
153CS 701 Fall 2014©

How Good Is Iterative Data
Flow Analysis?

A single execution of a program will
follow some path
 b0,bi1,bi2,...,bin.

The Data Flow solution along this
path is
fin(...fi2(fi1(f0(T)))...) f(b0,b1,...,bin)

The best possible static data flow
solution at some block b is
computed over all possible paths
from b0 to b.
Let Pb = The set of all paths from b0
to b.

p Pb

f(p)

MOP(b)=

154CS 701 Fall 2014©

Any particular path pi from b0 to b
is included in Pb.
Thus MOP(b) f(pi) = MOP(b)
f(pi).
This means MOP(b) is always a safe
approximation to the �“true�”
solution f(pi).

155CS 701 Fall 2014©

If we have the distributive property
for transfer functions,
f(a b) = f(a) f(b)
then our iterative algorithm always
computes the MOP solution, the
best static solution possible.
To prove this, note that for trivial
path of length 1, containing only the
start block, b0, the algorithm
computes f0(T) which is MOP(b0)
(trivially).
Now assume that the iterative
algorithm for paths of length n or
less to block c does compute
MOP(c).
We�’ll show that for paths to block b
of length n+1, MOP(b) is computed.

156CS 701 Fall 2014©

Let P be the set of all paths to b of
length n+1 or less.
The paths in P end with b.
MOP(b) = fb(f(P1)) fb(f(P2) ...
 where P1, P2, ... are the prefixes (of
length n or less) of paths in P with b
removed.
Using the distributive property,
fb(f(P1)) fb(f(P2) ... =
fb(f(P1) f(P2) ...).
But note that f(P1) f(P2) ... is just
the input to fb in our iterative
algorithm, which then applies fb.
Thus MOP(b) for paths of length
n+1 is computed.

157CS 701 Fall 2014©

For data flow problems that aren�’t
distributive (like constant
propagation), the iterative solution
is the MOP solution.
This means that the solution is a
safe approximation, but perhaps not
as �“sharp�” as we might wish.

158CS 701 Fall 2014©

Reading Assignment
Read �“An Efficient Method of
Computing Static Single
Assignment Form.�”
(Linked from the class Web page.)

159CS 701 Fall 2014©

Exploiting Structure in Data
Flow Analysis

So far we haven�’t utilized the fact
that CFGs are constructed from
standard programming language
constructs like IFs, Fors, and Whiles.
Instead of iterating across a given
CFG, we can isolate, and solve
symbolically, subgraphs that
correspond to �“standard�”
programming language constructs.
We can then progressively simplify
the CFG until we reach a single
node, or until we reach a CFG
structure that matches no standard
pattern.
In the latter case, we can solve the
residual graph using our iterative
evaluator.

160CS 701 Fall 2014©

Three Program-Building
Operations
1. Sequential Execution (�“;�”)
2. Conditional Execution (If, Switch)
3. Iterative Execution

 (While, For, Repeat)

161CS 701 Fall 2014©

Sequential Execution
We can reduce a sequential �“chain�”
of basic blocks:

into a single composite block:

The transfer function of bseq is
 fseq = fn fn-1 ... f1
where is functional composition.

b1 b2 bn. . .

bseq

162CS 701 Fall 2014©

Conditional Execution
Given the basic blocks:

we create a single composite block:

The transfer function of bcond is
 fcond = fL1 fp fL2 fp

bp

bL1 bL2

bcond

163CS 701 Fall 2014©

Iterative Execution
Repeat Loop
Given the basic blocks:

we create a single composite block:

Here bB is the loop body, and bC is
the loop control.

bB

bC

brepeat

164CS 701 Fall 2014©

If the loop iterates once, the transfer
function is fC o fB.
If the loop iterates twice, the
transfer function is (fC fB) (fC
fB).
Considering all paths, the transfer
function is (fC fB) (fC fB)2 ...

Define fix f f f2 f3 ...
The transfer function of repeat is
then
 frepeat = fix(fC fB)

165CS 701 Fall 2014©

While Loop.
Given the basic blocks:

we create a single composite block:

Here again bB is the loop body, and
bC is the loop control.
The loop always executes bC at least
once, and always executes bC as the
last block before exiting.

bC

bB

bwhile

166CS 701 Fall 2014©

The transfer function of a while is
therefore
 fwhile = fC fix(fC fB) fC

167CS 701 Fall 2014©

Evaluating Fixed Points
For lattices of height H, and
monotone transfer functions, fix f
needs to look at no more than H
terms.
In practice, we can give fix f an
operational definition, suitable for
implementation:
Evaluate
 (fix f)(x) {
 prev = soln = f(x);
 while (prev new = f(prev)){
 prev = new;
 soln = soln new;
 }
 return soln;
 }

168CS 701 Fall 2014©

Example�—Reaching Definitions

The transfer functions are either
constant-valued (f1={b1}, f4={b4},
f5={b5}) or identity functions
(f2=f3=f6=f7=Id).

