
445CS 701 Fall 2014 ©

Example
block1:
1. ld [a],Pr1
2. ld [b],Pr2
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]
5. cmp Pr3,0
6. be block3
block2:
7. mov 1,Pr4
8. st Pr4,[flag]
9. b block4
block3:
10. st 0,[flag]
block4:
11. ld [d],Pr5
12. ld [g],Pr6
13. sub Pr5,Pr6,Pr7
14. st Pr7,[f]

1 2

3

4 5

6
0,1

0,2 0,2

0,3

1,5 1,5

8 9
0,2 0,1

7
0,3

10
0,1

11 12

13
0,2

1,4 1,4

14
0,1

446CS 701 Fall 2014©

We�’ll schedule without speculation;
highest D values first, then highest CP
values.

block1:
1. ld [a],Pr1
2. ld [b],Pr2

1 2

3

4 5

6

0,1

0,2 0,2

0,3

1,5 1,5

8 9
0,2 0,1

7
0,3

10
0,1

11 12

13
0,2

1,4 1,4

14
0,1

12. ld [g],Pr6

447CS 701 Fall 2014 ©

Next, come Instructions 3 and 4.
block1:
1. ld [a],Pr1
2. ld [b],Pr2

3

4 5

6
0,1

0,2 0,2

0,3

8 9
0,2 0,1

7
0,3

10
0,1

11

13
0,2

1,4

14
0,1

12. ld [g],Pr6
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]

448CS 701 Fall 2014©

Now 11 can issue (D=1), followed by 5,
13, 6 and 14. Block B4 is now empty, so
B2 and B3 are scheduled.

There are no stalls. In fact, if we
equivalence Pr3 and Pr5, Instruction
11 can be removed.

block1:
1. ld [a],Pr1
2. ld [b],Pr2

 5

6
0,1

0,2

8 9
0,2 0,1

7
0,3

10
0,1

11

13
0,2

1,4

14
0,1

12. ld [g],Pr6
3. add Pr1,Pr2,Pr3
4. st Pr3,[d]

5. cmp Pr3,0
11. ld [d],Pr5

14. st Pr7,[f]
block2:
7. mov 1,Pr4
8. st Pr4,[flag]
9. b block4
block3:
10. st 0,[flag]
block4:

13. sub Pr5,Pr6,Pr7
6. be block3

449CS 701 Fall 2014 ©

Hardware Support for Global
Code Motion

We want to be aggressive in scheduling
loads, which incur high latencies when
a cache miss occurs.
In many cases, control and data
dependencies may force us to restrict
how far we may move a critical load.
Consider

p = Lookup(Id);
 ...
if (p != null)

print(p.a);
It may well be that the object returned
by Lookup is not in the L1 cache. Thus
we�’d like to schedule the load
generated by p.a as soon as possible;
ideally right after the lookup.
But moving the load above the p !=
null check is clearly unsafe.

450CS 701 Fall 2014©

A number of modern machine
architectures, including Intel�’s
Itanium, have proposed a speculative
load to allow freer code motion when
scheduling.
A speculative load,
ld.s [adr],%reg

acts like an ordinary load as long as
the load does not force an interrupt. If
it does, the interrupt is suppressed and
a special NaT (not a thing) bit is set in
the register (a hidden 65th bit). A NaT
bit can be propagated through
instructions before being tested.
In some cases (like our table lookup
example), a register containing a NaT
bit may simply not be used because
control doesn�’t reach its intended uses.
However a NaT bit need not indicate an
outright error. A load may force a TLB
(translation lookaside buffer) fault or a

451CS 701 Fall 2014 ©

page fault. These interrupts are
probably too costly to do speculatively,
but if we decide the loaded value is
really needed, we will want to allow
them.
A special check instruction, of the
form,
chk.s %reg,adr

checks whether %reg has its NaT bit
set. If it does, control passes to adr,
where user-supplied �“fixup�” code is
placed. This code can redo the load
non-speculatively, allowing necessary
interrupts to occur.

