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Reading Assignment
• Section 14.3 - 14.4 of CaC 
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Data Flow Frameworks
• Data Flow Graph:

Nodes of the graph are basic blocks 
or individual instructions.
Arcs represent flow of control.
Forward Analysis:

Information flow is the same 
direction as control flow.

Backward Analysis:
Information flow is the opposite 
direction as control flow.

Bi-directional Analysis:
Information flow is in both 
directions. (Not too common.)
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• Meet Lattice
Represents solution space for the 
data flow analysis.

• Meet operation 
(And, Or, Union, Intersection, etc.)
Combines solutions from 
predecessors or successors in the 
control flow graph.

T

.  .  .  .  .   .
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• Transfer Function
Maps a solution at the top of a node 
to a solution at the end of the node 
(forward flow)
or
Maps a solution at the end of a node 
to a solution at the top of the node 
(backward flow).
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Example: Available 
Expressions

This data flow analysis determines 
whether an expression that has been 
previously computed may be 
reused.

Available expression analysis is a 
forward flow problem�—computed 
expression values flow forward to 
points of possible reuse.

The best solution is True�—the 
expression may be reused.

The worst solution is False�—the 
expression may not be reused.
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The Meet Lattice is:

As initial values, at the top of the 
start node, nothing is available. 
Hence, for a given expression,
AvailIn(b0) = F
We choose an expression, and 
consider all the variables that 
contribute to its evaluation.
Thus for e1=a+b-c, a, b and c are 
e1�’s operands.

T (Expression is Available)

F (Expression is Not Available)
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The transfer function for e1 in block 
b is defined as:
If e1 is computed in b after any 

assignments to e1�’s operands in b 
Then  AvailOut(b) = T
Elsif any of e1�’s operands are 
changed
   after the last computation of e1 or
   e1�’s operands are changed without
   any computation of e1
Then  AvailOut(b) = F
Else   AvailOut(b) = AvailIn(b)

The meet operation (to combine 
solutions) is:

 AvailIn(b) = AND
p  Pred(b)

 AvailOut(p)
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Example: e1=v+w

v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F
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Circularities Require Care
Since data flow values can depend 
on themselves (because of loops), 
care is required in assigning initial 
�“guesses�” to unknown values. 

Consider
If the flow value on the loop 
backedge is initially set to false, it 
can never become true. (Why?)
Instead we should use True, the 
identity for the AND operation.

z=v+w

T

T
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v=9 y=v+w

w=5

x=v+w

z=v+w

v=2stop

F

F

F

F

T

T

T

F

F F

F

F

T

T
T

T T

F
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Very Busy Expressions
This is an interesting variant of 
available expression analysis.
An expression is very busy at a point 
if it is guaranteed that the expression 
will be computed at some time in the 
future.
Thus starting at the point in 
question, the expression must be 
reached before its value changes.

Very busy expression analysis is a 
backward flow analysis, since it 
propagates information about 
future evaluations backward to 
�“earlier�” points in the computation.
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The meet lattice is:

As initial values, at the end of all 
exit nodes, nothing is very busy. 
Hence, for a given expression,
VeryBusyOut(blast) = F

T (Expression is Very Busy)

F (Expression is Not Very Busy)
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The transfer function for e1 in block 
b is defined as:
If e1 is computed in b before any of 

its operands  
Then  VeryBusyIn(b) = T
Elsif any of e1�’s operands are 
changed
   before e1 is computed
   Then  VeryBusyIn(b) = F
Else   VeryBusyIn(b) = 
VeryBusyOut(b)

The meet operation (to combine 
solutions) is:
 VeryBusyOut(b) = 

AND
s  Succ(b)

 VeryBusyIn(s)
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Example: e1=v+w

stop

v=2

w=5

v=3 x=v+w

u=v+w

F

F

F

F

T

T
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stop

v=2

w=5

v=3 x=v+w

u=v+w

F

F

F

F

T

T

F
F

F
F

T

T

T

F

Move v+w
here?

Or here?
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Identifying Identical 
Expressions

We can hash expressions, based on 
hash values assigned to operands 
and operators. This makes 
recognizing potentially redundant 
expressions straightforward.
For example, if H(a) = 10, H(b) = 21 
and H(+) = 5, then (using a simple 
product hash), 
H(a+b) = 10×21×5 Mod TableSize
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Effects of Aliasing and Calls
When looking for assignments to 
operands, we must consider the 
effects of pointers, formal 
parameters and calls.
An assignment through a pointer
(e.g, *p = val) kills all expressions 
dependent on variables p might 
point too. Similarly, an assignment 
to a formal parameter kills all 
expressions dependent on variables 
the formal might be bound to.
A call kills all expressions 
dependent on a variable changeable 
during the call.
Lacking careful alias analysis, 
pointers, formal parameters and 
calls can kill all (or most) 
expressions.
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Very Busy Expressions and 
Loop Invariants

