
517CS 701 Fall 2014©

Productions

Rule
Production Cost SPARC Code

R0 UInt Int32 0

R1 Reg r 0

R2 Adr r 0

R3 0

R4 Imm s13 0

R5 Reg s13 1 mov s13,Reg

R6 Reg int32 2 sethi
%hi(int32),%g1
or %g1,
%lo(int32),Reg

R7 1 sub Reg,Reg,Reg

Adr
+

Reg Imm

Reg
Reg Reg

518CS 701 Fall 2014©

R8 1 sub Reg,Imm,Reg

R9 1 ld [Adr],Reg

R10 2 sethi
%hi(UInt),%g1
st Reg,
[%g1+%lo(Uint)]

Rule
Production Cost SPARC Code

Reg
Reg Imm

Reg
Adr

Void
=

UInt Reg

519CS 701 Fall 2014©

Example
Let�’s look at instruction selection
for
a = b - 1;

where a is a global int, accessed with
a 32 bit address and b is a local int,
accessed as an offset from the frame
pointer.

=

int32 -

* s13

+

r s13

520CS 701 Fall 2014©

We match tree nodes bottom-up.
Each node is labeled with the
nonterminals it can be reduced to,
the production used to produce the
nonterminal, and the cost to
generate the node (and its children)
from the nonterminal.
We match leaves first:

=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0

521CS 701 Fall 2014©

We now work upward, considering
operators whose children have been
labeled. Again, if an operator can be
generated by a nonterminal, we
mark the operator with the
nonterminal, the production used to
generate the operator, and the total
cost (including the cost to generate
all children).
If a nonterminal can generate the
operator using more than one
production, the least-cost derivation
is chosen.
When we reach the root, the
nonterminal with the lowest overall
cost is used to generate the tree.

522CS 701 Fall 2014©

=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

523CS 701 Fall 2014©

Note that once we know the
production used to generate the root
of the tree, we know the productions
used to generate each subtree too:

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

524CS 701 Fall 2014©

We generate code by doing a depth-
first traversal, generating code for a
production after all the production�’s
children have been processed.
We need to do register allocation
too; for our example, a simple on-
the-fly generator will suffice.

 ld [%fp+b],%l0
 sub %l0,1,%l0
 sethi %hi(a),%g1
 st %l0,[%g1+%lo(a)]

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4

525CS 701 Fall 2014©

Had we translated a slightly
difference expression,
 a = b - 1000000;
we would automatically get a
different code sequence (because
1000000 is an int32 rather than an
s13):
 ld [%fp+b],%l0
 sethi %hi(1000000),%g1
 or %g1,%lo(1000000),%l1
 sub %l0,%l1,%l0
 sethi %hi(a),%g1
 st %l0,[%g1+%lo(a)]

526CS 701 Fall 2014©

Adding New Rules
Since instruction selectors can be
automatically generated, it�’s easy to
add �“extra�” rules that handle
optimizations or special cases.
For example, we might add the
following to handle addition of a left
immediate operand or subtraction
of 0 from a register:

Rule
Production Cost SPARC Code

R11 1 add Reg,Imm,Reg

R12 0

Reg
+

Imm Reg

Reg
Reg Zero

527CS 701 Fall 2014©

Improving the Speed of
Instruction Selection

As we have presented it, instruction
selection looks rather slow�—for
each node in the IR tree, we must
match productions, compare costs,
and select least-cost productions.
Since compilers routinely generate
program with tens or hundreds of
thousands of instructions, doing a
lot of computation to select one
instruction (even if it�’s the best
instruction) could be too slow.
Fortunately, this need not be the
case.
Instruction selection using BURS
can be made very fast.

528CS 701 Fall 2014©

Adding States to BURG
We can precompute a set of states
that represent possible labelings on
IR tree nodes. A table of node
names and subtree states then is
used to select a node�’s state. Thus
labeling becomes nothing more than
repeated table lookup.

For example, we might create a
state s0 that corresponds to the
labeling {Reg:R1:0, Adr:R2:0}.
A state selection function, label,
defines label(r) = s0. That is,
whenever r is matched as a leaf, it is
to be labeled with s0.
If a node is an operator, label uses
the name of the operator and the

529CS 701 Fall 2014©

labeling assigned to its children to
choose the operator�’s label. For
example,

label(+,s0,s1)=s2
says that a + with children labeled
as s0 and s1 is to be labeled as s2.
In theory, that�’s all there is to
building a fast instruction selector.
We generate possible labelings,
encode them as states, and table all
combinations of labelings.
But,
how do we know the set of possible
labelings is even finite?
In fact, it isn�’t!

