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A couple of final issues must be 
dealt with:
• Does the iteration count need to be 

changed?
In this case no, since the final valid 
value of i, 999, is used to compute 
%g4 in cycle 5, before the loop exits.

• What instructions do we keep as the 
loop�’s epilogue?
None!  Instructions past the kernel 
aren�’t needed since they are part of 
future iterations (past 
i==999)which aren�’t needed or 
wanted.

• Note that b[1000] and b[1001] are 
�“touched�” even though they are 
never used. This is probably OK as 
long as arrays aren�’t placed at the 
very end of a page or segment.
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Our final loop is:
cycle       instruction
1.          ld    [%o1], %g2 !N0

   1.          add   %o1, 4, %o1 !N0
3.          add   %g3, %g2, %g4 !N0
3.          ld    [%o1], %g2 !N1

   3.          add   %o1, 4, %o1 !N1
   3.          add   %g3, 1, %g3 !N0
   4.      L:  st    %g4, [%o0] !N0
   4.          add   %o0, 4, %o0 !N0
   4.          cmp   %g3, 999 !N0

5.          add   %g3, %g2, %g4 !N1
5.          ld    [%o1], %g2 !N2

   5.          add   %o1, 4, %o1 !N2
   5.          ble   L !N0
   5.          add   %g3, 1, %g3 !N1

This is very efficient code�—we use the 
full parallelism of the processor, 
executing 5 instructions in cycle 5 and 
8 instructions in just 2 cycles. All 
resource limitations are respected.
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False Dependencies & Loop 
Unrolling

A limiting factor in how �“tightly�” 
we can software pipeline a loop is 
reuse of registers and the false 
dependencies reuse induces.
Consider the following simple 
function that copies array elements:
void f (int a[],int b[], int lim) {
  for (i=0;i<lim;i++)
     a[i]=b[i];
}

The loop that is generated takes 3 
cycles:
cycle       instruction
1.     L:    ld    [%g3+%o1], %g2

   1.           addcc %o2, -1, %o2
3.           st    %g2, [%g3+%o0]
3.           bne   L

   3.           add   %g3, 4, %g3
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We�’d like to tighten the iteration 
interval to 2 or less. One cycle is 
unlikely, since doing a load and a 
store in the same cycle is 
problematic (due to a possible 
dependence through memory).
If we try to use modulo scheduling, 
we can�’t put a second copy of the 
load in cycle 2 because it would 
overwrite the contents of the first 
load. A load in cycle 3 will clash 
with the store.
The solution is to unroll the loop 
into two copies, using different 
registers to hold the contents of the 
load and the current offset into the 
arrays. 
The use of a �“count down�” register 
to test for loop termination is 
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helpful, since it allows an easy exit 
from the middle of the loop.
With the renaming of the registers 
used in the two expanded iterations, 
scheduling to �“tighten�” the loop is 
effective.
After expansion we have:
cycle       instruction
1.     L:    ld    [%g3+%o1], %g2

   1.           addcc %o2, -1, %o2
3.           st    %g2, [%g3+%o0]
3.           beq   L2

   3.           add   %g3, 4, %g4
4.           ld    [%g4+%o1], %g5

   4.           addcc %o2, -1, %o2
6.           st    %g5, [%g4+%o0]
6.           bne   L

   6.           add   %g4, 4, %g3
          L2:

We still have 3 cycles per iteration, 
because we haven�’t scheduled yet.
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Now we can move the increment of 
%g3 (into %g4) above other uses of 
%g3. Moreover, we can move the 
load into %g5 above the store from 
%g2 (if the load and store are independent):
cycle       instruction
1.     L:    ld    [%g3+%o1], %g2

   1.           addcc %o2, -1, %o2
   1.           add   %g3, 4, %g4

2.           ld    [%g4+%o1], %g5
3.           st    %g2, [%g3+%o0]
3.           beq   L2
3.           addcc %o2, -1, %o2
4.           st    %g5, [%g4+%o0]
4.           bne   L

   4.           add   %g4, 4, %g3
         L2: 

We can normally test whether 
%g4+%o1 and %g3+%o0 can be equal at 
compile-time, by looking at the actual 
array parameters.
(Can &a[0] == &b[1]?)
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Predication
We have seen that conditional 
execution complicates code 
scheduling by creating small basic 
blocks and limiting code movement 
across conditional branches.
However, the problems conditionals 
introduce are even more 
fundamental.
Consider the following code 
fragment:
if (a<b)

      a++;
 else b++;
 if (c<d)
      c++;
 else d++;
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The two conditionals are completely 
independent, but they can�’t be 
evaluated concurrently in a single 
thread.
Why?
Look at the Sparc code generated:
   cmp     %o0, %g1
  bge,a   L1
  add     %g1, 1, %g1
  add     %o0, 1, %o0
L1:
  cmp     %o5, %o4
  bge,a   L2
  add     %o4, 1, %o4
  add     %o5, 1, %o5
L2:



