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Abstract
The paper shows how a large class of interprocedural
dataflow-analysis problems can be solved precisely in poly-
nomial time by transforming them into a special kind of
graph-reachability problem. The only restrictions are that
the set of dataflow facts must be a finite set, and that the
dataflow functions must distribute over the confluence
operator (either union or intersection). This class of prob-
lems includes—but is not limited to—the classical separ-
able problems (also known as “gen/kill” or “bit-vector”
problems)—e.g., reaching definitions, available expres-
sions, and live variables. In addition, the class of problems
that our techniques handle includes many non-separable
problems, including truly-live variables, copy constant pro-
pagation, and possibly-uninitialized variables.

Results are reported from a preliminary experimental
study of C programs (for the problem of finding possibly-
uninitialized variables).

1. Introduction
This paper shows how to find precise solutions to a large
class of interprocedural dataflow-analysis problems in
polynomial time. In contrast with intraprocedural dataflow
analysis, where “precise” means “meet-over-all-paths”[20],
a precise interprocedural dataflow-analysis algorithm must
provide the “meet-over-all-valid-paths” solution. (A path
is valid if it respects the fact that when a procedure finishes
it returns to the site of the most recent call
[31,15,6,24,21,29]—see Section 2.)

Relevant previous work on precise interprocedural
dataflow analysis can be categorized as follows:
g Polynomial-time algorithms for specific individual

problems (e.g., constant propagation [5,14], flow-
sensitive summary information [6], and pointer analysis
[24]).

g A polynomial-time algorithm for a limited class of
problems: the locally separable problems (the interpro-
cedural versions of the classical “bit-vector” or “gen-
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kill” problems), which include reaching definitions,
available expressions, and live variables [22].

g Algorithms for a very general class of problems
[10,31,21].

The work cited in the third category concentrated on gen-
erality and did not provide polynomial-time algorithms.

In contrast to this previous work, the present paper pro-
vides a polynomial-time algorithm for finding precise solu-
tions to a general class of interprocedural dataflow-analysis
problems. This class consists of all problems in which the
set of dataflow facts D is a finite set and the dataflow func-
tions (which are in 2D → 2D) distribute over the meet
operator (either union or intersection, depending on the
problem). We will call this class the interprocedural,
finite, distributive, subset problems, or IFDS problems, for
short. All of the locally separable problems are IFDS prob-
lems. In addition, many non-separable problems of practi-
cal importance are also IFDS problems—for example:
truly-live variables [13], copy constant propagation
[12, pp. 660], and possibly-uninitialized variables.

Our results are based on two insights:
(i) By restricting domains to be powersets of atomic

dataflow facts and dataflow functions to be distributive,
we are able to efficiently create simple representations
of functions that summarize the effects of procedures
(by supporting efficient lookup operations from input
facts to output facts). For the locally separable prob-
lems, the representations of summary functions are
sparse. This permits our algorithm to be as efficient as
the most efficient previous algorithm for such prob-
lems, but without losing generality.

(ii) Instead of calculating the worst-case cost of our algo-
rithm by determining the cost-per-iteration of the main
loop and multiplying by the number of iterations, it is
possible to break the cost of the algorithm down into
three contributing aspects and bound the total cost of
the operations performed for each aspect (see the
Appendix).

The most important aspects of our work can be summar-
ized as follows:
g In Section 3, we show that all IFDS problems can be

solved precisely by transforming them into a special
kind of graph-reachability problem: reachability along
interprocedurally realizable paths. In contrast with
ordinary reachability problems in directed graphs (e.g.,
transitive closure), realizable-path reachability prob-
lems involve some constraints on which paths are con-
sidered. A realizable path mimics the call-return struc-
ture of a program’s execution, and only paths in which
“returns” can be matched with corresponding “calls”
are considered.

g In Section 4, we present a new polynomial-time algo-
rithm for the realizable-path reachability problem. The
algorithm runs in time O (ED 3); this is asymptotically
faster than the best previously known algorithm for the
problem [16], which runs in time
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g As discussed in Section 5, the new realizable-path
reachability algorithm is adaptive, with asymptotically
better performance when applied to common kinds of
problem instances that have restricted form. For exam-
ple, there is an asymptotic improvement in the
algorithm’s performance for the common case of
locally separable problems. Our work generalizes that
of Knoop and Steffen [22] in the sense that our algo-
rithm handles a much larger class of problems, yet on
the locally separable problems the algorithm runs in the
same time as that used by the Knoop-Steffen
algorithm—O (ED).

g Imprecise (overly conservative) answers to interpro-
cedural dataflow-analysis problems could be obtained
by treating each interprocedural dataflow-analysis prob-
lem as if it were essentially one large intraprocedural
problem. In graph-reachability terminology, this
amounts to considering all paths rather than considering
only the interprocedurally realizable paths. For the
IFDS problems, we can bound the extra cost needed to
obtain the more precise (realizable-path) answers. In
the important special case of locally separable prob-
lems, there is no “penalty” at all—both kinds of solu-
tions can be obtained in time O (ED). In the distribu-
tive case, the penalty is a factor of D: the running time
of our realizable-path reachability algorithm is
O (ED 3), whereas all-paths reachability solutions can
be found in time O (ED 2). However, in the preliminary
experiments reported in Section 6, which involve exam-
ples where D is in the range 70-142, the penalty
observed is at most a factor of 3.4.

g Callahan has given algorithms for several “interpro-
cedural flow-sensitive side-effect problems” [6].
Although these problems are (from a certain technical
standpoint) of a slightly different character from the
IFDS dataflow-analysis problems, with small adapta-
tions the algorithm from Section 4 can be applied to
these problems and is asymptotically faster than the
algorithm given by Callahan. In addition, our algorithm
handles a natural generalization of Callahan’s problems
(which are locally separable problems) to a class of dis-
tributive flow-sensitive side-effect problems. (This and
other related work is described in Section 7.)

g The realizable-path reachability problem is also the
heart of the problem of interprocedural program slicing,
and the fastest previously known algorithm for the
problem is the one given by Horwitz, Reps, and Bink-
ley [16]. The realizable-path reachability algorithm
described in this paper yields an improved
interprocedural-slicing algorithm—one whose running
time is asymptotically faster than the Horwitz-Reps-
Binkley algorithm. This algorithm has been found to
run six times as fast as the Horwitz-Reps-Binkley algo-
rithm [28].

g Our dataflow-analysis algorithm has been implemented
and used to analyze several C programs. Preliminary
experimental results are reported in Section 6.

Space constraints have forced us to treat some of the above
material in an abbreviated form. Full details—including
proofs of all theorems stated in the paper—as well as a
great deal of additional material, can be found in [27].

2. The IFDS Framework for Distributive Interpro-
cedural Dataflow-Analysis Problems
The IFDS framework is a variant of Sharir and Pnueli’s
“functional approach” to interprocedural dataflow analysis
[31], with an extension similar to the one given by Knoop
and Steffen in order to handle programs in which recursive
procedures have local variables and parameters [21].
These frameworks generalize Kildall’s concept of the
“meet-over-all-paths” solution of an intraprocedural
dataflow-analysis problem [20] to the “meet-over-all-
valid-paths” solution of an interprocedural dataflow-
analysis problem.

