
485CS 701 Fall 2014 ©

A couple of final issues must be
dealt with:
• Does the iteration count need to be

changed?
In this case no, since the final valid
value of i, 999, is used to compute
%g4 in cycle 5, before the loop exits.

• What instructions do we keep as the
loop�’s epilogue?
None! Instructions past the kernel
aren�’t needed since they are part of
future iterations (past
i==999)which aren�’t needed or
wanted.

• Note that b[1000] and b[1001] are
�“touched�” even though they are
never used. This is probably OK as
long as arrays aren�’t placed at the
very end of a page or segment.

486CS 701 Fall 2014©

Our final loop is:
cycle instruction
1. ld [%o1], %g2 !N0

 1. add %o1, 4, %o1 !N0
3. add %g3, %g2, %g4 !N0
3. ld [%o1], %g2 !N1

 3. add %o1, 4, %o1 !N1
 3. add %g3, 1, %g3 !N0
 4. L: st %g4, [%o0] !N0
 4. add %o0, 4, %o0 !N0
 4. cmp %g3, 999 !N0

5. add %g3, %g2, %g4 !N1
5. ld [%o1], %g2 !N2

 5. add %o1, 4, %o1 !N2
 5. ble L !N0
 5. add %g3, 1, %g3 !N1

This is very efficient code�—we use the
full parallelism of the processor,
executing 5 instructions in cycle 5 and
8 instructions in just 2 cycles. All
resource limitations are respected.

487CS 701 Fall 2014 ©

False Dependencies & Loop
Unrolling

A limiting factor in how �“tightly�”
we can software pipeline a loop is
reuse of registers and the false
dependencies reuse induces.
Consider the following simple
function that copies array elements:
void f (int a[],int b[], int lim) {
 for (i=0;i<lim;i++)
 a[i]=b[i];
}

The loop that is generated takes 3
cycles:
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
3. st %g2, [%g3+%o0]
3. bne L

 3. add %g3, 4, %g3

488CS 701 Fall 2014©

We�’d like to tighten the iteration
interval to 2 or less. One cycle is
unlikely, since doing a load and a
store in the same cycle is
problematic (due to a possible
dependence through memory).
If we try to use modulo scheduling,
we can�’t put a second copy of the
load in cycle 2 because it would
overwrite the contents of the first
load. A load in cycle 3 will clash
with the store.
The solution is to unroll the loop
into two copies, using different
registers to hold the contents of the
load and the current offset into the
arrays.
The use of a �“count down�” register
to test for loop termination is

489CS 701 Fall 2014 ©

helpful, since it allows an easy exit
from the middle of the loop.
With the renaming of the registers
used in the two expanded iterations,
scheduling to �“tighten�” the loop is
effective.
After expansion we have:
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
3. st %g2, [%g3+%o0]
3. beq L2

 3. add %g3, 4, %g4
4. ld [%g4+%o1], %g5

 4. addcc %o2, -1, %o2
6. st %g5, [%g4+%o0]
6. bne L

 6. add %g4, 4, %g3
 L2:

We still have 3 cycles per iteration,
because we haven�’t scheduled yet.

490CS 701 Fall 2014©

Now we can move the increment of
%g3 (into %g4) above other uses of
%g3. Moreover, we can move the
load into %g5 above the store from
%g2 (if the load and store are independent):
cycle instruction
1. L: ld [%g3+%o1], %g2

 1. addcc %o2, -1, %o2
 1. add %g3, 4, %g4

2. ld [%g4+%o1], %g5
3. st %g2, [%g3+%o0]
3. beq L2
3. addcc %o2, -1, %o2
4. st %g5, [%g4+%o0]
4. bne L

 4. add %g4, 4, %g3
 L2:

We can normally test whether
%g4+%o1 and %g3+%o0 can be equal at
compile-time, by looking at the actual
array parameters.
(Can &a[0] == &b[1]?)

491CS 701 Fall 2014 ©

Predication
We have seen that conditional
execution complicates code
scheduling by creating small basic
blocks and limiting code movement
across conditional branches.
However, the problems conditionals
introduce are even more
fundamental.
Consider the following code
fragment:
if (a<b)

 a++;
 else b++;
 if (c<d)
 c++;
 else d++;

492CS 701 Fall 2014©

The two conditionals are completely
independent, but they can�’t be
evaluated concurrently in a single
thread.
Why?
Look at the Sparc code generated:
 cmp %o0, %g1
 bge,a L1
 add %g1, 1, %g1
 add %o0, 1, %o0
L1:
 cmp %o5, %o4
 bge,a L2
 add %o4, 1, %o4
 add %o5, 1, %o5
L2:

493CS 701 Fall 2014 ©

The two compares can�’t be executed
concurrently (because there is only
one condition code register).
We can�’t do two conditional
branches to two different places
simultaneously.
And we must select the correct
combination of two of the four adds
to execute.
We could restructure this code into
a four-way switch, but this far
beyond what a code scheduler is
expected to do.
The problem is that while values can
easily be computed in parallel, flow
of control can�’t.
The solution?

