Reading Assignment

. Section 14.5 - 14.7 of CaC

. Pages 31 - 63 of “Automatic Program
Optimization”

. Assignment 2
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Dominance Frontiers

Dominators and postdominators tell
us which basic block must be

executed prior to, of after, a block
N.

It is interesting to consider blocks
“just before” or “just after” blocks
we’re dominated by, or blocks we
dominate.

The Dominance Frontier of a basic
block N, DF(N), is the set of all
blocks that are immediate
successors to blocks dominated by
N, but which aren’t themselves
strictly dominated by N.
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DF(N) =
{Z.| M—>Z & (N dom M) &
—(N sdom Z)}

The dominance frontier of N is the
set of blocks that are not dominated
N and which are “first reached” on
paths from N.
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A block can be in its own
Dominance Frontier:

O |-—| Wla—| >

Here, DF(A) = {A}
Why? Reconsider the definition:

DF(N) =
{Z.| M—Z & (N dom M) &
—(N sdom Z2)}

Now B is dominated by A and B—A.

Moreover, A does not strictly
dominate itself. So, it meets the
definition.
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Postdominance Frontiers

The Postdominance Frontier of a
basic block N, PDF(N), is the set of
all blocks that are immediate
predecessors to blocks
postdominated by N, but which
aren’t themselves postdominated by
N.

PDF(N) =
{Z.| Z—>M & (N pdom M) &
—(N pdom Z)}

The postdominance frontier of N is
the set of blocks closest to N where a
choice was made of whether to
reach N or not.
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Control Dependence

Since CFGs model flow of control, it
is useful to identify those basic
blocks whose execution is controlled
by a branch decision made by a
predecessor.

We say Y is control dependent on X
if, reaching X, choosing one out arc
will force Y to be reached, while
choosing another arc out of X allows
Y to be avoided.

Formally, Y is control dependent on
X if and only if,

(a) Y postdominates a successor of X.

(b) Y does not postdominate all
successors of X.

X is the most recent block where a
choice was made to reach Y or not.
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Control Dependence Graph

We can build a Control Dependence
Graph that shows (in graphical
form) all Control Dependence
relations.

(A Block can be Control Dependent
on itself.)

CS 701 Fall 2014° 101




O lt—| T |-—| >

Control Flow Graph

i

:
i
PN

Postominator Tree

A

(L

#C\
i\

i\

G

F

E

Control Dependence

Graph

What happened to H in the CD

Graph?
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Let’s reconsider the CD Graph:

G

Y

H

Control Flow Graph

Blocks C and K, as well as D and E,

i CZ\G

Y N
PaN I
\F/ cOngg; ;]))llepel:ldence

seem to have the same control

dependence relations with their

parent. But this isn’t so!

C and F are control equivalent, but

D and E are mutually exclusive!
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Improving the Representation
of Control Dependence

We can label arcs in the CFG and
the CD Graph with the condition (T
or F or some switch value) that
caused the arc to be selected for
execution.

This labeling then shows the
conditions that lead to the execution
of a given block.

To allow the exit block to appear in
the CD Graph, we can also add
‘“artificial” start and exit blocks,
linked together.
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Start

Control Dependence
Graph

Exile——————— | H

Control Flow Graph

C and F have the same Control
Dependence relations. They are part
of the same extended basic block.

But D and E aren’t identically
control dependent. A and H are
control equivalent, as are B and G
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Data Flow Frameworks
Revisited

Recall that a Data Flow problem is
characterized as:

(a) A Control Flow Graph
(b) A Lattice of Data Flow values

(¢) A Meet operator to join solutions
from Predecessors or Successors

(d) A Transfer Function
Out = f},(In) or In = f,(Out)
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Value Lattice

The lattice of values is usually a
meet semilattice defined by:

A: a set of values

T and L (*top” and “bottom”):
distinguished values in the lattice

<: A reflexive partial order relating
values in the lattice

A: An associative and commutative
meet operator on lattice values
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Lattice Axioms
The following axioms apply to the
lattice defined by A, T, 1, < and A:
a<b oanb=a
ana=a
(anb)<a
(anb)<b
(anT)=a
anl)=_1
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Monotone Transfer Function

Transfer Functions, fj,:L. —> L

(where L is the Data Flow Lattice)
are normally required to be
monotone.

Thatis x <y = f,(x) < 1j,(y).

This rule states that a “worse” input
can’t produce a “better” output.

Monotone transfer functions allow
us to guarantee that data tflow
solutions are stable.

If we had 1,,(T) = L and {,(L)=T,

then solutions might oscillate
between T and L indefinitely.

Since L < T, f,(_L) should be < {,,(T).
But f;,(L) =T which is not < £;(T) =
1. Thus f;, isn’t monotone.
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Dominators fit the Data Flow
Framework

Given a set of Basic Blocks, N, we
have:

A is 2N (all subsets of Basic Blocks).
Tis N.

L is ¢.

a<b=ach.

f;(in) =In U {Z}

A IS M (set intersection).
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The required axioms are satisfied:

acb <anb=a
anNna=a
(anb)ca
(anb)chb
(anN)=a
@ny)=¢

Also 17 is monotone since

acb=avu{Zlc bui{Zl} =
fz(a) c fz(b)
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