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How Good Is Iterative Data 
Flow Analysis?

A single execution of a program will 
follow some path 
  b0,bi1,bi2,...,bin.

The Data Flow solution along this 
path is
fin(...fi2(fi1(f0(T)))...)  f(b0,b1,...,bin)

The best possible static data flow 
solution at some block b is 
computed over all possible paths 
from b0 to b.
Let Pb = The set of all paths from b0 
to b.

p   Pb

f(p)
 

MOP(b)=
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Any particular path pi from b0 to b 
is included in Pb.
Thus MOP(b)  f(pi) = MOP(b)  
f(pi).
This means MOP(b) is always a safe 
approximation to the �“true�” 
solution f(pi).
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If we have the distributive property 
for transfer functions,
f(a b) = f(a)  f(b)
then our iterative algorithm always 
computes the MOP solution, the 
best static solution possible.
To prove this, note that for trivial 
path of length 1, containing only the 
start block, b0, the algorithm 
computes f0(T) which is MOP(b0) 
(trivially).
Now assume that the iterative 
algorithm for paths of length n or 
less to block c does compute 
MOP(c).
We�’ll show that for paths to block b 
of length n+1, MOP(b) is computed.
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Let P be the set of all paths to b of 
length n+1 or less.
The paths in P end with b.
MOP(b) = fb(f(P1)) fb(f(P2)  ...
 where P1, P2, ... are the prefixes (of 
length n or less) of paths in P with b 
removed.
Using the distributive property,
fb(f(P1)) fb(f(P2)  ... =
fb(f(P1) f(P2) ...).
But note that f(P1) f(P2) ... is just 
the input to fb in our iterative 
algorithm, which then applies fb.
Thus MOP(b) for paths of length 
n+1 is computed.
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For data flow problems that aren�’t 
distributive (like constant 
propagation), the iterative solution 
is  the MOP solution.
This means that the solution is a 
safe approximation, but perhaps not 
as �“sharp�” as we might wish.
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Reading Assignment
Read �“An Efficient Method of 
Computing Static Single 
Assignment Form.�”
(Linked from the class Web page.) 
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Exploiting Structure in Data 
Flow Analysis

So far we haven�’t utilized the fact 
that CFGs are constructed from 
standard programming language 
constructs like IFs, Fors, and Whiles.
Instead of iterating across a given 
CFG, we can isolate, and solve 
symbolically, subgraphs that 
correspond to �“standard�” 
programming language constructs. 
We can then progressively simplify 
the CFG until we reach a single 
node, or until we reach a CFG 
structure that matches no standard 
pattern.
In the latter case, we can solve the 
residual graph using our iterative 
evaluator.
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Three Program-Building 
Operations
1. Sequential Execution (�“;�”)
2. Conditional Execution (If, Switch)
3. Iterative Execution 

   (While, For, Repeat)
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Sequential Execution
We can reduce a sequential �“chain�” 
of basic blocks:

into a single composite block:

The transfer function of bseq is
 fseq = fn  fn-1  ... f1
where  is functional composition.

b1 b2 bn. . .

bseq
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Conditional Execution
Given the basic blocks:

we create a single composite block:

The transfer function of bcond is
 fcond = fL1  fp  fL2  fp

bp

bL1 bL2

bcond
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Iterative Execution
Repeat Loop
Given the basic blocks:

we create a single composite block:

Here bB is the loop body, and bC is 
the loop control.

bB

bC

brepeat
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If the loop iterates once, the transfer 
function is fC o fB.
If the loop iterates twice, the 
transfer function is (fC  fB)  (fC  
fB).
Considering all paths, the transfer 
function is (fC  fB)  (fC  fB)2  ...

Define fix f  f  f2  f3  ...
The transfer function of repeat is 
then
 frepeat = fix(fC  fB)
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While Loop.
Given the basic blocks:

we create a single composite block:

Here again bB is the loop body, and 
bC is the loop control.
The loop always executes bC at least 
once, and always executes bC as the 
last block before exiting. 

bC

bB

bwhile
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The transfer function of a while is 
therefore
 fwhile = fC  fix(fC  fB)  fC



167CS 701  Fall 2014©

Evaluating Fixed Points
For lattices of height H, and 
monotone transfer functions, fix f 
needs to look at no more than H 
terms.
In practice, we can give fix f an 
operational definition, suitable for 
implementation:
Evaluate
 (fix f)(x) {
   prev = soln = f(x);
   while (prev  new = f(prev)){
      prev = new;
      soln = soln  new;
   }
   return soln;
 }
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Example�—Reaching Definitions

The transfer functions are either 
constant-valued (f1={b1}, f4={b4}, 
f5={b5}) or identity functions 
(f2=f3=f6=f7=Id).

