Reading Assignment

• Section 14.5 - 14.7 of CaC
• Pages 31 - 63 of “Automatic Program Optimization”
• Assignment 2
Dominance Frontiers

D dominators and postdominators tell us which basic block must be executed prior to, or after, a block N.

It is interesting to consider blocks “just before” or “just after” blocks we’re dominated by, or blocks we dominate.

The Dominance Frontier of a basic block N, DF(N), is the set of all blocks that are immediate successors to blocks dominated by N, but which aren’t themselves strictly dominated by N.
\[DF(N) = \{ Z \mid M \rightarrow Z \land (N \text{ dom } M) \land
\neg (N \text{ sdom } Z) \}\]

The dominance frontier of \(N \) is the set of blocks that are not dominated \(N \) and which are “first reached” on paths from \(N \).
Example

Control Flow Graph

Dominator Tree

<table>
<thead>
<tr>
<th>Block</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominance Frontier</td>
<td>ϕ</td>
<td>${F}$</td>
<td>${E}$</td>
<td>${E}$</td>
<td>${F}$</td>
<td>ϕ</td>
</tr>
</tbody>
</table>
A block can be in its own Dominance Frontier:

Here, $\text{DF}(A) = \{A\}$

Why? Reconsider the definition:

$\text{DF}(N) = \{Z \mid M \rightarrow Z \& (N \text{ dom } M) \& \neg (N \text{ sdom } Z)\}$

Now B is dominated by A and $B \rightarrow A$.

Moreover, A does not strictly dominate itself. So, it meets the definition.
Postdominance Frontiers

The Postdominance Frontier of a basic block N, PDF(N), is the set of all blocks that are immediate predecessors to blocks postdominated by N, but which aren’t themselves postdominated by N.

PDF(N) =
\{Z | Z \rightarrow M \& (N \text{ pdom } M) \& \\
\neg(N \text{ pdom } Z)\}

The postdominance frontier of N is the set of blocks closest to N where a choice was made of whether to reach N or not.
Example

Control Flow Graph

<table>
<thead>
<tr>
<th>Block</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postdominance Frontier</td>
<td>ϕ</td>
<td>{A}</td>
<td>{B}</td>
<td>{B}</td>
<td>{A}</td>
<td>ϕ</td>
</tr>
</tbody>
</table>
Control Dependence

Since CFGs model flow of control, it is useful to identify those basic blocks whose execution is controlled by a branch decision made by a predecessor.

We say Y is control dependent on X if, reaching X, choosing one out arc will force Y to be reached, while choosing another arc out of X allows Y to be avoided.

Formally, Y is control dependent on X if and only if,

(a) Y postdominates a successor of X.
(b) Y does not postdominate all successors of X.

X is the most recent block where a choice was made to reach Y or not.
Control Dependence Graph

We can build a Control Dependence Graph that shows (in graphical form) all Control Dependence relations.
(A Block can be Control Dependent on itself.)
What happened to H in the CD Graph?
Let’s reconsider the CD Graph:

Blocks C and F, as well as D and E, seem to have the same control dependence relations with their parent. But this isn’t so!

C and F are control equivalent, but D and E are mutually exclusive!
Improving the Representation of Control Dependence

We can label arcs in the CFG and the CD Graph with the condition (T or F or some switch value) that caused the arc to be selected for execution.

This labeling then shows the conditions that lead to the execution of a given block.

To allow the exit block to appear in the CD Graph, we can also add “artificial” start and exit blocks, linked together.
C and F have the same Control Dependence relations. They are part of the same extended basic block.

But D and E aren’t identically control dependent. A and H are control equivalent, as are B and G.
Data Flow Frameworks Revisited

Recall that a Data Flow problem is characterized as:

(a) A Control Flow Graph

(b) A Lattice of Data Flow values

(c) A Meet operator to join solutions from Predecessors or Successors

(d) A Transfer Function
 \[\text{Out} = f_b(\text{In}) \text{ or } \text{In} = f_b(\text{Out}) \]
Value Lattice

The lattice of values is usually a meet semilattice defined by:

A: a set of values

T and \(\bot \) ("top" and "bottom"): distinguished values in the lattice

\(\leq \): A reflexive partial order relating values in the lattice

\(\wedge \): An associative and commutative meet operator on lattice values
Lattice Axioms

The following axioms apply to the lattice defined by A, T, \bot, \leq and \wedge:

- $a \leq b \iff a \wedge b = a$
- $a \wedge a = a$
- $(a \wedge b) \leq a$
- $(a \wedge b) \leq b$
- $(a \wedge T) = a$
- $(a \wedge \bot) = \bot$
Monotone Transfer Function

Transfer Functions, \(f_b : L \rightarrow L \)
(where \(L \) is the Data Flow Lattice) are normally required to be monotone.

That is \(x \leq y \Rightarrow f_b(x) \leq f_b(y) \).

This rule states that a “worse” input can’t produce a “better” output.

Monotone transfer functions allow us to guarantee that data flow solutions are stable.

If we had \(f_b(T) = \bot \) and \(f_b(\bot) = T \), then solutions might oscillate between \(T \) and \(\bot \) indefinitely.

Since \(\bot \leq T \), \(f_b(\bot) \) should be \(\leq f_b(T) \).

But \(f_b(\bot) = T \) which is not \(\leq f_b(T) = \bot \). Thus \(f_b \) isn’t monotone.
Dominators fit the Data Flow Framework

Given a set of Basic Blocks, \(N \), we have:

\(A = 2^N \) (all subsets of Basic Blocks).

\(T = N \).

\(\bot \) is \(\emptyset \).

\(a \leq b \equiv a \subseteq b \).

\(f_Z(\text{in}) = \text{In} \cup \{Z\} \)

\(\wedge \) is \(\cap \) (set intersection).
The required axioms are satisfied:

\[a \subseteq b \iff a \cap b = a \]
\[a \cap a = a \]
\[(a \cap b) \subseteq a \]
\[(a \cap b) \subseteq b \]
\[(a \cap \mathbb{N}) = a \]
\[(a \cap \emptyset) = \emptyset \]

Also \(f_Z \) is monotone since

\[a \subseteq b \Rightarrow a \cup \{Z\} \subseteq b \cup \{Z\} \Rightarrow f_Z(a) \subseteq f_Z(b) \]