The IFDS framework is designed to be as general as pos-
sible (in particular, to support languages with procedure
calls, parameters, and both global and local variables).
Any problem that can be specified in this framework can be
solved efficiently using our algorithms; semantic correct-
ness is an orthogonal issue. A problem designer who
wishes to take advantage of our results has two obligations:
(i) to encode the problem so that it meets the conditions of
our framework; (ii) to show that the encoding is consistent
with the programming language’s semantics [9,10].
Encoding a problem in the IFDS framework may involve
some loss of precision. For example, in languages in which
parameters are passed by reference there may be a loss of
precision for problem instances in which there is aliasing.
However, the process of finding the solution to the result-
ing IFDS problem introduces no further loss of precision.

To specify the IFDS framework, we need the following
definitions:
Definition 2.1. In the IFDS framework, a program is
represented using a directed graph G * = (N *, E *) called a
supergraph. G * consists of a collection of flow graphs
G 1,G 2, . . . (one for each procedure), one of which, Gmain,
represents the program’s main procedure. Each flowgraph
Gp has a unique start node sp, and a unique exit node ep.
The other nodes of the flowgraph represent the statements
and predicates of the procedure in the usual way, except
that a procedure call is represented by two nodes, a call
node and a return-site node. (The sets of call and return-
site nodes of procedure p will be denoted by Callp and
Retp, respectively; the sets of all call and return-site nodes
in the supergraph will be denoted by Call and Ret, respec-
tively.)

In addition to the ordinary intraprocedural edges that
connect the nodes of the individual flowgraphs, for each
procedure call, represented by call-node c and return-site
node r, G * has three edges:
g An intraprocedural call-to-return-site edge from c to r;
g An interprocedural call-to-start edge from c to the start

node of the called procedure;
g An interprocedural exit-to-return-site edge from the

exit node of the called procedure to r. `
(The call-to-return-site edges are included so that the

IFDS framework can handle programs with local variables
and parameters. The dataflow functions on call-to-return-
site and exit-to-return-site edges permit the information
about local variables that holds at the call site to be com-
bined with the information about global variables that holds
at the end of the called procedure.)

When discussing time and space requirements, we use
the name of a set to denote the set’s size. For example, we
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declare g: integer

program main
begin
declare x: integer
read(x)
call P (x)

end

procedure P (value a : integer)
begin
if (a > 0) then
read(g)
a := a − g
call P (a)
print(a, g)

fi
end

λ S.S-{x}

λ S.S-{g}

λ S.S

λ S.S

λ S.S

λ S.S

λ S.S-{g}

λ S.S

λ S.S-{g}

λ S.S

ENTER P

s
P

IF a > 0

n4

ENTER main

s
main

READ(x)

n1

CALL P

n2

RETURN
FROM P

n3

EXIT main

e
main

RETURN
FROM P

n8

EXIT P

e
P

CALL P

n7

n6

a := a - g

n5

READ(g)

PRINT(a,g)

n9

λ S.{x,g}

λ S.if (a   S) or (g   S)
   then S   {a}
   else S-{a}

U
εε

λ S.S<x/a>

λ S.S-{a} 

λ S.S-{a}

λ S.S

(a) Example program (b) Its supergraph G *
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Figure 1. An example program and its supergraph G * . The supergraph is annotated with the dataflow functions for the “possibly-
uninitialized variables” problem. The notation S<x/a> denotes the set S with x renamed to a.

use Call, rather than |Call | , to denote the number of call
nodes in graph G *. (We make two small deviations from
this convention, using N and E to stand for |N * | and |E * | ,
respectively.)

Example. Figure 1 shows an example program and its
supergraph G *. `
Definition 2.2. A path of length j from node m to node n is
a (possibly empty) sequence of j edges, which will be
denoted by [e 1, e 2, . . . , ej], such that for all i, 1 ≤ i ≤ j −1,
the target of edge ei is the source of edge ei +1. `

The notion of an “(interprocedurally) valid path” cap-
tures the idea that not all paths in G * represent potential
execution paths:
Definition 2.3. Let each call node in G * be given a unique
index i. For each such indexed call node ci , label ci’s out-
going call-to-start edge by the symbol “(i”. Label the
incoming exit-to-return-site edge of the corresponding
return-site node by the symbol “)i”.

For each pair of nodes m, n in the same procedure, a
path from m to n is a same-level valid path iff the sequence

of labeled edges in the path is a string in the language of
balanced parentheses generated from nonterminal matched
by the following context-free grammar:

matched → (i matched )i matched for 1 ≤ i ≤ Call
| ε

For each pair of nodes m, n in supergraph G *, a path
from m to n is a valid path iff the sequence of labeled
edges in the path is a string in the language generated from
nonterminal valid in the following grammar (where
matched is as defined above):

valid → valid (i matched for 1 ≤ i ≤ Call
| matched

We denote the set of all valid paths from m to n by
IVP(m, n). `

In the formulation of the IFDS dataflow-analysis frame-
work (see Definitions 2.4−2.6 below), the same-level valid
paths from m to n will be used to capture the transmission
of effects from m to n, where m and n are in the same pro-
cedure, via sequences of execution steps during which the



call stack may temporarily grow deeper—because of
calls—but never shallower than its original depth, before
eventually returning to its original depth. The valid paths
from smain to n will be used to capture the transmission of
effects from smain, the program’s start node, to n via some
sequence of execution steps. Note that, in general, such an
execution sequence will end with some number of activa-
tion records on the call stack; these correspond to
“unmatched” (i’s in a string of language L (valid).

Example. In supergraph G * shown in Figure 1, the path
[smain → n1, n1 → n2, n2 → sp, sp → n4, n4 → ep, ep → n3]
is a (same-level) valid path; however, the path [smain → n1,
n1 → n2, n2 → sp, sp → n4, n4 → ep, ep → n8] is not a valid
path because the return edge ep → n8 does not correspond
to the preceding call edge n2 → sp. `

We now define the notion of an instance of an IFDS
problem:
Definition 2.4. An instance IP of an interprocedural,
finite, distributive, subset problem (or IFDS problem, for
short) is a five-tuple, IP = (G *, D, F, M, cddc ), where
(i) G * is a supergraph as defined in Definition 2.1.
(ii) D is a finite set.
(iii) F ⊆ 2D → 2D is a set of distributive functions.
(iv) M : E * → F is a map from G *’s edges to dataflow

functions.
(v) The meet operator cddc is either union or intersection.`

In the remainder of the paper we consider only IFDS
problems in which the meet operator is union. It is not hard
to show that IFDS problems in which the meet operator is
intersection can always be handled by dualizing (i.e., by
transforming such a problem to the complementary union
problem). Informally, if the “must-be-X” problem is an
intersection IFDS problem, then the “may-not-be-X” prob-
lem is a union IFDS problem. Furthermore, for each node
n ∈ N *, the solution to the “must-be-X” problem is the
complement (with respect to D) of the solution to the
“may-not-be-X” problem.

