Reading Assignment

- Section 14.5 14.7 of CaC
- Pages 31 63 of "Automatic Program Optimization"
- Assignment 2

Dominance Frontiers

Dominators and postdominators tell us which basic block must be executed prior to, of after, a block N.

It is interesting to consider blocks "just before" or "just after" blocks we're dominated by, or blocks we dominate.

The Dominance Frontier of a basic block N, DF(N), is the set of all blocks that are immediate successors to blocks dominated by N, but which aren't themselves strictly dominated by N.

$DF(N) = \{Z \mid M \rightarrow Z \& (N \text{ dom } M) \& \neg (N \text{ sdom } Z)\}$

The dominance frontier of N is the set of blocks that are not dominated N and which are "first reached" on paths from N.

Control Flow Graph

Block	Α	В	С	D	Ε	F
Domi- nance Frontier	φ	{ F }	{E}	{E}	{F }	φ

A block can be in its own Dominance Frontier:

Here, **DF**(**A**) = {**A**}

Why? Reconsider the definition:

 $DF(N) = \{Z \mid M \rightarrow Z \& (N \text{ dom } M) \& \neg (N \text{ sdom } Z)\}$

Now B is dominated by A and $B \rightarrow A$.

Moreover, A does not *strictly* **dominate itself. So, it meets the definition.**

Postdominance Frontiers

The Postdominance Frontier of a basic block N, PDF(N), is the set of all blocks that are immediate predecessors to blocks postdominated by N, but which aren't themselves postdominated by N.

$PDF(N) = \{Z \mid Z \rightarrow M \& (N pdom M) \& \neg (N pdom Z)\}$

The postdominance frontier of N is the set of blocks closest to N where a choice was made of whether to reach N or not.

Control Flow Graph

Block	Α	В	С	D	Ε	F
Postdomi- nance Frontier	φ	{A}	{B}	{B}	{A}	φ

Control Dependence

Since CFGs model flow of control, it is useful to identify those basic blocks whose execution is controlled by a branch decision made by a predecessor.

We say Y is *control dependent* on X if, reaching X, choosing one out arc will force Y to be reached, while choosing another arc out of X allows Y to be avoided.

Formally, Y is control dependent on X if and only if,

(a) Y postdominates a successor of X.

(b) Y does not postdominate all successors of X.

X is the most recent block where a choice was made to reach Y or not.

Control Dependence Graph

We can build a *Control Dependence Graph* that shows (in graphical form) all Control Dependence relations.

(A Block *can be* Control Dependent on itself.)

Control Flow Graph

Blocks C and F, as well as D and E, seem to have the same control dependence relations with their parent. But this isn't so!

C and **F** are control equivalent, but **D** and **E** are *mutually exclusive*!

Improving the Representation of Control Dependence

We can label arcs in the CFG and the CD Graph with the condition (T or F or some switch value) that caused the arc to be selected for execution.

This labeling then shows the conditions that lead to the execution of a given block.

To allow the exit block to appear in the CD Graph, we can also add "artificial" start and exit blocks, linked together.

Control Flow Graph

C and F have the same Control Dependence relations. They are part of the same extended basic block.

But D and E aren't identically control dependent. A and H are control equivalent, as are B and G.

Data Flow Frameworks Revisited

Recall that a Data Flow problem is characterized as:

(a) A Control Flow Graph

- (b) A Lattice of Data Flow values
- (c) A Meet operator to join solutions from Predecessors or Successors

(d) A Transfer Function Out = f_b(In) or In = f_b(Out)

Value Lattice

The lattice of values is usually a *meet semilattice* **defined by:**

- A: a set of values
- T and \perp ("top" and "bottom"): distinguished values in the lattice
- ≤: A reflexive partial order relating values in the lattice
- ∧: An associative and commutative meet operator on lattice values

Lattice Axioms

The following axioms apply to the lattice defined by A, T, \bot , \leq and \wedge : $a \leq b \Leftrightarrow a \wedge b = a$ $a \wedge a = a$ $(a \wedge b) \leq a$ $(a \wedge b) \leq b$ $(a \wedge T) = a$ $(a \wedge \bot) = \bot$

Monotone Transfer Function

Transfer Functions, $f_b: L \rightarrow L$ (where L is the Data Flow Lattice) are normally required to be monotone.

That is $x \le y \Rightarrow f_b(x) \le f_b(y)$.

This rule states that a "worse" input can't produce a "better" output.

Monotone transfer functions allow us to guarantee that data flow solutions are stable.

If we had $f_b(T) = \bot$ and $f_b(\bot)=T$, then solutions might oscillate between T and \bot indefinitely.

Since $\bot \leq T$, $f_b(\bot)$ should be $\leq f_b(T)$. But $f_b(\bot) = T$ which is not $\leq f_b(T) = \bot$. Thus f_b isn't monotone.

Dominators fit the Data Flow Framework

Given a set of Basic Blocks, N, we have:

A is 2^N (all subsets of Basic Blocks). T is N.

 \perp is ϕ .

 $\mathbf{a} \leq \mathbf{b} \equiv \mathbf{a} \subseteq \mathbf{b}.$

 $\mathbf{f}_{\mathbf{Z}}(\mathbf{in}) = \mathbf{In} \cup \{\mathbf{Z}\}$

 \wedge is \cap (set intersection).

The required axioms are satisfied:

$$a \subseteq b \Leftrightarrow a \cap b = a$$

 $a \cap a = a$
 $(a \cap b) \subseteq a$
 $(a \cap b) \subseteq b$
 $(a \cap N) = a$
 $(a \cap \phi) = \phi$

Also f_Z is monotone since $a \subseteq b \Rightarrow a \cup \{Z\} \subseteq b \cup \{Z\} \Rightarrow$ $f_Z(a) \subseteq f_Z(b)$