494CS 701 Fall 2014©

Convert flow of control
computations into value
computations.
Our first step is to generalize a
single condition code register into a
set of predicate registers. The
Itanium, for example, includes 64
predicate registers that hold a single
boolean value. For our purposes,
let�’s denote a predicate register as
%p0 to %p63.
Predicate registers are set by doing
compare or test instructions.
Thus

cmpeq %o0, %g1,%p1
sets %p1 true if the two operands are
equal and false otherwise.

495CS 701 Fall 2014 ©

The real power of predication is that
most instructions can be controlled
(predicated) by a predicate register.
Thus
add(%p1) %r1,%r2,%r3

does an ordinary add but only
commits the result (into %r3) if %p1
is true.
A negated form is often included
too:
add(~%p1) %r1,%r2,%r3

In this form, the add is completed
only if %p1 is false.
Using predication, we can eliminate
many conditional branches. Now
both legs of a conditional can be
evaluated, with only one leg allowed
to commit.
Returning to our earlier example,

496CS 701 Fall 2014©

if (a<b)
 a++;
 else b++;
 if (c<d)
 c++;
 else d++;

we now generate
 1. cmplt %o0, %g1, %p1
 1. cmplt %o5, %o4, %p2
 2. add(%p1) %g1, 1, %g1
 2. add(~p1) %o0, 1, %o0
 2. add(%p2) %o4, 1, %o4
 2. add(%~p2) %o5, 1, %o5

This entire code fragment can now
execute in two cycles, since the two
compares and four adds are
independent of each other.

497CS 701 Fall 2014 ©

Predication Enhances
Software Pipelining

Conditionals in a loop body greatly
complicate software pipelining since
we usually won�’t know exactly what
instructions future iterations will
execute.
Consider this minor variant of our
earlier example:

void f (int a[],int b[]) {
 t1 = &a[0];
 t2 = &b[0];
 for (i=0;i<1000;i++,t1++,t2++)
 if (i%2)

 *t1 = *t2 + i;
 else *t1 = *t2 - i;

}

498CS 701 Fall 2014©

1. f: mov 0, %g3
2. L: andcc %g3, 1, %g0
3. bne L1
4. ld [%o1], %g2
5. b L2
6. sub %g3, %g2, %g4
7. L1: add %g3, %g2, %g4
8. L2: st %g4, [%o0]
9. add %g3, 1, %g3
10. add %o0, 4, %o0
11. cmp %g3, 999
12. ble L
13. add %o1, 4, %o1
14. retl
15. nop

We�’ve added an andcc (to do the
i%2 computation) as well as a
conditional and unconditional
branch. Each iteration will do an
add or a subtract.

499CS 701 Fall 2014 ©

A two cycle per iteration schedule
seems most unlikely.
But predication helps immensely!
The generated code becomes much
cleaner:

1. f: mov 0, %g3
2. L: and %g3, 1, %p1
3. ld [%o1], %g2
4. sub(~%p1) %g3, %g2, %g4
5. add(%p1) %g3, %g2, %g4
6. st %g4, [%o0]
7. add %g3, 1, %g3
8. add %o0, 4, %o0
9. cmp %g3, 999
10. ble L
11. add %o1, 4, %o1
12. retl
13. nop

And guess what? We can still software
pipeline this into 2 cycles per iteration:

500CS 701 Fall 2014©

cycle instruction
1. ld [%o1], %g2

 1. add %o1, 4, %o1
 2. and %g3, 1, %p1

3. add(%p1) %g3, %g2, %g4
3. sub(~%p1) %g3, %g2, %g4
3. ld [%o1], %g2

 3. add %o1, 4, %o1
 3. add %g3, 1, %g3
 4. L: st %g4, [%o0]
 4. add %o0, 4, %o0
 4. and %g3, 1, %p1
 4. cmp %g3, 999

5. add(%p1) %g3, %g2, %g4
5. sub(~%p1) %g3, %g2, %g4
5. ld [%o1], %g2

 5. add %o1, 4, %o1
 5. ble L
 5. add %g3, 1, %g3

We now do need to be able to issue
four ALU operations per cycle
(since we issue both the add and
subtract in the same cycle).