Example. In Figure 1, the supergraph is annotated with
the dataflow functions for the “possibly-uninitialized vari-
ables” problem. The “possibly-uninitialized variables”
problem is to determine, for each node n ∈ N *, the set of
program variables that may be uninitialized just before exe-
cution reaches n. A variable x is possibly uninitialized at n
either if there is an x-definition-free valid path to n or if
there is a valid path to n on which the last definition of x
uses some variable y that itself is possibly uninitialized.
For example, the dataflow function associated with edge
n6 → n7 shown in Figure 1 adds a to the set of possibly-
uninitialized variables if either a or g is in the set of
possibly-uninitialized variables before node n6. `

To simplify the presentation, we assume in Definition 2.4
that there is a single global space of dataflow facts, D. This
assumption is made strictly for expository purposes; the
more general setting, in which for each procedure p there is
a (possibly) different space of dataflow facts, Dp, presents
no additional difficulties [27]. Our implementation of the
IFDS framework, discussed in Section 6, supports the more
general setting.
Definition 2.5. Let IP = (G *, D, F, M, cddc ) be an IFDS
problem instance, and let q = [e 1, e 2, . . . , ej] be a non-
empty path in G *. The path function that corresponds to q,

denoted by pfq, is the function pfq =df fj b
. . . b f 2 b f 1,

where for all i, 1 ≤ i ≤ j, fi = M (ei). The path function for
an empty path is the identity function, λx.x. `
Definition 2.6. Let IP = (G *, D, F, M, cddc ) be an IFDS
problem instance. The meet-over-all-valid-paths solution
to IP consists of the collection of values MVPn defined as
follows:

MVPn =
q ∈ IVP(smain, n)

cddc pfq(dcd) for each n ∈ N *.
`

3. Interprocedural Dataflow Analysis as a Graph-
Reachability Problem
3.1. Representing Distributive Functions
In this section, we show how to represent distributive func-
tions in 2D → 2D in a compact fashion—each function can
be represented as a graph with at most (D +1)2 edges (or,
equivalently, as an adjacency matrix with (D +1)2 entries).
Throughout this section, we assume that f and g denote
functions in 2D → 2D and that f and g distribute over ∪ .
Definition 3.1. The representation relation of f,
Rf ⊆ (D ∪ { 0 }) × (D ∪ { 0 }), is a binary relation (i.e.,
graph) defined as follows:

Rf =df { (0, 0) }
∪ { (0, y) | y ∈ f (∅ ) }
∪ { (x, y) | y ∈ f ({ x }) and y ∈/ f (∅ ) }. `

Rf can be thought of as a graph with 2(D +1) nodes,
where each node represents an element of D (except for the
two 0 nodes, which (roughly) stand for ∅ ).

Example. The following table shows three functions
and their representation relations:
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
id: 2{ a, b } → 2{ a, b }

id = λS.S
a: 2{ a, b } → 2{ a, b }

a = λS.{a}
f: 2{ a, b, c } → 2{ a, b, c }

f = λS.(S − {a}) ∪ {b}iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

a

a

0

0

b

b

a

a

0

0

b

b

a

a

0

0

b

b

c

ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
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c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Note that one consequence of Definition 3.1 is that there is
never an edge of the form (x, 0), where x ∈ D.

Another consequence of Definition 3.1 is that edges in
representation relations obey a kind of “subsumption pro-
perty”. That is, if there is an edge (0, y), for y ∈ (D ∪ { 0 }),
there is never an edge (x, y), for any x ∈ D. For example,
in constant-function a, edge (0, a) subsumes the need for
edges (a, a) and (b, a). `

Representation relations—and, in fact, all relations in
(D ∪ { 0 }) × (D ∪ { 0 })—can be interpreted as functions in
2D → 2D, as follows:
Definition 3.2. Given a relation R ⊆ (D ∪ { 0 }) ×
(D ∪ { 0 }), its interpretation [[R]]: 2D → 2D is the function
defined as follows:

[[R]] =df λ X . ({ y | ∃ x ∈ X such that (x, y) ∈ R }
∪ { y | (0, y) ∈ R }) − { 0 }. `



Theorem 3.3. [[Rf]] = f.
Our next task is to show how the relational composition

of two representation relations Rf and Rg relates to the
function composition g b f.
Definition 3.4. Given two relations Rf ⊆ S ×S and
Rg ⊆ S ×S, their composition Rf; Rg ⊆ S ×S is defined as
follows:

Rf; Rg =df { (x, y) ∈ S ×S | ∃ z ∈ S such that (x, z) ∈ Rf
and (z, y) ∈ Rg }. `

Theorem 3.5. For all f , g ∈ 2D → 2D, [[Rf; Rg]] = g b f.
Definition 3.4 and Theorem 3.5 imply that the composi-

tion of any two distributive functions in 2D → 2D can also
be represented by a graph (relation) with at most (D +1)2

edges. In other words, the distributive functions in
2D → 2D are “compressible”: there is a bound on the size
of the graph needed to represent any such function as well
as the composition of any two such functions!
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0 a g

ENTER P

s
P

IF a > 0

n4

ENTER main

s
main

READ(x)

n1

CALL P

n2

RETURN
FROM P

n3

EXIT main

e
main

RETURN
FROM P

n8

EXIT P

e
P

CALL P

n7

n6

a := a - g

n5

READ(g)

PRINT(a,g)

n9

0 x g

0 x g

0 x g

0 x g

0 x g

0 a g

0 a g

0 a g

0 a g

0 a g

0 a g

0 a g
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Figure 2. The exploded supergraph that corresponds to the instance of the possibly-uninitialized variables problem shown in Figure 1.
Closed circles represent nodes of GIP

# that are reachable along realizable paths from 〈smain , 0〉 . Open circles represent nodes not reachable
along such paths.

Corollary 3.6. Given a collection of functions fi: 2D → 2D,
for 1 ≤ i ≤ j,

fj b fj −1 b . . . b f 2 b f 1 = [[Rf 1
; Rf 2

; . . . ; Rfj
]].

