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Some thoughts

Misconceptions

Optimization optimizes your program.
There’s probably a better algorithm or sequence of

program transformations. While optimization hopefully

improves your program, the result is usually not optimal.

Optimization requires (much) more
compilation time. For example, dead code

elimination can reduce the size of program text such

that overall compile time is also reduced.

A clever programmer is a good sub-
stitute for an optimizing compiler.
While efficient coding of an algorithm is essential, pro-

grams should not be obfuscated by “tricks” that are

architecture- (and sometimes compiler-) specific.

All too often: : :

Optimization is disabled by default. De-

bugging optimized code can be treacherous [71, 42].

Optimization is often the primary suspect of program

misbehavior—sometimes deservedly so. “No, not the

third switch!”

Optimization is slow. Transformations are often

applied to too much of a program. Optimizations are

often textbook recipes, applied without proper thought.

Optimization produces incorrect code.
Although recent work is encouraging [67], optimizations

are usually developed ad hoc.

Programmers are trained by their com-
pilers. A style is inevitably developed that is con-

ducive to optimization.

Optimization is like sex:

� Everybody claims to get good results using exotic techniques;

� Nobody is willing to provide the details.
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Multilingual systems

IBM 
RS/6000

SUN
SPARC

C FTN ADA

CRAY. . .

. . .

CRAYIBM 
RS/6000

SUN
SPARC

C FTN ADA

IL

. . .

. . .

Architecting an intermediate language reduces the incremental cost of accom-
modating new source languages or target architectures [7]. Moreover, many
optimizations can be performed directly on the intermediate language text, so that
source- and machine-independent optimizations can be performed by a common
middle-end.
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Intermediate languages

It’s very easy to devote much time and effort toward choosing the “right” IL. Below
are some guidelines for choosing or developing a useful intermediate language:

� The IL should be a bona fide language, and not just an aggregation of data
structures.

� The semantics of the IL should be cleanly defined and readily apparent.

� The IL’s representation should not be overly verbose:

– Although some expansion is inevitable, the IL-to-source token ratio should be
as low as possible.

– It’s desirable for the IL to have a verbose, human-readable form.

� The IL should be easily and cleanly extensible.

� The IL should be sufficiently general to represent the important aspects of multiple
front-end languages.

� The IL should be sufficiently general to support efficient code generation for
multiple back-end targets.

A sampling of difficult issues:

� How should a string operation be
represented (intact or as a “loop”)?

� How much detail of a procedure’s
behavior is relevant?

Ideally, an IL has fractal characteristics:
optimization can proceed at a given
level; the IL can be “lowered”; opti-
mization is then applied to the freshly
exposed description.
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Intermediate languages (cont’d)

Components of an IL:

SymbolTable: declares the name space of a procedure.
AliasRelations: declares sets of aliased names.
Semantics: gives a formal specification of the procedure’s behavior.

Example program:

Procedure foo(x; y)

declare

x; y integer

a; b integer

?p integer

p rand() ? &a : &b

?p x + y

end

The procedure randomly assigns the ad-
dress of a or b to p, and then stores (x+y)

into the location dereferenced by p.

This example is intended to illustrate
may-alias behavior: ?p may be an alias
for a or b, and static analysis certainly
can’t decide which alias will hold at run-
time.

We’ll now look at a possible intermediate representation of this procedure, using a
Lisp-like notation that is easy to parse and to extend. The verbose keywords are easily
coded and stored efficiently as terminals of the language’s grammar.
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Symbol table

(SymbolTable
(NumSymbols 5)
(Symbol

(SymbolName x)
(SymbolID 1)

)
(Symbol

(SymbolName y)
(SymbolID 2)

)
(Symbol

(SymbolName p)
(SymbolID 3)

)

(Symbol
(SymbolName a)
(SymbolID 4)

)
(Symbol

(SymbolName b)
(SymbolID 5)

)
)

Symbol attributes (SymbolType, SymbolSize, SymbolVolatile, etc.) can be
added as needed.
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Alias relations

In programs with pointers or reference
parameters, use of a lexical name could
refer to one of multiple, distinct storage
names. We therefore specify sets of
names that might be treated in this man-
ner. Subsequently, a given reference to
a lexical name can be associated with
an alias relation entry, to describe the
potential effects of that reference.

In this example, we have an alias re-
lation with may-aliases for a and b and
no must-aliases. This relation might be
appropriate for the assignment through

?p.

Also shown are two relations in which x

and y are alternately must- and may-
aliased. If parameters are passed “by-
address”, then a use of x may be a use
of y if each parameter is supplied the
same address.

(AliasRelations
(NumAliasRelations 2)
(AliasRelation

(AliasID 1)
(MayAliases 2 a b)

)
(AliasRelation

(AliasID 2)
(MustAliases 1 y)
(MayAliases 1 x)

)
(AliasRelation

(AliasID 3)
(MustAliases 1 x)
(MayAliases 1 y)

)
)

Copyright c
1993 Ron K. Cytron. All rights reserved – 7 – SIGPLAN ’93 PROGRAM OPTIMIZATION TUTORIAL



Procedure semantics

(ProcSemantics
(NumNodes 5)

(NodeSemantics
(NodeID 1)
(Def

(DefID 1)
(SymbID p)
(DefValue

(Choose
((= rand() 0)

(Addr a)
(Addr b)

)
)

)
)
(Jump 2)

)

(NodeSemantics
(NodeID 2)
(Def
(DefID 2)
(SymbID ?)
(AliasWith 1)
(DefValue
(+
(Use

(UseID 1)
(SymbID x)

)
(Use

(UseID 2)
(SymbID y)

)
)

)
)

)

)
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What happens in the middle end?