x

1

2

7 3

5

6

x

x
4
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First we isolate and reduce the 
conditional:
fC = f4  f3  f5  f3 =
{b4}  Id U {b5}  Id = {b4,b5}

x

1

2

7 3

5

6

x

x
4
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Substituting, we get

We can combine bC and b6, to get a 
block equivalent to bC. That is,
f6  fC = Id  fC = fC

1

2

7 C

6

x
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We now have

We isolate and reduce the while loop 
formed by b2 and bC, creating bW.
The transfer function is
 fW = f2  (fix(f2  fC)) o f2=
 Id U (fix(Id  fC ))  Id =
 Id U (fix(fC)) =

 Id U (fC  fC
2  fC

3  ...) =
 Id U {b4,b5}

1

2

7 C

x
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We now have

We compose these three sequential 
blocks to get the whole solution, fP.
fP = Id  (Id U {b4,b5})  {b1} =
 {b1,b4,b5}. 
These are the definitions that reach 
the end of the program.
We can expand subgraphs to get the 
solutions at interior blocks.

1

W

7

x
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Thus at the beginning of the while, 
the solution is {b1}.
At the head if the If, the solution is
 (Id U (Id  fC  Id) U 

(Id  fC  Id  fC  Id) U ... ) ({b1}) 
= {b1} U {b4,b5} U {b4,b5} U ... =
    {b1,b4,b5}
At the head of the then part of the 
If, the solution is Id({b1,b4,b5}) = 
{b1,b4,b5}.
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Static Single Assignment Form
Many of the complexities of 
optimization and code generation 
arise from the fact that a given 
variable may be assigned to in many 
different places.
Thus reaching definition analysis 
gives us the set of assignments that 
may reach a given use of a variable.
Live range analysis must track all 
assignments that may reach a use of 
a variable and merge them into the 
same live range.
Available expression analysis must 
look at all places a variable may be 
assigned to and decide if any kill an 
already computed expression.
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What If
each variable is assigned to in only 
one place?
(Much like a named constant).
Then for a given use, we can find a 
single unique definition point.
But this seems impossible for most 
programs�—or is it?
In Static Single Assignment (SSA) 
Form each assignment to a variable, 
v, is changed into a unique 
assignment to new variable, vi.
If variable v has n assignments to it 
throughout the program, then (at 
least) n new variables, v1 to vn, are 
created to replace v. All uses of v are 
replaced by a use of some vi.
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Phi Functions
Control flow can�’t be predicted in 
advance, so we can�’t always know 
which definition of a variable 
reached a particular use.
To handle this uncertainty, we 
create phi functions.
As illustrated below, if vi and vj both 
reach the top of the same block, we 
add the assignment
 vk  (vi,vj)
to the top of the block.
Within the block, all uses of v 
become uses of vk (until the next 
assignment to v).
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What does (vi,vj) Mean?
One way to read (vi,vj) is that if 
control reaches the phi function via 
the path on which vi is defined,  
�“selects�” vi; otherwise it �“selects�” vj.
Phi functions may take more than 2 
arguments if more than 2 
definitions might reach the same 
block.
Through phi functions we have 
simple links to all the places where v 
receives a value, directly or 
indirectly.
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Example
x=1

a=x x=2

b=x

x=1

x==10

c=x
x++

print x

x1=1

a=x1 x2=2

b=x3

x4=1

x5 ==10

c=x5
x6=x5+1

print x5

x3 = (x1,x2)

x5 =   (x4 ,x6 )

Original CFG CFG in SSA Form



179CS 701  Fall 2014©

In SSA form computing live ranges 
is almost trivial. For each xi include 
all xj variables involved in phi 
functions that define xi.
Initially, assume x1 to x6 (in our 
example) are independent. We then 
union into equivalence classes xi 
values involved in the same phi 
function or assignment.
Thus x1 to x3 are unioned together 
(forming a live range). Similarly, x4 
to x6 are unioned to form a live 
range.
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Constant Propagation in SSA
In SSA form, constant propagation 
is simplified since values flow 
directly from assignments to uses, 
and phi functions represent natural 
�“meet points�” where values are 
combined (into a constant or ).
Even conditional constant 
propagation fits in. As long as a 
path is considered unreachable, it 
variables are set to T (and therefore 
ignored at phi functions, which meet 
values together).
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Example

i1 j1 k1 i2 j2 k2 k3 i3 i4 k4 i5 j3

Pass1 6 1 1 6
T

1
T

1
T

0 T 6
T

0 6 2

Pass2 6 1 1 6 6 0 T 6 0 6

i=6
j=1
k=1
repeat
  if (i==6)
     k=0
  else
     i=i+1
  i=i+k
  j=j+1
until (i==j)

i1=6
j1=1
k1=1
repeat
  i2= (i1,i5)
  j2= (j1,j3)
  k2= (k1,k4)
  if (i2==6)
     k3=0
  else
     i3=i2+1
  i4= (i2,i3)
  k4= (k3,k2)
  i5=i4+k4
  j3=j2+1
until (i5==j3)
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We have determined that i=6 
everywhere.
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Putting Programs into SSA 
Form

