
41CS 701 Fall 2014 ©

Reading Assignment
• Section 14.3 - 14.4 of CaC

42CS 701 Fall 2014©

Data Flow Frameworks
• Data Flow Graph:

Nodes of the graph are basic blocks
or individual instructions.
Arcs represent flow of control.
Forward Analysis:

Information flow is the same
direction as control flow.

Backward Analysis:
Information flow is the opposite
direction as control flow.

Bi-directional Analysis:
Information flow is in both
directions. (Not too common.)

43CS 701 Fall 2014 ©

• Meet Lattice
Represents solution space for the
data flow analysis.

• Meet operation
(And, Or, Union, Intersection, etc.)
Combines solutions from
predecessors or successors in the
control flow graph.

T

.

44CS 701 Fall 2014©

• Transfer Function
Maps a solution at the top of a node
to a solution at the end of the node
(forward flow)
or
Maps a solution at the end of a node
to a solution at the top of the node
(backward flow).

45CS 701 Fall 2014 ©

Example: Available
Expressions

This data flow analysis determines
whether an expression that has been
previously computed may be
reused.

Available expression analysis is a
forward flow problem�—computed
expression values flow forward to
points of possible reuse.

The best solution is True�—the
expression may be reused.

The worst solution is False�—the
expression may not be reused.

46CS 701 Fall 2014©

The Meet Lattice is:

As initial values, at the top of the
start node, nothing is available.
Hence, for a given expression,
AvailIn(b0) = F
We choose an expression, and
consider all the variables that
contribute to its evaluation.
Thus for e1=a+b-c, a, b and c are
e1�’s operands.

T (Expression is Available)

F (Expression is Not Available)

47CS 701 Fall 2014 ©

The transfer function for e1 in block
b is defined as:
If e1 is computed in b after any

assignments to e1�’s operands in b
Then AvailOut(b) = T
Elsif any of e1�’s operands are
changed
 after the last computation of e1 or
 e1�’s operands are changed without
 any computation of e1
Then AvailOut(b) = F
Else AvailOut(b) = AvailIn(b)

The meet operation (to combine
solutions) is:

 AvailIn(b) = AND
p Pred(b)

 AvailOut(p)

48CS 701 Fall 2014©

Example: e1=v+w

v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F

49CS 701 Fall 2014 ©

Circularities Require Care
Since data flow values can depend
on themselves (because of loops),
care is required in assigning initial
�“guesses�” to unknown values.

Consider
If the flow value on the loop
backedge is initially set to false, it
can never become true. (Why?)
Instead we should use True, the
identity for the AND operation.

z=v+w

T

T

50CS 701 Fall 2014©

v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F

F F

F

F

T

T
T

T T

F

51CS 701 Fall 2014 ©

Very Busy Expressions
This is an interesting variant of
available expression analysis.
An expression is very busy at a point
if it is guaranteed that the expression
will be computed at some time in the
future.
Thus starting at the point in
question, the expression must be
reached before its value changes.

Very busy expression analysis is a
backward flow analysis, since it
propagates information about
future evaluations backward to
�“earlier�” points in the computation.

52CS 701 Fall 2014©

The meet lattice is:

As initial values, at the end of all
exit nodes, nothing is very busy.
Hence, for a given expression,
VeryBusyOut(blast) = F

T (Expression is Very Busy)

F (Expression is Not Very Busy)

53CS 701 Fall 2014 ©

The transfer function for e1 in block
b is defined as:
If e1 is computed in b before any of

its operands
Then VeryBusyIn(b) = T
Elsif any of e1�’s operands are
changed
 before e1 is computed
 Then VeryBusyIn(b) = F
Else VeryBusyIn(b) =
VeryBusyOut(b)

The meet operation (to combine
solutions) is:
 VeryBusyOut(b) =

AND
s Succ(b)

 VeryBusyIn(s)

54CS 701 Fall 2014©

Example: e1=v+w

stop

v=2

w=5

v=3 x=v+w

u=v+w

F

F

F

F

T

T

55CS 701 Fall 2014 ©

stop

v=2

w=5

v=3 x=v+w

u=v+w

F

F

F

F

T

T

F
F

F
F

T

T

T

F

Move v+w
here?

Or here?

56CS 701 Fall 2014©

Identifying Identical
Expressions

We can hash expressions, based on
hash values assigned to operands
and operators. This makes
recognizing potentially redundant
expressions straightforward.
For example, if H(a) = 10, H(b) = 21
and H(+) = 5, then (using a simple
product hash),
H(a+b) = 10×21×5 Mod TableSize

57CS 701 Fall 2014 ©

Effects of Aliasing and Calls
When looking for assignments to
operands, we must consider the
effects of pointers, formal
parameters and calls.
An assignment through a pointer
(e.g, *p = val) kills all expressions
dependent on variables p might
point too. Similarly, an assignment
to a formal parameter kills all
expressions dependent on variables
the formal might be bound to.
A call kills all expressions
dependent on a variable changeable
during the call.
Lacking careful alias analysis,
pointers, formal parameters and
calls can kill all (or most)
expressions.

