
92CS 701 Fall 2014©

Reading Assignment
• Section 14.5 - 14.7 of CaC
• Pages 31 - 63 of “Automatic Program

Optimization”
• Assignment 2

93CS 701 Fall 2014©

94CS 701 Fall 2014©

Dominance Frontiers
Dominators and postdominators tell
us which basic block must be
executed prior to, of after, a block
N.

It is interesting to consider blocks
�“just before�” or �“just after�” blocks
we�’re dominated by, or blocks we
dominate.

The Dominance Frontier of a basic
block N, DF(N), is the set of all
blocks that are immediate
successors to blocks dominated by
N, but which aren�’t themselves
strictly dominated by N.

95CS 701 Fall 2014©

DF(N) =
 {Z | M Z & (N dom M) &
 ¬(N sdom Z)}
The dominance frontier of N is the
set of blocks that are not dominated
N and which are �“first reached�” on
paths from N.

96CS 701 Fall 2014©

Example

Block A B C D E F

Domi-
nance
Frontier

{F} {E} {E} {F}

B

C D

E

F

A

B

C D E

A

Control Flow Graph

Dominator Tree

F

97CS 701 Fall 2014©

A block can be in its own
Dominance Frontier:

Here, DF(A) = {A}
Why? Reconsider the definition:
DF(N) =
 {Z | M Z & (N dom M) &
 ¬(N sdom Z)}
Now B is dominated by A and B A.
Moreover, A does not strictly
dominate itself. So, it meets the
definition.

B

C

A

98CS 701 Fall 2014©

Postdominance Frontiers
The Postdominance Frontier of a
basic block N, PDF(N), is the set of
all blocks that are immediate
predecessors to blocks
postdominated by N, but which
aren�’t themselves postdominated by
N.

PDF(N) =
 {Z | Z M & (N pdom M) &
 ¬(N pdom Z)}
The postdominance frontier of N is
the set of blocks closest to N where a
choice was made of whether to
reach N or not.

99CS 701 Fall 2014©

Example

Block A B C D E F

Postdomi-
nance
Frontier

{A} {B} {B} {A}

B

C D

E

F

A

E

B C D

F

Control Flow Graph

Postominator Tree

A

100CS 701 Fall 2014©

Control Dependence
Since CFGs model flow of control, it
is useful to identify those basic
blocks whose execution is controlled
by a branch decision made by a
predecessor.
We say Y is control dependent on X
if, reaching X, choosing one out arc
will force Y to be reached, while
choosing another arc out of X allows
Y to be avoided.
Formally, Y is control dependent on
X if and only if,
(a) Y postdominates a successor of X.
(b) Y does not postdominate all

successors of X.
X is the most recent block where a
choice was made to reach Y or not.

101CS 701 Fall 2014©

Control Dependence Graph
We can build a Control Dependence
Graph that shows (in graphical
form) all Control Dependence
relations.
(A Block can be Control Dependent
on itself.)

102CS 701 Fall 2014©

What happened to H in the CD
Graph?

C

D E

F

G

B

F

C D E

B

Control Flow Graph

Postominator Tree

A

H

H

G A

A

B G

C F

D E

Control Dependence
Graph

103CS 701 Fall 2014©

Let�’s reconsider the CD Graph:

Blocks C and F, as well as D and E,
seem to have the same control
dependence relations with their
parent. But this isn�’t so!
C and F are control equivalent, but
D and E are mutually exclusive!

C

D E

F

G

B

Control Flow Graph

A

H

A

B G

C F

D E

Control Dependence
Graph

104CS 701 Fall 2014©

Improving the Representation
of Control Dependence

We can label arcs in the CFG and
the CD Graph with the condition (T
or F or some switch value) that
caused the arc to be selected for
execution.
This labeling then shows the
conditions that lead to the execution
of a given block.
To allow the exit block to appear in
the CD Graph, we can also add
�“artificial�” start and exit blocks,
linked together.

105CS 701 Fall 2014©

C and F have the same Control
Dependence relations. They are part
of the same extended basic block.
But D and E aren�’t identically
control dependent. A and H are
control equivalent, as are B and G.

C

D E

F

G

B

Control Flow Graph

A

H

A

B G

C F

D E

Control Dependence
Graph

Start

Exit

T

T

T

T

F F

F

F

Start

H
T T

TT

T

T T

TF

106CS 701 Fall 2014©

Data Flow Frameworks
Revisited

Recall that a Data Flow problem is
characterized as:
(a) A Control Flow Graph
(b) A Lattice of Data Flow values
(c) A Meet operator to join solutions
 from Predecessors or Successors
(d) A Transfer Function
 Out = fb(In) or In = fb(Out)

107CS 701 Fall 2014©

Value Lattice
The lattice of values is usually a
meet semilattice defined by:
A: a set of values
T and (�“top�” and �“bottom�”):

distinguished values in the lattice
: A reflexive partial order relating
values in the lattice

: An associative and commutative
meet operator on lattice values

108CS 701 Fall 2014©

Lattice Axioms
The following axioms apply to the
lattice defined by A, T, , and :
 a b a b = a
 a a = a
 (a b) a
 (a b) b
 (a T) = a
 (a) =

109CS 701 Fall 2014©

Monotone Transfer Function
Transfer Functions, fb:L L
(where L is the Data Flow Lattice)
are normally required to be
monotone.
That is x y fb(x) fb(y).
This rule states that a �“worse�” input
can�’t produce a �“better�” output.
Monotone transfer functions allow
us to guarantee that data flow
solutions are stable.
If we had fb(T) = and fb()=T,
then solutions might oscillate
between T and indefinitely.
Since T, fb() should be fb(T).
But fb() = T which is not fb(T) =

. Thus fb isn�’t monotone.

110CS 701 Fall 2014©

Dominators fit the Data Flow
Framework

Given a set of Basic Blocks, N, we
have:
A is 2N (all subsets of Basic Blocks).
T is N.

 is .
a b a b.
fZ(in) = In {Z}

 is (set intersection).

111CS 701 Fall 2014©

The required axioms are satisfied:
 a b a b = a
 a a = a
 (a b) a
 (a b) b
 (a N) = a
 (a) =

Also fZ is monotone since
a b a {Z} b {Z}
fZ(a) fZ(b)

