
CS 701

Midterm Exam

Monday, November 6, 2006

5:00 PM— 7:00 PM

1257 Computer Science

Instructions
Answer question #1 and any three others. (If you answer more, only the first four will count.) 
Point values are as indicated. Please try to make your answers neat and coherent. Remember, if 
we can’t read it, it’s wrong. Partial credit will be given, so try to put something down for each 
question (a blank answer always gets 0 points!).

1. (1 point)
Graph coloring is used to: 
(a)  Amuse children. 
(b)  Sell graph paper. 
(c)  Make graphs more attractive. 
(d)  Model register allocation within a subprogram.

2. (a) (11 points) 
When a compiler must access an integer literal too large to be incorporated as an immediate 
operand, it must load the value into a register prior to its use. This takes two instructions on a 
SPARC. If it happens that from the program’s flow of control the same literal value must have 
previously loaded and used, it may be possible for multiple uses of the literal to share the same 
register. How can we determine if, at a use of a literal L, whether L has necessarily already been 
loaded and used? 
 
(b) (11 points) 
Assume we know that a particular use of L necessarily follows some previous use of L. How 
can we ensure that the current and previous uses of L share the same register? How can alloca-
tion of a register to L be integrated into the general problem of allocating registers to register 
candidates? 
 
(c) (11 points) 
It may happen that the only use of L is within a loop body. The analyses of parts (a) and (b) 
don’t help here, since there are no earlier loads of L to reuse. An alternative is to add a load of L 
outside the loop, thereby avoiding repeated loads of L in the loop body. Suggest how to decide 
where to place the initial load of L. What are the factors that control your choice of placement? 
 
 
 



3. (a) (11 points)
Assume we are doing a save-free interprocedural register allocation for a program whose call 
graph forms a tree. We have N registers to allocate among all procedures. There are no saves 
and restores across calls, so a caller and callee can never use the same register. You are given 

cost(i,r), the cost of executing all calls of procedure pi  with exactly r registers. This cost function 

is monotonically non-increasing in r. That is cost(i,r) ≥ cost(i,r+1).
Give a series of equations that allow us to solve for a least-cost save-free interprocedural 
register allocation. 

   (b) (11 points)
Assume now we have a very limited form of register windows. There are two windows of M
registers each. Initially, at the start of the main program’s execution, the first window is active. 
At the very beginning of a procedure’s execution, a save may be done, which activates the 
other register window (a restore is done at the very end of the procedure’s execution).
Since there are only two windows, a save may only be done once in any call chain. Procedures 
above a routine that does a save use one set of M registers, while a routine that does a save
(and its descendents) use the other set of M registers.
Assume that save and restore instructions cost nothing and that there are no restrictions on 
how registers in a window may be used (i.e., no registers are reserved for special purposes). 
Extend your solution to (a) to determine which procedures in a program should do saves to 
obtain an optimal interprocedural register allocation.

  (c) (11 points)
Processors that provide register windows typically make more than 2 windows available. 
Generalize your solution to part (b) to allow W register windows. At the start of the main 
program’s execution, the first window is active. At the very beginning of a procedure’s 
execution, a save may be done, which activates a new register window (a restore is done at 
the very end of the procedure’s execution).
Since there are only W windows, at most W saves may be done in any call chain. If a 
procedures does a save, it gets access to a fresh set of M registers to be used by that procedure 
and its children.
Assume again that save and restore instructions cost nothing and that there are no 
restrictions on how registers in a window may be used (i.e., no registers are reserved for special 
purposes).

4. (33 points) 
Define a Sethi-Ullman style code generator (ignoring spills) for expression trees for an architec-
ture that has the following instruction forms:

Instruction Meaning

ld [mem],reg Load contents of location mem into register reg

mv lit,reg Move literal lit into register reg

st reg, [mem] Store contents of reg into location mem

op reg1,reg2,reg3 Compute (reg1 op reg2) into reg3

op reg1,lit,reg2 Compute (reg1 op lit) into reg2

 

Assume that all values and operations are integer, all operators are non-commutative and that 
all literal values fit within a single instruction. Illustrate your code generator on the following 
expression: 
    ((a+1)*(2+b))-((c+d)*(e+f)) 
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5. Consider the following C function:
 void f(int a[]){
   for (int i=0;i<998;i++){
     a[i]=a[i+2]*2;
   }
  }

Assume the function’s loop body is translated into the following SPARC code:
L:

        sll     %o4, 2, %o5
        add     %o5, %o0, %g1
        ld      [%g1+8], %g1
        add     %g1, %g1, %g1
        add     %o4, 1, %o4
        cmp     %o4, 997
        ble     L
        st      %g1, [%o0+%o5]

(a) (10 points)
Assuming there is no limit to the number of independent instructions that can be issued and 
executed simultaneously, schedule the loop body to take as few cycles as possible. Do not 
unroll or software pipeline the loop; just schedule its body as a basic block. How many cycles 
are needed?

(b) (13 points)
Now software pipeline the loop body of part (a), assuming no register reassignments or loop 
unrolling. What initiation interval (II) was achieved? What factors precluded a smaller II? 

(c) (10 points)
An alternative to software pipelining is loop unrolling. Unroll the above loop with an unrolling 
factor of 2. Assume in the second copy of the loop body the compiler uses different registers to 
hold loaded and computed values. That is, rather than %g1 and %o5, %g2 and %o6 are used in 
the second copy of the loop body. Of course %o4 will still hold i and %o0 will still hold the 
address of a. Now schedule this expanded loop body, assuming again that there is no limit to 
the number of independent instructions that can be issued and executed simultaneously.
How many cycles per loop iteration are now needed? Why is this better (or worse) than the II 
achieved in part (b)?

6. (a) (13 points) Assume we are translating
a = b + 1;
e = 3;
c = d + 2;

and have generated the following Sparc code
ld [b], %l1
mov 1,%l2
add %l1,%l2,%l1
st %l1,[a]
mov 3,%l3
st %l3,[e]
mov 2,%l4
ld [d], %l1
add %l1,%l4,%l1
st %l1,[c]
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Show the dependency dag for this instruction sequence. What schedule would the Gibbons-
Muchnick algorithm produce assuming that only loads have a delay (of one instruction)?

(b) (20 points)
The instruction schedule produced in part (a) is an optimistic one in that it assumes that all loads 
will be cache hits. This makes sense if a cache miss on a load suspends all instruction execution 
until the operand is available.
However, many microarchitectures provide a non-blocking load that doesn’t suspend execution 
on a cache miss. Rather, instruction execution continues until an instruction needing the loaded 
register value is reached. At that point, instruction execution stalls if the loaded value is not yet 
available. Note that if we can put enough independent instructions between a load and the first 
use of the loaded value, instruction execution need not be stalled, even for a cache miss.
For purposes of this question assume that (as usual) a cache hit imposes a one instruction delay 
and that cache hits occur 90% of the time (dynamically). A cache miss (to second level cache) 
imposes a four instruction delay; misses occur 10% of the time. Ignore cache misses that fault to 
main memory or to an out-of-memory page.
Given the schedule you produced in part (a), what is the expected (or average case) number of 
delays it will experience?
If we scheduled loads pessimistically (assuming a delay of four rather than one) we might do 
better. Rerun your Gibbons-Muchnick algorithm using this pessimistic approach. What is the 
expected number of delays now?
In this example is there a better schedule not produced by either the optimistic or pessimistic 
approach? If so, explain what might be done to better handle loads that don’t have a single fixed 
delay value.
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