
29CS 701 Fall 2014 ©

19. Data Cache Optimizations
• Locality Optimizations

Cluster accesses of data values both
spacially (within a cache line) and
temporally (for repeated use).
Loop interchange and loop tiling
improve temporal locality.

• Conflict Optimizations
Adjust data locations so that data used
consecutively and repeatedly don�’t
share the same cache location.

20. Instruction Cache Optimizations
Instructions that are repeatedly executed
should be accessed from the instruction
cache rather than the secondary cache or
memory. Loops and �“hot�” instruction
sequences should fit within the cache.

Temporally close instruction sequences
should not map to conflicting cache

30CS 701 Fall 2014©

Basic Blocks
A basic block is a linear sequence of
instructions containing no branches
except at the very end.
A basic block is always executed
sequentially as a unit.

31CS 701 Fall 2014 ©

Control Flow Graphs
A Control Flow Graph (CFG)
models possible execution paths
through a program.
Nodes are basic blocks and arcs are
potential transfers of control.

For example,
 if (a > 0)
 b = 1;
 else b = 2;
 a = c + b;

a > 0

b = 1 b = 2

a = c + b

32CS 701 Fall 2014©

For a Basic Block b:
Let Preds(b) = the set of basic
blocks that are Immediate
Predecessors of b in the CFG.

Let Succ(b) = the set of basic blocks
that are Immediate Successors to b
in the CFG.

33CS 701 Fall 2014 ©

Data Flow Problems
A data flow problem is a program

analysis computed on a control flow
graph.

A data flow problem may be forward
(following a program�’s control flow)
or reverse (opposite a program�’s
control flow).

Informally, forward analyses
�“remember the past�” while reverse
analyses �“predict the future.�”

Some analyses determine that an
event may have occurred, while
others determine that an event must
have occurred.

Some analyses compute a set of
values, while others are Boolean-
valued.

34CS 701 Fall 2014©

Two important data flow problems
are Reaching Definitions and
Liveness.

For a given use of a variable v
reaching definitions tell us which
assignments to v may reach (affect)
the current value of v. Reaching
definition analysis is useful in both
optimization and debugging.

Liveness analysis tells us at a
particular point in a program
whether the current value of
variable v will ever be used. A
variable that is not live is dead. A
dead value need not be kept in
memory, or perhaps even be
computed.

35CS 701 Fall 2014 ©

Reaching Definitions
For a Basic Block b and Variable V:
 Let DefsIn(b) = the set of basic

blocks that contain definitions of V
that reach (may be used in) the
beginning of Basic Block b.

Let DefsOut(b) = the set of basic
blocks that contain definitions of V
that reach (may be used in) the end
of Basic Block b.

The sets Preds and Succ are derived
from the structure of the CFG.
They are given as part of the definition
of the CFG.

36CS 701 Fall 2014©

DefsIn and DefsOut must be computed,
using the following rules:
1. If Basic Block b contains a definition

of V then
 DefsOut(b) = {b}

2. If there is no definition to V in b then
 DefsOut(b) = DefsIn(b)

3. For the First Basic Block, b0:
 DefsIn(b0) =

4. For all Other Basic Blocks
 DefsIn(b) = DefsOut p()

p Preds b()

37CS 701 Fall 2014 ©

Liveness Analysis
For a Basic Block b and Variable V:

LiveIn(b) = true if V is Live (will be
used before it is redefined) at the
beginning of b.

LiveOut(b) = true if V is Live (will
be used before it is redefined) at the
end of b.

LiveIn and LiveOut are computed,
using the following rules:
1. If Basic Block b has no successors

then
 LiveOut(b) = false

2. For all Other Basic Blocks

 LiveOut(b) =
s Succ(b)

 LiveIn(s)

38CS 701 Fall 2014©

3. LiveIn(b) =
 If V is used before it is defined in

Basic Block b
 Then true
 Elsif V is defined before it is
 used in Basic Block b
 Then false
 Else LiveOut(b)

39CS 701 Fall 2014 ©

Example

x

x

x

x

x

x

1

2 3

4

5

6

7

8

40CS 701 Fall 2014©

x

x

x

x

x

x

1

2 3

4

5

6

7

8

Li=F

Li=F

Li=F

Li=F

Li=F

Li=T

Li=T

Li=T

Lo=T

Lo=T
Lo=T

Lo=T

Lo=T

Lo=F

Lo=F

Lo=F

Di={ }

Di={1} Di={1}

Di={1,2}

Di={1,2,5,6}

Di={5}

Di={5,6}

Di={5,6}

Do={1}

Do={2}

Do={1,2}

Do={5}

Do={6}

Do={5,6}

Do={5,6}

Do={1}

41CS 701 Fall 2014 ©

Reading Assignment
• Section 14.3 - 14.4 of CaC

42CS 701 Fall 2014©

Data Flow Frameworks
• Data Flow Graph:

Nodes of the graph are basic blocks
or individual instructions.
Arcs represent flow of control.
Forward Analysis:

Information flow is the same
direction as control flow.