452CS 701 Fall 2014©

Hardware Support for Data
Speculation

In addition to supporting control
speculation (moving instructions
above conditional branches), it is
useful to have hardware support for
data speculation.
In data speculation, we may move a
load above a store if we believe the
chance of the load and store
conflicting is slim.
Consider a variant of our earlier
lookup example,

p = Lookup(Id);
 ...
q.a = init();
print(p.a);

453CS 701 Fall 2014 ©

We�’d like to move the load implied by
p.a above the assignment to q.a. This
allows p to miss in the L1 cache, using
the execution of init() to cover the
miss latency.
But, we need to be sure that q and p
don�’t reference the same object and
that init() doesn�’t indirectly change
p.a. Both possibilities may be remote,
but proving non-interference may be
difficult.
The Intel Itanium provides a special
�“advanced load�” that supports this sort
of load motion.
The instruction
ld.a [adr],%reg

loads the contents of memory location
adr into %reg. It also stores adr into

454CS 701 Fall 2014©

special ALAT (Advanced Load Address
Table) hardware.
When a store to address X occurs, an
ALAT entry corresponding to address
X is removed (if one exists).
When we wish to use the contents of
%reg, we execute a
ld.c [adr],%reg

instruction (a checked load).
If an ALAT entry for adr is present,
this instruction does nothing; %reg
contains the correct value. If there is no
corresponding ALAT entry, the ld.c
simply acts like an ordinary load.
(Two versions of ld.c exist; one
preserves an ALAT entry while the
other purges it).

455CS 701 Fall 2014 ©

And yes, a speculative load (ld.s) and
an advanced load (ld.a) may be
combined to form a speculative
advanced load (ld.sa).

456CS 701 Fall 2014©

Speculative Multi-threaded
Processors
The problem of moving a load above a
store that may conflict with it also
appears in multi-threaded processors.
How do we know that two threads
don�’t interfere with one another by
writing into locations both use?
Proofs of non-interference can be
difficult or impossible. Rather than
severely restrict what independent
threads can do, researchers have
proposed speculative multi-threaded
processors.
In such processors, one thread is
primary, while all other threads are
secondary and speculative. Using
hardware tables to remember locations
read and written, a secondary thread

457CS 701 Fall 2014 ©

can commit (make its updates
permanent) only if it hasn�’t read
locations the primary thread later
wrote and hasn�’t written locations the
primary thread read or wrote. Access
conflicts are automatically detected,
and secondary threads are
automatically restarted as necessary to
preserve the illusion of serial memory
accesses.

458CS 701 Fall 2014©

Software Pipelining
Often loop bodies are too small to allow
effective code scheduling. But loop
bodies, being �“hot spots,�” are exactly
where scheduling is most important.
Consider

void f (int a[],int last) {
 for (p=&a[0];p!=&a[last];p++)
 (*p)++;
}

The body of the loop might be:
L: ld [%g3],%g2
 nop
 add %g2,1,%g2
 st %g2,[%g3]
 add %g3,4,%g3
 cmp %g3,%g4
 bne L
 nop

459CS 701 Fall 2014 ©

Scheduling this loop body in isolation is
ineffective�—each instruction depends
upon its immediate predecessor.
So we have a loop body that takes 8
cycles to execute 6 �“core�” instructions.

We could unroll the loop body, but for
how many iterations? What if the loop
ends in the �“middle�” of an expanded
loop body? Will extra registers be a
problem?

460CS 701 Fall 2014©

In this case software pipelining offers a
nice solution. We expand the loop body
symbolically, intermixing instructions
from several iterations. Instructions
can overlap, increasing parallelism and
forming a �“tighter�” loop body:

 ld [%g3],%g2
 nop
 add %g2,1,%g2
L: st %g2,[%g3]
 add %g3,4,%g3
 ld [%g3],%g2
 cmp %g3,%g4
 bne L
 add %g2,1,%g2

Now the loop body is ideal�—exactly 6
instructions. Also, no extra registers
are needed!
But, we do �“overshoot�” the end of the
loop a bit, loading one element past the
exit point. (How serious is this?)

