
109CS 701 Fall 2014 ©

Dominators fit the Data Flow
Framework

Given a set of Basic Blocks, N, we
have:

A is 2N (all subsets of Basic Blocks).
T is N.

 is .
a b a b.
fZ(in) = In {Z}

 is (set intersection).

110CS 701 Fall 2014©

The required axioms are satisfied:
 a b a b = a
 a a = a
 (a b) a
 (a b) b
 (a N) = a
 (a) =

Also fZ is monotone since
a b a {Z} b {Z}
fZ(a) fZ(b)

111CS 701 Fall 2014 ©

Constant Propagation
We can model Constant
Propagation as a Data Flow
Problem. For each scalar integer
variable, we will determine whether
it is known to hold a particular
constant value at a particular basic
block.
The value lattice is

T represents a variable holding a
constant, whose value is not yet
known.

T

..., 2, 1, 0, 1, 2, ...

112CS 701 Fall 2014©

i represents a variable holding a
known constant value.

 represents a variable whose value
is non-constant.

This analysis is complicated by the
fact that variables interact, so we
can�’t just do a series of independent
one variable analyses.

Instead, the solution lattice will
contain functions (or vectors) that
map each variable in the program
to its constant status (T, , or some
integer).
Let V be the set of all variables in a
program.

113CS 701 Fall 2014 ©

Let t : V N U {T, }
t is the set of all total mappings from
V (the set of variables) to N U {T, }
(the lattice of �“constant status�”
values).
For example, t1=(T,6,) is a
mapping for three variables (call
them A, B and C) into their constant
status. t1 says A is considered a
constant, with value as yet
undetermined. B holds the value 6,
and C is non-constant.
We can create a lattice composed of
t functions:
tT(V) = T (V) (tT=(T,T,T, ...)
t (V) = (V) (t =(, , , ...)

114CS 701 Fall 2014©

ta tb v ta(v) tb(v)
Thus (1,) (T,3)
 since 1 T and 3.
The meet operator is applied
componentwise:
ta tb = tc
 where v tc(v) = ta(v) tb(b)
Thus (1,) (T,3) = (1,)
 since 1 T = 1 and 3 = .

115CS 701 Fall 2014 ©

The lattice axioms hold:
 ta tb ta tb = ta (since this

axiom holds for each component)
 ta ta = ta (trivially holds)
 (ta tb) ta (per variable def of)
 (ta tb) tb (per variable def of)
 (ta tT) = ta (true for all

components)
 (ta t) = t (true for all

components)

116CS 701 Fall 2014©

The Transfer Function
Constant propagation is a forward
flow problem, so Cout = fb(Cin)
Cin is a function, t(v), that maps
variables to T, , or an integer value
fb(t(v)) is defined as:
(1) Initially, let t�’(v)=t(v) (v)
(2) For each assignment statement
 v = e(w1,w2,...,wn)
 in b, in order of execution, do:
 If any t�’(wi) = (1 i n)
 Then set t�’(v) = (strictness)
 Elsif any t�’(wi) = T (1 i n)
 Then set t�’(v) = T (delay eval of v)
 Else t�’(v) = e(t�’(w1),t�’(w2),...)
(3) Cout = t�’(v)

117CS 701 Fall 2014 ©

Note that in valid programs, we
don�’t use uninitialized variables, so
variables mapped to T should only
occur prior to initialization.
Initially, all variables are mapped to
T, indicating that initially their
constant status is unknown.

118CS 701 Fall 2014©

Example

a=1
b=2

b=a+1 b=a+2

b=b-1

T, T

1,21,2

1,2 1,3

1,

1,
1,

119CS 701 Fall 2014 ©

Distributive Functions
From the properties of and f�’s
monotone property, we can show
 f(a b) f(a) f(b)
To see this note that
 a b a, a b b
f(a b) f(a), f(a b) f(b) (*)
Now we can establish that
 x y, x z x y z (**)
To see that (**) holds, note that
 x y x y = x
 x z x z = x
 (y z) x y z
 (y z) x = (y z) (x x) =
 (y x) (z x) = x x = x
 Thus x y z, establishing (**).