Essentially, the program is transformed
into an observably equivalent while less
resource-consumptive program. Such
transformation is often based on:

� Assertions provided by the program
author or benefactor.

� The program dependence
graph [50, 35, 10].

� Static single assignment (SSA)
form [26, 5, 69, 28].

� Static information gathered by solv-
ing data flow problems [44, 51, 52,
53, 41, 54, 55, 48].

� Run-time information collected by
profiling [61].

Control Flow Graph

Depth-First
Numbering

Spanning Tree

Dominators

Dominance
Frontiers

Intervals

Profiling

Program
Semantics

Sparse Evaluation
Graph

Data Flow
Problems

Graph
Program Dependence

Edges
Dependence

Control

Program

Transformation

Form
Assignment
Static Single

Data Dependence

Edges

Let’s take a look at an example that benefits greatly from optimization: : :
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Unoptimized matrix multiply

for i = 1 to N do
for j = 1 to N do

A[i; j] 0
for k = 1 to N do

A[i; j] A[i; j] +B[i; k]� C[k; j]

od
od

od

Note that A[i; j] is really

Addr(A) + ((i� 1)� K1 + (j � 1)) �K2

which takes 6 integer operations.

The innermost loop of this “textbook” program takes

24 integer ops
3 loads
1 floating add
1 floating mpy
1 store

30 instructions
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Optimizing matrix multiply

for i = 1 to N do
for j = 1 to N do

a &(A[i; j])

for k = 1 to N do
?a ? a +B[i; k]� C[k; j]

od
od

od

for i = 1 to N do

b &(B[i; 1])

for j = 1 to N do

a &(A[i; j])

for k = 1 to N do

?a ? a + ?b� C[k; j]

b b+KB

od
od

od

The expression A[i; j] is loop-invariant
with respect to the k loop. Thus, code
motion can move the address arith-
metic forA[i; j] out of the innermost loop.

The resulting innermost loop contains
only 12 integer operations.

As loop k iterates, addressing arithmetic
for B changes from B[i; k] to B[i; k + 1].
Induction variable analysis detects the
constant difference between these ex-
pressions.

The resulting innermost loop contains
only 7 integer operations.

Similar analysis for C yields only 2 integer operations in the innermost loop, for a
speedup of nearly 5. We can do better, especially for large arrays.
Copyright c
1993 Ron K. Cytron. All rights reserved – 11 – SIGPLAN ’93 PROGRAM OPTIMIZATION TUTORIAL



If optimization is: : :

so great becase:

A good compiler can sell (even a slow)
machine. Optimizing compilers easily provide a

factor of two in performance. Moreover, the analysis

performed during program optimization can be incor-

porated into the “programming environment” [50, 25,

68].

New languages and architectures mo-
tivate new program optimizations. Al-

though some optimizations are almost universally benefi-

cial, the advent of functional and parallel programming

languages has increased the intensity of research into

program analysis and transformation.

Programs can be written with attention
to clarity, rather than performance.
There is no substitute for a good algorithm. However, the

expression of an algorithm should be as independent as

possible of any specific architecture.

then:

Why does it take so long? Compilation

time is usually 2–5 times slower, and programs with large

procedures often take longer. Often this is the result of

poor engineering: better data structures or algorithms

can help in the optimizer.

Why does the resulting program some-
times exhibit unexpected behavior?
Sometimes the source program is at fault, and a bug

is uncovered when the optimized code is executed;

sometimes the optimizing compiler is itself to blame.

Why is “no-opt” the default? Most com-

pilations occur during the software development cy-

cle. Unfortunately, most debuggers cannot provide

useful information when the program has been opti-

mized [71, 42]. Even more unfortunately, optimizing

compilers sometimes produce incorrect code. Often,

insufficient time is spent testing the optimizer, and with

no-opt the default, bugs in the optimizer may remain

hidden.
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Outline

1. Examples of data flow problems.
2. Flow graphs and their abstractions.
3. Data flow frameworks.

(a) Specification.

(b) Evaluation.

(c) Properties.

4. Sparse Evaluation Graphs.
5. Static Single Assignment (SSA) form.
6. SSA-based algorithms.
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Ingredients in a data flow framework

Data flow graph

Gdf = (Ndf ; Edf)

which is based on a directed flow
graph Gf = (Nf ; Ef), typically the
control flow graph of a procedure.
A data flow problem is

forward if the solution at a node may
depend only on the program’s
past behavior;

backward if the solution at a node
may depend only on a program’s
future behavior;

bidirectional if both past and future
behavior is relevant [31, 32, 33].

Start

Stop

A

B

C D

E F

G

H

J

K

L

M

� We’ll assume the data flow graph is augmented with a Start and Stop node, and
an edge from Start to Stop.

� We’ll limit our discussion to non-bidirectional problems, and assume that edges
in the data flow graph are oriented in the direction of the data flow problem.
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Ingredients in a data flow framework (cont’d)

Meet lattice which determines the out-
come when disparate solutions
combine. The lattice is specified
with distinguished elements

> which represents the best possible
solution, and

? which represents the worst possi-
ble solution.