3.2. From Dataflow-Analysis Problems to Realizable-
Path Reachability Problems
In this section, we show how to convert IFDS problems to
“realizable-path” graph-reachability problems. In particu-
lar, for each instance IP of an IFDS problem, we construct
a graph GIP

# and an instance of a realizable-path reachabil-
ity problem in GIP

# . The edges of GIP
# correspond to the

representation relations of the dataflow functions on the
edges of G *. Because of the relationship between function
composition and paths in composed representation-relation
graphs (Corollary 3.6), the path problem can be shown to
be equivalent to IP: dataflow-fact d holds at supergraph
node n iff there is a “realizable path” from a distinguished
node in GIP

# (which represents the fact that ∅ holds at the
start of procedure main) to the node in GIP

# that represents



fact d at node n (see Theorem 3.8).
Definition 3.7. Let IP = (G *, D, F, M, ∪ ) be an IFDS
problem instance. We define the exploded supergraph for
IP, denoted by GIP

# , as follows:

GIP
# = (N #, E #), where

N # = N * × (D ∪ { 0 }),

E # = { 〈m, d 1〉 → 〈n, d 2〉 | (m, n) ∈ E *

and (d 1, d 2) ∈ RM (m, n) }. `

The nodes of GIP
# are pairs of the form 〈n, d〉; each node

n of Np is “exploded” into D +1 nodes of GIP
# . Each edge e

of E * with dataflow function f is “exploded” into a number
of edges of GIP

# according to representation relation Rf .
Dataflow-problem IP corresponds to a single-source
“realizable-path” reachability problem in GIP

# , where the
source node is 〈smain, 0〉.

Example. The exploded supergraph that corresponds to
the instance of the “possibly-uninitialized variables” prob-
lem shown in Figure 1 is shown in Figure 2. `

Throughout the remainder of the paper, we use the terms
“(same-level) realizable path” and “(same-level) valid
path” to refer to two related concepts in the exploded
supergraph and the supergraph. For both “realizable paths”
and “valid paths”, the idea is that not every path
corresponds to a potential execution path: the constraints
imposed on paths mimic the call-return structure of a
program’s execution, and only paths in which “returns” can
be matched with corresponding “calls” are permitted.
However, the term “realizable paths” will always be used
in connection with paths in the exploded supergraph; the
term “valid paths” will always be used in connection with
paths in the supergraph.

We now state the main theorem of this section, Theorem
3.8, which shows that an IFDS problem instance IP is
equivalent to a realizable-path reachability problem in
graph GIP

# :
Theorem 3.8. Let GIP

# = (N #, E #) be the exploded super-
graph for IFDS problem instance IP = (G *, D, F, M, ∪ ),
and let n be a program point in N *. Then d ∈ MVPn iff
there is a realizable path in graph GIP

# from node 〈smain, 0〉
to node 〈n, d〉.

The practical consequence of this theorem is that we can
find the meet-over-all-valid-paths solution to IP by solving
a realizable-path reachability problem in graph GIP

# .
Example. In the exploded supergraph shown in Figure

2, which corresponds to the instance of the possibly-
uninitialized variables problem shown in Figure 1, closed
circles represent nodes that are reachable along realizable
paths from 〈smain, 0〉. Open circles represent nodes not
reachable along realizable paths. (For example, note that
nodes 〈n8, g〉 and 〈n9, g〉 are reachable only along non-
realizable paths from 〈smain, 0〉.)

This information indicates the nodes’ values in the
meet-over-all-valid-paths solution to the dataflow-analysis
problem. For instance, in the meet-over-all-valid-paths
solution, MVPep

= { g }. (That is, variable g is the only
possibly-uninitialized variable just before execution
reaches the exit node of procedure p.) In Figure 2, this
information can be obtained by determining that there is a
realizable path from 〈smain, 0〉 to 〈ep, g〉, but not from

〈smain, 0〉 to 〈ep, a〉. `

4. An Efficient Algorithm for the Realizable-Path
Reachability Problem
In this section, we present our algorithm for the realizable-
path reachability problem. The algorithm is a dynamic-
programming algorithm that tabulates certain kinds of
same-level realizable paths. As discussed in Section 5 and
the Appendix, the algorithm’s running time is polynomial
in various parameters of the problem, and it is asymptoti-
cally faster than the best previously known algorithm for
the problem.

The algorithm, which we call the Tabulation Algorithm,
is presented in Figure 3. The algorithm uses the following
functions:
g returnSite: maps a call node to its corresponding

return-site node;
g procOf: maps a node to the name of its enclosing pro-

cedure;
g calledProc: maps a call node to the name of the called

procedure;
g callers: maps a procedure name to the set of call nodes

that represent calls to that procedure.
The Tabulation Algorithm uses a set named PathEdge to
record the existence of path edges, which represent a sub-
set of the same-level realizable paths in graph GIP

# . In par-
ticular, the source of a path edge is always a node of the
form 〈sp, d 1〉 such that a realizable path exists from node
〈smain, 0〉 to 〈sp, d 1〉. In other words, a path edge from
〈sp, d 1〉 to 〈n, d 2〉 represents the suffix of a realizable path
from node 〈smain, 0〉 to 〈n, d 2〉.

The Tabulation Algorithm uses a set named Sum-
maryEdge to record the existence summary edges, which
represent same-level realizable paths that run from nodes
of the form 〈n, d 1〉, where n ∈ Call, to 〈returnSite (n), d 2〉.
In terms of the dataflow problem being solved, summary
edges represent (partial) information about how the
dataflow value after a call depends on the dataflow value
before the call.

The Tabulation Algorithm is a worklist algorithm that
accumulates sets of path edges and summary edges. The
initial set of path edges represents the 0-length same-level
realizable path from 〈smain, 0〉 to 〈smain, 0〉 (see line [2]). On
each iteration of the main loop in procedure ForwardTabu-
lateSLRPs (lines [10]-[39]), the algorithm deduces the
existence of additional path edges (and summary edges).
The configurations that are used by the Tabulation Algo-
rithm to deduce the existence of additional path edges are
depicted in Figure 4.

Once it is known that there is a realizable path from
〈smain, 0〉 to 〈sp, d〉, path edge 〈sp, d〉 → 〈sp, d〉 is inserted
into WorkList (lines [14]-[16]). In this case, path edge
〈sp, d〉 → 〈sp, d〉 represents the 0-length suffix of a realiz-
able path from 〈smain, 0〉 to 〈sp, d〉. (The idea of inserting
only relevant 〈sp, d〉 → 〈sp, d〉 edges into WorkList is simi-
lar to the idea of avoiding unnecessary function applica-
tions during abstract interpretation, known variously as
“chaotic iteration with needed information only” [10] or the
“minimal function-graph approach” [18].)

