19. Data Cache Optimizations

- Locality Optimizations
 Cluster accesses of data values both spacially (within a cache line) and temporally (for repeated use). *Loop interchange and loop tiling* improve temporal locality.

- Conflict Optimizations
 Adjust data locations so that data used consecutively and repeatedly don’t share the same cache location.

20. Instruction Cache Optimizations

Instructions that are repeatedly executed should be accessed from the instruction cache rather than the secondary cache or memory. Loops and “hot” instruction sequences should fit within the cache. Temporally close instruction sequences should not map to conflicting cache
Basic Blocks

A basic block is a linear sequence of instructions containing no branches except at the very end.

A basic block is always executed sequentially as a unit.
Control Flow Graphs

A Control Flow Graph (CFG) models possible execution paths through a program.

Nodes are basic blocks and arcs are potential transfers of control.

For example,

```plaintext
if (a > 0)
    b = 1;
else  b = 2;
a = c + b;
```

![Control Flow Graph Diagram](image-url)
For a Basic Block b:

Let $\text{Preds}(b) =$ the set of basic blocks that are Immediate Predecessors of b in the CFG.

Let $\text{Succ}(b) =$ the set of basic blocks that are Immediate Successors to b in the CFG.
Data Flow Problems

A data flow problem is a program analysis computed on a control flow graph.

A data flow problem may be forward (following a program’s control flow) or reverse (opposite a program’s control flow).

Informally, forward analyses “remember the past” while reverse analyses “predict the future.”

Some analyses determine that an event may have occurred, while others determine that an event must have occurred.

Some analyses compute a set of values, while others are Boolean-valued.
Two important data flow problems are *Reaching Definitions* and *Liveness*.

For a given use of a variable \(v \) reaching definitions tell us which assignments to \(v \) may reach (affect) the current value of \(v \). Reaching definition analysis is useful in both optimization and debugging.

Liveness analysis tells us at a particular point in a program whether the current value of variable \(v \) will ever be used. A variable that is not live is dead. A dead value need not be kept in memory, or perhaps even be computed.
Reaching Definitions

For a Basic Block b and Variable V:

Let $\text{DefsIn}(b) =$ the set of basic blocks that contain definitions of V that reach (may be used in) the beginning of Basic Block b.

Let $\text{DefsOut}(b) =$ the set of basic blocks that contain definitions of V that reach (may be used in) the end of Basic Block b.

The sets Preds and Succ are derived from the structure of the CFG. They are given as part of the definition of the CFG.
DefsIn and DefsOut must be computed, using the following rules:

1. If Basic Block b contains a definition of V then
 \[\text{DefsOut}(b) = \{b\} \]

2. If there is no definition to V in b then
 \[\text{DefsOut}(b) = \text{DefsIn}(b) \]

3. For the First Basic Block, \(b_0 \):
 \[\text{DefsIn}(b_0) = \emptyset \]

4. For all Other Basic Blocks
 \[\text{DefsIn}(b) = \bigcup_{p \in \text{Preds}(b)} \text{DefsOut}(p) \]
Liveness Analysis

For a Basic Block b and Variable V:

LiveIn(b) = true if V is Live (will be used before it is redefined) at the beginning of b.

LiveOut(b) = true if V is Live (will be used before it is redefined) at the end of b.

LiveIn and LiveOut are computed, using the following rules:

1. If Basic Block b has no successors then
 LiveOut(b) = false

2. For all Other Basic Blocks

 LiveOut(b) = \bigvee_{s \in \text{Succ}(b)} \text{LiveIn}(s)
3. LiveIn(b) =
 If V is used before it is defined in Basic Block b
 Then true
 Elsif V is defined before it is used in Basic Block b
 Then false
 Else LiveOut(b)
Example
Reading Assignment

- Section 14.3 - 14.4 of CaC
Data Flow Frameworks

• Data Flow Graph:
 Nodes of the graph are basic blocks or individual instructions.
 Arcs represent flow of control.

Forward Analysis:
 Information flow is the same direction as control flow.

Backward Analysis:
 Information flow is the opposite direction as control flow.

Bi-directional Analysis:
 Information flow is in both directions. (Not too common.)
• Meet Lattice

 Represents solution space for the data flow analysis.

• Meet operation
 (And, Or, Union, Intersection, etc.)

