %g2
2.
3.           add   %g3, %g2, %g4
3.           ld    [%o1], %g2

   3.           add   %g3, 1, %g3
   4.           st    %g4, [%o0]
   4.           add   %o0, 4, %o0

5.           add   %g3, %g2, %g4
5.           ld    [%o1], %g2

   5.           add   %g3, 1, %g3
   6.           st    %g4, [%o0]
   6.           add   %o0, 4, %o0

7.           add   %g3, %g2, %g4
   7.           add   %g3, 1, %g3
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Next we place instruction 7. It uses 
the result of instruction 5 (%g3), so it 
is placed in the cycles following 
instruction 5 (4 and 6).
cycle     instruction
1.           ld    [%o1], %g2
2.
3.           add   %g3, %g2, %g4
3.           ld    [%o1], %g2

   3.           add   %g3, 1, %g3
   4.           st    %g4, [%o0]
   4.           add   %o0, 4, %o0
   4.           cmp   %g3, 999

5.           add   %g3, %g2, %g4
5.           ld    [%o1], %g2

   5.           add   %g3, 1, %g3
   6.           st    %g4, [%o0]
   6.           add   %o0, 4, %o0
   6.           cmp   %g3, 999

7.           add   %g3, %g2, %g4
   7.           add   %g3, 1, %g3
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Finally we place instruction 9. It is 
anti dependent on instruction 2 so it 
is placed in the same cycles as 
instruction 2 (1, 3 and 5).
cycle       instruction
1.           ld    [%o1], %g2

   1.           add   %o1, 4, %o1
3.           add   %g3, %g2, %g4
3.           ld    [%o1], %g2

   3.           add   %o1, 4, %o1
   3.           add   %g3, 1, %g3
   4.           st    %g4, [%o0]
   4.           add   %o0, 4, %o0
   4.           cmp   %g3, 999

5.           add   %g3, %g2, %g4
5.           ld    [%o1], %g2

   5.           add   %o1, 4, %o1
   5.           add   %g3, 1, %g3
   6.           st    %g4, [%o0]
   6.           add   %o0, 4, %o0
   6.           cmp   %g3, 999

7.           add   %g3, %g2, %g4
   7.           add   %g3, 1, %g3
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We look for a 2 cycles kernel that 
contains all 7 instructions of the 
loop body that we have scheduled. 
We also want a kernel that sets the 
condition code (via the cmp) during 
its first cycle so that it can be tested 
during its second (and final) cycle. 
Cycles 4 and 5 meet these criteria, 
and will form our kernel.
We place the conditional branch 
just before the last instruction in 
cycle 5 (to give the conditional 
branch a useful instruction for its 
delay slot).
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We now have:
cycle       instruction
1.           ld    [%o1], %g2

   1.           add   %o1, 4, %o1
3.           add   %g3, %g2, %g4
3.           ld    [%o1], %g2

   3.           add   %o1, 4, %o1
   3.           add   %g3, 1, %g3
   4.      L:   st    %g4, [%o0]
   4.           add   %o0, 4, %o0
   4.           cmp   %g3, 999

5.           add   %g3, %g2, %g4
5.           ld    [%o1], %g2

   5.           add   %o1, 4, %o1
   5.           ble   L
   5.           add   %g3, 1, %g3
   6.           st    %g4, [%o0]
   6.           add   %o0, 4, %o0
   6.           cmp   %g3, 999

7.           add   %g3, %g2, %g4
   7.           add   %g3, 1, %g3



485CS 701  Fall 2014 ©

A couple of final issues must be 
dealt with:
• Does the iteration count need to be 

changed?
In this case no, since the final valid 
value of i, 999, is used to compute 
%g4 in cycle 5, before the loop exits.

• What instructions do we keep as the 
loop�’s epilogue?
None!  Instructions past the kernel 
aren�’t needed since they are part of 
future iterations (past 
i==999)which aren�’t needed or 
wanted.