Very busy expressions are ideal 
candidates for invariant loop 
motion.
If an expression, invariant in a loop, 
is also very busy, we know it must 
be used in the future, and hence 
evaluation outside the loop must be 
worthwhile.
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for (...) {

  if (...)
      a=b+c;

  else a=d+c;}

for (...) {

  if (a>b+c)
      x=1;

  else x=0;}

t=b+c t=b+c

a=b+c a=d+c

a>b+c

T F

F

F

F T

b+c is not very busy
at loop entrance

b+c is very busy
at loop entrance
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Reaching Definitions
We have seen reaching definition 
analysis formulated as a set-valued 
problem. It can also be formulated 
on a per-definition basis.
That is, we ask �“What blocks does a 
particular definition to v reach?�”
This is a boolean-valued, forward 
flow data flow problem.
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Initially, DefIn(b0) = false.
For basic block b:
DefOut(b) = 
  If the definition being analyzed is
    the last definition to v in b
  Then True
  Elsif any other definition to v 
occurs
     in b
  Then False
  Else DefIn(b)
The meet operation (to combine 
solutions) is:

 DefIn(b) = 

To get all reaching definition, we do 
a series of single definition analyses.

OR
p  Pred(b)

 DefOut(p)
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Live Variable Analysis
This is a boolean-valued, backward 
flow data flow problem.
Initially, LiveOut(blast) = false.
For basic block b:
LiveIn(b) = 
  If the variable is used before it is
    defined in b
  Then True
  Elsif it is defined before it is used
     in b
  Then False
  Else LiveOut(b)
The meet operation (to combine 
solutions) is:

 LiveOut(b) = OR
s  Succ(b)

 LiveIn(s)
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Bit Vectoring Data Flow 
Problems

The four data flow problems we 
have just reviewed all fit within a 
single framework.
Their solution values are Booleans 
(bits).
The meet operation is And or OR.
The transfer function is of the 
general form
  Out(b) = (In(b) - Killb) U Genb
or
  In(b) = (Out(b) - Killb) U Genb

where Killb is true if a value is 
�“killed�” within b and Genb is true if 
a value is �“generated�” within b.
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In Boolean terms:
Out(b) = (In(b) AND Not Killb) OR 
Genb

or
In(b) = (Out(b) AND Not Killb) OR 
Genb

An advantage of a bit vectoring data 
flow problem is that we can do a series 
of data flow problems �“in parallel�” 
using a bit vector.

Hence using ordinary word-level 
ANDs, ORs, and NOTs, we can solve 32 
(or 64) problems simultaneously.
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Example
 Do live variable analysis for u and 
v, using a 2 bit vector:

We expect no variable to be live at 
the start of b0. (Why?)

v=1

u=0

a=u v=2

print(u,v)

Gen=0,0
Kill=0,1 

Gen=0,0

Gen=1,0 Gen=0,0

Gen=1,1

Kill=1,0 

Kill=0,0 Kill=0,1 

Kill=0,0 

Live=0,0

Live=0,1

Live=1,1 Live=1,0

Live=1,1
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Depth-First Spanning Trees
Sometimes we want to �“cover�” the 
nodes of a control flow graph with 
an acyclic structure.
This allows us to visit nodes once, 
without worrying about cycles or 
infinite loops.
Also, a careful visitation order can 
approximate forward control flow 
(very useful in solving forward data 
flow problems).
A Depth-First Spanning Tree 
(DFST) is a tree structure that 
covers the nodes of a control flow 
graph, with the start node serving 
as root of the DFST. 
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Building a DFST
We will visit CFG nodes in depth-
first order, keeping arcs if the 
visited node hasn�’t be reached 
before.
Create a DFST, T, from a CFG, G:

1. T  empty tree
2. Mark all nodes in G as �“unvisited.�”
3. Call DF(start node)

DF (node) {
1. Mark node as visited.
2. For each successor, s, of node in G:

If s is unvisited
  (a) Add node  s to T
  (b) Call DF(s)
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Example
A

B

C

D

E F

G

H

I J

Visit order is A, B, C, D, E, G, H, I, J, F
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The DFST is
A

B

C

D

E F

G

H

I J
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Categorizing Arcs using a 
DFST

Arcs in a CFG can be categorized 
by examining the corresponding 
DFST.
An arc A B in a CFG is
(a) An Advancing Edge if B is a 
proper
     descendent of A in the DFST.
(b) A Retreating Edge if B is an 
     ancestor of A in the DFST.
     (This includes the A A case.)
(c) A Cross Edge if B is neither a
     descendent nor an ancestor of A
     in the DFST.
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Example
A

B

C

D

E F

G

H

I J

a
a

a

a

a a

a

a

a a

r

r

r

r

c
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Depth-First Order
Once we have a DFST, we can label 
nodes with a Depth-First Ordering 
(DFO).
Let i = the number of nodes in a 
CFG (= the number of nodes in its 
DFST).
DFO(node) {
   For (each successor s of node) do
         DFO(s);
   Mark node with i;
   i--;
}
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Example
The number of nodes = 10.