x

1

2

7 3

5

6

x

x
4

169CS 701 Fall 2014©

First we isolate and reduce the
conditional:
fC = f4 f3 f5 f3 =
{b4} Id U {b5} Id = {b4,b5}

x

1

2

7 3

5

6

x

x
4

170CS 701 Fall 2014©

Substituting, we get

We can combine bC and b6, to get a
block equivalent to bC. That is,
f6 fC = Id fC = fC

1

2

7 C

6

x

171CS 701 Fall 2014©

We now have

We isolate and reduce the while loop
formed by b2 and bC, creating bW.
The transfer function is
 fW = f2 (fix(f2 fC)) o f2=
 Id U (fix(Id fC)) Id =
 Id U (fix(fC)) =

 Id U (fC fC
2 fC

3 ...) =
 Id U {b4,b5}

1

2

7 C

x

172CS 701 Fall 2014©

We now have

We compose these three sequential
blocks to get the whole solution, fP.
fP = Id (Id U {b4,b5}) {b1} =
 {b1,b4,b5}.
These are the definitions that reach
the end of the program.
We can expand subgraphs to get the
solutions at interior blocks.

1

W

7

x

173CS 701 Fall 2014©

Thus at the beginning of the while,
the solution is {b1}.
At the head if the If, the solution is
 (Id U (Id fC Id) U

(Id fC Id fC Id) U ...) ({b1})
= {b1} U {b4,b5} U {b4,b5} U ... =
 {b1,b4,b5}
At the head of the then part of the
If, the solution is Id({b1,b4,b5}) =
{b1,b4,b5}.

174CS 701 Fall 2014©

Static Single Assignment Form
Many of the complexities of
optimization and code generation
arise from the fact that a given
variable may be assigned to in many
different places.
Thus reaching definition analysis
gives us the set of assignments that
may reach a given use of a variable.
Live range analysis must track all
assignments that may reach a use of
a variable and merge them into the
same live range.
Available expression analysis must
look at all places a variable may be
assigned to and decide if any kill an
already computed expression.

175CS 701 Fall 2014©

What If
each variable is assigned to in only
one place?
(Much like a named constant).
Then for a given use, we can find a
single unique definition point.
But this seems impossible for most
programs�—or is it?
In Static Single Assignment (SSA)
Form each assignment to a variable,
v, is changed into a unique
assignment to new variable, vi.
If variable v has n assignments to it
throughout the program, then (at
least) n new variables, v1 to vn, are
created to replace v. All uses of v are
replaced by a use of some vi.

176CS 701 Fall 2014©

Phi Functions
Control flow can�’t be predicted in
advance, so we can�’t always know
which definition of a variable
reached a particular use.
To handle this uncertainty, we
create phi functions.
As illustrated below, if vi and vj both
reach the top of the same block, we
add the assignment
 vk (vi,vj)
to the top of the block.
Within the block, all uses of v
become uses of vk (until the next
assignment to v).

177CS 701 Fall 2014©

What does (vi,vj) Mean?
One way to read (vi,vj) is that if
control reaches the phi function via
the path on which vi is defined,
�“selects�” vi; otherwise it �“selects�” vj.
Phi functions may take more than 2
arguments if more than 2
definitions might reach the same
block.
Through phi functions we have
simple links to all the places where v
receives a value, directly or
indirectly.

178CS 701 Fall 2014©

Example
x=1

a=x x=2

b=x

x=1

x==10

c=x
x++

print x

x1=1

a=x1 x2=2

b=x3

x4=1

x5 ==10

c=x5
x6=x5+1

print x5

x3 = (x1,x2)

x5 = (x4 ,x6)

Original CFG CFG in SSA Form

179CS 701 Fall 2014©

In SSA form computing live ranges
is almost trivial. For each xi include
all xj variables involved in phi
functions that define xi.
Initially, assume x1 to x6 (in our
example) are independent. We then
union into equivalence classes xi
values involved in the same phi
function or assignment.
Thus x1 to x3 are unioned together
(forming a live range). Similarly, x4
to x6 are unioned to form a live
range.

180CS 701 Fall 2014©

Constant Propagation in SSA
In SSA form, constant propagation
is simplified since values flow
directly from assignments to uses,
and phi functions represent natural
�“meet points�” where values are
combined (into a constant or).
Even conditional constant
propagation fits in. As long as a
path is considered unreachable, it
variables are set to T (and therefore
ignored at phi functions, which meet
values together).

181CS 701 Fall 2014©

Example

i1 j1 k1 i2 j2 k2 k3 i3 i4 k4 i5 j3

Pass1 6 1 1 6
T

1
T

1
T

0 T 6
T

0 6 2

Pass2 6 1 1 6 6 0 T 6 0 6

i=6
j=1
k=1
repeat
 if (i==6)
 k=0
 else
 i=i+1
 i=i+k
 j=j+1
until (i==j)

i1=6
j1=1
k1=1
repeat
 i2= (i1,i5)
 j2= (j1,j3)
 k2= (k1,k4)
 if (i2==6)
 k3=0
 else
 i3=i2+1
 i4= (i2,i3)
 k4= (k3,k2)
 i5=i4+k4
 j3=j2+1
until (i5==j3)

182CS 701 Fall 2014©

We have determined that i=6
everywhere.