501CS 701 Fall 2014 ©

Reading Assignment
• Read Section 13.5 (Automatic

Instruction Selection) of Crafting a
Compiler.

502CS 701 Fall 2014©

Automatic Instruction
Selection

Besides register allocation and code
scheduling, a code generator must
also do Instruction Selection.
For CISC (Complex Instruction Set
Computer) Architectures, like the
Intel x86, DEC Vax, and many
special purpose processors (like
Digital Signal Processors),
instruction selection is often
challenging because so many choices
exist.
In the Vax, for example, one, two
and three address instructions exist.
Each address may be a register,
memory location (with or without
indexing), or an immediate
operand.

503CS 701 Fall 2014 ©

For RISC (Reduced Instruction Set
Computer) Processors, instruction
formats and addressing modes are
far more limited.
Still, it is necessary to handle
immediate operands, commutative
operands and special case null
operands (add of 0 or multiply of 1).

Moreover, automatic instruction
selection supports automatic
retargeting of a compiler to a new or
extended instruction set.

504CS 701 Fall 2014©

Tree-Structured Intermediate
Representations

For purposes of automatic code
generation, it is convenient to
translate a source program into a
Low-level, Tree-Structured IR.
This representation exposes
translation details (how locals are
accessed, how conditionals are
translated, etc.) without assuming a
particular instruction set.

In a low-level, tree-structured IR,
leaves are registers or bit-patterns
and internal nodes are machine-
level primitives, like load, store,
add, etc.

505CS 701 Fall 2014 ©

Example
Let�’s look at how
 a = b - 1;
is represented, where a is a global
integer variable and b is a local
(frame allocated) integer variable.

=

aadr -

* IntLiteral1

+

%fp boffset

506CS 701 Fall 2014©

Representation of Instructions
Individual instructions can be
represented as trees, rooted by the
operation they implement.
For example:

*

Adr
Reg

This is an
instruction that
loads a register
with the value at
an absolute
address.

Reg
+

Reg Reg
This is an instruction that adds the
contents of two registers and stores the
sum into a third register.

507CS 701 Fall 2014 ©

Using the above pair of instruction
definitions, we can repeatedly
match instructions in the following
program IR:

+

+ *

* *
aadr badr

cadr

+

+ *

*
badr

cadrReg

+ *
cadrReg

+

Reg

*
cadr

+

Reg

+

Reg Reg
Reg

508CS 701 Fall 2014©

Each match of an instruction
pattern can have the side-effect of
generating an instruction:
 ld [a],%R1
 ld [b],%R2
 add %R1,%R2,%R3
 ld [c],%R4
 add %R3,%R4,%R5

Registers can be allocated on-the-fly
as Instructions are generated or
instructions can be generated using
pseudo-registers, with a subsequent
register allocation phase.

Using this view of instruction
selection, choosing instructions
involves finding a cover for an IR
tree using Instruction Patterns.
Any cover is a valid translation.

509CS 701 Fall 2014 ©

Tree Parsing vs.
String Parsing

This process of selecting
instructions by matching
instruction patterns is very similar
to how strings are parsed using
Context-free Grammars.
We repeatedly identify a sub-tree
that corresponds to an instruction,
and simplify the IR-tree by
replacing the instruction sub-tree
with a nonterminal symbol. The
process is repeated until the IR-tree
is reduced to a single nonterminal.
The theory of reducing an IR-tree
using rewrite rules has been studied
as part of BURS (Bottom-Up
Rewrite Systems) Theory by
Pelegri-Llopart and Graham.

510CS 701 Fall 2014©

Automatic Instruction
Selection Tools

Just as tools like Yacc and Bison
automatically generate a string
parser from a specification of a
Context-free Grammar, there exist
tools that will automatically
generate a tree-parser from a
specification of tree productions.

Two such tools are BURG (Bottom
Up Rewrite Generator) and IBURG
(Interpreted BURG). Both
automatically generate parsers for
tree grammars using BURS theory.

511CS 701 Fall 2014 ©

Least-Cost Tree Parsing
BURG (and IBURG) guarantee to
find a cover for an input tree (if one
exists).
But tree grammars are usually very
ambiguous.
Why?�—Because there is usually
more than one code sequence that
can correctly implement a given IR-
tree.
To deal with ambiguity, BURG and
IBURG allow each instruction
pattern (tree production) to have a
cost.
This cost is typically the size or
execution time for the
corresponding target-machine
instructions.