Transfer Functions which transform one
solution into another.

Soln3

Soln2Soln1

OUT = f (IN)

Soln IN

Soln OUT

We’ll use the meet lattice to summarize the effects of convergent paths in the data
flow graph, and transfer functions to model the effects of a data flow graph path on
the data flow solution.

We’ll begin with the four simple and related bit-vectoring data flow problems,
classically solved as operations on bit-vectors. For ease of exposition, we’ll associate
data flow solutions with the edges, rather than the nodes, of the data flow graph.
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Available expressions

An expression expr is available (Avail) at
flow graph edge e if any past behavior
of the program includes a computation
of the value of expr at e.

Consider the expression (v + w) in the
flow graph shown to the right. If the ex-
pression is available at the assignment
to z, then it need not be recomputed.

� This is a forward problem, so the data
flow graph will have the same edges
and Start and Stop nodes as the flow
graph.

� The solution for any given expr is
either Avail or Avail.

� The “best” solution for an expression
isAvail. We thus obtain the two-level
lattice:

> is Avail.

? is Avail.

Start

Stop

v = 9

x = v+w

v = 2

y = v+w

w = 5

z = v+w
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Available expressions(cont’d)

Nodes that compute an expression
make that expression available. We
also assume that every expression is
available from Start.

The transfer function for each high-
lighted node makes the expression (v +

w) Avail, regardless of the solution
present at the node’s input.

Stop

v = 9

v = 2

Avail

Avail

Avail

Avail

Avail

w = 5

z = v+w

x = v+w

y = v+w

Start
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Available expressions(cont’d)

Nodes that assign to any variable in
an expression make that expression not
available, even if the variable’s value is
unchanged.

The transfer function for each high-
lighted node makes the expression (v +

w) Avail, regardless of the solution
present at the node’s input.

Start

Stop

v = 9

x = v+w

v = 2

y = v+w

Not Avail Not Avail

Not Avail

w = 5

z = v+w

Not AvailNot Avail

Copyright c
1993 Ron K. Cytron. All rights reserved – 18 – SIGPLAN ’93 PROGRAM OPTIMIZATION TUTORIAL



Available expressions (cont’d)

Here we see the global solution for avail-
ability of the expression (v + w).

Each of the highlighted nodes shown
previously asserts a solution on its output
edge(s). It’s the job of global data
flow analysis to assign the best possible
solution to every edge in the data flow
graph, consistent with the asserted solu-
tions.

The expression (v + w) need not be
computed in the assignment to z. The
relevant value is held either in x, or y,
depending on program flow.

To solve this problem using bit-vectors,
assign each expression a position in the
bit-vector. When an expression is avail-
able, its associated bit is 1.

Start

Stop

v = 8

v = 9

x = v+w

v = 2

Avail

Avail

Avail

y = v+w

Avail

Avail

Avail

Avail

Avail

Not Avail Not Avail

Not Avail

Not Avail

Not Avail
Avail

Not Avail

Not Avail

Avail

w = 5

z = v+w

Copyright c
1993 Ron K. Cytron. All rights reserved – 19 – SIGPLAN ’93 PROGRAM OPTIMIZATION TUTORIAL



Very busy expressions

An expression expr is very busy (V B) at
flow graph edge e if any future behavior
of the program references the value of

expr at e.

Where an expression is very busy, re-
sources allocated to compute or hold
that expression won’t be wasted.

� This is a backward problem, so the
data flow graph will have every
edge reversed, and nodes Start and

Stop will be interchanged.

� The solution for any given expression
is either V B or V B.

� The “best” solution for an expression
is V B. We thus obtain the two-level
lattice:

> is V B.

? is V B.

v = 2

w = 5

x = v+wv = 3

u = v+w

Start

Stop
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Very busy expressions (cont’d)

Stop

w = 5

v = 3

VB

VB

VB

VB

v = 2

x = v+w

u = v+w

Start

Nodes that compute an expression
make that expression very busy. We
also assume that every expression is
very busy from Start.

Start

Stop

Not VB

Not VB

Not VB

Not VB

v = 3 x = v+w

u = v+w

w = 5

v = 2

Nodes that assign to any variable in
an expression make that expression not
very busy.

The above graphs are data flow graphs, with their edges oriented in the direction of
this backward data flow problem.
Copyright c
1993 Ron K. Cytron. All rights reserved – 21 – SIGPLAN ’93 PROGRAM OPTIMIZATION TUTORIAL



Very busy expressions (cont’d)

Here we see the global solution for the
expression (v + w).

The original program may call for two
evaluations of (v+w): one at the assign-
ment of x and one at the assignment
of u. By moving the computation of

(v+w) from the assignment of u to node
A, we can avoid two computations of
the expression in an iteration of the outer
loop, even though the expression (v+w)

isn’t available at the assignment to u.

As with available expressions, each ex-
pression is assigned a position in the bit-
vector.

VB

VB

VB

VB

VB

VB

VB

Not VB

Not VB

Not VB

Not VB

Not VB

Not VB

Not VB

Not VB

VB

Not VB

VB VB

v = 2

w = 5

x = v+wv = 3

u = v+w

Start

Stop

A

A variant of this data flow problem is useful for early transmission of data or messages
in a distributed or hierarchical storage system (i.e., message passing architectures or
programmable caches) [30].
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Reaching defs

A definition d of variable v reaches an
edge e if the past behavior of the pro-
gram may cause d to provide the value
for v at e.