Assume we have the CFG for a 
program, which we want to put into 
SSA form. We must:
• Rename all definitions and uses of 

variables
• Decide where to add phi functions
Renaming variable definitions is 
trivial�—each assignment is to a new, 
unique variable.
After phi functions are added (at 
the heads of selected basic blocks), 
only one variable definition (the 
most recent in the block) can reach 
any use. Thus renaming uses of 
variables is easy.
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Placing Phi Functions
Let b be a block with a definition to 
some variable, v. If b contains more 
than one definition to v, the last (or 
most recent) applies.
What is the first basic block 
following b where some other 
definition to v as well as b�’s 
definition can reach?
In blocks dominated by b, b�’s 
definition must have been executed, 
though other later definitions may 
have overwritten b�’s definition.
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Domination Frontiers (Again)
Recall that the Domination Frontier 
of a block b, is defined as
DF(N) = 
 {Z | M Z  & (N dom M) &
   ¬(N sdom Z)}

The Dominance Frontier of a basic 
block N, DF(N), is the set of all 
blocks that are immediate 
successors to blocks dominated by 
N, but which aren�’t themselves 
strictly dominated by N.
Assume that an initial assignment to 
all variables occurs in b0 (possibly 
of some special �“uninitialized 
value.�”)
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We will need to place a phi function 
at the start of all blocks in b�’s 
Domination Frontier.
The phi functions will join the 
definition to v that occurred in b (or 
in a block dominated by b) with 
definitions occurring on paths that 
don�’t include b.
After phi functions are added to 
blocks in DF(b), the domination 
frontier of blocks with newly added 
phi�’s will need to be computed 
(since phi functions imply 
assignment to a new vi variable).
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Examples of How Domination 
Frontiers Guide Phi 
Placement

DF(N) = 
 {Z | M Z  & (N dom M) &
   ¬(N sdom Z)}
Simple Case:

Here, (N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.

v=1

v=2

N

M

Z

v1=1

v2=2

N

M

Z
v3 = (v1 ,v2 )
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Loop:

Here, let M = Z = N. M Z, 
(N dom M) but ¬(N sdom Z),
so a phi function is needed in Z.
DF(N) = 
 {Z | M Z  & (N dom M) &
   ¬(N sdom Z)}

v=init

v=v+1 v2 = (v1,v3)Z

v1=init

v3 =v2+1

Z
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Sometimes Phi�’s must be 
Placed Iteratively

Now, DF(b1) = {b3}, so we add a phi 
function in b3. This adds an 
assignment into b3. We then look at 
DF(b3) = {b5}, so another phi 
function must be added to b5.

v=1

v=3

1

3

5

v1=1

v4=3

1

v5 = (v3 ,v4 )

v=2
2

4

v2=2
2

v3 = (v1 ,v2 )
3 4
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Phi Placement Algorithm
To decide what blocks require a phi 
function to join a definition to a 
variable v in block b:
1. Compute D1 = DF(b).

  Place Phi functions at the head of all 
members of D1.

2. Compute D2 = DF(D1).
  Place Phi functions at the head of all 

members of D2-D1.
3. Compute D3 = DF(D2).

  Place Phi functions at the head of all 
members of D3-D2-D1.

4.  Repeat until no additional Phi 
functions can be added.
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PlacePhi{
  For (each variable v  program) {

 For (each block b  CFG ){
         PhiInserted(b) = false
         Added(b) = false }
      List = 
      For (each b  CFG that assigns to V ){
         Added(b) = true
         List = List U {b}   }
      While (List  ) {
          Remove any b from List
          For (each d  DF(b)){
              If (! PhiInserted(d)) {
                  Add a Phi Function to d
                  PhiInserted(d) = true
                  If (! Added(d)) {
                        Added(d) = true
                        List = List U {d} 
                  }
             }
         }
      }
  }   
}
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Example

We will add Phi�’s into blocks 4 and 5. The 
arity of each phi is the number of in-arcs 
to its block. To find the args to a phi, 
follow each arc �“backwards�” to the sole 
reaching def on that path.

x1=1

x2=2

x3=3

x4=4

1

2 3

4

5

6

7

Initially, List={1,3,5,6}

Process 1: DF(1) = 

Process 3: DF(3) = 4,
  so add 4 to List and
  add phi fct to 4.

Process 5: DF(5)={4,5}
  so add phi fct to 5.

Process 5: DF(6) = {5}

Process 4: DF(4) = {4}
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x1=1

x2=2

x3 =3

x5 =  (x1,x2,x3)

x6 =   (x4 ,x5 )

x4=4


