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Productions

Rule 
# Production Cost SPARC Code

R0 UInt  Int32 0

R1 Reg  r 0

R2 Adr  r 0

R3 0

R4 Imm  s13 0

R5 Reg  s13 1 mov s13,Reg

R6 Reg  int32 2 sethi    
%hi(int32),%g1
or %g1,  
%lo(int32),Reg

R7 1 sub Reg,Reg,Reg

Adr 
+

Reg Imm

Reg 
Reg Reg
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R8 1 sub Reg,Imm,Reg

R9 1 ld [Adr],Reg

R10 2 sethi    
%hi(UInt),%g1
st Reg,  
[%g1+%lo(Uint)]

Rule 
# Production Cost SPARC Code

Reg 
Reg Imm

Reg 
Adr

Void 
=

UInt Reg
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Example
Let�’s look at instruction selection 
for
a = b - 1;

where a is a global int, accessed with 
a 32 bit address and b is a local int, 
accessed as an offset from the frame 
pointer.

=

int32 -

* s13

+

r s13
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We match tree nodes bottom-up. 
Each node is labeled with the 
nonterminals it can be reduced to, 
the production used to produce the 
nonterminal, and the cost to 
generate the node (and its children) 
from the nonterminal.
We match leaves first:

=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0
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We now work upward, considering 
operators whose children have been 
labeled. Again, if an operator can be 
generated by a nonterminal, we 
mark the operator with the 
nonterminal, the production used to 
generate the operator, and the total 
cost (including the cost to generate 
all children).
If a nonterminal can generate the 
operator using more than one 
production, the least-cost derivation 
is chosen.
When we reach the root, the 
nonterminal with the lowest overall 
cost is used to generate the tree.
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=

int32 -

* s13

+

r s13
Imm:R4:0
Reg:R5:1

Imm:R4:0
Reg:R5:1

UInt:R0:0
Reg:R6:2

Reg:R1:0
Adr:R2:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4



523CS 701  Fall 2014©

Note that once we know the 
production used to generate the root 
of the tree, we know the productions 
used to generate each subtree too:

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4
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We generate code by doing a depth-
first traversal, generating code for a 
production after all the production�’s 
children have been processed.
We need to do register allocation 
too; for our example, a simple on-
the-fly generator will suffice.

  ld    [%fp+b],%l0
  sub   %l0,1,%l0
  sethi %hi(a),%g1
  st    %l0,[%g1+%lo(a)]

=

int32 -

* s13

+

r s13
Imm:R4:0

Imm:R4:0

UInt:R0:0

Reg:R1:0

Adr:R3:0

Reg:R9:1

Reg:R8:2

Void:R10:4
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Had we translated a slightly 
difference expression,
   a = b - 1000000;
we would automatically get a 
different code sequence (because 
1000000 is an int32 rather than an 
s13):
  ld    [%fp+b],%l0
  sethi %hi(1000000),%g1
  or    %g1,%lo(1000000),%l1
  sub   %l0,%l1,%l0
  sethi %hi(a),%g1
  st    %l0,[%g1+%lo(a)]
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Adding New Rules
Since instruction selectors can be 
automatically generated, it�’s easy to 
add �“extra�” rules that handle 
optimizations or special cases.
For example, we might add the 
following to handle addition of a left 
immediate operand or subtraction 
of 0 from a register:

Rule 
# Production Cost SPARC Code

R11 1 add Reg,Imm,Reg

R12 0

Reg 
+

Imm Reg

Reg 
Reg Zero
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Improving the Speed of 
Instruction Selection

As we have presented it, instruction 
selection looks rather slow�—for 
each node in the IR tree, we must 
match productions, compare costs, 
and select least-cost productions. 
Since compilers routinely generate 
program with tens or hundreds of 
thousands of instructions, doing a 
lot of computation to select one 
instruction (even if it�’s the best 
instruction) could be too slow.
Fortunately, this need not be the 
case.
Instruction selection using BURS 
can be made very fast.
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Adding States to BURG
We can precompute a set of states 
that represent possible labelings on 
IR tree nodes. A table of node 
names and subtree states then is 
used to select a node�’s state. Thus 
labeling becomes nothing more than 
repeated table lookup.