512CS 701 Fall 2014©

Using costs, BURG (and IBURG)
not only guarantee to find a cover,
but also a least-cost cover.

This means that when a generated
tree-parser is used to cover (and
thereby translate) an IR-Tree, the
best possible code sequence is
guaranteed.

If more than one least-cost cover
exists, an arbitrary choice is made.

513CS 701 Fall 2014 ©

Using BURG to Specify
Instruction Selection

We�’ll need a tree grammar to
specify possible partial covers of a
tree.
For simplicity, BURG requires that
all tree productions be of the form

A b
 (where b is a single terminal
symbol)
 or
A Op(B,C, ...)

514CS 701 Fall 2014©

 (where Op is a terminal that is a
subtree root and B,C, ... are non-
terminals)

All tree grammars can be put into
this form by adding new
nonterminals and productions as
needed.

We must specify terminal symbols
(leaves and operators in the IR-
Tree) and nonterminals that are
used in tree productions.

A Op(B,C, ...)
denotes

Op

B C ...

515CS 701 Fall 2014 ©

Example
A subset of a SPARC instruction
selector.

Terminals
Leaf Nodes
 int32 (32 bit integer)
 s13 (13 bit signed integer)
 r (0-31, a register name)

Operator Nodes
 * (unary indirection)
 - (binary minus)
 + (binary addition)
 = (binary assignment)

516CS 701 Fall 2014©

Nonterminals
 UInt (32 bit unsigned
integer)
 Reg (Loaded register value)
 Imm (Immediate operand)
 Adr (Address expression)
 Void (Null value)

517CS 701 Fall 2014 ©

Productions

Rule
Production Cost SPARC Code

R0 UInt Int32 0

R1 Reg r 0

R2 Adr r 0

R3 0

R4 Imm s13 0

R5 Reg s13 1 mov s13,Reg

R6 Reg int32 2 sethi
%hi(int32),%g1

or %g1,
%lo(int32),Reg

R7 1 sub Reg,Reg,Reg

Adr
+

Reg Imm

Reg
Reg Reg

518CS 701 Fall 2014©

R8 1 sub Reg,Imm,Reg

R9 1 ld [Adr],Reg

R10 2 sethi
%hi(UInt),%g1
st Reg,
[%g1+%lo(Uint)]

Rule
Production Cost SPARC Code

Reg
Reg Imm

Reg
Adr

Void
=

UInt Reg

519CS 701 Fall 2014 ©

Example
Let�’s look at instruction selection
for
a = b - 1;

where a is a global int, accessed with
a 32 bit address and b is a local int,
accessed as an offset from the frame
pointer.

=

int32 -

* s13

+

r s13

520CS 701 Fall 2014©

We match tree nodes bottom-up.
Each node is labeled with the
nonterminals it can be reduced to,
the production used to produce the
nonterminal, and the cost to
generate the node (and its children)
from the nonterminal.
We match leaves first:

=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0

521CS 701 Fall 2014 ©

We now work upward, considering
operators whose children have been
labeled. Again, if an operator can be
generated by a nonterminal, we
mark the operator with the
nonterminal, the production used to
generate the operator, and the total
cost (including the cost to generate
all children).
If a nonterminal can generate the
operator using more than one
production, the least-cost derivation
is chosen.
When we reach the root, the
nonterminal with the lowest overall
cost is used to generate the tree.

522CS 701 Fall 2014©

=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

523CS 701 Fall 2014 ©

Note that once we know the
production used to generate the root
of the tree, we know the productions
used to generate each subtree too:

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

524CS 701 Fall 2014©

We generate code by doing a depth-
first traversal, generating code for a
production after all the production�’s
children have been processed.
We need to do register allocation
too; for our example, a simple on-
the-fly generator will suffice.

 ld [%fp+b],%l0
 sub %l0,1,%l0
 sethi %hi(a),%g1
 st %l0,[%g1+%lo(a)]

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

525CS 701 Fall 2014 ©

Had we translated a slightly
difference expression,
 a = b - 1000000;
we would automatically get a
different code sequence (because
1000000 is an int32 rather than an
s13):
 ld [%fp+b],%l0
 sethi %hi(1000000),%g1
 or %g1,%lo(1000000),%l1
 sub %l0,%l1,%l0
 sethi %hi(a),%g1
 st %l0,[%g1+%lo(a)]

526CS 701 Fall 2014©

Adding New Rules
Since instruction selectors can be
automatically generated, it�’s easy to
add �“extra�” rules that handle
optimizations or special cases.
For example, we might add the
following to handle addition of a left
immediate operand or subtraction
of 0 from a register:

Rule
Production Cost SPARC Code

R11 1 add Reg,Imm,Reg

R12 0

Reg
+

Imm Reg

Reg
Reg Zero

527CS 701 Fall 2014 ©

Improving the Speed of
Instruction Selection

As we have presented it, instruction
selection looks rather slow�—for
each node in the IR tree, we must
match productions, compare costs,
and select least-cost productions.
Since compilers routinely generate
program with tens or hundreds of
thousands of instructions, doing a
lot of computation to select one
instruction (even if it�’s the best
instruction) could be too slow.
Fortunately, this need not be the
case.
Instruction selection using BURS
can be made very fast.

528CS 701 Fall 2014©

Adding States to BURG
We can precompute a set of states
that represent possible labelings on
IR tree nodes. A table of node
names and subtree states then is
used to select a node�’s state. Thus
labeling becomes nothing more than
repeated table lookup.

For example, we might create a
state s0 that corresponds to the
labeling {Reg:R1:0, Adr:R2:0}.
A state selection function, label,
defines label(r) = s0. That is,
whenever r is matched as a leaf, it is
to be labeled with s0.
If a node is an operator, label uses
the name of the operator and the

529CS 701 Fall 2014 ©

labeling assigned to its children to
choose the operator�’s label. For
example,

label(+,s0,s1)=s2
says that a + with children labeled
as s0 and s1 is to be labeled as s2.
In theory, that�’s all there is to
building a fast instruction selector.
We generate possible labelings,
encode them as states, and table all
combinations of labelings.
But,
how do we know the set of possible
labelings is even finite?
In fact, it isn�’t!

530CS 701 Fall 2014©

Normalizing Costs
It is possible to generate states that
are identical except for their costs.
For example, we might have
 s1 = {Reg:R1:0, Adr:R2:0},
 s2 = {Reg:R1:1, Adr:R2:1},
 s3 = {Reg:R1:2, Adr:R2:2}, etc.

Here an important insight is
needed�—the absolute costs included
in states aren�’t really essential.
Rather relative costs are what is
important. In s1, s2, and s3, Reg and
Adr have the same cost. Hence the
same decision in choosing between
Reg and Adr will be made in all
three states.

531CS 701 Fall 2014 ©

We can limit the number of states
needed by normalizing costs within
states so that the lowest cost choice
is always 0, and other costs are
differences (deltas) from the lowest
cost choice.
This observation keeps costs
bounded within states (except for
pathologic cases).
Using additional techniques to
further reduce the number of states
needed, and the time needed to
generate them, fast and compact
BURS instruction selectors are
achievable. See
�“Simple and Efficient BURS Table
Generation,�” T. Proebsting, 1992
PLDI Conference.

532CS 701 Fall 2014©

Example
State Meaning
s0 {Reg:R1:0, Adr:R2:0}
s1 {Imm:R4:0, Reg:R5:1}
s2 {adr:R3:0}
s3 {Reg:R9:0}
s4 {UInt:R0:0}
s5 {Reg:R8:0}
s6 {Void:R10:0}
s7 {Reg:R7:0}

Node Left
Child

Right
Child Result

r s0
s13 s1
int32 s4
+ s0 s1 s2
* s2 s3
- s3 s1 s5
- s1 s3 s7
= s4 s5 s6

533CS 701 Fall 2014 ©

We start by looking up the state
assigned to each leaf. We then work
upward, choosing the state of a
parent based on the parent�’s kind
and the states assigned to the
children. These are all table
lookups, and hence very fast.
At the root, we select the
nonterminal and production based
on the state assigned to the root (any
entry with 0 cost). Knowing the
production used at the root tells us
the nonterminal used at each child.
Each state has only one entry per
nonterminal, so knowing a node�’s
state and the nonterminal used to
generate it immediately tells us the
production used. Hence identifying
the production used for each node is
again very fast.

534CS 701 Fall 2014©

Step 1 (Label leaves with states):

Step 2 (Propagate states upward):

=

int32 -

* s13

+

r s13

s1

s0 s1

s4

=

int32 -

* s13

+

r s13

s1

s0 s1

s4

s2

s3

s5

s6

535CS 701 Fall 2014 ©

Step 3 (Choose production used at
root): R10.
Step 4 (Propagate productions used
downward to children):

=

int32 -

* s13

+

r s13

R4

R1 R4

R0

R3

R9

R8

R10

536CS 701 Fall 2014©