Each definition shown in the flow graph is
to the variable v; the definitions are sub-
scripted so we may distinguish among
the definitions of v.

� This is a forward data flow problem.

� If a definition ddoes not reach e, then

d is irrelevant to program optimiza-
tion at e. Thus, we obtain a lattice
where

> is the empty set.

? is the set of all definitions.

� The meet of two solutions a and b is
the union of the definition sites in a

and b.

Start

Stop

2

1

3

call f(v )4

= v

= v

G

H

v  = 

v  = 

v  = 
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Reaching defs (cont’d)

If a node absolutely changes the value
of a variable, then the definition kills all
other values for that variable. The trans-
fer function for each highlighted node
produces only the node’s definition of v

in the output.

call f(v )4

Start

Stop

{v1}

{v2}

{v3}

{v1}

{v3}

= v

= v

2

3

1v  = 

v  = 

v  = 
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Reaching defs (cont’d)

Otherwise, the definition preserves all
other reaching defs of the variable, as
might be the case with the procedure
call highlighted above. The node’s
transfer function adds the node’s defi-
nition of v to any that already reach the
node.

Examples of preserving defs include

� potentially modified variables at a
call site;

� assignments that modify some, but
not all, elements of an array;

� assignments to may-aliased vari-
ables.

4call f(v )

Start

Stop

v = 11

2

IN + {v4}
IN + {v4}

= v

= v

v = 1

3v = 5
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Reaching defs (cont’d)

Here we see the global solution for
reaching defs of v.

Reaching defs is often solved in support
of other optimization problems, such as
constant propagation and register allo-
cation.

In its bit-vector setting, each definition is
assigned a position in the bit-vector.

� The transfer function at node Y has
the form

fY (IN ) = (IN �KILLY ) [GENY

where KILLY and GENY are node-
specific bit-vector constants.

� The meet lattice can be formed by
set-union, which is easily realized for
the bit-vectors.

4call f(v )

Start

Stop

1

2

{  }

{  }

{  }

{v1}

{v1}

{v1}

{v2}

{v1.v2}

{v3}

{v3}

{v3}

{v3, v4}
{v3, v4} {v3, v4}

{v3, v4}

{v3, v4} {v3, v4}

{v1. v2. v3. v4}

{v3. v4}

= v

= v

G

H

3

v  = 

v  = 

v  = 
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Live variables

A variable v is live at edge e if the future
behavior of the program may reference
the value of v at e.

If a variable v is not live, then any
resources associated with v (registers,
storage, etc.) may be reclaimed.

� This is a backward problem.

� In the bit-vector representation,
each variable is associated with a
bit.

� The “best” solution is Live, so we
obtain the two-level lattice:

> is Live.

? is Live.

A

B

C D

v = 1 v = 2

x = v

v = 3Stop

Start

E F

G

H

K

L

M

J
call f(v)
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Live variables (cont’d)

Each of the highlighted nodes affects
the data flow solution:

� If a node uses v, then the node’s
asserts that v is Live.

� If a node kills v, then the node’s
output asserts that v is Live.

Start

Stop

v = 1 v = 2

call f(v)

Not Live

Not Live

Not Live Not Live

Live
Live

Not Live

v = 3

x = v
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Live variables (cont’d)

If a node Y preserves v (as might a
procedure call), then the node does not
affect the solution.

� If v is Live on “input” to Y , then Y

cannot make v Live.

� If v is Live on “input” to Y , then Y

does not make v Live.

Node Y ’s transfer function is therefore
the identity function:

fY (IN ) = IN

assuming node Y does not use v.

Global solution: Live variables

Start

Stop

Not Live

Not Live

Not Live Not Live

Live
Live

Not Live

Live

Live

Live

LiveLive Live

Not Live Live

Live
Live

Live

Live

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M
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The bit-vectoring data flow problems

The four problems we’ve just covered share the following properties:
� A solution can be represented as a bit-vector.

� The meet operation can be realized as the Boolean operation

or for reaching defs and live variables;

and for available expressions and very busy expressions.

� At each node Y we have a transfer function of the form
fY = (IN �KILLY ) [GENY

where KILLY and GENY are node-specific bit-vector constants.
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Flow graphs

Intraprocedural: nodes of the control flow graph should represent all
potentially executable code, and any program path followed during
execution should exist as a path in the control flow graph. For lan-
guages whose control flow behavior is syntactically apparent (using
source text), the associated control flow graph can be constructed
easily and precisely [3]. Higher-order languages such as Scheme
complicate the construction [65], as do languages such as APL,
where any statement could be the target of a branch [20].

Interprocedural: nodes of the procedure call graph should represent all
potentially executable procedures, and any possible sequence of
procedure calls during program execution should exist as a path in
the call graph. Where procedures cannot be passed as parameters,
construction of the call graph is straightforward; otherwise, some
preliminary flow analysis is required to construct a precise graph [57,
15].

The correctness of static analysis depends on the availability of a suitably ap-
proximate flow graph; the success of static analysis depends on the degree of
approximation.