It is important to note the role of lines [26]-[28] of Fig-
ure 3, which are executed only when a new summary edge
is discovered:
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declare PathEdge, WorkList, SummaryEdge: global edge set
algorithm Tabulate(GIP

# )
begin

[1] Let (N # , E #) = GIP
#

[2] PathEdge := { 〈smain , 0〉 → 〈smain , 0〉 }
[3] WorkList := { 〈smain , 0〉 → 〈smain , 0〉 }
[4] SummaryEdge := ∅
[5] ForwardTabulateSLRPs()
[6] for each n ∈ N * do
[7] Xn := { d 2 ∈ D | ∃ d 1 ∈ (D ∪ { 0 }) such that 〈sprocOf (n) , d 1 〉 → 〈n, d 2 〉 ∈ PathEdge }
[8] od

end
procedure Propagate(e)
begin

[9] if e ∈/ PathEdge then Insert e into PathEdge; Insert e into WorkList fi
end
procedure ForwardTabulateSLRPs()
begin

[10] while WorkList ≠ ∅ do
[11] Select and remove an edge 〈sp , d 1 〉 → 〈n, d 2 〉 from WorkList
[12] switch n
[13] case n ∈ Callp :
[14] for each d 3 such that 〈n, d 2 〉 → 〈scalledProc (n) , d 3 〉 ∈ E # do
[15] Propagate(〈scalledProc (n) , d 3 〉 → 〈scalledProc (n) , d 3 〉)
[16] od
[17] for each d 3 such that 〈n, d 2 〉 → 〈returnSite (n), d 3 〉 ∈ (E # ∪ SummaryEdge) do
[18] Propagate(〈sp , d 1 〉 → 〈returnSite (n), d 3 〉)
[19] od
[20] end case
[21] case n = ep :
[22] for each c ∈ callers (p) do
[23] for each d 4 , d 5 such that 〈c, d 4 〉 → 〈sp , d 1 〉 ∈ E # and 〈ep , d 2 〉 → 〈returnSite (c), d 5 〉 ∈ E # do
[24] if 〈c, d 4 〉 → 〈returnSite (c), d 5 〉 ∈/ SummaryEdge then
[25] Insert 〈c, d 4 〉 → 〈returnSite (c), d 5 〉 into SummaryEdge
[26] for each d 3 such that 〈sprocOf (c) , d 3 〉 → 〈c, d 4 〉 ∈ PathEdge do
[27] Propagate(〈sprocOf (c) , d 3 〉 → 〈returnSite (c), d 5 〉)
[28] od
[29] fi
[30] od
[31] od
[32] end case
[33] case n ∈ (Np − Callp − { ep }) :
[34] for each 〈m, d 3 〉 such that 〈n, d 2 〉 → 〈m, d 3 〉 ∈ E # do
[35] Propagate(〈sp , d 1 〉 → 〈m, d 3 〉)
[36] od
[37] end case
[38] end switch
[39] od

endhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 3. The Tabulation Algorithm determines the meet-over-all-valid-paths solution to IP by determining whether certain same-level
realizable paths exist in GIP

# .

[26] for each d 3 such that 〈sprocOf (c) , d 3〉 → 〈c, d 4〉
∈ PathEdge do

[27] Propagate(〈sprocOf (c) , d 3〉 → 〈returnSite (c), d 5〉)
[28] od
Unlike edges in E #, edges are inserted into SummaryEdge
on-the-fly. The purpose of line [27] is to restart the pro-
cessing that finds same-level realizable paths from
〈sprocOf (c) , d 3〉 as if summary edge
〈c, d 4〉 → 〈returnSite (c), d 5〉 had been in place all along.

The final step of the Tabulation Algorithm (lines [6]-[8])
is to create values Xn, for each n ∈ N *, by gathering up the
set of nodes associated with n in GIP

# that are targets of path
edges discovered by procedure ForwardTabulateSLRPs:

[7] Xn := { d 2 ∈ D | ∃ d 1 ∈ (D ∪ { 0 }) such that
〈sprocOf (n) , d 1〉 → 〈n, d 2〉 ∈ PathEdge }

As mentioned above, the fact that edge
〈sprocOf (n) , d 1〉 → 〈n, d 2〉 is in PathEdge implies that there
is a realizable path from 〈smain, 0〉 to 〈n, d 2〉. Consequently,
by Theorem 3.8, when the Tabulation Algorithm ter-
minates, the value of Xn is the value for node n in the
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Figure 4. The above five diagrams show the situations handled in lines [14]-[16], [17]-[19], [25], [26]-[28], and [34]-[36] of the Tabula-
tion Algorithm.

meet-over-all-valid-paths solution to IP.
Theorem 4.1. (Correctness of the Tabulation Algorithm.)
The Tabulation Algorithm always terminates, and upon ter-
mination, Xn = MVPn, for all n ∈ N *.

5. The Cost of the Tabulation Algorithm
The running time of the Tabulation Algorithm varies
depending on what class of dataflow-analysis problems it is
applied to. We have already mentioned the locally separ-
able problems; it is also useful to define the class of h-
sparse problems:
Definition 5.1. A problem is h-sparse if all problem
instances have the following property: For each function on
an ordinary intraprocedural edge or a call-to-return-site

edge, the total number of edges in the function’s represen-
tation relation that emanate from the non-0 nodes is at most
hD. `

In general, when the nodes of the control-flow graph
represent individual statements and predicates (rather than
basic blocks), and there is no aliasing, we expect most dis-
tributive problems to be h-sparse (with h << D): each state-
ment changes only a small portion of the execution state,
and accesses only a small portion of the state as well. The
dataflow functions, which are abstractions of the state-
ments’ semantics, should therefore be “close to” the iden-
tity function, and thus their representation relations should
have roughly D edges. For many problems of practical
interest h ≤ 2 (see [27]).



Example. When the nodes of the control-flow graph
represent individual statements and predicates, and there is
no aliasing, every instance of the possibly-uninitialized-
variables problem is 2-sparse. The only non-identity
dataflow functions are those associated with assignment
statements. The outdegree of every non-0 node in the
representation relation of such a function is at most two: a
variable’s initialization status can affect itself and at most
one other variable, namely the variable assigned to. `

In analyzing the Tabulation Algorithm, we assume that
all primitive set operations are unit-cost. This can be
achieved, for instance, by the representation described in
[27, pp. 20].

Table 5.2 summarizes how the Tabulation Algorithm
behaves (in terms of worst-case asymptotic running time)
for six different classes of problems:
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Asymptotic running timeiiiiiiiiiiiiiiiiiiiiiiiClass of
dataflow
functions

Characterization
of the
functions’
properties
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Inter-
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h-sparse O (hED)At most O (hD)
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O (Call D 3
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Table 5.2. Asymptotic running time of the Tabulation Algorithm
for six different classes of dataflow-analysis problems.

The details of the analysis of the running time of the Tabu-
lation Algorithm on distributive problems are given in the
Appendix. The bounds for the other five classes of prob-
lems follow from simplifications of the argument given
there.

The storage requirements for the Tabulation Algorithm
consist of the storage for graph GIP

# and the three sets
WorkList, PathEdge, and SummaryEdge, which are
bounded by O (ED 2), O (ND 2), O (ND 2) and O (Call D 2).

6. Preliminary Experimental Results
We have carried out a preliminary study to determine the
feasibility of the Tabulation Algorithm. In the study, we
compared the algorithm’s accuracy and time requirements
with those of the safe, but naive, reachability algorithm that
considers all paths in the exploded supergraph, rather than
just the realizable paths. The two algorithms were imple-
mented in C and used with a front end that analyzes a C
program and generates the corresponding exploded super-
graph for the possibly-uninitialized-variables problem.
(The current implementation of the front end does not
account for aliases due to pointers.)

The study used four example C programs: struct-beauty,
the “beautification” phase of the Unix struct program [3];
twig, a code-generator generator [2]; ratfor, a preprocessor
that converts a structured Fortran dialect to standard For-
tran [19]; and C-parser, a lex/yacc-generated parser for C.
Tests were carried out on a Sun SPARCstation 10 Model
30 with 32 MB of RAM.