Backward Analysis:
Information flow is the opposite
direction as control flow.

Bi-directional Analysis:
Information flow is in both
directions. (Not too common.)

43CS 701 Fall 2014 ©

• Meet Lattice
Represents solution space for the
data flow analysis.

• Meet operation
(And, Or, Union, Intersection, etc.)
Combines solutions from
predecessors or successors in the
control flow graph.

T

.

44CS 701 Fall 2014©

• Transfer Function
Maps a solution at the top of a node
to a solution at the end of the node
(forward flow)
or
Maps a solution at the end of a node
to a solution at the top of the node
(backward flow).

45CS 701 Fall 2014 ©

Example: Available
Expressions

This data flow analysis determines
whether an expression that has been
previously computed may be
reused.

Available expression analysis is a
forward flow problem�—computed
expression values flow forward to
points of possible reuse.

The best solution is True�—the
expression may be reused.

The worst solution is False�—the
expression may not be reused.

46CS 701 Fall 2014©

The Meet Lattice is:

As initial values, at the top of the
start node, nothing is available.
Hence, for a given expression,
AvailIn(b0) = F
We choose an expression, and
consider all the variables that
contribute to its evaluation.
Thus for e1=a+b-c, a, b and c are
e1�’s operands.

T (Expression is Available)

F (Expression is Not Available)

47CS 701 Fall 2014 ©

The transfer function for e1 in block
b is defined as:
If e1 is computed in b after any

assignments to e1�’s operands in b
Then AvailOut(b) = T
Elsif any of e1�’s operands are
changed
 after the last computation of e1 or
 e1�’s operands are changed without
 any computation of e1
Then AvailOut(b) = F
Else AvailOut(b) = AvailIn(b)

The meet operation (to combine
solutions) is:

 AvailIn(b) = AND
p Pred(b)

 AvailOut(p)

48CS 701 Fall 2014©

Example: e1=v+w

v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F

49CS 701 Fall 2014 ©

Circularities Require Care
Since data flow values can depend
on themselves (because of loops),
care is required in assigning initial
�“guesses�” to unknown values.

Consider
If the flow value on the loop
backedge is initially set to false, it
can never become true. (Why?)
Instead we should use True, the
identity for the AND operation.

z=v+w

T

T

50CS 701 Fall 2014©

v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F

F F

F

F

T

T
T

T T

F

51CS 701 Fall 2014 ©

Very Busy Expressions
This is an interesting variant of
available expression analysis.
An expression is very busy at a point
if it is guaranteed that the expression
will be computed at some time in the
future.
Thus starting at the point in
question, the expression must be
reached before its value changes.

Very busy expression analysis is a
backward flow analysis, since it
propagates information about
future evaluations backward to
�“earlier�” points in the computation.

52CS 701 Fall 2014©

The meet lattice is:

As initial values, at the end of all
exit nodes, nothing is very busy.
Hence, for a given expression,
VeryBusyOut(blast) = F

T (Expression is Very Busy)

F (Expression is Not Very Busy)

53CS 701 Fall 2014 ©

The transfer function for e1 in block
b is defined as:
If e1 is computed in b before any of

its operands
Then VeryBusyIn(b) = T
Elsif any of e1�’s operands are
changed
 before e1 is computed
 Then VeryBusyIn(b) = F
Else VeryBusyIn(b) =
VeryBusyOut(b)

The meet operation (to combine
solutions) is:
 VeryBusyOut(b) =

AND
s Succ(b)

 VeryBusyIn(s)

54CS 701 Fall 2014©

Example: e1=v+w

stop

v=2

w=5

v=3 x=v+w

u=v+w

F

F

F

F

T

T

55CS 701 Fall 2014 ©

stop

v=2

w=5

v=3 x=v+w

u=v+w

F

F

F

F

T

T

F
F

F
F

T

T

T

F

Move v+w
here?