Copyright c
1993 Ron K. Cytron. All rights reserved – 31 – SIGPLAN ’93 PROGRAM OPTIMIZATION TUTORIAL



Flow graphs (cont’d)

Procedure main

if
�

cond1

�

then
call foo

fi
while

�
cond2
�

do

w  5
od

end

Procedure foo

if

�
cond3

�

then
call A

call B

else
call C

call main

fi

end

Control Flow Graph for main()

if (cond1)

call foo()

while (cond2) w = 5

Stop

Procedure Call Graph

foo()

main()

A B C
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Flow graphs (cont’d)
� Implicit exceptional control flow (division-by-zero, storage violations,

etc.) can also be precisely modeled, but many analyzers do not
account for exceptions that cause a program to halt.

� The procedure call graph is useful in programming environments [43,
14] and for solving certain interprocedural problems [4, 11, 24, 13].

� Notably absent from the procedure call graph are edges that
represent return from procedure calls, although more sophisticated
representations are possible [49, 16].

� An approach that obtains a uniform view of intra- and interprocedu-
ral flow is continuation-passing style, in which anything executable
is modeled as a function, supplied with continuation expressions to
accomplish future action [6].
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A flow graph is: : :

structured if its associated procedure
consists of the standard compound
statements, structured loops, and
structured branching constructs. A
more precise definition requires
graph-grammars [34] or control de-
pendence [35].

reducible if every loop has a single point
of entry. By applying a simple
graph-grammar, such graphs can
be reduced to a single node; more-
over, applying that graph-grammar
to an irreducible graph always re-
sults in the graph shown to the
right [36].

Generally, analysis can be faster for structured or reducible flow graphs; however,
the best algorithms work for arbitrary graphs while obtaining the performance of
specialized algorithms on specialized graphs.

A more detailed classification of graph structure is given by Baker [8] and Sharir [64].
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Flow graph data structures

The following data structures simplify and facilitate program optimiza-
tion:

DFST is the depth-first spanning tree of a flow graph, constructed by
depth-first search [1].

Dom is the (immediate) dominator tree of the flow graph, constructed
by transitive reduction of a full dominator graph [2] or by a more
clever and direct algorithm [47].

PDom is the (immediate) postdominator tree of the flow graph, con-
structed by finding dominators of the reverse flow graph [35].

DomFron is the dominance frontier graph, constructed by one pass over
the dominator tree [28].

CD is the control dependence relation, constructed by finding domi-
nance frontiers of the reverse flow graph [28].

Intervals are the results of partitioning a flow graph’s nodes into single-
entry (perhaps strongly-connected) loops [3, 66, 63].
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Depth-first spanning trees
num 0 ; root ? ; child(?) ? ; parent(?) ? ; dfn(?) 0

foreach
�

Z 2 Nf
�

do
if

�
dfn(Z) = 0

�

then
call DFS(Z)

Sibling(Z) root ; root Z

fi
od

Procedure DFS(X)

num num+ 1 ; dfn(X) num ; vertex(num) X

foreach

�
Y 2 Succ(X)
�

do
if

�
dfn(Y ) = 0

�

then

parent(Y ) X ; sibling(Y ) child(X) ; child(X) Y

call DFS(Y )

fi
od

progeny(X)  num� dfn(X)

end
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Depth-first spanning trees (cont’d)

Here is shown a possible depth-first
numbering of a flow graph. Although
unvisited nodes can be considered in
any order, the numbering on the right is
obtained when:

� Enter is the first node visited;

� Unvisited successors of a branch
node are considered “left to right”.

31

2

4

5 14

7

8

9

10

11
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6 13

B
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E

A

D

F

G

H

J

K

L

M

Enter

Exit
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Depth-first spanning trees (cont’d)

Here is shown the associated depth-first
spanning tree. Each node X is labeled
with the range of node numbers in its
depth-first spanning subtree:

dfn(x) : : : dfn(x) + progeny(X)

as computed by the algorithm.

By retaining progeny(X), we obtain an

O(1) test for Y ’s inclusion in X ’s depth-
first spanning subtree: we need only
test dfn(Y ) for inclusion in the labeled
range for X . Where Y is in the depth-
first spanning subtree rooted at X , we’ll
use the notation

X < Y

1..14

2..2

3..14

4..14

14..145..13

7..12

8..12

9..12

10..12

11..12

12..12

6..12 13..13

D

F

G

H

M

Enter

Exit

A

B

C

E

J

K

L
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Depth-first spanning trees (cont’d)

1..14

2..2

3..14

4..14

14..145..13

7..12

8..12

9..12

10..12

11..12

12..12

6..12 13..13

D

F

G

H

M

Enter

Exit

The dashed edges above are cross
edges with respect to our DFST. Picto-
rially, such edges go right-to-left.

1..14

2..2

3..14

4..14

14..145..13

7..12

8..12

9..12

10..12

11..12

12..12

13..136..12

B

J

L

M

Enter

Exit

The dashed edges above are back
edges with respect to our DFST; such
edges represent loops in the graph.

Both types of edges are from X to Y , dfn(X) � dfn(Y ); however, Y < X for a back
edge and Y 6<X for a cross edge. A chord edge goes from X to Y , X < Y (e.g.,
flow graph edge J ! L, not shown).
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Dominance
� Node Y dominates node Z, denoted Y � Z, if every path from the

graph’s root to Z includes node Y .
During program execution, if nodeZ has executed, then so has node

Y .

