Reading Assignment

. Section 14.5 - 14.7 of CaC

. Pages 31 - 63 of “Automatic Program
Optimization”

. Assignment 2

CS 701 Fall 2014°

92

CS 701 Fall 2014°

93

Dominance Frontiers

Dominators and postdominators tell
us which basic block must be

executed prior to, of after, a block
N.

It is interesting to consider blocks
“just before” or “just after” blocks
we’re dominated by, or blocks we
dominate.

The Dominance Frontier of a basic
block N, DF(N), is the set of all
blocks that are immediate
successors to blocks dominated by
N, but which aren’t themselves
strictly dominated by N.

CS 701 Fall 2014° a4

DF(N) =
{Z.| M—>Z & (N dom M) &
—(N sdom Z)}

The dominance frontier of N is the
set of blocks that are not dominated
N and which are “first reached” on
paths from N.

CS 701 Fall 2014° 95

Example

]
/\

\/
i

C

.

PN

F

D

E

Dominator Tree

Control Flow Graph
Block A B C D E F
Domi- o | F | E} | {E} | {F} | ¢

nance
Frontier

CS 701 Fall 2014°

96

A block can be in its own
Dominance Frontier:

O |-—| Wla—| >

Here, DF(A) = {A}
Why? Reconsider the definition:

DF(N) =
{Z.| M—Z & (N dom M) &
—(N sdom Z2)}

Now B is dominated by A and B—A.

Moreover, A does not strictly
dominate itself. So, it meets the
definition.

CS 701 Fall 2014° 97

Postdominance Frontiers

The Postdominance Frontier of a
basic block N, PDF(N), is the set of
all blocks that are immediate
predecessors to blocks
postdominated by N, but which
aren’t themselves postdominated by
N.

PDF(N) =
{Z.| Z—>M & (N pdom M) &
—(N pdom Z)}

The postdominance frontier of N is
the set of blocks closest to N where a
choice was made of whether to
reach N or not.

CS 701 Fall 2014°

98

Example

E

/\
\/

E

T

B

Postominator Tree

PN

A

C

D

Control Flow Graph
Block A | B | C | D | E
Postdomi- {A} | {B} | {B} | {A}

nance
Frontier

CS 701 Fall 2014°

99

Control Dependence

Since CFGs model flow of control, it
is useful to identify those basic
blocks whose execution is controlled
by a branch decision made by a
predecessor.

We say Y is control dependent on X
if, reaching X, choosing one out arc
will force Y to be reached, while
choosing another arc out of X allows
Y to be avoided.

Formally, Y is control dependent on
X if and only if,

(a) Y postdominates a successor of X.

(b) Y does not postdominate all
successors of X.

X is the most recent block where a
choice was made to reach Y or not.

CS 701 Fall 2014° 100

Control Dependence Graph

We can build a Control Dependence
Graph that shows (in graphical
form) all Control Dependence
relations.

(A Block can be Control Dependent
on itself.)

CS 701 Fall 2014° 101

O lt—| T |-—| >

Control Flow Graph

i

:
i
PN

Postominator Tree

A

(L

#C\
i\

i\

G

F

E

Control Dependence

Graph

What happened to H in the CD

Graph?

CS 701 Fall 2014°

102

Let’s reconsider the CD Graph:

G

Y

H

Control Flow Graph

Blocks C and K, as well as D and E,

i CZ\G

Y N
PaN I
\F/ cOngg; ;]))llepel:ldence

seem to have the same control

dependence relations with their

parent. But this isn’t so!

C and F are control equivalent, but

D and E are mutually exclusive!

CS 701 Fall 2014°

103

Improving the Representation
of Control Dependence

We can label arcs in the CFG and
the CD Graph with the condition (T
or F or some switch value) that
caused the arc to be selected for
execution.

This labeling then shows the
conditions that lead to the execution
of a given block.

To allow the exit block to appear in
the CD Graph, we can also add
‘“artificial” start and exit blocks,
linked together.

CS 701 Fall 2014°

104

Start

Control Dependence
Graph

Exile——————— | H

Control Flow Graph

C and F have the same Control
Dependence relations. They are part
of the same extended basic block.

But D and E aren’t identically
control dependent. A and H are
control equivalent, as are B and G

CS 701 Fall 2014° 105

Data Flow Frameworks
Revisited

Recall that a Data Flow problem is
characterized as:

(a) A Control Flow Graph
(b) A Lattice of Data Flow values

(¢) A Meet operator to join solutions
from Predecessors or Successors

(d) A Transfer Function
Out = f},(In) or In = f,(Out)

CS 701 Fall 2014° 106

Value Lattice

The lattice of values is usually a
meet semilattice defined by:

A: a set of values

T and L (*top” and “bottom”):
distinguished values in the lattice

<: A reflexive partial order relating
values in the lattice

A: An associative and commutative
meet operator on lattice values

CS 701 Fall 2014° 107

Lattice Axioms
The following axioms apply to the
lattice defined by A, T, 1, < and A:
a<b oanb=a
ana=a
(anb)<a
(anb)<b
(anT)=a
anl)=_1

CS 701 Fall 2014° 108

Monotone Transfer Function

Transfer Functions, fj,:L. —> L

(where L is the Data Flow Lattice)
are normally required to be
monotone.

Thatis x <y = f,(x) < 1j,(y).

This rule states that a “worse” input
can’t produce a “better” output.

Monotone transfer functions allow
us to guarantee that data tflow
solutions are stable.

If we had 1,,(T) = L and {,(L)=T,

then solutions might oscillate
between T and L indefinitely.

Since L < T, f,(_L) should be < {,,(T).
But f;,(L) =T which is not < £;(T) =
1. Thus f;, isn’t monotone.

CS 701 Fall 2014° 109

Dominators fit the Data Flow
Framework

Given a set of Basic Blocks, N, we
have:

A is 2N (all subsets of Basic Blocks).
Tis N.

L is ¢.

a<b=ach.

f;(in) =In U {Z}

A IS M (set intersection).

CS 701 Fall 2014° 10

The required axioms are satisfied:

acb <anb=a
anNna=a
(anb)ca
(anb)chb
(anN)=a
@ny)=¢

Also 17 is monotone since

acb=avu{Zlc bui{Zl} =
fz(a) c fz(b)

CS 701 Fall 2014°

1M1