530CS 701 Fall 2014©

Normalizing Costs
It is possible to generate states that
are identical except for their costs.
For example, we might have
 s1 = {Reg:R1:0, Adr:R2:0},
 s2 = {Reg:R1:1, Adr:R2:1},
 s3 = {Reg:R1:2, Adr:R2:2}, etc.

Here an important insight is
needed�—the absolute costs included
in states aren�’t really essential.
Rather relative costs are what is
important. In s1, s2, and s3, Reg and
Adr have the same cost. Hence the
same decision in choosing between
Reg and Adr will be made in all
three states.

531CS 701 Fall 2014©

We can limit the number of states
needed by normalizing costs within
states so that the lowest cost choice
is always 0, and other costs are
differences (deltas) from the lowest
cost choice.
This observation keeps costs
bounded within states (except for
pathologic cases).
Using additional techniques to
further reduce the number of states
needed, and the time needed to
generate them, fast and compact
BURS instruction selectors are
achievable. See
�“Simple and Efficient BURS Table
Generation,�” T. Proebsting, 1992
PLDI Conference.

532CS 701 Fall 2014©

Example
State Meaning
s0 {Reg:R1:0, Adr:R2:0}
s1 {Imm:R4:0, Reg:R5:1}
s2 {adr:R3:0}
s3 {Reg:R9:0}
s4 {UInt:R0:0}
s5 {Reg:R8:0}
s6 {Void:R10:0}
s7 {Reg:R7:0}

Node Left
Child

Right
Child Result

r s0
s13 s1
int32 s4
+ s0 s1 s2
* s2 s3
- s3 s1 s5
- s1 s3 s7
= s4 s5 s6

533CS 701 Fall 2014©

We start by looking up the state
assigned to each leaf. We then work
upward, choosing the state of a
parent based on the parent�’s kind
and the states assigned to the
children. These are all table
lookups, and hence very fast.
At the root, we select the
nonterminal and production based
on the state assigned to the root (any
entry with 0 cost). Knowing the
production used at the root tells us
the nonterminal used at each child.
Each state has only one entry per
nonterminal, so knowing a node�’s
state and the nonterminal used to
generate it immediately tells us the
production used. Hence identifying
the production used for each node is
again very fast.

534CS 701 Fall 2014©

Step 1 (Label leaves with states):

Step 2 (Propagate states upward):

=

int32 -

* s13

+

r s13

s1

s0 s1

s4

=

int32 -

* s13

+

r s13

s1

s0 s1

s4

s2

s3

s5

s6

535CS 701 Fall 2014©

Step 3 (Choose production used at
root): R10.
Step 4 (Propagate productions used
downward to children):

=

int32 -

* s13

+

r s13

R4

R1 R4

R0

R3

R9

R8

R10

536CS 701 Fall 2014©

Code Generation for x86
Machines

The x86 presents several special
difficulties when generating code.
• There are only 8 architecturally

visible registers, and only 6 of these
are allocatable. Deciding what values
to keep in registers, and for how long,
is a difficult, but crucial, decision.

• Operands may be addressed directly
from memory in some instructions.
Such instructions avoid using a
register, but are longer and add to I-
cache pressure.

In �“Optimal Spilling for CISC
Machines with Few Registers,�” Appel

537CS 701 Fall 2014©

and George address both of these
difficulties.
They use Integer Programming
techniques to directly and optimally
solve the crucial problem of deciding
which live ranges are to be register-
resident at each program point. Stores
and loads are automatically added to
split long live ranges.
Then a variant of Chaitin-style register
allocation is used to assign registers to
live ranges chosen to be register-
resident.
The presentation of this paper, at the
2001 PLDI Conference, is at
www.cs.wisc.edu/~fischer/
cs701/cisc.spilling.pdf

538CS 701 Fall 2014©

Optimistic Coalescing
Given R allocatable registers, Appel
and George guarantee that no more
than R live ranges are marked as
register resident.
This doesn�’t always guarantee that
an R coloring is possible.
Consider the following program
fragment:
x=0;
while (...) {
 y = x+1;
 print(x);
 z = y+1;
 print(y);
 x = z+1;
 print(z);
}

539CS 701 Fall 2014©

At any given point in the loop body
only 2 variables are live, but 3
registers are needed (x interferes
with y, y interferes with z and z
interferes with x).
We know that we have enough
registers to handle all live ranges
marked as register-resident, but we
may need to �“shuffle�” register
allocations at certain points.
Thus at one point x might be
allocated R1 and at some other
point it might be placed in R2. Such
shuffling implies register to register
copies, so we�’d like to minimize
their added cost.