Or here?

56CS 701 Fall 2014©

Identifying Identical
Expressions

We can hash expressions, based on
hash values assigned to operands
and operators. This makes
recognizing potentially redundant
expressions straightforward.
For example, if H(a) = 10, H(b) = 21
and H(+) = 5, then (using a simple
product hash),
H(a+b) = 10×21×5 Mod TableSize

57CS 701 Fall 2014 ©

Effects of Aliasing and Calls
When looking for assignments to
operands, we must consider the
effects of pointers, formal
parameters and calls.
An assignment through a pointer
(e.g, *p = val) kills all expressions
dependent on variables p might
point too. Similarly, an assignment
to a formal parameter kills all
expressions dependent on variables
the formal might be bound to.
A call kills all expressions
dependent on a variable changeable
during the call.
Lacking careful alias analysis,
pointers, formal parameters and
calls can kill all (or most)
expressions.

58CS 701 Fall 2014©

Very Busy Expressions and
Loop Invariants

Very busy expressions are ideal
candidates for invariant loop
motion.
If an expression, invariant in a loop,
is also very busy, we know it must
be used in the future, and hence
evaluation outside the loop must be
worthwhile.

59CS 701 Fall 2014 ©

for (...) {

 if (...)
 a=b+c;

 else a=d+c;}

for (...) {

 if (a>b+c)
 x=1;

 else x=0;}

t=b+c t=b+c

a=b+c a=d+c

a>b+c

T F

F

F

F T

b+c is not very busy
at loop entrance

b+c is very busy
at loop entrance

60CS 701 Fall 2014©

Reaching Definitions
We have seen reaching definition
analysis formulated as a set-valued
problem. It can also be formulated
on a per-definition basis.
That is, we ask �“What blocks does a
particular definition to v reach?�”
This is a boolean-valued, forward
flow data flow problem.

61CS 701 Fall 2014 ©

Initially, DefIn(b0) = false.
For basic block b:
DefOut(b) =
 If the definition being analyzed is
 the last definition to v in b
 Then True
 Elsif any other definition to v
occurs
 in b
 Then False
 Else DefIn(b)
The meet operation (to combine
solutions) is:

 DefIn(b) =

To get all reaching definition, we do
a series of single definition analyses.

OR
p Pred(b)

 DefOut(p)

62CS 701 Fall 2014©

Live Variable Analysis
This is a boolean-valued, backward
flow data flow problem.
Initially, LiveOut(blast) = false.
For basic block b:
LiveIn(b) =
 If the variable is used before it is
 defined in b
 Then True
 Elsif it is defined before it is used
 in b
 Then False
 Else LiveOut(b)
The meet operation (to combine
solutions) is:

 LiveOut(b) = OR
s Succ(b)

 LiveIn(s)

63CS 701 Fall 2014 ©

Bit Vectoring Data Flow
Problems

The four data flow problems we
have just reviewed all fit within a
single framework.
Their solution values are Booleans
(bits).
The meet operation is And or OR.
The transfer function is of the
general form
 Out(b) = (In(b) - Killb) U Genb
or
 In(b) = (Out(b) - Killb) U Genb

where Killb is true if a value is
�“killed�” within b and Genb is true if
a value is �“generated�” within b.

64CS 701 Fall 2014©

In Boolean terms:
Out(b) = (In(b) AND Not Killb) OR
Genb

or
In(b) = (Out(b) AND Not Killb) OR
Genb

An advantage of a bit vectoring data
flow problem is that we can do a series
of data flow problems �“in parallel�”
using a bit vector.

Hence using ordinary word-level
ANDs, ORs, and NOTs, we can solve 32
(or 64) problems simultaneously.

65CS 701 Fall 2014 ©

Example
 Do live variable analysis for u and
v, using a 2 bit vector:

We expect no variable to be live at
the start of b0. (Why?)

v=1

u=0

a=u v=2

print(u,v)

Gen=0,0
Kill=0,1

Gen=0,0

Gen=1,0 Gen=0,0

Gen=1,1

Kill=1,0

Kill=0,0 Kill=0,1

Kill=0,0

Live=0,0

Live=0,1

Live=1,1 Live=1,0

Live=1,1

66CS 701 Fall 2014©

67CS 701 Fall 2014 ©
68CS 701 Fall 2014©