For example, we might create a 
state s0 that corresponds to the 
labeling {Reg:R1:0, Adr:R2:0}.
A state selection function, label, 
defines label(r) = s0. That is, 
whenever r is matched as a leaf, it is 
to be labeled with s0.
If a node is an operator, label uses 
the name of the operator and the 
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labeling assigned to its children to 
choose the operator�’s label. For 
example,

label(+,s0,s1)=s2
says that a + with children labeled 
as s0 and s1 is to be labeled as s2.
In theory, that�’s all there is to 
building a fast instruction selector.
We generate possible labelings, 
encode them as states, and table all 
combinations of labelings.
But,
how do we know the set of possible 
labelings is even finite?
In fact, it isn�’t!
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Normalizing Costs
It is possible to generate states that 
are identical except for their costs.
For example, we might have
 s1 = {Reg:R1:0, Adr:R2:0},
 s2 = {Reg:R1:1, Adr:R2:1},
 s3 = {Reg:R1:2, Adr:R2:2}, etc.

Here an important insight is 
needed�—the absolute costs included 
in states aren�’t really essential. 
Rather relative costs are what is 
important. In s1, s2, and s3, Reg and 
Adr have the same cost. Hence the 
same decision in choosing between 
Reg and Adr will be made in all 
three states. 
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We can limit the number of states 
needed by normalizing costs within 
states so that the lowest cost choice 
is always 0, and other costs are 
differences (deltas) from the lowest 
cost choice. 
This observation keeps costs 
bounded within states (except for 
pathologic cases).
Using additional techniques to 
further reduce the number of states 
needed, and the time needed to 
generate them, fast and compact 
BURS instruction selectors are 
achievable. See
�“Simple and Efficient BURS Table 
Generation,�” T. Proebsting, 1992 
PLDI Conference.
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Example
State Meaning
s0 {Reg:R1:0, Adr:R2:0}
s1 {Imm:R4:0, Reg:R5:1}
s2 {adr:R3:0}
s3 {Reg:R9:0}
s4 {UInt:R0:0}
s5 {Reg:R8:0}
s6 {Void:R10:0}
s7 {Reg:R7:0}

Node Left 
Child

Right 
Child Result

r s0
s13 s1
int32 s4
+ s0 s1 s2
* s2 s3
- s3 s1 s5
- s1 s3 s7
= s4 s5 s6
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We start by looking up the state 
assigned to each leaf. We then work 
upward, choosing the state of a 
parent based on the parent�’s kind 
and the states assigned to the 
children. These are all table 
lookups, and hence very fast.
At the root, we select the 
nonterminal and production based 
on the state assigned to the root (any 
entry with 0 cost). Knowing the 
production used at the root tells us 
the nonterminal used at each child. 
Each state has only one entry per 
nonterminal, so knowing a node�’s 
state and the nonterminal used to 
generate it immediately tells us the 
production used. Hence identifying 
the production used for each node is 
again very fast.
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Step 1 (Label leaves with states):

Step 2 (Propagate states upward):

=

int32 -

* s13

+

r s13

s1

 
s0 s1

s4

=

int32 -

* s13

+

r s13

s1

 
s0 s1

s4

s2

s3

s5

s6
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Step 3 (Choose production used at 
root): R10.
Step 4 (Propagate productions used 
downward to children):

=

int32 -

* s13

+

r s13

R4

 
R1 R4

R0

R3

R9

R8

R10
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Code Generation for x86 
Machines

The x86 presents several special 
difficulties when generating code. 
• There are only 8 architecturally 

visible registers, and only 6 of these 
are allocatable. Deciding what values 
to keep in registers, and for how long, 
is a difficult, but crucial, decision.

• Operands may be addressed directly 
from memory in some instructions. 
Such instructions avoid using a 
register, but are longer and add to I-
cache pressure.

In �“Optimal Spilling for CISC 
Machines with Few Registers,�” Appel 
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and George address both of these 
difficulties.
They use Integer Programming 
techniques to directly and optimally 
solve the crucial problem of deciding 
which live ranges are to be register-
resident at each program point. Stores 
and loads are automatically added to 
split long live ranges.
Then a variant of Chaitin-style register 
allocation is used to assign registers to 
live ranges chosen to be register-
resident.
The presentation of this paper, at the 
2001 PLDI Conference, is at
www.cs.wisc.edu/~fischer/
cs701/cisc.spilling.pdf
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Optimistic Coalescing
Given R allocatable registers, Appel 
and George guarantee that no more 
than R live ranges are marked as 
register resident.
This doesn�’t always guarantee that 
an R coloring is possible.
Consider the following program 
fragment:
x=0;
while (...) {
  y = x+1;
  print(x);
  z = y+1;
  print(y);
  x = z+1;
  print(z);
}
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At any given point in the loop body 
only 2 variables are live, but 3 
registers are needed (x interferes 
with y, y interferes with z and z 
interferes with x).
We know that we have enough 
registers to handle all live ranges 
marked as register-resident, but we 
may need to �“shuffle�” register 
allocations at certain points.
Thus at one point x might be 
allocated R1 and at some other 
point it might be placed in R2. Such 
shuffling implies register to register 
copies, so we�’d like to minimize 
their added cost.
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Appel and George suggest allowing 
changes in register assignments 
between program points. This is 
done by creating multiple variable 
names for a live range (x1, x2, x3, 
...), one for each program point. 
Variables are connected by 
assignments between points. Using 
coalescing, it is expected that most 
of the assignments will be optimized 
away.