 Combines solutions from predecessors or successors in the control flow graph.
• Transfer Function

Maps a solution at the top of a node to a solution at the end of the node (forward flow)

or

Maps a solution at the end of a node to a solution at the top of the node (backward flow).
Example: Available Expressions

This data flow analysis determines whether an expression that has been previously computed may be reused.

Available expression analysis is a forward flow problem—computed expression values flow forward to points of possible reuse.

The best solution is True—the expression may be reused.

The worst solution is False—the expression may not be reused.
The Meet Lattice is:

\[\begin{array}{c}
T \text{ (Expression is Available)} \\
| \\
F \text{ (Expression is Not Available)}
\end{array} \]

As initial values, at the top of the start node, nothing is available. Hence, for a given expression, \(\text{AvailIn}(b_0) = F \)

We choose an expression, and consider all the variables that contribute to its evaluation. Thus for \(e_1 = a + b - c \), \(a, b \) and \(c \) are \(e_1 \)'s operands.
The transfer function for e_1 in block b is defined as:

If e_1 is computed in b after any assignments to e_1’s operands in b
Then $\text{AvailOut}(b) = T$
Elsif any of e_1’s operands are changed
 after the last computation of e_1 or e_1’s operands are changed without any computation of e_1
Then $\text{AvailOut}(b) = F$
Else $\text{AvailOut}(b) = \text{AvailIn}(b)$

The meet operation (to combine solutions) is:

$$\text{AvailIn}(b) = \text{AND} \ 	ext{AvailOut}(p)$$
$$\text{p} \in \text{Pred}(b)$$
Example: $e_1 = v + w$

\[\begin{align*}
 v &= 9 \\
 w &= 5 \\
 x &= v + w \\
 z &= v + w \\
 y &= v + w \\
 v &= 2
\end{align*} \]
Circularities Require Care

Since data flow values can depend on themselves (because of loops), care is required in assigning initial “guesses” to unknown values.

Consider

If the flow value on the loop backedge is initially set to false, it can never become true. (Why?)

Instead we should use True, the identity for the AND operation.
\[v = 9 \]
\[w = 5 \]
\[x = v + w \]
\[y = v + w \]
\[z = v + w \]
\[v = 2 \]
\[\text{stop} \]
Very Busy Expressions

This is an interesting variant of available expression analysis.

An expression is very busy at a point if it is guaranteed that the expression will be computed at some time in the future.

Thus starting at the point in question, the expression must be reached before its value changes.

Very busy expression analysis is a backward flow analysis, since it propagates information about future evaluations backward to “earlier” points in the computation.
The meet lattice is:

T (Expression is Very Busy)

| F (Expression is Not Very Busy)

As initial values, at the end of all exit nodes, nothing is very busy. Hence, for a given expression,

VeryBusyOut(b_{last}) = F
The transfer function for e_1 in block b is defined as:

If e_1 is computed in b before any of its operands
Then $\text{VeryBusyIn}(b) = T$
Elsif any of e_1’s operands are changed before e_1 is computed
Then $\text{VeryBusyIn}(b) = F$
Else $\text{VeryBusyIn}(b) = \text{VeryBusyOut}(b)$

The meet operation (to combine solutions) is:

$\text{VeryBusyOut}(b) = \text{AND} \text{VeryBusyIn}(s)$
$s \in \text{Succ}(b)$
Example: $e_1 = v + w$

$F \quad v = 2 \quad F \quad w = 5$

$F \quad v = 3 \quad T \quad x = v + w$

$T \quad u = v + w$

stop

F
Move $v+w$ here?

Or here?

\[
v = 3 \\
x = v + w
\]
Identifying Identical Expressions

We can hash expressions, based on hash values assigned to operands and operators. This makes recognizing potentially redundant expressions straightforward.

For example, if $H(a) = 10$, $H(b) = 21$ and $H(+) = 5$, then (using a simple product hash),

$H(a+b) = 10 \times 21 \times 5 \mod \text{TableSize}$
Effects of Aliasing and Calls

When looking for assignments to operands, we must consider the effects of pointers, formal parameters and calls.

An assignment through a pointer (e.g., \(*p = \text{val} \)) kills all expressions dependent on variables \(p \) might point too. Similarly, an assignment to a formal parameter kills all expressions dependent on variables the formal might be bound to.

A call kills all expressions dependent on a variable changeable during the call.

Lacking careful alias analysis, pointers, formal parameters and calls can kill all (or most) expressions.
Very Busy Expressions and Loop Invariants

Very busy expressions are ideal candidates for invariant loop motion.