� A node always dominates itself.

� Node Y strictly dominates Z, denoted Y � Z, if Y � Z and Y 6= Z.
A node never strictly dominates itself.

� The immediate dominator of node Z, denoted idom(Z), is the closest
strict dominator of Z:

Y = idom(Z)() (Y � Z and 8X � Z;X � Y )

� The dominator tree for Gf has nodesNf ; Y is a parent of Z in this tree
if and only iff Y = idom(Z).
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Fiber-optic view of dominance

Enter

Exit

A

B

C D

E F

G

H

J

L

M

K

Enter

Exit

A

B

C D

E F

G

H

J

K

L

M

� Start is a light source;

� each edge conducts light from its source to its target;

� each node normally transmits light received on any in-edge to each out-edge.

Nodes dominated by X are “cast in shadow” when X is made opaque (transmission
of light through X is prevented).
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Dominator tree

Enter

Exit A

B

C D H

E F G J

K L

M

This is the most compact representation of dominance, requiring only two “pointers”
per node: one for the node’s leftmost child and one for the node’s right sibling. In the
tree representation, a node dominates all descendants, strictly dominates all proper
descendants, and immediately dominates all children.
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Dominance (cont’d)

Y1 Y2

Y3Z

Y4

root

X

If some node X dominates each prede-
cessor Yi of Z, then X appears on every
path from root to Z and so X dominates

Z.

Let dom(Z) be the set of nodes that dom-
inate Z. A recursive way of specifying

dom(Z) is:

� Z is in dom(Z);

� Any node dominating each prede-
cessor of Z also dominates Z

We then obtain the following equation at
each node Z:

dom(Z) = fZ g [

\
Y 2Preds(Z)
dom(Y )

We essentially obtain a simple forward data flow framework, in which

� meet is set intersection;

� the transfer function for each node Z is

fZ(IN ) = fZ g [ IN
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Dominance as a data flow problem

A

B

Writing a suitable equation at each
node, we obtain:

dom(A) = fA g

dom(B) = fB g [ dom(A)

On inspection, it’s clear how to evaluate
these equations to obtain:

dom(A) = fA g

dom(B) = fA;B g

B

A

R

dom(R) = fR g

dom(B) = fB g [ dom(R)

dom(A) = fA g [

(dom(A) \ dom(B))

The first two equations are easily evalu-
ated:

dom(R) = fR g

dom(B) = fR;B g

The equation for dom(A) is problematic,
because the solution for dom(A) de-
pends on itself.

In general, solving such a system of equations involves an initial approximation for
the solution at each node.
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dom(A) = fA g [ (dom(A) \ dom(B))

Suppose we initially approximate

dom(Z) = ;

for each node Z.

We then obtain

dom(A) = fA g [ (; \ dom(B))

= fA g

The above equation represents a fixed
point :

1. Every node in dom(A) truly domi-
nates A;

2. Further evaluation (substitution of

dom(A)) does not change any solu-
tion.

However, we did not obtain the best, or
maximum fixed point, in which each so-
lution would contain the “largest” possi-
ble set of nodes that satisfies the equa-
tions.

Suppose our initial approximation were

dom(Z) = Nf

We would then obtain

dom(A) = fA g [ (Nf \ dom(B))

= fR;A;B g

which is indeed a correct solution,
“larger” than fA g.

In any data flow problem, the best an-
swer is obtained by initially assuming
each solution is >, and then iterating to
a fixed point. We may informally reason
now that

> = Nf

for the dominance problem, because
dominators allow latitude for code mo-
tion. A more formal basis for such rea-
soning will surface shortly.
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Simple dominance algorithm

The loop at 2 performs the fixed point
computation, based on the initialization
at 1 . The set of nodes whose solution
may have changed is maintained in the
work list Wlist. The equation for node

Y is recomputed at 4 . Step 5 detects
any change in solution, in which case
successors of Y are added to the work
list at 6 .

When the work list is empty, each equa-
tion has stabilized and the algorithm is
finished.

( 1dom(?) Nf

Wlist root

( 2while

�
Wlist 6= ;
�

do

( 3Y  element from Wlist

Wlist Wlist� fY g

( 4ndom fY g [

\
(X;Y )2Ef
dom(X)

( 5if

�
ndom 6= dom(Y )
�

then

dom(Y ) ndom

( 6foreach

�
(Y;Z) 2 Ef
�

do

Wlist Wlist [ fZ g

od
fi

od

The dominators algorithm is written this way to expose its data flow nature.
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Fast dominance algorithm
� The dominance relation can take O(jNf j2) space and O(jNf j2jEf j)

time to compute.