A

B

C

D

E F

G

H

I J

1

2

3

4

6 5

7

8

10 9
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Application of Depth-First 
Ordering
• Retreating edges (a necessary 

component of loops) are easy to 
identify:
   a b is a retreating edge if and only if
   dfo(b)  dfo(a)

• A depth-first ordering in an excellent 
visit order for solving forward data 
flow problems. We want to visit nodes 
in essentially topological order, so that 
all predecessors of a node are visited 
(and evaluated) before the node itself 
is.
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Dominators
A CFG node M dominates N 
(M dom N) if and only if all paths 
from the start node to N must pass 
through M.
A node trivially dominates itself.
Thus (N dom N) is always true.

A CFG node M strictly dominates N 
(M sdom N) if and only if
(M dom N) and M  N. 
A node can�’t strictly dominates 
itself.
Thus (N sdom N) is never true.
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A CFG node may have many 
dominators.

Node F is dominated by F, E, D and 
A.

A

B C

D

E

F
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Immediate Dominators
If a CFG node has more than one 
dominator (which is common), there 
is always a unique �“closest�” 
dominator called its immediate 
dominator.
(M idom N) if and only if
 (M sdom N) and
 (P sdom N)  (P dom M)

To see that an immediate dominator 
always exists (except for the start 
node) and is unique, assume that 
node N is strictly dominated by M1, 
M2, ..., Mp, P  2.
By definition, M1, ..., Mp must 
appear on all paths to N, including 
acyclic paths.
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Look at the relative ordering among 
M1 to Mp on some arbitrary acyclic 
path from the start node to N.
Assume that Mi is �“last�” on that 
path (and hence �“nearest�” to N).

If, on some other acyclic path, 
Mj  Mi is last, then we can shorten 
this second path by going directly 
from Mi to N without touching any 
more of the M1 to Mp nodes.
But, this totally removes Mj from 
the path, contradicting the 
assumption that (Mj sdom N).
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Dominator Trees
Using immediate dominators, we 
can create a dominator tree in which 
A B in the dominator tree if and 
only if  (A idom B).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Control Flow Graph

Dominator Tree
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Note that the Dominator Tree of a 
CFG and its DFST are distinct trees 
(though they have the same nodes).

A

B C

D

E

F

Start

End

A

B C D

E

F

Start

End

Dominator Tree

Depth-First Spanning Tree
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A Dominator Tree is a compact and 
convenient representation of both 
the dom and idom relations.
A node in a Dominator Tree 
dominates all its descendents in the 
tree, and immediately dominates all 
its children.

82CS 701  Fall 2014©

Computing Dominators
Dominators can be computed as a 
Set-valued Forward Data Flow 
Problem.
If a node N dominates all of node 
M�’s predecessors, then N appears 
on all paths to M. Hence (N dom M).
Similarly, if M doesn�’t dominate all 
of M�’s predecessors, then there is a 
path to M that doesn�’t include M. 
Hence
¬(N dom M).
These observations give us a �“data 
flow equation�” for dominator sets:

dom(N) = {N} U  dom(M)
M  Pred(N)
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The analysis domain is the lattice of 
all subsets of nodes. Top is the set of 
all nodes; bottom is the empty set. 
The ordering relation is subset.

The meet operation is intersection.

The Initial Condition is that
  DomIn(b0) = 

DomOut(b) = DomIn(b) U {b}

DomIn(b) =   DomOut(c)
c  Pred(b)
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Loops Require Care
Loops in the Control Flow Graph 
induce circularities in the Data Flow 
equations for Dominators. In

we have the rule dom(B) = 
DomOut(B) =
 DomIn(B) U {B} = 
 {B} U (DomOut(B)  DomOut(A))
If we choose DomOut(B) =  
initially, we get DomOut(B) =
{B} U (   DomOut(A)) = {B}
which is wrong.

A

B

C
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Instead, we should use the Universal 
Set (of all nodes) which is the 
identity for .

Then we get DomOut(B) =
{B} U ({all nodes}  
DomOut(A)) = {B} U  
DomOut(A)
 which is correct.
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