• Note that b[1000] and b[1001] are 
�“touched�” even though they are 
never used. This is probably OK as 
long as arrays aren�’t placed at the 
very end of a page or segment.
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Our final loop is:
cycle       instruction
1.          ld    [%o1], %g2 !N0

   1.          add   %o1, 4, %o1 !N0
3.          add   %g3, %g2, %g4 !N0
3.          ld    [%o1], %g2 !N1

   3.          add   %o1, 4, %o1 !N1
   3.          add   %g3, 1, %g3 !N0
   4.      L:  st    %g4, [%o0] !N0
   4.          add   %o0, 4, %o0 !N0
   4.          cmp   %g3, 999 !N0

5.          add   %g3, %g2, %g4 !N1
5.          ld    [%o1], %g2 !N2

   5.          add   %o1, 4, %o1 !N2
   5.          ble   L !N0
   5.          add   %g3, 1, %g3 !N1

This is very efficient code�—we use the 
full parallelism of the processor, 
executing 5 instructions in cycle 5 and 
8 instructions in just 2 cycles. All 
resource limitations are respected.
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False Dependencies & Loop 
Unrolling

A limiting factor in how �“tightly�” 
we can software pipeline a loop is 
reuse of registers and the false 
dependencies reuse induces.
Consider the following simple 
function that copies array elements:
void f (int a[],int b[], int lim) {
  for (i=0;i<lim;i++)
     a[i]=b[i];
}

The loop that is generated takes 3 
cycles:
cycle       instruction
1.     L:    ld    [%g3+%o1], %g2

   1.           addcc %o2, -1, %o2
3.           st    %g2, [%g3+%o0]
3.           bne   L

   3.           add   %g3, 4, %g3
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We�’d like to tighten the iteration 
interval to 2 or less. One cycle is 
unlikely, since doing a load and a 
store in the same cycle is 
problematic (due to a possible 
dependence through memory).
If we try to use modulo scheduling, 
we can�’t put a second copy of the 
load in cycle 2 because it would 
overwrite the contents of the first 
load. A load in cycle 3 will clash 
with the store.
The solution is to unroll the loop 
into two copies, using different 
registers to hold the contents of the 
load and the current offset into the 
arrays. 
The use of a �“count down�” register 
to test for loop termination is 
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helpful, since it allows an easy exit 
from the middle of the loop.
With the renaming of the registers 
used in the two expanded iterations, 
scheduling to �“tighten�” the loop is 
effective.
After expansion we have:
cycle       instruction
1.     L:    ld    [%g3+%o1], %g2

   1.           addcc %o2, -1, %o2
3.           st    %g2, [%g3+%o0]
3.           beq   L2

   3.           add   %g3, 4, %g4
4.           ld    [%g4+%o1], %g5

   4.           addcc %o2, -1, %o2
6.           st    %g5, [%g4+%o0]
6.           bne   L

   6.           add   %g4, 4, %g3
          L2:

We still have 3 cycles per iteration, 
because we haven�’t scheduled yet.
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Now we can move the increment of 
%g3 (into %g4) above other uses of 
%g3. Moreover, we can move the 
load into %g5 above the store from 
%g2 (if the load and store are independent):
cycle       instruction
1.     L:    ld    [%g3+%o1], %g2

   1.           addcc %o2, -1, %o2
   1.           add   %g3, 4, %g4

2.           ld    [%g4+%o1], %g5
3.           st    %g2, [%g3+%o0]
3.           beq   L2
3.           addcc %o2, -1, %o2
4.           st    %g5, [%g4+%o0]
4.           bne   L

   4.           add   %g4, 4, %g3
         L2: 

We can normally test whether 
%g4+%o1 and %g3+%o0 can be equal at 
compile-time, by looking at the actual 
array parameters.
(Can &a[0] == &b[1]?)
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Predication
We have seen that conditional 
execution complicates code 
scheduling by creating small basic 
blocks and limiting code movement 
across conditional branches.
However, the problems conditionals 
introduce are even more 
fundamental.
Consider the following code 
fragment:
if (a<b)

      a++;
 else b++;
 if (c<d)
      c++;
 else d++;

492CS 701  Fall 2014©

The two conditionals are completely 
independent, but they can�’t be 
evaluated concurrently in a single 
thread.
Why?
Look at the Sparc code generated:
   cmp     %o0, %g1
  bge,a   L1
  add     %g1, 1, %g1
  add     %o0, 1, %o0
L1:
  cmp     %o5, %o4
  bge,a   L2
  add     %o4, 1, %o4
  add     %o5, 1, %o5
L2:



493CS 701  Fall 2014 ©

The two compares can�’t be executed 
concurrently (because there is only 
one condition code register).
We can�’t do two conditional 
branches to two different places 
simultaneously.
And we must select the correct 
combination of two of the four adds 
to execute.
We could restructure this code into 
a four-way switch, but this far 
beyond what a code scheduler is 
expected to do.
The problem is that while values can 
easily be computed in parallel, flow 
of control can�’t.
The solution?
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Convert flow of control 
computations into value 
computations.
Our first step is to generalize a 
single condition code register into a 
set of predicate registers. The 
Itanium, for example, includes 64 
predicate registers that hold a single 
boolean value. For our purposes, 
let�’s denote a predicate register as 
%p0 to %p63.
Predicate registers are set by doing 
compare or test instructions.
Thus

cmpeq  %o0, %g1,%p1
sets %p1 true if the two operands are 
equal and false otherwise.
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The real power of predication is that 
most instructions can be controlled 
(predicated) by a predicate register.
Thus
add(%p1) %r1,%r2,%r3

does an ordinary add but only 
commits the result (into %r3) if %p1 
is true.
A negated form is often included 
too:
add(~%p1) %r1,%r2,%r3

In this form, the add is completed 
only if %p1 is false.
Using predication, we can eliminate 
many conditional branches. Now 
both legs of a conditional can be 
evaluated, with only one leg allowed 
to commit.
Returning to our earlier example,
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if (a<b)
      a++;
 else b++;
 if (c<d)
      c++;
 else d++;

we now generate
  1. cmplt     %o0, %g1, %p1
 1. cmplt      %o5, %o4, %p2
  2. add(%p1)   %g1, 1, %g1
  2. add(~p1)   %o0, 1, %o0
  2. add(%p2)   %o4, 1, %o4
  2. add(%~p2)  %o5, 1, %o5

This entire code fragment can now 
execute in two cycles, since the two 
compares and four adds are 
independent of each other.
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Predication Enhances 
Software Pipelining

Conditionals in a loop body greatly 
complicate software pipelining since 
we usually won�’t know exactly what 
instructions future iterations will 
execute.
Consider this minor variant of our 
earlier example:

void f (int a[],int b[]) {
  t1 = &a[0];
  t2 = &b[0];
  for (i=0;i<1000;i++,t1++,t2++) 
     if (i%2)

  *t1 = *t2 + i;
     else  *t1 = *t2 - i;

}
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1.   f:  mov     0, %g3
2.   L:  andcc   %g3, 1, %g0
3.       bne     L1
4.       ld      [%o1], %g2
5.       b       L2
6.       sub     %g3, %g2, %g4
7.  L1:  add     %g3, %g2, %g4
8.  L2:  st      %g4, [%o0]
9.       add     %g3, 1, %g3
10.       add     %o0, 4, %o0
11.       cmp     %g3, 999
12.       ble     L
13.       add     %o1, 4, %o1
14.      retl
15.      nop

We�’ve added an andcc (to do the 
i%2 computation) as well as a 
conditional and unconditional 
branch. Each iteration will do an 
add or a subtract.
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A two cycle per iteration schedule 
seems most unlikely.
But predication helps immensely! 
The generated code becomes much 
cleaner:

1.   f:  mov     0, %g3
2.   L:  and     %g3, 1, %p1
3.       ld      [%o1], %g2
4.       sub(~%p1) %g3, %g2, %g4
5.  add(%p1) %g3, %g2, %g4
6.   st      %g4, [%o0]
7.       add     %g3, 1, %g3
8.       add     %o0, 4, %o0
9.       cmp     %g3, 999
10.       ble     L
11.       add     %o1, 4, %o1
12.      retl
13.      nop

And guess what? We can still software 
pipeline this into 2 cycles per iteration:
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cycle     instruction
1.         ld    [%o1], %g2

   1.        add   %o1, 4, %o1
   2.        and   %g3, 1, %p1

3.         add(%p1)  %g3, %g2, %g4
3.         sub(~%p1) %g3, %g2, %g4
3.         ld    [%o1], %g2

   3.         add   %o1, 4, %o1
   3.         add   %g3, 1, %g3
   4.      L: st    %g4, [%o0]
   4.         add   %o0, 4, %o0
   4.         and   %g3, 1, %p1
   4.         cmp   %g3, 999

5.         add(%p1)  %g3, %g2, %g4
5.         sub(~%p1) %g3, %g2, %g4
5.         ld    [%o1], %g2

   5.         add   %o1, 4, %o1
   5.         ble   L
   5.         add   %g3, 1, %g3

We now do need to be able to issue 
four ALU operations per cycle 
(since we issue both the add and 
subtract in the same cycle).