Using our earlier example, we have 
the following code with each 
variable expanded into 3 segments 
(one for each assignment). Copies of 
dead variables are removed to 
simplify the example:
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x3=0;
while (...) {
  x1 = x3;
  y1 = x1+1;
  print(x1);
  y2 = y1;
  z2 = y2+1;
  print(y2);
  z3 = z2;
  x3 = z3+1;
  print(z3);
}

Now a 2 coloring is possible:
x1: R1, y1: R2
z2: R1, y2: R2
z3: R1, x3: R2
(and only x1 = x3 is retained).
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Appel and George found that 
iterated coalescing wasn�’t effective 
(too many copies, most of which are 
useless).
Instead they recommend Optimistic 
Coalescing. The idea is to first do 
Chaitin-style reckless coalescing of 
all copies, even if colorability is 
impaired.
Then we do graph coloring register 
allocation, using the cost of copies as 
the �“spill cost.�” As we select colors, 
a coalesced node that can�’t be 
colored is simply split back to the 
original source and target variables. 
Since we always limit the number of 
live ranges to the number of colors, 
we know the live ranges must be 
colorable (with register to register 
copies sometimes needed).
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Using our earlier example, we 
initially merge x1 and x3, y1 and y2, 
z2 and z3. We already know this 
can�’t be colored with two registers. 
All three pairs have the same costs, 
so we arbitrarily stack x1-x3, then 
y1-y2 and finally z2-z3.
When we unstack, z2-z3 gets R1, 
and y1-y2 gets R2. x1-x3 must be 
split back into x1 and x3. x1 
interferes with y1-y2 so it gets R1. x3 
interferes with z2-z3 so it gets R2, 
and coloring is done.

x1: R1, y1: R2
z2: R1, y2: R2
z3: R1, x3: R2
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Procedure & Code Placement
We have seen many optimizations 
that aim to reduce the number of 
instructions executed by a program.
Another important class of 
optimizations derives from the fact 
that programs often must be paged 
in virtual memory and almost 
always are far bigger then the I-
cache.
Hence how procedures and basic 
blocks are placed in memory is 
important. Page faults and I-cache 
misses can be very costly.
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In �“Profile Guided Code Positioning,�” 
Pettis and Hansen explore three kinds 
of code placement optimizations:
1. Procedure Positioning.

Try to keep procedures that often 
call each other close together.

2. Basic Block Positioning.
Try to place the most frequently 
executed series of basic blocks �“in 
sequence.�”

3. Procedure Splitting.
Place infrequently executed �“fluff�” 
in a different memory area than 
heavily executed code.
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Procedure Placement
Procedures (and classes in Java) are 
normally separately compiled. They 
are then placed in memory by a linker 
or loader in an arbitrary order.
This arbitrary ordering can be 
problematic:
If A calls B frequently, and A and B 
happen to be placed far apart in 
memory, the calls will cross page 
boundaries and perhaps cause I-cache 
conflicts (if code in A and B happen to 
map to common cache locations).
However, 
if A and B are placed close together in 
memory, they may both fit on the same 
page and fit into the I-cache without 
conflicts.
Pettis & Hansen suggest a �“closest is 
best�” procedure placement policy.
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That is, they recommend that we place 
procedures that often call each other as 
close together as possible.
How?
First, we must obtain dynamic call 
frequencies using a profiling tool like 
gprof or qpt.
Given call frequencies, we create a 
call graph, with edges annotated 
with call frequencies:

A

C D

EF

4 10
3

8 2
1
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Group Procedures by Call 
Frequency

We find the pair of procedures that 
call each other most often, and 
group them for contiguous 
positioning.
The notation [A,D] means A and D 
will be adjacent (either in order A-D 
or D-A).
The two procedures chosen are 
combined in the call graph, which is 
simplified (much like move-related 
nodes in an interference graph):

C [A,D]

EF

7

8 2
1
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Now C and F are grouped, without 
their relative order set (as yet):

Next [A,D] and [C,F] are to be 
joined, but in what exact order?
Four orderings are possible:
   A-D-C-F    F-C-D-A
   A-D-F-C    C-F-D-A
   D-A-C-F    F-C-A-D
   D-A-F-C    C-F-A-D
Are these four orderings 
equivalent?