120CS 701 Fall 2014©

Now substituting f(a b) for x,
 f(a) for y and f(b) for z in (**) and
using (*) we get
 f(a b) f(a) f(b).

Many Data Flow problems have
flow equations that satisfy the
distributive property:
f(a b) = f(a) f(b)
For example, in our formulation of
dominators:
Out = fb(In) = In U {b}
where

In = Out(p)
p Pred(b)

121CS 701 Fall 2014 ©

In this case, = .
Now fb(S1 S2) = (S1 S2) U {b}

Also, fb(S1) fb(S2) =

 (S1 U {b}) (S2 U {b}) =
 (S1 S2) U {b}
So dominators are distributive.

122CS 701 Fall 2014©

Not all Data Flow Problems
are Distributive

Constant propagation is not
distributive.
Consider the following (with
variables (x,y,z)):

Now f(t)=t�’ where
t�’(y) = t(y), t�’(z) = t(z),
t�’(x) = if t(y)= or t(z) =
 then
 elseif t(y)=T or t(z) =T
 then T
 else t(y)+t(z)

x=y+z

t1 = (T,1,3) t2=(T,2,2)

123CS 701 Fall 2014 ©

Now f(t1 t2) = f(T, ,) = (, ,)
f(t1) = (4,1,3)
f(t2) = (4,2,2)
f(t1) f(t2) = (4, ,) (, ,)

124CS 701 Fall 2014©

Why does it Matter if a Data
Flow Problem isn�’t
Distributive?

Consider actual program execution
paths from b0 to (say) bk.
One path might be b0,bi1,bi2,...,bin
where bin=bk.

At bk the Data Flow information we
want is
fin(...fi2(fi1(f0(T)))...) f(b0,b1,...,bin)

On a different path to bk, say
b0,bj1,bj2,...,bjm, where bjm=bk

the Data Flow result we get is
fjm(...fj2(fj1(f0(T)))...)

f(b0,bj1,...,bjm).

125CS 701 Fall 2014 ©

Since we can�’t know at compile time
which path will be taken, we must
combine all possible paths:

This is the meet over all paths (MOP)
solution. It is the best possible static
solution. (Why?)
As we shall see, the meet over all
paths solution can be computed
efficiently, using standard Data
Flow techniques, if the problem is
Distributive.
Other, non-distributive problems
(like Constant Propagation) can�’t
be solved as precisely.
Explicitly computing and meeting
all paths is prohibitively expensive.

p paths to bk

f(p)
 all

126CS 701 Fall 2014©

Conditional Constant
Propagation

We can extend our Constant
Propagation Analysis to determine
that some paths in a CFG aren�’t
executable. This is Conditional
Constant Propagation.
Consider
 i = 1;
 if (i > 0)
 j = 1;
 else j = 2;

Conditional Constant Propagation
can determine that the else part of
the if is unreachable, and hence j
must be 1.

127CS 701 Fall 2014 ©

The idea behind Conditional
Constant Propagation is simple.
Initially, we mark all edges out of
conditionals as �“not reachable.�”
Starting at b0, we propagate
constant information only along
edges considered reachable.
When a boolean expression
b(v1,v2,...) controls a conditional
branch, we evaluate b(v1,v2,...)
using the t(v) mapping that
identifies the �“constant status�” of
variables.
If t(vi)=T for any vi, we consider all
out edges unreachable (for now).
Otherwise, we evaluate b(v1,v2,...)
using t(v), getting true, false or .

128CS 701 Fall 2014©

Note that the short-circuit
properties of boolean operators may
yield true or false even if t(vi)= for
some vi.
If b(v1,v2,...) is true or false, we
mark only one out edge as
reachable.
Otherwise, if b(v1,v2,...) evaluates to

, we mark all out edges as
reachable.
We propagate constant information
only along reachable edges.

129CS 701 Fall 2014 ©

Example
i = 1;
done = 0;
while (i > 0 && ! done) {
 if (i == 1)
 done = 1;
 else i = i + 1; }

130CS 701 Fall 2014©

i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

131CS 701 Fall 2014 ©

Pass 1:
i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1,0)

(1,0)

(1,1)

(1,1)

132CS 701 Fall 2014©

Pass 2:
i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1,)

(1,)

(1,1)

(1,1)

(1,)