461CS 701 Fall 2014 ©

Key Insight of Software
Pipelining
Software pipelining exploits the fact
that a loop of the form {A B C}n, where
A, B and C are individual instructions,
and n is the iteration count, is
equivalent to A {B C A}n-1 B C and is
also equivalent to A B {C A B}n-1 C.
Mixing instructions from several
iterations may increase the
effectiveness of code scheduling, and
may perhaps allow for more parallel
execution.

462CS 701 Fall 2014©

Software Pipelining is Hard
In fact, it is NP-complete:

Hsu and Davidson, �“Highly
concurrent scalar processing,�” 13th
ISCA (1986).

463CS 701 Fall 2014 ©

The Iteration Interval
We seek to initiate the next iteration
of a loop as soon as possible,
squeezing each iteration of the loop
body into as few machine cycles as
possible.
The general form of a software
pipelined loop is:

Prologue Code

Kernel Code

Epilogue Code

464CS 701 Fall 2014©

The prologue code �“sets up�” the
main loop, and the epilogue code
�“cleans up�” after loop termination.
Neither the prolog nor the epilogue
need be optimized, since they
execute only once.
Optimizing the kernel is key in
software pipelining. The kernel�’s
execution time (in cycles) is called
the initiation interval (II); it
measures how quickly the next
iteration of a loop can start.
We want the smallest possible
initiation interval. Determining the
smallest viable II is itself NP-
complete. Because of parallel issue
and execution in superscalar and
multiple issue processors, very small
II values are possible (even less than
1!)

465CS 701 Fall 2014 ©

Factors that Limit the Size of
the Initiation Interval

We want the initiation interval to be
as small as possible. Two factors
limit how small the II can become:
• Resource Constraints
• Dependency Constraints

466CS 701 Fall 2014©

Resource Constraints
A small II normally means that we
are doing steps of several iterations
simultaneously. The number of
registers and functional units (that
execute instructions) can become
limiting factors of the size of II.
For example, if a loop body contains
4 floating point operations, and our
processor can issue and execute no
more than 2 floating point
operations per cycle, then the loop�’s
II can�’t be less than 2.

467CS 701 Fall 2014 ©

Dependency Constraints
A loop body can often contain a loop-
carried dependence. This means one
iteration of a loop depends on values
computed in an earlier iteration. For
example, in

void f (int a[]) {
 for (i=1;i<1000;i++)
 a[i]=(a[i-1]+a[i])/2;
}

there is a loop carried dependence
from the use of a[i-1] to the
computation of a[i] in the previous
iteration. This means the computation
of a[i] can�’t begin until the
computation of a[i-1] is completed.
Let�’s look at the code that might be
generated for this loop:

468CS 701 Fall 2014©

f:
 mov %o0, %o2 !a in %o2
 mov 1, %o1 !i=1 in %o1
L:
 sll %o1, 2, %o0 !i*4 in %o0
 add %o0, %o2, %g2 !&a[i] in %g2
* ld [%g2-4], %g2 !a[i-1] in %g2
 ld [%o2+%o0], %g3 !a[i] in %g3
* add %g2, %g3, %g2 !a[i-1]+a[i]
* srl %g2, 31, %g3 !s=0 or 1=sign
* add %g2, %g3, %g2 !a[i-1]+a[i]+s
* sra %g2, 1, %g2 !a[i-1]+a[i]/2
 add %o1, 1, %o1 !i++
 cmp %o1, 999
 ble L
* st %g2, [%o2+%o0] !store a[i]
 retl
 nop

The 6 marked instructions form a
cyclic dependency chain from a use of
a[i-1] to its computation (as a[i]) in
the previous cycle. This cycle means that
the loop�’s II can never be less than 6.

469CS 701 Fall 2014 ©

Modulo Scheduling
There are many approaches to
software pipelining. One of the
simplest, and best known, is modulo
scheduling. Modulo scheduling
builds upon the postpass basic block
schedulers we�’ve already studied.
First, we estimate the II of the loop
we will create. How?
We can compute the minimum II
based on resource considerations
(IIres) and the minimum II based on
cyclic loop-carried dependencies
(IIdep). Then max(IIres,IIdep) is a
reasonable estimate of the best
possible II. We�’ll try to build a loop
with a kernel size of II. If this fails,
we�’ll try II+1, II+2, etc.