If an expression, invariant in a loop, is also very busy, we know it must be used in the future, and hence evaluation outside the loop must be worthwhile.
\begin{align*}
&\text{for (...) \{} \\
&\quad \text{if (...) \\
&\quad \quad a=b+c; \\
&\quad \quad \text{else} \ a=d+c;\} \\
&\text{for (...) \{} \\
&\quad \text{if (a}\mathord{>}\mathord{b+c)} \\
&\quad \quad x=1; \\
&\quad \quad \text{else} \ x=0;\}
\end{align*}

\begin{tikzpicture}
 \node (t) {t=b+c};
 \node (a) [below of=t] {a=b+c};
 \node (b) [below of=a] {a=d+c};
 \draw[-stealth] (t) edge [loop above] node {\text{T}} (t);
 \draw[-stealth] (t) edge [loop below] node {\text{F}} (t);
 \draw[-stealth] (t) edge [bend left] node {\text{F}} (a);
 \draw[-stealth] (t) edge [bend left] node {\text{T}} (b);
 \node (c) [below of=a] {b+c is not very busy at loop entrance};

 \node (a2) [right of=t] {t=b+c};
 \node (a3) [below of=a2] {a>b+c};
 \draw[-stealth] (a2) edge [loop above] node {\text{T}} (a2);
 \draw[-stealth] (a2) edge [loop below] node {\text{F}} (a2);
 \draw[-stealth] (a2) edge [bend left] node {\text{F}} (a3);
 \draw[-stealth] (a2) edge [bend right] node {\text{T}} (a3);
 \node (c2) [below of=a3] {b+c is very busy at loop entrance};
\end{tikzpicture}
Reaching Definitions

We have seen reaching definition analysis formulated as a set-valued problem. It can also be formulated on a per-definition basis.

That is, we ask “What blocks does a particular definition to v reach?”

This is a boolean-valued, forward flow data flow problem.
Initially, DefIn(b₀) = false.

For basic block b:

DefOut(b) =
	If the definition being analyzed is the last definition to v in b
	Then True
	Elsif any other definition to v occurs in b
	Then False
	Else DefIn(b)

The meet operation (to combine solutions) is:

\[\text{DefIn}(b) = \bigvee_{p \in \text{Pred}(b)} \text{DefOut}(p) \]

To get all reaching definition, we do a series of single definition analyses.
Live Variable Analysis

This is a boolean-valued, backward flow data flow problem.

Initially, \(\text{LiveOut}(b_{\text{last}}) = \text{false} \).

For basic block \(b \):

\[
\text{LiveIn}(b) = \\
\begin{align*}
\text{If the variable is used before it is defined in } b \\
\text{Then True} \\
\text{Elsif it is defined before it is used in } b \\
\text{Then False} \\
\text{Else LiveOut}(b)
\end{align*}
\]

The meet operation (to combine solutions) is:

\[
\text{LiveOut}(b) = \bigvee_{s \in \text{Succ}(b)} \text{LiveIn}(s)
\]
Bit Vectoring Data Flow Problems

The four data flow problems we have just reviewed all fit within a single framework.

Their solution values are Booleans (bits).

The meet operation is And or OR.

The transfer function is of the general form

\[\text{Out}(b) = (\text{In}(b) - \text{Kill}_b) \cup \text{Gen}_b \]

or

\[\text{In}(b) = (\text{Out}(b) - \text{Kill}_b) \cup \text{Gen}_b \]

where \(\text{Kill}_b \) is true if a value is “killed” within \(b \) and \(\text{Gen}_b \) is true if a value is “generated” within \(b \).
In Boolean terms:
\[
\text{Out}(b) = (\text{In}(b) \text{ AND} \text{ Not } \text{Kill}_b) \text{ OR } \text{Gen}_b
\]

or
\[
\text{In}(b) = (\text{Out}(b) \text{ AND} \text{ Not } \text{Kill}_b) \text{ OR } \text{Gen}_b
\]

An advantage of a bit vectoring data flow problem is that we can do a series of data flow problems “in parallel” using a bit vector.

Hence using ordinary word-level ANDs, ORs, and NOTs, we can solve 32 (or 64) problems simultaneously.
Example

Do live variable analysis for u and v, using a 2 bit vector:

We expect no variable to be live at the start of b_0. (Why?)