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Dominators fit the Data Flow 
Framework

Given a set of Basic Blocks, N, we 
have:

A is 2N (all subsets of Basic Blocks).
T is N.

 is .
a  b  a  b.
fZ(in) = In  {Z}

 is  (set intersection).
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The required axioms are satisfied:
 a  b   a  b = a
 a  a = a
 (a  b)  a
 (a  b)  b
 (a  N) = a
 (a  ) = 

Also fZ is monotone since
a  b  a  {Z}   b  {Z} 
fZ(a)   fZ(b)
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Constant Propagation
We can model Constant 
Propagation as a Data Flow 
Problem. For each scalar integer 
variable, we will determine whether 
it is known to hold a particular 
constant value at a particular basic 
block.
The value lattice is

T represents a variable holding a 
constant, whose value is not yet 
known. 

T

..., 2, 1, 0, 1, 2, ...
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i represents a variable holding a 
known constant value.

 represents a variable whose value 
is non-constant.

This analysis is complicated by the 
fact that variables interact, so we 
can�’t just do a series of independent 
one variable analyses.

Instead, the solution lattice will 
contain functions (or vectors) that 
map each variable in the program 
to its constant status (T, , or some 
integer).
Let V be the set of all variables in a 
program.
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Let t : V  N U {T, }
t is the set of all total mappings from 
V (the set of variables) to N U {T, } 
(the lattice of �“constant status�” 
values).
For example, t1=(T,6, ) is a 
mapping for three variables (call 
them A, B and C) into their constant 
status. t1 says A is considered a 
constant, with value as yet 
undetermined. B holds the value 6, 
and C is non-constant.
We can create a lattice composed of 
t functions:
tT(V) = T (  V) (tT=(T,T,T, ...)
t (V) =  (  V) (t =( , , , ...)
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ta  tb  v ta(v)  tb(v)
Thus (1, )  (T,3) 
  since 1  T and   3.
The meet operator  is applied 
componentwise:
ta tb = tc 
   where v tc(v) =  ta(v)  tb(b)
Thus (1, )  (T,3) = (1, )
  since 1  T = 1 and   3 = .
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The lattice axioms hold:
 ta  tb   ta  tb = ta (since this 

axiom holds for each component)
 ta  ta = ta  (trivially holds)
 (ta  tb)  ta (per variable def of )
 (ta  tb)  tb (per variable def of )
 (ta  tT) = ta (true for all              

components)
 (ta  t ) = t  (true for all 

components)
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The Transfer Function
Constant propagation is a forward 
flow problem, so Cout = fb(Cin)
Cin is a function, t(v), that maps 
variables to T, , or an integer value
fb(t(v)) is defined as:
(1) Initially, let t�’(v)=t(v) ( v)
(2) For each assignment statement 
        v = e(w1,w2,...,wn)
     in b, in order of execution, do:
     If any t�’(wi) =  ( 1 i n )
     Then set t�’(v) =  (strictness)
     Elsif any t�’(wi) = T (1 i n )
     Then set t�’(v) = T (delay eval of v)
     Else t�’(v) = e(t�’(w1),t�’(w2),...)
(3) Cout = t�’(v)
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Note that in valid programs, we 
don�’t use uninitialized variables, so 
variables mapped to T should only 
occur prior to initialization.
Initially, all variables are mapped to 
T, indicating that initially their 
constant status is unknown.
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Example

a=1
b=2

b=a+1 b=a+2

b=b-1

T, T

1,21,2

1,2 1,3

1,

1,
1,
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Distributive Functions
From the properties of  and f�’s 
monotone property, we can show 
 f(a b)  f(a)  f(b)
To see this note that
 a b  a, a b  b 
f(a b)  f(a), f(a b)  f(b)     (*)
Now we can establish that
 x y, x z  x  y z           (**)
To see that (**) holds, note that
 x y  x y = x
 x z  x z = x
 (y z) x  y z
 (y z) x = (y z) (x x) =
               (y x) (z x) = x x = x
 Thus x  y z, establishing (**).
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Now substituting f(a b) for x,
 f(a) for y and f(b) for z in (**) and 
using (*) we get
 f(a b)  f(a)  f(b).