470CS 701 Fall 2014©

In modulo scheduling we�’ll schedule
instructions one by one, using the
dependency dag and whatever
heuristic we prefer to choose among
multiple roots.
Now though, if we place an
instruction at cycle c (many
independent instructions may
execute in the same cycle), then
we�’ll place additional copies of the
instruction at cycle c+II, c+2*II, etc.
Placement must respect dependency
constraints and resource limits at all
positions. We consider placements
only until a kernel (of size II) forms.
The kernel must begin before cycle
s-1, where s is the size of the loop
body (in instructions). The loop�’s
conditional branch is placed after
the kernel is formed.

471CS 701 Fall 2014 ©

If we can�’t form a kernel of size II
(because of dependency or resource
conflicts), we increase II by 1 and
try again. At worst, we get a kernel
equal in size to the original loop
body, which guarantees that the
modulo scheduler eventually
terminates.
Depending on how many iterations
are intermixed in the kernel, the
loop termination condition may
need to be adjusted (since the initial
and final iterations may appear as
part of the loop prologue and
epilogue).

472CS 701 Fall 2014©

Example
Consider the following simple
function which adds an array index
to each element of an array and
copies the results into a second
array:
void f (int a[],int b[]) {
 t1 = &a[0];
 t2 = &b[0];
 for (i=0;i<1000;i++,t1++,t2++)
 *t1 = *t2 + i;
}

The code for f (compiled as a leaf
procedure) is:

473CS 701 Fall 2014 ©

1. f: mov 0, %g3
2. L: ld [%o1], %g2
3. add %g3, %g2, %g4
4. st %g4, [%o0]
5. add %g3, 1, %g3
6. add %o0, 4, %o0
7. cmp %g3, 999
8. ble L
9. add %o1, 4, %o1
10. retl
11. nop

2

3 9

4 5

6 7

Dashed arcs are
anti dependencies.

474CS 701 Fall 2014©

We�’ll software pipeline the loop
body, excluding the conditional
branch (which is placed after the
loop kernel is formed).
This loop body contains 2 loads/
stores, 5 arithmetic and logical
operations (including the compare)
and one conditional branch.
Let�’s assume the processor we are
compiling for has 1 load/store unit,
3 arithmetic/logic units, and 1
branch unit. That means the
processor can (ideally) issue and
execute simultaneously 1 load or
store, 3 arithmetic and logic
instructions, and 1 branch. Thus its
maximum issue width is 5. (Current
superscalars have roughly this
capability.)

475CS 701 Fall 2014 ©

Considering resource requirements,
we will need at least two cycles to
process the contents of the loop
body. There are no loop-carried
dependencies.
Thus we will estimate this loop�’s
best possible Initiation Interval to
be 2.
Since the only instruction that can
stall is the root of the dependency
dag, we�’ll schedule using estimated
critical path length, which is just the
node�’s height in the tree. Hence
we�’ll schedule the nodes in the
order: 2,3,4,5,6,7,9.
We�’ll schedule all instructions in a
legal execution order (respecting
dependencies), and we�’ll try to choose
as many instructions as possible to
execute in the same cycle.

476CS 701 Fall 2014©

Starting with the root, instruction 2,
we schedule it at cycles 1, 3 (=1+II),
5 (=1+2*II):
cycle instruction
1. ld [%o1], %g2
2.
3. ld [%o1], %g2
4.
5. ld [%o1], %g2

No conflicts so far, since each of the
loads starts an independent
iteration.

477CS 701 Fall 2014 ©

We�’ll schedule instruction 3 next. It
must be placed at cycles 3, 5 and 7
since it uses the result of the load.
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2
4.
5. add %g3, %g2, %g4
5. ld [%o1], %g2
6.
7. add %g3, %g2, %g4

Note that in cycles 3 and 5 we use
the current value of %g2 and initiate
a load into %g2.