540CS 701 Fall 2014©

Appel and George suggest allowing
changes in register assignments
between program points. This is
done by creating multiple variable
names for a live range (x1, x2, x3,
...), one for each program point.
Variables are connected by
assignments between points. Using
coalescing, it is expected that most
of the assignments will be optimized
away.

Using our earlier example, we have
the following code with each
variable expanded into 3 segments
(one for each assignment). Copies of
dead variables are removed to
simplify the example:

541CS 701 Fall 2014©

x3=0;
while (...) {
 x1 = x3;
 y1 = x1+1;
 print(x1);
 y2 = y1;
 z2 = y2+1;
 print(y2);
 z3 = z2;
 x3 = z3+1;
 print(z3);
}

Now a 2 coloring is possible:
x1: R1, y1: R2
z2: R1, y2: R2
z3: R1, x3: R2
(and only x1 = x3 is retained).

542CS 701 Fall 2014©

Appel and George found that
iterated coalescing wasn�’t effective
(too many copies, most of which are
useless).
Instead they recommend Optimistic
Coalescing. The idea is to first do
Chaitin-style reckless coalescing of
all copies, even if colorability is
impaired.
Then we do graph coloring register
allocation, using the cost of copies as
the �“spill cost.�” As we select colors,
a coalesced node that can�’t be
colored is simply split back to the
original source and target variables.
Since we always limit the number of
live ranges to the number of colors,
we know the live ranges must be
colorable (with register to register
copies sometimes needed).

543CS 701 Fall 2014©

Using our earlier example, we
initially merge x1 and x3, y1 and y2,
z2 and z3. We already know this
can�’t be colored with two registers.
All three pairs have the same costs,
so we arbitrarily stack x1-x3, then
y1-y2 and finally z2-z3.
When we unstack, z2-z3 gets R1,
and y1-y2 gets R2. x1-x3 must be
split back into x1 and x3. x1
interferes with y1-y2 so it gets R1. x3
interferes with z2-z3 so it gets R2,
and coloring is done.

x1: R1, y1: R2
z2: R1, y2: R2
z3: R1, x3: R2

544CS 701 Fall 2014©

Procedure & Code Placement
We have seen many optimizations
that aim to reduce the number of
instructions executed by a program.
Another important class of
optimizations derives from the fact
that programs often must be paged
in virtual memory and almost
always are far bigger then the I-
cache.
Hence how procedures and basic
blocks are placed in memory is
important. Page faults and I-cache
misses can be very costly.

545CS 701 Fall 2014©

In �“Profile Guided Code Positioning,�”
Pettis and Hansen explore three kinds
of code placement optimizations:
1. Procedure Positioning.

Try to keep procedures that often
call each other close together.

2. Basic Block Positioning.
Try to place the most frequently
executed series of basic blocks �“in
sequence.�”

3. Procedure Splitting.
Place infrequently executed �“fluff�”
in a different memory area than
heavily executed code.

546CS 701 Fall 2014©

Procedure Placement
Procedures (and classes in Java) are
normally separately compiled. They
are then placed in memory by a linker
or loader in an arbitrary order.
This arbitrary ordering can be
problematic:
If A calls B frequently, and A and B
happen to be placed far apart in
memory, the calls will cross page
boundaries and perhaps cause I-cache
conflicts (if code in A and B happen to
map to common cache locations).
However,
if A and B are placed close together in
memory, they may both fit on the same
page and fit into the I-cache without
conflicts.
Pettis & Hansen suggest a �“closest is
best�” procedure placement policy.

547CS 701 Fall 2014©

That is, they recommend that we place
procedures that often call each other as
close together as possible.
How?
First, we must obtain dynamic call
frequencies using a profiling tool like
gprof or qpt.
Given call frequencies, we create a
call graph, with edges annotated
with call frequencies:

A

C D

EF

4 10
3

8 2
1

548CS 701 Fall 2014©

Group Procedures by Call
Frequency

We find the pair of procedures that
call each other most often, and
group them for contiguous
positioning.
The notation [A,D] means A and D
will be adjacent (either in order A-D
or D-A).
The two procedures chosen are
combined in the call graph, which is
simplified (much like move-related
nodes in an interference graph):

C [A,D]

EF

7

8 2
1

549CS 701 Fall 2014©

Now C and F are grouped, without
their relative order set (as yet):

Next [A,D] and [C,F] are to be
joined, but in what exact order?
Four orderings are possible:
 A-D-C-F F-C-D-A
 A-D-F-C C-F-D-A
 D-A-C-F F-C-A-D
 D-A-F-C C-F-A-D
Are these four orderings
equivalent?