The following table gives information about the source
code (lines of C, lex, and yacc) and the parameters that

characterize the size of the control-flow graphs and the
exploded supergraph.
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CFG statistics G # statisticsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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struct-beauty 897 36 214 2188 2860 90 183.9k 220.6k
C-parser 1224 48 78 1637 1992 70 104.4k 112.4k
ratfor 1345 52 266 2239 2991 87 179.5k 217.7k
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In practice, most of the E # edges are of the form
〈m, d〉 → 〈n, d〉, and our implementation takes advantage
of this to represent these edges in a compact way.

The following table compares the cost and accuracy of
the Tabulation Algorithm and the naive algorithm. The
running times are “user cpu-time + system cpu-time”; in
each case, the time reported is the average of ten execu-
tions.
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(sec.)
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uses of
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Time
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struct-beauty 4.83+0.75 543 1.58+0.04 583
C-parser 0.70+0.19 11 0.54+0.02 127
ratfor 3.15+0.58 894 1.46+0.04 998
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The number of uses of possibly-uninitialized variables
reported by the Tabulation Algorithm ranges from 9% to
99% of those reported by the naive algorithm. Because the
possibly-uninitialized-variables problem is 2-sparse, the
asymptotic costs of the Tabulation Algorithm and the naive
algorithm are O (Call D 3 + ED 2) and O (ED), respectively.
In these examples, D ranges from 70 to 142; however, the
penalty for obtaining the more precise solutions ranges
from 1.3 to 3.4. Therefore, this preliminary experiment
suggests that the extra precision of meet-over-all-valid-
paths solutions to interprocedural dataflow-analysis prob-
lems can be obtained by the Tabulation Algorithm with
acceptable cost.

7. Related Work

Previous Interprocedural Dataflow-Analysis Frameworks
The IFDS framework is based on earlier interprocedural
dataflow-analysis frameworks defined by Sharir and Pnueli
[31] and Knoop and Steffen [21]. It is basically the
Sharir-Pnueli framework with three modifications:
(i) The dataflow domain is restricted to be a subset

domain 2D, where D is a finite set;
(ii) The dataflow functions are restricted to be distributive

functions;
(iii) The edge from a call node to the corresponding

return-site node can have an associated dataflow func-
tion.

Conditions (i) and (ii) are restrictions that make the IFDS
framework less general than the full Sharir-Pnueli frame-
work. Condition (iii), however, generalizes the Sharir-



Pnueli framework and permits it to cover programming
languages in which recursive procedures have local vari-
ables and parameters (which the Sharir-Pnueli framework
does not). (A different generalization to handle recursive
procedures with local variables and parameters was pro-
posed by Knoop and Steffen [21].)

The IFDS problems can be solved by a number of previ-
ous algorithms, including the “elimination”, “iterative”, and
“call-strings” algorithms given by Sharir and Pnueli [31]
and the algorithm of Cousot and Cousot [10]. However,
for general IFDS problems both the iterative and call-
strings algorithms can take exponential time in the worst
case. Knoop and Steffen give an algorithm similar to
Sharir and Pnueli’s “elimination” algorithm [21]. The
efficiencies of the Sharir-Pnueli and Knoop-Steffen elimi-
nation algorithms depend, among other things, on the way
functions are represented. No representations are discussed
in [31] and [21]. However, even if representation relations
(as defined in Section 3.1) are used, because the Sharir-
Pnueli and Knoop-Steffen algorithms manipulate functions
as a whole, rather than pointwise, for distributive and h-
sparse problems, they are not as efficient as the Tabulation
Algorithm.

Holley and Rosen investigated “qualified” dataflow
analysis problems, where “qualifications” are a device to
specify that only certain paths in the flow graph are to be
considered [15]. They employ an “expansion” phase that
has some similarities to our creation of the exploded super-
graph. However, Holley and Rosen do not take advantage
of distributivity to do the expansion pointwise, and thus for
the IFDS problems they would create 2D points per flow-
graph node, as opposed to the D points used in our
approach. Furthermore, for interprocedural problems the
Holley-Rosen approach is equivalent to the (impractical)
Sharir-Pnueli call-strings approach.

Reps investigated the use of deductive databases (i.e.,
logic programs with a bottom-up evaluation engine) to
implement locally separable interprocedural dataflow-
analysis problems [29]. This approach can be viewed as a
pointwise tabulation method. Although the present paper
does not make use of logic-programming terminology, the
Tabulation Algorithm has a straightforward implementation
as a logic program. Thus, another contribution of the
present paper is that it shows how to extend the logic-
programming approach from the class of locally separable
problems to the class of IFDS problems.

Dataflow Analysis via Graph Reachability and Pointwise
Computation of Fixed Points
Our work shows that a large subclass of the problems in the
Sharir-Pnueli and Knoop-Steffen frameworks can be posed
as graph-reachability problems. Other work on solving
dataflow-analysis problems by reducing them to reachabil-
ity problems has been done by Kou [23] and Cooper and
Kennedy [7,8]. In each case a dataflow-analysis problem is
solved by first building a graph—derived from the
program’s flow graph and the dataflow functions to be
solved—and then performing a reachability analysis on the
graph by propagating simple marks. (This contrasts with
standard iterative techniques, which propagate sets of
values over the flow graph.)

Kou’s paper addresses only intraprocedural problems.
Although he only discusses the live-variable problem, his
ideas immediately carry over to all the separable intrapro-

cedural problems. Cooper and Kennedy show how certain
flow-insensitive interprocedural dataflow-analysis problems
can be converted to reachability problems. Because they
deal only with flow-insensitive problems, the solution
method involves ordinary reachability rather than the more
difficult question of reachability along realizable paths.

Zadeck developed intraprocedural dataflow analysis
algorithms based on the idea of partitioning a problem into
many independent problems (e.g., on a “per-bit” basis in
the case of separable problems) [32]. Although our tech-
nique of “exploding” a problem into the exploded super-
graph transforms locally separable problems into a number
of independent “per-fact” subproblems, the technique does
not yield independent subproblems for h-sparse and general
distributive IFDS problems. For example, in the 2-sparse
possibly-uninitialized variables problem, a given variable
may be transitively affected by any of the other variables.
Nevertheless, these problems can be solved efficiently by
the Tabulation Algorithm.

Graph reachability can also be thought of as an imple-
mentation of the pointwise computation of fixed points,
which has been studied by Cai and Paige [4] and Nielson
and Nielson [26,25]. Theorem 3.3, the basis on which we
convert dataflow-analysis problems to reachability prob-
lems, is similar to Lemma 14 of Cai and Paige; however,
the relation that Cai and Paige define for representing dis-
tributive functions does not have the subsumption property.
Although it does not change the asymptotic complexity of
the Tabulation Algorithm, using relations that have the sub-
sumption property decreases the number of edges in the
exploded supergraph and consequently reduces the running
time of the Tabulation Algorithm.