478CS 701 Fall 2014©

Instruction 4 is next. It uses the
result of the add we just scheduled,
so it is placed at cycles 4 and 6.
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 4. st %g4, [%o0]
5. add %g3, %g2, %g4
5. ld [%o1], %g2

 6. st %g4, [%o0]
7. add %g3, %g2, %g4

479CS 701 Fall 2014 ©

Instruction 5 is next. It is anti
dependent on instruction 3, so we
can place it in the same cycles that 3
uses (3, 5 and 7).
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %g3, 1, %g3
 4. st %g4, [%o0]

5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %g3, 1, %g3
 6. st %g4, [%o0]

7. add %g3, %g2, %g4
 7. add %g3, 1, %g3

480CS 701 Fall 2014©

Instruction 6 is next. It is anti
dependent on instruction 4, so we
can place it in the same cycles that 4
uses (4 and 6).
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %g3, 1, %g3
 4. st %g4, [%o0]
 4. add %o0, 4, %o0

5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %g3, 1, %g3
 6. st %g4, [%o0]
 6. add %o0, 4, %o0

7. add %g3, %g2, %g4
 7. add %g3, 1, %g3

481CS 701 Fall 2014 ©

Next we place instruction 7. It uses
the result of instruction 5 (%g3), so it
is placed in the cycles following
instruction 5 (4 and 6).
cycle instruction
1. ld [%o1], %g2
2.
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %g3, 1, %g3
 4. st %g4, [%o0]
 4. add %o0, 4, %o0
 4. cmp %g3, 999

5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %g3, 1, %g3
 6. st %g4, [%o0]
 6. add %o0, 4, %o0
 6. cmp %g3, 999

7. add %g3, %g2, %g4
 7. add %g3, 1, %g3

482CS 701 Fall 2014©

Finally we place instruction 9. It is
anti dependent on instruction 2 so it
is placed in the same cycles as
instruction 2 (1, 3 and 5).
cycle instruction
1. ld [%o1], %g2

 1. add %o1, 4, %o1
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %o1, 4, %o1
 3. add %g3, 1, %g3
 4. st %g4, [%o0]
 4. add %o0, 4, %o0
 4. cmp %g3, 999

5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %o1, 4, %o1
 5. add %g3, 1, %g3
 6. st %g4, [%o0]
 6. add %o0, 4, %o0
 6. cmp %g3, 999

7. add %g3, %g2, %g4
 7. add %g3, 1, %g3

483CS 701 Fall 2014 ©

We look for a 2 cycles kernel that
contains all 7 instructions of the
loop body that we have scheduled.
We also want a kernel that sets the
condition code (via the cmp) during
its first cycle so that it can be tested
during its second (and final) cycle.
Cycles 4 and 5 meet these criteria,
and will form our kernel.
We place the conditional branch
just before the last instruction in
cycle 5 (to give the conditional
branch a useful instruction for its
delay slot).

484CS 701 Fall 2014©

We now have:
cycle instruction
1. ld [%o1], %g2

 1. add %o1, 4, %o1
3. add %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %o1, 4, %o1
 3. add %g3, 1, %g3
 4. L: st %g4, [%o0]
 4. add %o0, 4, %o0
 4. cmp %g3, 999

5. add %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %o1, 4, %o1
 5. ble L
 5. add %g3, 1, %g3
 6. st %g4, [%o0]
 6. add %o0, 4, %o0
 6. cmp %g3, 999

7. add %g3, %g2, %g4
 7. add %g3, 1, %g3

485CS 701 Fall 2014 ©

A couple of final issues must be
dealt with:
• Does the iteration count need to be

changed?
In this case no, since the final valid
value of i, 999, is used to compute
%g4 in cycle 5, before the loop exits.

• What instructions do we keep as the
loop�’s epilogue?
None! Instructions past the kernel
aren�’t needed since they are part of
future iterations (past
i==999)which aren�’t needed or
wanted.

• Note that b[1000] and b[1001] are
�“touched�” even though they are
never used. This is probably OK as
long as arrays aren�’t placed at the
very end of a page or segment.