� A faster algorithm computes immediate dominance directly [47]:

1. The graph Gf is distilled into a dominator-equivalent graph free of
cross- and back-edges.

2. Immediate dominators are found for a graph containing only tree
and chord edges.
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Postdominance

Enter

Exit

A

B

C D

E F

G

H

J

K

L

M

E F C

Enter

Exit

M

L

K J

H

G D B

A

To compute postdominators, simply compute dominators of the reverse flow graph.
Postdominance is useful for code motion [26] and for computing control depen-
dence [35].
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Dominance frontiers [28]

traverse tree (DomTree) order

�

BottomUp

�

at node (X) do
DF (X) ;

foreach
�

Y 2 Succ(X)
�

do
if

�
idom(Y ) 6= X
�

then

( 1DF (X)  DF (X) [ fY g

fi
od
foreach

�
Z 2 Children(X)
�

do
foreach

�
Y 2 DF (Z)
�

do
if

�
idom(Y ) 6= X
�

then

( 2DF (X) DF (X) [ fY g
fi

od
od

od

Node Z is in the dominance frontier of node X if X dominates a predecessor Y of Z

but X does not strictly dominate Z [28]:

DF (X) = fZ j (9 Y 2 Preds(Z))(X � Y and X �j Y ) g

Step 1 finds successors of X in DF (X); step 2 completes DF (X) with nodes selected
from dominance frontiers of nodes immediately dominated by X .
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Fiber-optic view of dominance frontiers

Enter

Exit
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C D

E F
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L

M

DF (C) = fH g

Enter

Exit

A

B

C D

E F

G

H

J

L

M

K

DF (J) = fJ;Exit g

Nodes just outside the dominance “shadow” cast by X are in DF (X).
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Dominance frontiers (cont’d)

Enter

A

B

H

J

L

M

Another way to visualize dominance
frontiers is to start with a flow graph edge
superimposed on the dominator tree,
such as the edge (M;B): : :

Enter

A

B

H

J

L

M

and keep sliding the source of the edge
up the tree. For each position where the
tail is not above the head, the target of
the edge is in the dominance frontier of
the source.

So, B is in DF (M ), DF (L), DF (J), DF (H), and DF (B).
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Control dependence

A

B

C D

F

G

H

J

K

L

M

E

Enter

Exit

Node B controls node G by edge B !

C.

A

B

C D

F

G

H

J

K

L

M

E

Enter

Exit

NodeEnter controlsH by edgeEnter !

A; node M controls H by edge M ! B.

To compute control dependence, find the inverse of dominance frontiers of the
reverse flow graph [28], but qualify the relation with the in-edges at �-functions.
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Intervals [63]

Algorithm summary:

1. Find back edges of the flow graph.
Each target of a back edge is an
interval header;

2. Find and collapse members of inter-
vals, inside-out.

3. Path-compression helps speed the
search across intervals that have al-
ready been identified.

In the example to the right,

� Highlighted nodes are interval head-
ers.

� Dark-shaded nodes are in the inner-
most loop.

� Light-shaded nodes are in the outer-
most loop.

� The remaining nodes are not in a
loop, but may be regarded as be-
longing to the outermost interval.

Start

Stop

A

B

C D

E F

G

H

J

K

L

M
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Formal specification of a data flow framework

The data flow graph

Gdf = (Ndf ; Edf)

has been described previously:

� its edges are oriented in the direc-
tion of the data flow problem;

� Gdf is augmented with nodes Start

and Stop and an edge (Start; Stop),
suitably inserted with respect to the
direction of the data flow problem.

Successors and predecessors are also
defined with respect to the direction of
the data flow problem:

Succs(Y ) = fZ j (Y;Z) 2 Edf g

Preds(Y ) = fX j (X;Y ) 2 Edf g

The meet semilattice is

L = (A;>;?;�;^)

A is a set (usually a powerset), whose
elements form the domain of the
data flow problem,

> and ? are distinguished elements of

A, usually called “top” and “bot-
tom”, respectively,

� is a reflexive partial order, and

^ is the associative and commutative
meet operator, such that for any

a; b 2 A,

a � b () a ^ b = a

a ^ a = a

a ^ b � a

a ^ b � b

a ^ > = a

a ^ ? = ?

These rules allow formal reasoning
about > and ? in a framework.
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Formal specification (cont’d)

The set F of transfer functions

F � ff : L 7! Lg

has elements for describing the behav-
ior of any flow graph node with respect
to the data flow problem.

To obtain a stable solution, we’ll require
the functions in F to be monotone:

(8f 2 F)(8x; y 2 L)

x � y ! f (x) � f (y)

In other words, a node cannot produce
a “better” solution when given “worse”
input. Given a two-level lattice, evalua-
tion of the data flow graph shown to the
right oscillates between solutions and
never reaches a fixed point.

Start

Y

Stop

fY (IN ) =
8><

>:
> if IN = ?

? if IN = >
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Examples of data flow frameworks: Dominators

Data flow graph is the forward control flow graph of a procedure.
Lattice

A is 2Nf : the powerset of the flow graph’s nodes. That is, any solution
is a subset of Nf ;

> and ? are Nf and ;, respectively;

� defined as

(a � b)() (a � b)

For example, fA;B;C g � fA;B;C;D g, but solutions fA;B g and

fB;C g are incomparable, and thus unrelated by �.