[C,F] [A,D]

E

7

21
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No�—Look at the original call graph. 
At the boundary between [A,D] and 
[C,F], which of the following is best:
 D-C (3 calls), 
 D-F (0 calls)
 A-C (4 calls)
 A-F (0 calls)
A-C has the highest call frequency, 
so we choose D-A-C-F.
Finally, we have:

We place E near D (call frequency 
2) rather than near F (call 
frequency 1).
Our final ordering is
  E-D-A-C-F.

E3D-A-C-F
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Basic Block Placement
We often see conditionals of the 
form
  if (error-test)
     {Handle error case}
  {Rest of Program}
Since error tests rarely succeed (we 
hope!), the error handling code 
�“pollutes�” the I-cache.
In general, we�’d like to order basic 
blocks not in their order of 
appearance in the source program, 
but rather in order of their 
execution along frequently executed 
paths.
Placing frequently executed basic 
blocks together in memory fills the 
I-cache nicely, leads to a smaller 
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working set and makes branch 
prediction easier.
Pettis & Hansen suggest that we 
profile execution to determine the 
frequency of inter-block transitions. 
We then will group blocks together 
that execute in sequence most often.
At the start, all basic blocks are 
grouped into singleton chains of one 
block each.
Then, in decreasing order of 
transition frequency, we visit arcs in 
the CFG.
If the blocks in the source and 
target can be linked into a longer 
chain
then do so, else skip to the next 
transition.
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When we are done, we have linked 
together blocks in paths in the CFG 
that are most frequently executed.
Linked basic blocks are allocated 
together in memory, in the sequence 
listed in the chain.
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Example
A

B

C

D

E F

G

H

I

1000

7000

6500 500

2500 4000

2500
4000

500

6500

900
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Initially, each bock is in its own chain.
Frequency Action
7000 Form B-C
6500 Form B-C-D
6500 Form H-B-C-D
4000 Form H-B-C-D-F
4000 H is already placed
2500 E can�’t be placed after D,

leave it alone
2500 H is already placed
1000 A can�’t be placed before 
B,

leave it alone
900 I can�’t be placed after B,

leave it alone
500 G can�’t be placed after C,

leave it alone
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500 Form G-I
We will place in memory the following 
chains of basic blocks:

H-B-C-D-F, E, A, G-I
On some computers, the direction of a 
conditional branch predicts whether 
the branch is expected to be taken or 
not (e.g., the HP PA-RISC). On such 
machines, a backwards branch 
(forming a loop) is assumed taken; a 
forward branch is assumed not taken.
If the target architecture makes such 
assumptions regarding conditional 
branches, we place chains to (where 
possible) correctly predict the branch 
outcome.
Thus E and G-I are placed after H-B-
C-D-F since D E and C G normally 
aren�’t taken.
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On the SPARC (V 9) you can set a bit 
in each conditional branch indicating 
expected taken/not taken status.
On many machines internal branch 
prediction hardware can over-rule 
poorly made (or absent) static 
predictions.
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Procedure Splitting
When we profile the basic blocks 
within a procedure, we�’ll see some 
that are frequently executed, and 
others that are executed rarely or 
never.
If we allocate all the blocks of a 
procedure contiguously, we�’ll 
intermix frequently executed blocks 
with infrequently executed ones.
An alternative is �“fluff removal.�” 
We can split a procedure�’s body into 
two sets of basic blocks: these 
executed frequently and those 
executed infrequently (the dividing 
line is, of course, somewhat 
arbitrary).
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Now when procedure bodies are 
placed in memory, frequently 
executed basic blocks will be placed 
near each other, and infrequently 
executed blocks will be placed 
elsewhere (though infrequently 
executed blocks are still placed near 
each other). In this way be expect to 
make better use of page frames and 
I-cache space, filling them with 
mostly active basic blocks.
   