486CS 701 Fall 2014©

Our final loop is:
cycle instruction
1. ld [%o1], %g2 !N0

 1. add %o1, 4, %o1 !N0
3. add %g3, %g2, %g4 !N0
3. ld [%o1], %g2 !N1

 3. add %o1, 4, %o1 !N1
 3. add %g3, 1, %g3 !N0
 4. L: st %g4, [%o0] !N0
 4. add %o0, 4, %o0 !N0
 4. cmp %g3, 999 !N0

5. add %g3, %g2, %g4 !N1
5. ld [%o1], %g2 !N2

 5. add %o1, 4, %o1 !N2
 5. ble L !N0
 5. add %g3, 1, %g3 !N1

This is very efficient code�—we use the
full parallelism of the processor,
executing 5 instructions in cycle 5 and
8 instructions in just 2 cycles. All
resource limitations are respected.

487CS 701 Fall 2014 ©

False Dependencies & Loop
Unrolling

A limiting factor in how �“tightly�”
we can software pipeline a loop is
reuse of registers and the false
dependencies reuse induces.
Consider the following simple
function that copies array elements:
void f (int a[],int b[], int lim) {
 for (i=0;i<lim;i++)
 a[i]=b[i];
}

The loop that is generated takes 3
cycles:
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
3. st %g2, [%g3+%o0]
3. bne L

 3. add %g3, 4, %g3

488CS 701 Fall 2014©

We�’d like to tighten the iteration
interval to 2 or less. One cycle is
unlikely, since doing a load and a
store in the same cycle is
problematic (due to a possible
dependence through memory).
If we try to use modulo scheduling,
we can�’t put a second copy of the
load in cycle 2 because it would
overwrite the contents of the first
load. A load in cycle 3 will clash
with the store.
The solution is to unroll the loop
into two copies, using different
registers to hold the contents of the
load and the current offset into the
arrays.
The use of a �“count down�” register
to test for loop termination is

489CS 701 Fall 2014 ©

helpful, since it allows an easy exit
from the middle of the loop.
With the renaming of the registers
used in the two expanded iterations,
scheduling to �“tighten�” the loop is
effective.
After expansion we have:
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
3. st %g2, [%g3+%o0]
3. beq L2

 3. add %g3, 4, %g4
4. ld [%g4+%o1], %g5

 4. addcc %o2, -1, %o2
6. st %g5, [%g4+%o0]
6. bne L

 6. add %g4, 4, %g3
 L2:

We still have 3 cycles per iteration,
because we haven�’t scheduled yet.

490CS 701 Fall 2014©

Now we can move the increment of
%g3 (into %g4) above other uses of
%g3. Moreover, we can move the
load into %g5 above the store from
%g2 (if the load and store are independent):
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
 1. add %g3, 4, %g4

2. ld [%g4+%o1], %g5
3. st %g2, [%g3+%o0]
3. beq L2
3. addcc %o2, -1, %o2
4. st %g5, [%g4+%o0]
4. bne L

 4. add %g4, 4, %g3
 L2:

We can normally test whether
%g4+%o1 and %g3+%o0 can be equal at
compile-time, by looking at the actual
array parameters.
(Can &a[0] == &b[1]?)

491CS 701 Fall 2014 ©

Predication
We have seen that conditional
execution complicates code
scheduling by creating small basic
blocks and limiting code movement
across conditional branches.
However, the problems conditionals
introduce are even more
fundamental.
Consider the following code
fragment:
if (a<b)

 a++;
 else b++;
 if (c<d)
 c++;
 else d++;

492CS 701 Fall 2014©

The two conditionals are completely
independent, but they can�’t be
evaluated concurrently in a single
thread.
Why?
Look at the Sparc code generated:
 cmp %o0, %g1
 bge,a L1
 add %g1, 1, %g1
 add %o0, 1, %o0
L1:
 cmp %o5, %o4
 bge,a L2
 add %o4, 1, %o4
 add %o5, 1, %o5
L2:

493CS 701 Fall 2014 ©

The two compares can�’t be executed
concurrently (because there is only
one condition code register).
We can�’t do two conditional
branches to two different places
simultaneously.
And we must select the correct
combination of two of the four adds
to execute.
We could restructure this code into
a four-way switch, but this far
beyond what a code scheduler is
expected to do.
The problem is that while values can
easily be computed in parallel, flow
of control can�’t.
The solution?