493CS 701  Fall 2014 ©

The two compares can�’t be executed 
concurrently (because there is only 
one condition code register).
We can�’t do two conditional 
branches to two different places 
simultaneously.
And we must select the correct 
combination of two of the four adds 
to execute.
We could restructure this code into 
a four-way switch, but this far 
beyond what a code scheduler is 
expected to do.
The problem is that while values can 
easily be computed in parallel, flow 
of control can�’t.
The solution?
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Convert flow of control 
computations into value 
computations.
Our first step is to generalize a 
single condition code register into a 
set of predicate registers. The 
Itanium, for example, includes 64 
predicate registers that hold a single 
boolean value. For our purposes, 
let�’s denote a predicate register as 
%p0 to %p63.
Predicate registers are set by doing 
compare or test instructions.
Thus

cmpeq  %o0, %g1,%p1
sets %p1 true if the two operands are 
equal and false otherwise.
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The real power of predication is that 
most instructions can be controlled 
(predicated) by a predicate register.
Thus
add(%p1) %r1,%r2,%r3

does an ordinary add but only 
commits the result (into %r3) if %p1 
is true.
A negated form is often included 
too:
add(~%p1) %r1,%r2,%r3

In this form, the add is completed 
only if %p1 is false.
Using predication, we can eliminate 
many conditional branches. Now 
both legs of a conditional can be 
evaluated, with only one leg allowed 
to commit.
Returning to our earlier example,
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if (a<b)
      a++;
 else b++;
 if (c<d)
      c++;
 else d++;

we now generate
  1. cmplt     %o0, %g1, %p1
 1. cmplt      %o5, %o4, %p2
  2. add(%p1)   %g1, 1, %g1
  2. add(~p1)   %o0, 1, %o0
  2. add(%p2)   %o4, 1, %o4
  2. add(%~p2)  %o5, 1, %o5

This entire code fragment can now 
execute in two cycles, since the two 
compares and four adds are 
independent of each other.
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Predication Enhances 
Software Pipelining

Conditionals in a loop body greatly 
complicate software pipelining since 
we usually won�’t know exactly what 
instructions future iterations will 
execute.
Consider this minor variant of our 
earlier example:

void f (int a[],int b[]) {
  t1 = &a[0];
  t2 = &b[0];
  for (i=0;i<1000;i++,t1++,t2++) 
     if (i%2)

  *t1 = *t2 + i;
     else  *t1 = *t2 - i;

}
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1.   f:  mov     0, %g3
2.   L:  andcc   %g3, 1, %g0
3.       bne     L1
4.       ld      [%o1], %g2
5.       b       L2
6.       sub     %g3, %g2, %g4
7.  L1:  add     %g3, %g2, %g4
8.  L2:  st      %g4, [%o0]
9.       add     %g3, 1, %g3
10.       add     %o0, 4, %o0
11.       cmp     %g3, 999
12.       ble     L
13.       add     %o1, 4, %o1
14.      retl
15.      nop

We�’ve added an andcc (to do the 
i%2 computation) as well as a 
conditional and unconditional 
branch. Each iteration will do an 
add or a subtract.
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A two cycle per iteration schedule 
seems most unlikely.
But predication helps immensely! 
The generated code becomes much 
cleaner:

1.   f:  mov     0, %g3
2.   L:  and     %g3, 1, %p1
3.       ld      [%o1], %g2
4.       sub(~%p1) %g3, %g2, %g4
5.  add(%p1) %g3, %g2, %g4
6.   st      %g4, [%o0]
7.       add     %g3, 1, %g3
8.       add     %o0, 4, %o0
9.       cmp     %g3, 999
10.       ble     L
11.       add     %o1, 4, %o1
12.      retl
13.      nop

And guess what? We can still software 
pipeline this into 2 cycles per iteration:
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cycle     instruction
1.         ld    [%o1], %g2

   1.        add   %o1, 4, %o1
   2.        and   %g3, 1, %p1

3.         add(%p1)  %g3, %g2, %g4
3.         sub(~%p1) %g3, %g2, %g4
3.         ld    [%o1], %g2