Cai and Paige show that pointwise computation of fixed
points can be used to compile programs written in a very-
high-level language (SQ+) into efficient executable code.
This suggests that it might be possible to express the prob-
lem of finding meet-over-all-valid-paths solutions to IFDS
problems as an SQ+ fixed-point program and then automat-
ically compile it into an implementation that achieves the
bounds established in this paper (i.e., into the Tabulation
Algorithm).

Nielson and Nielson investigated bounds on the cost of a
general fixed-point-finding algorithm by computing the cost
as “(# of iterations) × (cost per iteration)”. Their main
contribution was to give formulas for bounding the number
of iterations based on properties of both the functional and
the domain in which the fixed-point is computed. Their
formula for “strict and additive” functions can be adapted
to our context of (non-strict) distributive functions, and
used to show that the number of iterations of the Tabulation
Algorithm is at most ND 2. The cost of a single iteration
can be O (Call D 2 + kD 2), where k is the maximum outde-
gree of a node in the control-flow graph. Thus, this
approach gives a bound for the total cost of the Tabulation
Algorithm of O ((ND 2) × (Call D 2 + kD 2)) = O (Call ND 4

+ kND 4), which compares unfavorably with our bound of
O (ED 3).

In contrast, the bound that we have presented for the cost
of the Tabulation Algorithm is obtained by breaking the
cost of the algorithm into three contributing aspects and
bounding the total cost of the operations performed for
each aspect (see the Appendix).

Another example of pointwise tabulation is Landi and
Ryder’s algorithm for interprocedural alias analysis for
single-level pointers [24]. The algorithm they give is simi-



lar to the Tabulation Algorithm. A limitation of the IFDS
framework is that information at a return-site node can only
be expressed as the meet of the information at the
corresponding call node and the appropriate exit node.
Because in the single-level-pointer problem the combining
function for return-site nodes is not meet, the problem does
not fit into the IFDS framework.

Flow-Sensitive Side-Effect Analysis
Callahan investigated two flow-sensitive side-effect prob-
lems: must-modify and may-use [6]. The must-modify
problem is to identify, for each procedure p, which vari-
ables must be modified during a call on p; the may-use
problem is to identify, for each procedure p, which vari-
ables may be used before being modified during a call on p.
Callahan’s method involves building a program summary
graph, which consists of a collection of graphs that
represent the intraprocedural reaching-definitions informa-
tion between start, exit, call, and return-site nodes—
together with interprocedural linkage information.1

Although the must-modify and may-use problems are not
IFDS problems as defined in Definition 2.4, they can be
viewed as problems closely related to the IFDS problems.
The basic difference is that IFDS problems summarize
what must be true at a program point in all calling contexts,
while the must-modify and may-use problems summarize
the effects of a procedure isolated from its calling contexts.
That is, Callahan’s problems involve valid paths from the
individual procedures’ start nodes rather than just the start
node of the main procedure. The must-modify problem is
actually a “same-level-valid-path” problem rather than a
“valid-path” problem; the must-modify value for each pro-
cedure involves only the same-level valid paths from the
procedure’s start node to its exit node. Consequently,
Callahan’s problems can be thought of as examples of
problems in two more general classes of problems: a class
of distributive valid-path problems, and a class of distribu-
tive same-level valid-path problems.

The method utilized in the present paper is to convert
distributive valid-path dataflow-analysis problems into
realizable-path reachability problems in an exploded super-
graph. By transformations analogous to the one given in
Section 3,
(i) the distributive valid-path problems can be posed as

realizable-path problems;
(ii) the distributive same-level valid-path problems can be

posed as same-level realizable-path problems.
In particular, the may-use problem is a locally separable
problem in class (i); the must-modify problem is a locally
separable problem in class (ii).

The payoff from adopting this generalized viewpoint is
that, with only slight modifications, the Tabulation Algo-
rithm can be used to solve all problems in the above two
classes (i.e., distributive and h-sparse problems, as well as
the locally separable ones). The modified algorithms have
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1Although the equations that Callahan gives contain both ∧ and ∨ opera-
tors, this is not because his problems are some kind of “heterogeneous
meet/join problems”. For example, when Callahan’s flow-sensitive Kill
problem is reformulated in the Sharir-Pnueli framework, ∧ corresponds to
meet, but ∨ corresponds to composition of edge functions.

the same asymptotic running time as the Tabulation Algo-
rithm. In particular, for the locally separable problems—
such as must-modify and may-use—the running time is
bounded by O (ED). This is an asymptotic improvement
over the algorithms given by Callahan: the worst-case cost
for building the program summary graph is
O (D

p
Σ CallpEp); given the program summary graph, the

worst-case cost for computing must-modify or may-use is
O (D

p
Σ Callp

2).

Demand Algorithms for Interprocedural Dataflow
Analysis
The goal of demand dataflow analysis is to determine
whether a given dataflow fact holds at a given point (while
minimizing the amount of auxiliary dataflow information
computed for other program points). One of the benefits of
the IFDS framework is that it permits a simple implementa-
tion of a demand algorithm for interprocedural dataflow
analysis [27,17].

Other work on demand interprocedural dataflow analysis
includes [29] and [11].

The IDE Framework
Recently, we generalized the IFDS framework to a larger
class of problems, called the IDE framework. In the IDE
framework, the dataflow facts are maps (“environments”)
from some finite set of symbols to some (possibly infinite)
set of values, and the dataflow functions are distributive
environment transformers [30]. (“IDE” stands for Inter-
procedural Distributive Environment problems.) The IDE
problems are a proper superset of the IFDS problems in
that there are certain IDE problems (including variants of
interprocedural constant propagation) that cannot be
encoded as IFDS problems.

Although the transformation we apply to IDE problems
is similar to the one used for IFDS problem, the
transformed problem that results is a realizable-path sum-
mary problem, not a realizable-path reachability problem.
That is, in the transformed graph we are no longer con-
cerned with a pure reachability problem, but with values
obtained by applying functions along (realizable) paths.
(The relationship between transformed IFDS problems and
transformed IDE problems is similar to the relationship
between ordinary graph-reachability problems and general-
ized problems that compute summaries over paths, such as
shortest-path problems, closed-semiring path problems, etc.
[1].) The algorithm for solving IDE problems is a
dynamic-programming algorithm similar to the Tabulation
Algorithm.

Appendix: The Running Time of the Tabulation Algo-
rithm
In this section, we present a derivation of the bound given
in Table 5.2 for the cost of the Tabulation Algorithm on
distributive problems.

Instead of calculating the worst-case cost-per-iteration of
the loop on lines [10]-[39] of Figure 3 and multiplying by
the number of iterations, we break the cost of the algorithm
down into three contributing aspects and bound the total
cost of the operations performed for each aspect. In partic-
ular, the cost of the Tabulation Algorithm can be broken
down into



(i) the cost of worklist manipulations,
(ii) the cost of installing summary edges at call sites

(lines [21]-[32] of Figure 3), and
(iii) the cost of “closure” steps (lines [13]-[20] and [33]-

[37] of Figure 3).
Because a path edge can be inserted into WorkList at

most once, the cost of each worklist-manipulation opera-
tion can be charged to either a summary-edge-installation
step or a closure step; thus, we do not need to provide a
separate accounting of worklist-manipulation costs.