Many Data Flow problems have 
flow equations that satisfy the 
distributive property:
f(a b) = f(a)  f(b)
For example, in our formulation of 
dominators:
Out = fb(In) = In U {b}
where 

In =   Out(p)
p  Pred(b)
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In this case,  = .
Now fb(S1 S2) = (S1 S2) U {b} 

Also, fb(S1) fb(S2) =

  (S1 U {b})  (S2 U {b}) = 
  (S1 S2) U {b}
So dominators are distributive.
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Not all Data Flow Problems 
are Distributive

Constant propagation is not 
distributive.
Consider the following (with 
variables (x,y,z)):

Now f(t)=t�’ where
t�’(y) = t(y), t�’(z) = t(z),
t�’(x) = if t(y)=  or t(z) = 
          then 
          elseif t(y)=T or t(z) =T
          then T
          else t(y)+t(z)

x=y+z

t1 = (T,1,3) t2=(T,2,2)

123CS 701  Fall 2014 ©

Now f(t1 t2) = f(T, , ) = ( , , )
f(t1) = (4,1,3)
f(t2) = (4,2,2)
f(t1) f(t2) = (4, , )  ( , , )
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Why does it Matter if a Data 
Flow Problem isn�’t 
Distributive?

Consider actual program execution 
paths from b0 to (say) bk.
One path might be b0,bi1,bi2,...,bin 
where bin=bk.

At bk the Data Flow information we 
want is
fin(...fi2(fi1(f0(T)))...)  f(b0,b1,...,bin)

On a different path to bk, say 
b0,bj1,bj2,...,bjm, where bjm=bk

the Data Flow result we get is 
fjm(...fj2(fj1(f0(T)))...)  

f(b0,bj1,...,bjm).
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Since we can�’t know at compile time 
which path will be taken, we must 
combine all possible paths:

This is the meet over all paths (MOP) 
solution. It is the best possible static 
solution. (Why?)
As we shall see, the meet over all 
paths solution can be computed 
efficiently, using standard Data 
Flow techniques, if the problem is 
Distributive.
Other, non-distributive problems 
(like Constant Propagation) can�’t 
be solved as precisely.
Explicitly computing and meeting 
all paths is prohibitively expensive.

p  paths to bk

f(p)
 all
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Conditional Constant 
Propagation

We can extend our Constant 
Propagation Analysis to determine 
that some paths in a CFG aren�’t 
executable. This is Conditional 
Constant Propagation.
Consider
  i = 1;
 if (i > 0)
      j = 1;
 else j = 2;

Conditional Constant Propagation 
can determine that the else part of 
the if is unreachable, and hence j 
must be 1.
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The idea behind Conditional 
Constant Propagation is simple. 
Initially, we mark all edges out of 
conditionals as �“not reachable.�”
Starting at b0, we propagate 
constant information only along 
edges considered reachable.
When a boolean expression 
b(v1,v2,...) controls a conditional 
branch, we evaluate b(v1,v2,...) 
using the t(v) mapping that 
identifies the �“constant status�” of 
variables.
If t(vi)=T for any vi, we consider all 
out edges unreachable (for now).
Otherwise, we evaluate b(v1,v2,...) 
using t(v), getting true, false or .
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Note that the short-circuit 
properties of boolean operators may 
yield true or false even if t(vi)=  for 
some vi.
If b(v1,v2,...) is true or false, we 
mark only one out edge as 
reachable.
Otherwise, if b(v1,v2,...) evaluates to 

, we mark all out edges as 
reachable.
We propagate constant information 
only along reachable edges.
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Example
i = 1;
done = 0;
while ( i > 0 && ! done) {
  if (i == 1)
       done = 1;
  else i = i + 1; }
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i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)
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Pass 1:
i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1,0)

(1,0)

(1,1)

(1,1)
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Pass 2:
i = 1;
done = 0;

i > 0 &&
! done

i == 1

done = 1;i = i + 1;

TF

F

T

(T,T) = (i,done)

(1,0)

(1, )

(1, )

(1,1)

(1,1)

(1, )