   3.         add   %o1, 4, %o1
   3.         add   %g3, 1, %g3
   4.      L: st    %g4, [%o0]
   4.         add   %o0, 4, %o0
   4.         and   %g3, 1, %p1
   4.         cmp   %g3, 999

5.         add(%p1)  %g3, %g2, %g4
5.         sub(~%p1) %g3, %g2, %g4
5.         ld    [%o1], %g2

   5.         add   %o1, 4, %o1
   5.         ble   L
   5.         add   %g3, 1, %g3

We now do need to be able to issue 
four ALU operations per cycle 
(since we issue both the add and 
subtract in the same cycle).
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Reading Assignment
• Read Section 13.5 (Automatic 

Instruction Selection) of Crafting a 
Compiler.
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Automatic Instruction 
Selection

Besides register allocation and code 
scheduling, a code generator must 
also do Instruction Selection.
For CISC (Complex Instruction Set 
Computer) Architectures, like the 
Intel x86, DEC Vax, and many 
special purpose processors (like 
Digital Signal Processors), 
instruction selection is often 
challenging because so many choices 
exist.
In the Vax, for example, one, two 
and three address instructions exist. 
Each address may be a register, 
memory location (with or without 
indexing), or an immediate 
operand.
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For RISC (Reduced Instruction Set 
Computer) Processors, instruction 
formats and addressing modes are 
far more limited.
Still, it is necessary to handle 
immediate operands, commutative 
operands and special case null 
operands (add of 0 or multiply of 1).

Moreover, automatic instruction 
selection supports automatic 
retargeting of a compiler to a new or 
extended instruction set.

504CS 701  Fall 2014©

Tree-Structured Intermediate 
Representations

For purposes of automatic code 
generation, it is convenient to 
translate a source program into a 
Low-level, Tree-Structured IR.
This representation exposes 
translation details (how locals are 
accessed, how conditionals are 
translated, etc.) without assuming a 
particular instruction set.

In a low-level, tree-structured IR, 
leaves are registers or bit-patterns 
and internal nodes are machine-
level primitives, like load, store, 
add, etc.
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Example
Let�’s look at how
 a = b - 1;
is represented, where a is a global 
integer variable and b is a local 
(frame allocated) integer variable. 

=

aadr -

* IntLiteral1

+

%fp boffset
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Representation of Instructions
Individual instructions can be 
represented as trees, rooted by the 
operation they implement.
For example:

*

Adr
Reg

This is an 
instruction that 
loads a register 
with the value at 
an absolute 
address.

Reg
+

Reg Reg
This is an instruction that adds the 
contents of two registers and stores the 
sum into a third register.
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Using the above pair of instruction 
definitions, we can repeatedly 
match instructions in the following 
program IR:

+

+ *

* *
aadr badr

cadr

+

+ *

*
badr

cadrReg

+ *
cadrReg

+

Reg

*
cadr

+

Reg

+

Reg Reg
Reg
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Each match of an instruction 
pattern can have the side-effect of 
generating an instruction:
  ld   [a],%R1
  ld   [b],%R2
  add  %R1,%R2,%R3
  ld   [c],%R4
  add  %R3,%R4,%R5   

Registers can be allocated on-the-fly 
as Instructions are generated or 
instructions can be generated using 
pseudo-registers, with a subsequent 
register allocation phase.

Using this view of instruction 
selection, choosing instructions 
involves finding a cover for an IR 
tree using Instruction Patterns.
Any cover is a valid translation.
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Tree Parsing vs. 
String Parsing

This process of selecting 
instructions by matching 
instruction patterns is very similar 
to how strings are parsed using 
Context-free Grammars.
We repeatedly identify a sub-tree 
that corresponds to an instruction, 
and simplify the IR-tree by 
replacing the instruction sub-tree 
with a nonterminal symbol. The 
process is repeated until the IR-tree 
is reduced to a single nonterminal.
The theory of reducing an IR-tree 
using rewrite rules has been studied 
as part of BURS (Bottom-Up 
Rewrite Systems) Theory by 
Pelegri-Llopart and Graham.
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Automatic Instruction 
Selection Tools

Just as tools like Yacc and Bison 
automatically generate a string 
parser from a specification of a 
Context-free Grammar, there exist 
tools that will automatically 
generate a tree-parser from a 
specification of tree productions.