The Tabulation Algorithm can be understood as k + 1
simultaneous semi-dynamic multi-source reachability
problems—one per procedure of the program. For each
procedure p, the sources—which we shall call anchor
sites—are the D + 1 nodes in N # of the form 〈sp, d〉. The
edges of the multi-source reachability problem associated
with p are

{ 〈m, d 1〉 → 〈n, d 2〉 ∈ E # | m, n ∈ Np and m → n is an
intraprocedural edge or a call-to-return-site edge }

∪ { 〈m, d 1〉 → 〈n, d 2〉 ∈ SummaryEdge | m ∈ Callp }.

In other words, the graph associated with procedure p is the
“exploded flow graph” of procedure p, augmented with
summary edges at the call sites of p. The reachability prob-
lems are semi-dynamic (insertions only) because in the
course of the algorithm, new summary edges are added, but
no summary edges (or any other edges) are ever removed.

We first turn to the question of computing a bound on the
cost of installing summary edges at call sites (lines [21]-
[32] of Figure 3). To express this bound, it is useful to
introduce a quantity B that represents the “bandwidth” for
the transmission of dataflow information between pro-
cedures: In particular, B is the maximum value for all call-
to-start edges and exit-to-return-site edges of (i) the max-
imum outdegree of a non-0 node in a call-to-start edge’s
representation relation; (ii) the maximum indegree of a
non-0 node in an exit-to-return-site edge’s representation
relation. (In the worst case, B is D, but it is typically a
small constant, and for many problems it is 1.)

For each summary edge 〈c, d 4〉 → 〈returnSite (c), d 5〉,
the conditional statement on lines [24]-[29] will be exe-
cuted some number of times (on different iterations of the
loop on lines [10]-[39]). In particular, line [24] will be
executed every time the Tabulation Algorithm finds a
three-edge path of the form

[〈c, d 4〉 → 〈sp, d 1〉, 〈sp, d 1〉 → 〈ep, d 2〉,
〈ep, d 2〉 → 〈returnSite (c), d 5〉] (†)

as shown in the diagram marked “Line [25]” of Figure 4.
When we consider the set of all summary edges at a

given call site c: { 〈c, d 4〉 → 〈returnSite (c), d 5〉 }, the exe-
cutions of line [24] can be placed in three categories:
d 4 ≠ 0 and d 5 ≠ 0

There are at most D 2 choices for a (d 4, d 5) pair, and
for each such pair at most B 2 possible three-edge paths
of the form (†).

d 4 = 0 and d 5 ≠ 0
There are at most D choices for d 5 and for each such
choice at most BD possible three-edge paths of the
form (†).

d 4 = 0 and d 5 = 0
There is only one possible three-edge path of the form
(†).

Thus, the total cost of all executions of line [24] is bounded
by O (Call B 2D 2).

Because of the test on line [24], the code on lines [25]-
[28] will be executed exactly once for each possible sum-
mary edge. In particular, for each summary edge the cost
of the loop on lines [26]-[28] is bounded by O (D). Since
the total number of summary edges is bounded by Call D 2,
the total cost of lines [25]-[28] is O (Call D 3). Thus, the
total cost of installing summary edges during the Tabula-
tion Algorithm is bounded by O (Call B 2D 2 + Call D 3).

To bound the total cost of the closure steps, the essential
observation is that there are only a certain number of
“attempts” the Tabulation Algorithm makes to “acquire” a
path edge 〈sp, d 1〉 → 〈n, d 2〉. The first attempt is
successful—and 〈sp, d 1〉 → 〈n, d 2〉 is inserted into
PathEdge; all remaining attempts are redundant (but seem
unavoidable). In particular, in the case of a node n ∈/ Ret,
the only way the Tabulation Algorithm can obtain a path
edge 〈sp, d 1〉 → 〈n, d 2〉 is when there are one or more two-
edge paths of the form [〈sp, d 1〉 → 〈m, d〉, 〈m, d〉 →
〈n, d 2〉], where 〈sp, d 1〉 → 〈m, d〉 is in PathEdge and
〈m, d〉 → 〈n, d 2〉 is in E #, as depicted below:

o o

o

o

o

s  , d( )
p 1

( )n, d2

( )m  , d
31

( )m  , d
42

( )m  , d
53

Consequently, for a given anchor site 〈sp, d 1〉, the cost of
the closure steps involved in acquiring path edge
〈sp, d 1〉 → 〈n, d 2〉 can be bounded by indegree (〈n, d 2〉).
For distributive problems, the representation relation of the
function on an ordinary intraprocedural edge or a call-to-
return-site edge can contain up to O (D 2) edges. Thus, for
each anchor site, the total cost of acquiring all its outgoing
path edges can be bounded by

O (
〈n, d〉 ∈ Np

#and n ∈/ Ret
Σ indegree (〈n, d〉)) = O (EpD 2).

The accounting for the case of a node n ∈ Ret is similar.
The only way the Tabulation Algorithm can obtain a path
edge 〈sp, d 1〉 → 〈n, d 2〉 is when there is an edge in
PathEdge of the form 〈sp, d 1〉 → 〈m, d〉 and either there is
an edge 〈m, d〉 → 〈n, d 2〉 in E # or an edge 〈m, d〉 → 〈n, d 2〉
in SummaryEdge. In our cost accounting, we will pessim-
istically assume that each node 〈n, d 2〉, where n ∈ Ret, has
the maximum possible number of incoming summary
edges, namely D. Because there are at most CallpD nodes
of Np

# of the form 〈n, d 2〉, where n ∈ Ret, for each anchor
site 〈sp, d 1〉 the total cost of acquiring path edges of the
form 〈sp, d 1〉 → 〈n, d 2〉 is

O (

and n ∈ Ret
〈n, d 2〉 ∈ Np

#
Σ indegree (〈n, d 2〉) + summary-indegree(〈n, d 2〉))

which equals O (CallpD 2).



Therefore we can bound the total cost of the closure
steps performed by the Tabulation Algorithm as follows:

Cost of closure steps
=

p
Σ (# anchor sites) × O (CallpD 2 + EpD 2)

= O (D 3

p
Σ (Callp + Ep))

= O (D 3(Call + E))
= O (ED 3).

Thus, the total running time of the Tabulation Algorithm is
bounded by O (Call B 2D 2 + ED 3).

It is possible to improve this bound to
O (Call BD 2 + ED 3) by treating procedure linkages as if
they were (B-sparse) procedures in their own right and
introducing new linkages to the linkage procedures with
“bandwidth” 1. Because Call ≤ E and B ≤ D, this
simplifies to O (ED 3), the bound reported in Table 5.2.
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