58CS 701 Fall 2014©

Very Busy Expressions and
Loop Invariants

Very busy expressions are ideal
candidates for invariant loop
motion.
If an expression, invariant in a loop,
is also very busy, we know it must
be used in the future, and hence
evaluation outside the loop must be
worthwhile.

59CS 701 Fall 2014 ©

for (...) {

 if (...)
 a=b+c;

 else a=d+c;}

for (...) {

 if (a>b+c)
 x=1;

 else x=0;}

t=b+c t=b+c

a=b+c a=d+c

a>b+c

T F

F

F

F T

b+c is not very busy
at loop entrance

b+c is very busy
at loop entrance

60CS 701 Fall 2014©

Reaching Definitions
We have seen reaching definition
analysis formulated as a set-valued
problem. It can also be formulated
on a per-definition basis.
That is, we ask �“What blocks does a
particular definition to v reach?�”
This is a boolean-valued, forward
flow data flow problem.

61CS 701 Fall 2014 ©

Initially, DefIn(b0) = false.
For basic block b:
DefOut(b) =
 If the definition being analyzed is
 the last definition to v in b
 Then True
 Elsif any other definition to v
occurs
 in b
 Then False
 Else DefIn(b)
The meet operation (to combine
solutions) is:

 DefIn(b) =

To get all reaching definition, we do
a series of single definition analyses.

OR
p Pred(b)

 DefOut(p)

62CS 701 Fall 2014©

Live Variable Analysis
This is a boolean-valued, backward
flow data flow problem.
Initially, LiveOut(blast) = false.
For basic block b:
LiveIn(b) =
 If the variable is used before it is
 defined in b
 Then True
 Elsif it is defined before it is used
 in b
 Then False
 Else LiveOut(b)
The meet operation (to combine
solutions) is:

 LiveOut(b) = OR
s Succ(b)

 LiveIn(s)

63CS 701 Fall 2014 ©

Bit Vectoring Data Flow
Problems

The four data flow problems we
have just reviewed all fit within a
single framework.
Their solution values are Booleans
(bits).
The meet operation is And or OR.
The transfer function is of the
general form
 Out(b) = (In(b) - Killb) U Genb
or
 In(b) = (Out(b) - Killb) U Genb

where Killb is true if a value is
�“killed�” within b and Genb is true if
a value is �“generated�” within b.

64CS 701 Fall 2014©

In Boolean terms:
Out(b) = (In(b) AND Not Killb) OR
Genb

or
In(b) = (Out(b) AND Not Killb) OR
Genb

An advantage of a bit vectoring data
flow problem is that we can do a series
of data flow problems �“in parallel�”
using a bit vector.

Hence using ordinary word-level
ANDs, ORs, and NOTs, we can solve 32
(or 64) problems simultaneously.

65CS 701 Fall 2014 ©

Example
 Do live variable analysis for u and
v, using a 2 bit vector:

We expect no variable to be live at
the start of b0. (Why?)

v=1

u=0

a=u v=2

print(u,v)

Gen=0,0
Kill=0,1

Gen=0,0

Gen=1,0 Gen=0,0

Gen=1,1

Kill=1,0

Kill=0,0 Kill=0,1

Kill=0,0

Live=0,0

Live=0,1

Live=1,1 Live=1,0

Live=1,1

66CS 701 Fall 2014©

Depth-First Spanning Trees
Sometimes we want to �“cover�” the
nodes of a control flow graph with
an acyclic structure.
This allows us to visit nodes once,
without worrying about cycles or
infinite loops.
Also, a careful visitation order can
approximate forward control flow
(very useful in solving forward data
flow problems).
A Depth-First Spanning Tree
(DFST) is a tree structure that
covers the nodes of a control flow
graph, with the start node serving
as root of the DFST.

67CS 701 Fall 2014 ©

Building a DFST
We will visit CFG nodes in depth-
first order, keeping arcs if the
visited node hasn�’t be reached
before.
Create a DFST, T, from a CFG, G:

1. T empty tree
2. Mark all nodes in G as �“unvisited.�”
3. Call DF(start node)

DF (node) {
1. Mark node as visited.
2. For each successor, s, of node in G:

If s is unvisited
 (a) Add node s to T
 (b) Call DF(s)

68CS 701 Fall 2014©

Example
A

B

C

D

E F

G

H

I J

Visit order is A, B, C, D, E, G, H, I, J, F

69CS 701 Fall 2014 ©

The DFST is
A

B

C

D

E F

G

H

I J

70CS 701 Fall 2014©

Categorizing Arcs using a
DFST

Arcs in a CFG can be categorized
by examining the corresponding
DFST.
An arc A B in a CFG is
(a) An Advancing Edge if B is a
proper
 descendent of A in the DFST.
(b) A Retreating Edge if B is an
 ancestor of A in the DFST.
 (This includes the A A case.)
(c) A Cross Edge if B is neither a
 descendent nor an ancestor of A
 in the DFST.

