
CS 701

Midterm Exam

Tuesday, November 6, 2007

In Class

3444 Engineering

Instructions
Answer question #1 and any three others. (If you answer more, only the first four will count.)
Point values are as indicated. Please try to make your answers neat and coherent. Remember, if
we can’t read it, it’s wrong. Partial credit will be given, so try to put something down for each
question (a blank answer always gets 0 points!).

1. (1 point)
Dual-core processors provide how many CPUs:
(a) 1.
(b) 2.
(c) 3.1415926535.
(d) 232.

2. (a) (17 points)
Assume we generate the following SPARC code (using 4 registers) for the expression
a = ((a*b)+(b+c))+((c*d)+(a+d)):

1. ld [a], %r1
2. ld [b], %r2
3. smul %r1, %r2, %r3
4. ld [c], %r4
5. add %r2, %r4, %r2
6. add %r3, %r2, %r2
7. ld [d], %r3
8. smul %r4, %r3, %r4
9. add %r1, %r3, %r1
10. add %r4, %r1, %r1
11. add %r2, %r1, %r1
12. st %r1, [a]

How many stalls does this code sequence have (assuming loads have a latency of 1 and
multiplies have a latency of 2)?

Show the dependence dag for this expression. Use the Gibbons-Muchnick heuristic to schedule
the code sequence shown above. Are all latencies now covered? If not, why?

(b) (16 points)
Now use the Goodman-Hsu heuristic to allocate registers and schedule the expression of part
(a), assuming 5 registers are available. Are all latencies now covered? If not, why?

3. This question involves the DLS expression tree code generator and scheduler. Recall that DLS is
the extension of the Sethi-Ullman algorithm that aims to avoid load stalls as well as to minimize
register use

(a) (7 points)
The DLS algorithm noted that the register estimate computed by the Sethi-Ullman algorithm is
insufficient to avoid loads stalls, but that using one additional register is sufficient to avoid all
stalls for loads with a delay of 1 (excluding trivial expressions which always must stall).
Explain carefully why this is the case (that is, why Sethi-Ullman’s estimate is insufficient, but
one extra register always suffices).

(b) (6 points)
The DLS algorithm works in the framework of expression trees, where each operand is a
variable that is used exactly once. Assume we have an expression DAG where operands are
variables that can be used more than once. Is the minimum register allocation always
insufficient to avoid load stalls, or is a stall-free schedule sometimes possible?

(c) (20 points)
Assume you are given a code sequence that is generated from an expression DAG. Is uses
exactly N registers, but alas, it has one or more load stalls. (Ignore all other kinds of pipeline
stalls).
You are given an extra register, not used within the code sequence. Propose an algorithm that
transforms the code sequence into an equivalent stall-free sequence (that uses the original N
registers plus the additional register). Does you algorithm always eliminate loads stalls? Why?

4. (33 points)
The Eggers balanced scheduling algorithm is designed to handle the unpredictable latencies of
non-blocking load instructions. It treats all loads equally, scheduling on the basis of available
ILP. If it happens that we know that some loads are more likely to miss than others (using pro-
filing or source-level information), the algorithm is unable to utilize this information.
For example, consider the following dependency dag. Assume that load L1 has an 70% proba-
bility of hitting in the primary cache, while load L2 has a 90% probability of hitting. Assume
further that hits in the primary cache have a latency of 1 cycle, while a miss to the secondary
cache has a latency of 10 cycles (deeper misses are ignored).

L1 I1 I2

L2 I3

I4

I0

The Eggers algorithm will treat L1 and L2 symmetrically, while given our additional informa-
tion, we’d probably like to give L1 preference over L2 in scheduling.

Suggest an extension to Eggers’ balanced scheduling algorithm that utilizes hit/miss estimates
in placing loads. Illustrate your extension on the above example.

-2-

5. (33 points)
Recall that it is sometimes useful to split a live range into two or more parts. Assume we have
a live range L, composed of basic blocks b1, b2, ..., bn. Assume now we choose a block bi in L
and insert a load of L’s value from location M at the beginning of bi. Our goal is to start a new
live range at bi.
Where should stores of L’s value into M be placed? (We must guarantee that the load placed at
bi gets L’s correct value. We also want to minimize the sizes of the new live ranges we create
from L.)
How can we determine how many new live ranges are formed, and which live range each block
in L now belongs to?

6. (a) (13 points)
One of the key concerns in doing software pipelining is determining the initiation interval.
What is the initiation interval? Why is it critical? What factors affect the possible values of an
initiation interval?

(b) (20 points)
Software pipelining is sensitive to the presence of a loop-carried dependence. What is a loop-
carried dependence? Given the code generated for a loop body, how can we determine whether
or not a loop-carried dependence is present? Illustrate you technique using the following
SPARC code:

f:

mov 1, %o3 !i=1 in %o3
 L:
 sll %o3, 2, %o4 !i*4 in %o4
 add %o4, %o0, %o5 !&a[i] in %o5

ld [%o5-4], %g1 !a[i-1] in %g1
 ld [%o5+4], %o5 !a[i+1] in %o5

add %g1, %o5, %g1 !a[i-1]+a[i] in %g1
add %o3, 1, %o3 !i++

 cmp %o3, 3999
 ble L

st %g1, [%o0+%o4] !store into a[i]
 retl
 nop

Corresponding source program;

void f (int a[]) {
 for (i=1;i<4000;i++)
 a[i]=a[i-1]+a[i+1];
}

-3-

	CS 701
	Midterm Exam
	1. (1 point)
	2. (a) (17 points)
	3. This question involves the DLS expression tree code generator and scheduler. Recall that DLS is the extension of the Sethi-Ullman algorithm that aims to avoid load stalls as well as to minimize register use
	4. (33 points) The Eggers balanced scheduling algorithm is designed to handle the unpredictable latencies of non-blocking load i...
	5. (33 points)
	6. (a) (13 points)