Two such tools are BURG (Bottom 
Up Rewrite Generator) and IBURG 
(Interpreted BURG). Both 
automatically generate parsers for 
tree grammars using BURS theory.
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Least-Cost Tree Parsing
BURG (and IBURG) guarantee to 
find a cover for an input tree (if one 
exists).
But tree grammars are usually very 
ambiguous.
Why?�—Because there is usually 
more than one code sequence that 
can correctly implement a given IR-
tree.
To deal with ambiguity, BURG and 
IBURG allow each instruction 
pattern (tree production) to have a 
cost.
This cost is typically the size or 
execution time for the 
corresponding target-machine 
instructions.

512CS 701  Fall 2014©

Using costs, BURG (and IBURG) 
not only guarantee to find a cover, 
but also a least-cost cover.

This means that when a generated 
tree-parser is used to cover (and 
thereby translate) an IR-Tree, the 
best possible code sequence is 
guaranteed.

If more than one least-cost cover 
exists, an arbitrary choice is made.
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Using BURG to Specify 
Instruction Selection

We�’ll need a tree grammar to 
specify possible partial covers of a 
tree.
For simplicity, BURG requires that 
all tree productions be of the form

A  b       
 (where b is a single terminal 
symbol)
            or
A  Op(B,C, ...)
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  (where Op is a terminal that is a   
subtree root and B,C, ... are non-
terminals)

All tree grammars can be put into 
this form by adding new 
nonterminals and productions as 
needed.

We must specify terminal symbols 
(leaves and operators in the IR-
Tree) and nonterminals that are 
used in tree productions.

     

  

A  Op(B,C, ...) 
denotes

Op

B  C   ...
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Example
A subset of a SPARC instruction 
selector.

Terminals
Leaf Nodes
    int32 (32 bit integer)
    s13 (13 bit signed integer)
    r (0-31, a register name)

Operator Nodes
    * (unary indirection)
    - (binary minus)
    + (binary addition)
    = (binary assignment)
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Nonterminals
 UInt (32 bit unsigned 
integer)
 Reg (Loaded register value)
 Imm (Immediate operand)
 Adr (Address expression)
 Void (Null value)
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Productions

Rule 
# Production Cost SPARC Code

R0 UInt  Int32 0

R1 Reg  r 0

R2 Adr  r 0

R3 0

R4 Imm  s13 0

R5 Reg  s13 1 mov s13,Reg

R6 Reg  int32 2 sethi    
%hi(int32),%g1

or %g1,  
%lo(int32),Reg

R7 1 sub Reg,Reg,Reg

Adr 
+

Reg Imm

Reg 
Reg Reg
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R8 1 sub Reg,Imm,Reg

R9 1 ld [Adr],Reg

R10 2 sethi    
%hi(UInt),%g1
st Reg,  
[%g1+%lo(Uint)]

Rule 
# Production Cost SPARC Code

Reg 
Reg Imm

Reg 
Adr

Void 
=

UInt Reg
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Example
Let�’s look at instruction selection 
for
a = b - 1;

where a is a global int, accessed with 
a 32 bit address and b is a local int, 
accessed as an offset from the frame 
pointer.

=

int32 -

* s13

+

r s13
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We match tree nodes bottom-up. 
Each node is labeled with the 
nonterminals it can be reduced to, 
the production used to produce the 
nonterminal, and the cost to 
generate the node (and its children) 
from the nonterminal.
We match leaves first:

=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0
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We now work upward, considering 
operators whose children have been 
labeled. Again, if an operator can be 
generated by a nonterminal, we 
mark the operator with the 
nonterminal, the production used to 
generate the operator, and the total 
cost (including the cost to generate 
all children).
If a nonterminal can generate the 
operator using more than one 
production, the least-cost derivation 
is chosen.
When we reach the root, the 
nonterminal with the lowest overall 
cost is used to generate the tree.
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=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4
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Note that once we know the 
production used to generate the root 
of the tree, we know the productions 
used to generate each subtree too:

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4
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We generate code by doing a depth-
first traversal, generating code for a 
production after all the production�’s 
children have been processed.
We need to do register allocation 
too; for our example, a simple on-
the-fly generator will suffice.

  ld    [%fp+b],%l0
  sub   %l0,1,%l0
  sethi %hi(a),%g1
  st    %l0,[%g1+%lo(a)]

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4
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Had we translated a slightly 
difference expression,
   a = b - 1000000;
we would automatically get a 
different code sequence (because 
1000000 is an int32 rather than an 
s13):
  ld    [%fp+b],%l0
  sethi %hi(1000000),%g1
  or    %g1,%lo(1000000),%l1
  sub   %l0,%l1,%l0
  sethi %hi(a),%g1
  st    %l0,[%g1+%lo(a)]
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Adding New Rules
Since instruction selectors can be 
automatically generated, it�’s easy to 
add �“extra�” rules that handle 
optimizations or special cases.
For example, we might add the 
following to handle addition of a left 
immediate operand or subtraction 
of 0 from a register:

Rule 
# Production Cost SPARC Code

R11 1 add Reg,Imm,Reg

R12 0

Reg 
+

Imm Reg

Reg 
Reg Zero
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Improving the Speed of 
Instruction Selection

As we have presented it, instruction 
selection looks rather slow�—for 
each node in the IR tree, we must 
match productions, compare costs, 
and select least-cost productions. 
Since compilers routinely generate 
program with tens or hundreds of 
thousands of instructions, doing a 
lot of computation to select one 
instruction (even if it�’s the best 
instruction) could be too slow.
Fortunately, this need not be the 
case.
Instruction selection using BURS 
can be made very fast.
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Adding States to BURG
We can precompute a set of states 
that represent possible labelings on 
IR tree nodes. A table of node 
names and subtree states then is 
used to select a node�’s state. Thus 
labeling becomes nothing more than 
repeated table lookup.

For example, we might create a 
state s0 that corresponds to the 
labeling {Reg:R1:0, Adr:R2:0}.
A state selection function, label, 
defines label(r) = s0. That is, 
whenever r is matched as a leaf, it is 
to be labeled with s0.
If a node is an operator, label uses 
the name of the operator and the 
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labeling assigned to its children to 
choose the operator�’s label. For 
example,

label(+,s0,s1)=s2
says that a + with children labeled 
as s0 and s1 is to be labeled as s2.
In theory, that�’s all there is to 
building a fast instruction selector.
We generate possible labelings, 
encode them as states, and table all 
combinations of labelings.
But,
how do we know the set of possible 
labelings is even finite?
In fact, it isn�’t!
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Normalizing Costs
It is possible to generate states that 
are identical except for their costs.
For example, we might have
 s1 = {Reg:R1:0, Adr:R2:0},
 s2 = {Reg:R1:1, Adr:R2:1},
 s3 = {Reg:R1:2, Adr:R2:2}, etc.

Here an important insight is 
needed�—the absolute costs included 
in states aren�’t really essential. 
Rather relative costs are what is 
important. In s1, s2, and s3, Reg and 
Adr have the same cost. Hence the 
same decision in choosing between 
Reg and Adr will be made in all 
three states. 
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We can limit the number of states 
needed by normalizing costs within 
states so that the lowest cost choice 
is always 0, and other costs are 
differences (deltas) from the lowest 
cost choice. 
This observation keeps costs 
bounded within states (except for 
pathologic cases).
Using additional techniques to 
further reduce the number of states 
needed, and the time needed to 
generate them, fast and compact 
BURS instruction selectors are 
achievable. See
�“Simple and Efficient BURS Table 
Generation,�” T. Proebsting, 1992 
PLDI Conference.
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Example
State Meaning
s0 {Reg:R1:0, Adr:R2:0}
s1 {Imm:R4:0, Reg:R5:1}
s2 {adr:R3:0}
s3 {Reg:R9:0}
s4 {UInt:R0:0}
s5 {Reg:R8:0}
s6 {Void:R10:0}
s7 {Reg:R7:0}

Node Left 
Child

Right 
Child Result

r s0
s13 s1
int32 s4
+ s0 s1 s2
* s2 s3
- s3 s1 s5
- s1 s3 s7
= s4 s5 s6
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We start by looking up the state 
assigned to each leaf. We then work 
upward, choosing the state of a 
parent based on the parent�’s kind 
and the states assigned to the 
children. These are all table 
lookups, and hence very fast.
At the root, we select the 
nonterminal and production based 
on the state assigned to the root (any 
entry with 0 cost). Knowing the 
production used at the root tells us 
the nonterminal used at each child. 
Each state has only one entry per 
nonterminal, so knowing a node�’s 
state and the nonterminal used to 
generate it immediately tells us the 
production used. Hence identifying 
the production used for each node is 
again very fast.
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Step 1 (Label leaves with states):

Step 2 (Propagate states upward):

=

int32 -

* s13

+

r s13

s1

 
s0 s1

s4

=

int32 -

* s13

+

r s13

s1

 
s0 s1

s4

s2

s3

s5

s6
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Step 3 (Choose production used at 
root): R10.
Step 4 (Propagate productions used 
downward to children):

=

int32 -

* s13

+

r s13

R4

 
R1 R4

R0

R3

R9

R8

R10
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