71CS 701 Fall 2014 ©

Example
A

B

C

D

E F

G

H

I J

a
a

a

a

a a

a

a

a a

r

r

r

r

c

72CS 701 Fall 2014©

Depth-First Order
Once we have a DFST, we can label
nodes with a Depth-First Ordering
(DFO).
Let i = the number of nodes in a
CFG (= the number of nodes in its
DFST).
DFO(node) {
 For (each successor s of node) do
 DFO(s);
 Mark node with i;
 i--;
}

73CS 701 Fall 2014 ©

Example
The number of nodes = 10.

A

B

C

D

E F

G

H

I J

1

2

3

4

6 5

7

8

10 9

74CS 701 Fall 2014©

Application of Depth-First
Ordering
• Retreating edges (a necessary

component of loops) are easy to
identify:
 a b is a retreating edge if and only if
 dfo(b) dfo(a)

• A depth-first ordering in an excellent
visit order for solving forward data
flow problems. We want to visit nodes
in essentially topological order, so that
all predecessors of a node are visited
(and evaluated) before the node itself
is.

75CS 701 Fall 2014 ©

Dominators
A CFG node M dominates N
(M dom N) if and only if all paths
from the start node to N must pass
through M.
A node trivially dominates itself.
Thus (N dom N) is always true.

A CFG node M strictly dominates N
(M sdom N) if and only if
(M dom N) and M N.
A node can�’t strictly dominates
itself.
Thus (N sdom N) is never true.

76CS 701 Fall 2014©

A CFG node may have many
dominators.

Node F is dominated by F, E, D and
A.

A

B C

D

E

F

77CS 701 Fall 2014 ©

Immediate Dominators
If a CFG node has more than one
dominator (which is common), there
is always a unique �“closest�”
dominator called its immediate
dominator.
(M idom N) if and only if
 (M sdom N) and
 (P sdom N) (P dom M)

To see that an immediate dominator
always exists (except for the start
node) and is unique, assume that
node N is strictly dominated by M1,
M2, ..., Mp, P 2.
By definition, M1, ..., Mp must
appear on all paths to N, including
acyclic paths.

78CS 701 Fall 2014©

Look at the relative ordering among
M1 to Mp on some arbitrary acyclic
path from the start node to N.
Assume that Mi is �“last�” on that
path (and hence �“nearest�” to N).

If, on some other acyclic path,
Mj Mi is last, then we can shorten
this second path by going directly
from Mi to N without touching any
more of the M1 to Mp nodes.
But, this totally removes Mj from
the path, contradicting the
assumption that (Mj sdom N).

79CS 701 Fall 2014 ©

Dominator Trees
Using immediate dominators, we
can create a dominator tree in which
A B in the dominator tree if and
only if (A idom B).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Control Flow Graph

Dominator Tree

80CS 701 Fall 2014©

Note that the Dominator Tree of a
CFG and its DFST are distinct trees
(though they have the same nodes).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Dominator Tree

Depth-First Spanning Tree

81CS 701 Fall 2014 ©

A Dominator Tree is a compact and
convenient representation of both
the dom and idom relations.
A node in a Dominator Tree
dominates all its descendents in the
tree, and immediately dominates all
its children.

82CS 701 Fall 2014©

Computing Dominators
Dominators can be computed as a
Set-valued Forward Data Flow
Problem.
If a node N dominates all of node
M�’s predecessors, then N appears
on all paths to M. Hence (N dom M).
Similarly, if M doesn�’t dominate all
of M�’s predecessors, then there is a
path to M that doesn�’t include M.
Hence
¬(N dom M).
These observations give us a �“data
flow equation�” for dominator sets:

dom(N) = {N} U dom(M)
M Pred(N)

83CS 701 Fall 2014 ©

The analysis domain is the lattice of
all subsets of nodes. Top is the set of
all nodes; bottom is the empty set.
The ordering relation is subset.

The meet operation is intersection.

The Initial Condition is that
 DomIn(b0) =

DomOut(b) = DomIn(b) U {b}

DomIn(b) = DomOut(c)
c Pred(b)

84CS 701 Fall 2014©

Loops Require Care
Loops in the Control Flow Graph
induce circularities in the Data Flow
equations for Dominators. In

we have the rule dom(B) =
DomOut(B) =
 DomIn(B) U {B} =
 {B} U (DomOut(B) DomOut(A))
If we choose DomOut(B) =
initially, we get DomOut(B) =
{B} U (DomOut(A)) = {B}
which is wrong.

A

B

C

85CS 701 Fall 2014 ©

Instead, we should use the Universal
Set (of all nodes) which is the
identity for .

Then we get DomOut(B) =
{B} U ({all nodes}
DomOut(A)) = {B} U
DomOut(A)
 which is correct.

86CS 701 Fall 2014©

87CS 701 Fall 2014 ©
88CS 701 Fall 2014©