494CS 701 Fall 2014©

Convert flow of control
computations into value
computations.
Our first step is to generalize a
single condition code register into a
set of predicate registers. The
Itanium, for example, includes 64
predicate registers that hold a single
boolean value. For our purposes,
let�’s denote a predicate register as
%p0 to %p63.
Predicate registers are set by doing
compare or test instructions.
Thus

cmpeq %o0, %g1,%p1
sets %p1 true if the two operands are
equal and false otherwise.

495CS 701 Fall 2014 ©

The real power of predication is that
most instructions can be controlled
(predicated) by a predicate register.
Thus
add(%p1) %r1,%r2,%r3

does an ordinary add but only
commits the result (into %r3) if %p1
is true.
A negated form is often included
too:
add(~%p1) %r1,%r2,%r3

In this form, the add is completed
only if %p1 is false.
Using predication, we can eliminate
many conditional branches. Now
both legs of a conditional can be
evaluated, with only one leg allowed
to commit.
Returning to our earlier example,

496CS 701 Fall 2014©

if (a<b)
 a++;
 else b++;
 if (c<d)
 c++;
 else d++;

we now generate
 1. cmplt %o0, %g1, %p1
 1. cmplt %o5, %o4, %p2
 2. add(%p1) %g1, 1, %g1
 2. add(~p1) %o0, 1, %o0
 2. add(%p2) %o4, 1, %o4
 2. add(%~p2) %o5, 1, %o5

This entire code fragment can now
execute in two cycles, since the two
compares and four adds are
independent of each other.

497CS 701 Fall 2014 ©

Predication Enhances
Software Pipelining

Conditionals in a loop body greatly
complicate software pipelining since
we usually won�’t know exactly what
instructions future iterations will
execute.
Consider this minor variant of our
earlier example:

void f (int a[],int b[]) {
 t1 = &a[0];
 t2 = &b[0];
 for (i=0;i<1000;i++,t1++,t2++)
 if (i%2)

 *t1 = *t2 + i;
 else *t1 = *t2 - i;

}

498CS 701 Fall 2014©

1. f: mov 0, %g3
2. L: andcc %g3, 1, %g0
3. bne L1
4. ld [%o1], %g2
5. b L2
6. sub %g3, %g2, %g4
7. L1: add %g3, %g2, %g4
8. L2: st %g4, [%o0]
9. add %g3, 1, %g3
10. add %o0, 4, %o0
11. cmp %g3, 999
12. ble L
13. add %o1, 4, %o1
14. retl
15. nop

We�’ve added an andcc (to do the
i%2 computation) as well as a
conditional and unconditional
branch. Each iteration will do an
add or a subtract.

499CS 701 Fall 2014 ©

A two cycle per iteration schedule
seems most unlikely.
But predication helps immensely!
The generated code becomes much
cleaner:

1. f: mov 0, %g3
2. L: and %g3, 1, %p1
3. ld [%o1], %g2
4. sub(~%p1) %g3, %g2, %g4
5. add(%p1) %g3, %g2, %g4
6. st %g4, [%o0]
7. add %g3, 1, %g3
8. add %o0, 4, %o0
9. cmp %g3, 999
10. ble L
11. add %o1, 4, %o1
12. retl
13. nop

And guess what? We can still software
pipeline this into 2 cycles per iteration:

500CS 701 Fall 2014©

cycle instruction
1. ld [%o1], %g2

 1. add %o1, 4, %o1
 2. and %g3, 1, %p1

3. add(%p1) %g3, %g2, %g4
3. sub(~%p1) %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %o1, 4, %o1
 3. add %g3, 1, %g3
 4. L: st %g4, [%o0]
 4. add %o0, 4, %o0
 4. and %g3, 1, %p1
 4. cmp %g3, 999

5. add(%p1) %g3, %g2, %g4
5. sub(~%p1) %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %o1, 4, %o1
 5. ble L
 5. add %g3, 1, %g3

We now do need to be able to issue
four ALU operations per cycle
(since we issue both the add and
subtract in the same cycle).