183CS 701 Fall 2014©

Putting Programs into SSA
Form

Assume we have the CFG for a
program, which we want to put into
SSA form. We must:
• Rename all definitions and uses of

variables
• Decide where to add phi functions
Renaming variable definitions is
trivial�—each assignment is to a new,
unique variable.
After phi functions are added (at
the heads of selected basic blocks),
only one variable definition (the
most recent in the block) can reach
any use. Thus renaming uses of
variables is easy.

184CS 701 Fall 2014©

Placing Phi Functions
Let b be a block with a definition to
some variable, v. If b contains more
than one definition to v, the last (or
most recent) applies.
What is the first basic block
following b where some other
definition to v as well as b�’s
definition can reach?
In blocks dominated by b, b�’s
definition must have been executed,
though other later definitions may
have overwritten b�’s definition.

185CS 701 Fall 2014©

Domination Frontiers (Again)
Recall that the Domination Frontier
of a block b, is defined as
DF(N) =
 {Z | M Z & (N dom M) &
 ¬(N sdom Z)}

The Dominance Frontier of a basic
block N, DF(N), is the set of all
blocks that are immediate
successors to blocks dominated by
N, but which aren�’t themselves
strictly dominated by N.
Assume that an initial assignment to
all variables occurs in b0 (possibly
of some special �“uninitialized
value.�”)

186CS 701 Fall 2014©

We will need to place a phi function
at the start of all blocks in b�’s
Domination Frontier.
The phi functions will join the
definition to v that occurred in b (or
in a block dominated by b) with
definitions occurring on paths that
don�’t include b.
After phi functions are added to
blocks in DF(b), the domination
frontier of blocks with newly added
phi�’s will need to be computed
(since phi functions imply
assignment to a new vi variable).

187CS 701 Fall 2014©

Examples of How Domination
Frontiers Guide Phi
Placement

DF(N) =
 {Z | M Z & (N dom M) &
 ¬(N sdom Z)}
Simple Case:

Here, (N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.

v=1

v=2

N

M

Z

v1=1

v2=2

N

M

Z
v3 = (v1 ,v2)

188CS 701 Fall 2014©

Loop:

Here, let M = Z = N. M Z,
(N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.
DF(N) =
 {Z | M Z & (N dom M) &
 ¬(N sdom Z)}

v=init

v=v+1 v2 = (v1,v3)Z

v1=init

v3 =v2+1

Z

189CS 701 Fall 2014©

Sometimes Phi�’s must be
Placed Iteratively

Now, DF(b1) = {b3}, so we add a phi
function in b3. This adds an
assignment into b3. We then look at
DF(b3) = {b5}, so another phi
function must be added to b5.

v=1

v=3

1

3

5

v1=1

v4=3

1

v5 = (v3 ,v4)

v=2
2

4

v2=2
2

v3 = (v1 ,v2)
3 4

190CS 701 Fall 2014©

Phi Placement Algorithm
To decide what blocks require a phi
function to join a definition to a
variable v in block b:
1. Compute D1 = DF(b).

 Place Phi functions at the head of all
members of D1.

2. Compute D2 = DF(D1).
 Place Phi functions at the head of all

members of D2-D1.
3. Compute D3 = DF(D2).

 Place Phi functions at the head of all
members of D3-D2-D1.

4. Repeat until no additional Phi
functions can be added.

191CS 701 Fall 2014©

PlacePhi{
 For (each variable v program) {

 For (each block b CFG){
 PhiInserted(b) = false
 Added(b) = false }
 List =
 For (each b CFG that assigns to V){
 Added(b) = true
 List = List U {b} }
 While (List) {
 Remove any b from List
 For (each d DF(b)){
 If (! PhiInserted(d)) {
 Add a Phi Function to d
 PhiInserted(d) = true
 If (! Added(d)) {
 Added(d) = true
 List = List U {d}
 }
 }
 }
 }
 }
}

192CS 701 Fall 2014©

Example

We will add Phi�’s into blocks 4 and 5. The
arity of each phi is the number of in-arcs
to its block. To find the args to a phi,
follow each arc �“backwards�” to the sole
reaching def on that path.

x1=1

x2=2

x3=3

x4=4

1

2 3

4

5

6

7

Initially, List={1,3,5,6}

Process 1: DF(1) =

Process 3: DF(3) = 4,
 so add 4 to List and
 add phi fct to 4.

Process 5: DF(5)={4,5}
 so add phi fct to 5.

Process 5: DF(6) = {5}

Process 4: DF(4) = {4}

193CS 701 Fall 2014©

x1=1

x2=2

x3 =3

x5 = (x1,x2,x3)

x6 = (x4 ,x5)

x4=4