[C,F] [A,D]

E

7

21

550CS 701 Fall 2014©

No�—Look at the original call graph.
At the boundary between [A,D] and
[C,F], which of the following is best:
 D-C (3 calls),
 D-F (0 calls)
 A-C (4 calls)
 A-F (0 calls)
A-C has the highest call frequency,
so we choose D-A-C-F.
Finally, we have:

We place E near D (call frequency
2) rather than near F (call
frequency 1).
Our final ordering is
 E-D-A-C-F.

E3D-A-C-F

551CS 701 Fall 2014©

Basic Block Placement
We often see conditionals of the
form
 if (error-test)
 {Handle error case}
 {Rest of Program}
Since error tests rarely succeed (we
hope!), the error handling code
�“pollutes�” the I-cache.
In general, we�’d like to order basic
blocks not in their order of
appearance in the source program,
but rather in order of their
execution along frequently executed
paths.
Placing frequently executed basic
blocks together in memory fills the
I-cache nicely, leads to a smaller

552CS 701 Fall 2014©

working set and makes branch
prediction easier.
Pettis & Hansen suggest that we
profile execution to determine the
frequency of inter-block transitions.
We then will group blocks together
that execute in sequence most often.
At the start, all basic blocks are
grouped into singleton chains of one
block each.
Then, in decreasing order of
transition frequency, we visit arcs in
the CFG.
If the blocks in the source and
target can be linked into a longer
chain
then do so, else skip to the next
transition.

553CS 701 Fall 2014©

When we are done, we have linked
together blocks in paths in the CFG
that are most frequently executed.
Linked basic blocks are allocated
together in memory, in the sequence
listed in the chain.

554CS 701 Fall 2014©

Example
A

B

C

D

E F

G

H

I

1000

7000

6500 500

2500 4000

2500
4000

500

6500

900

555CS 701 Fall 2014©

Initially, each bock is in its own chain.
Frequency Action
7000 Form B-C
6500 Form B-C-D
6500 Form H-B-C-D
4000 Form H-B-C-D-F
4000 H is already placed
2500 E can�’t be placed after D,

leave it alone
2500 H is already placed
1000 A can�’t be placed before
B,

leave it alone
900 I can�’t be placed after B,

leave it alone
500 G can�’t be placed after C,

leave it alone

556CS 701 Fall 2014©

500 Form G-I
We will place in memory the following
chains of basic blocks:

H-B-C-D-F, E, A, G-I
On some computers, the direction of a
conditional branch predicts whether
the branch is expected to be taken or
not (e.g., the HP PA-RISC). On such
machines, a backwards branch
(forming a loop) is assumed taken; a
forward branch is assumed not taken.
If the target architecture makes such
assumptions regarding conditional
branches, we place chains to (where
possible) correctly predict the branch
outcome.
Thus E and G-I are placed after H-B-
C-D-F since D E and C G normally
aren�’t taken.

557CS 701 Fall 2014©

On the SPARC (V 9) you can set a bit
in each conditional branch indicating
expected taken/not taken status.
On many machines internal branch
prediction hardware can over-rule
poorly made (or absent) static
predictions.

558CS 701 Fall 2014©

Procedure Splitting
When we profile the basic blocks
within a procedure, we�’ll see some
that are frequently executed, and
others that are executed rarely or
never.
If we allocate all the blocks of a
procedure contiguously, we�’ll
intermix frequently executed blocks
with infrequently executed ones.
An alternative is �“fluff removal.�”
We can split a procedure�’s body into
two sets of basic blocks: these
executed frequently and those
executed infrequently (the dividing
line is, of course, somewhat
arbitrary).

559CS 701 Fall 2014©

Now when procedure bodies are
placed in memory, frequently
executed basic blocks will be placed
near each other, and infrequently
executed blocks will be placed
elsewhere (though infrequently
executed blocks are still placed near
each other). In this way be expect to
make better use of page frames and
I-cache space, filling them with
mostly active basic blocks.