^ is set intersection, which legitimizes > and ? since
a ^ > = a ^ Nf

= a

a ^ ? = a ^ ;

= ;

Transfer function at each node Z is

fZ(IN) = IN [ fZ g
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Examples: dominators (cont’d)

Consider evaluation of the transfer function at node E below:

{B,C,D}{A,B,C} {A,B,C,D}

E

Let’s compute the meet-over-all-paths
(MOP) solution:

1. LetAllPaths(E) be the set of all paths
in the graph that terminate with node

E, and let INp be the solution input
to E on path p;

2. OUT =

^

p2AllPaths(E)
fE(INp)

In our example, we would compute:

Edge j IN fE(INj)

1 fA;B;C g fA;B;C;E g

2 fB;C;D g fB;C;D;E g

3 fA;B;C;D g fA;B;C;D;E g

OUT fB;C;E g
Now, suppose that prior to applying fE(),
we took the meet of all input values. We
would then compute

IN = fA;B;C g ^ fB;C;D g ^ fA;B;C;D g

= fB;C g
OUT = IN [ fE g

= fB;C;E g

These two approaches compute the
same solution for this framework; unfor-
tunately there are some frameworks for
which the MOP evaluation produces a
more precise solution.
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Examples of data flow frameworks: live variables

Data flow graph is the reverse control flow graph of a procedure.
Lattice

A is 2V , where V is the set of the program’s variables. Each element of A

represents a set of live variables;

> and ? are ; and V , respectively;

� defined as

(a � b)() (a � b)

^ is set union, which again legitimizes > and ?.

Transfer functions

fZ(IN ) =
8>>>>><

>>>>>:
IN [ f v g if node Z has an upwards-exposed use of v

IN � f v g if node Z kills v

IN otherwise

The lattice shown to the right occurs
when the live variables data flow frame-
work is specified only for a single vari-
able v. It turns out that live variables is
partitionable [70, 48], and so the solution
for a set of variables V can be easily
constructed from the separate solutions
of each v 2 V .

(Dead)

(Live)
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Examples of data flow frameworks: constant propagation

The object of constant propagation is
to determine compile-time constants,
to be substituted for run-time computa-
tions.

Data flow graph is the forward control
flow graph of a procedure.

Lattice

A is the set of all total functions

t : V 7! (Z [ f>;?g)
Each element of A associates a
value from Z [ f>;?g with each

v 2 V .

> and ? are t(v) = > and t(v) = ?;

^ is performed by-variable, using
the lattice shown to the right.

� is defined as

(ta � tb)() (8 v ta(v) � tb(v))

also using the lattice.

- -2 -1 0 21... ...

� > represents “any constant you
like”;

� ? represents “not a constant value”;
� The meet of two disparate values for

the same variable results in ?.
� Since the (per-variable) lattice has

depth greater than two, solutions
cannot be represented by simple
bit-vectors. Most implementations
use a list of tuples [69].
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Examples: constant propagation (cont’d)

Transfer functions: Recall that the domain of our lattice is a set of functions. Thus, a
transfer function is a mapping from one function to another. When we write

OUT = fY (IN )

for the transfer function at node Y , IN and OUT are themselves functions from V

to Z [ f>;?g. The transfer function for a node Y is then formulated as follows:

� For each variable v whose value is not affected by Y , OUT (v) = IN (v);

� For each variable v whose value is changed by the expression  , OUT (v) is
computed as follows:
– If any variable y 2  has IN (y) = ?, then OUT (v) = ?;
– Otherwise, if any variable y 2  has IN (y) = >, then OUT (v) = >;
– Otherwise, each y 2  has a constant value, andOUT (v) is set to that value.

Examples of transfer functions:
Statement Transfer function f (IN ) =

w = 5

8><
>:
IN (v) if v 6= w

5 if v = w

w = y+2

8>>>>>>>><
>>>>>>>>:

IN (v) if v 6= w

> if v = w and IN (y) = >

? if v = w and IN (y) = ?

IN (y) + 2 otherwise
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Examples: constant propagation (cont’d)

Start

Stop

w = 1

u = w+x

x = 7

w = 5

x = 3

y = 3

w = y+2

y = w-2

Start

Stop

w = 1

u = w+x

x = 7

w = 5

x = 3

y = 3

w = y+2

[T,T,T,T]

[T,T,T,T]
[T,T,T,T]

[?,?,?,3]
[?,?,?,3]

[?,?,?,3]

[?,?,?,3] [?,?,?,3]

[?,5,?,3] [?,5,?,3]

[?,5,?,3][?,5,?,3]

[?,5,?,3] [?,5,?,3]

[?,5,?,3]

[?,5,3,3]

[?,5,3,3]

[?,1,7,3]

[?,?,?,3]

y = w-2

Solutions in this example are given as [u;w; x; y ]. Here, MOP gives a better result after
the highlighted node: Taking the meet of [?; 1; 7; 3 ] and [?; 5; 3; 3 ] yields [?;?;?; 3 ]

on input, so u is computed as ?. However, (w + x) is 8 on each input edge.
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Evaluation of a data flow framework

Although more specialized methods exist [46, 17, 48, 70], data flow frameworks are
usually evaluated by one of the following methods:

Iteration [37, 45]

1. The flow graph is preprocessed to
obtain a clever node ordering NL.

2. Within each iteration, nodes are vis-
ited in order NL:

(a) The input to a node Y is evalu-
ated as the meet of the solutions
at Y ’s predecessors.

(b) The transfer function across Y is
evaluated on that input.

(c) The solution is made available at
each of Y ’s successors.

3. Iteration continues until conver-
gence is reached, by predetermin-
ing the number of iterations that suf-
fice for convergence, or by deter-
mining dynamically that subsequent
iterations are unnecessary.

Elimination [58]

1. The flow graph is partitioned into a
set of (typically single-entry) regions

R. With interval analysis [3, 13], each
region is a loop, or interval [66, 63],
of the flow graph.

2. The flow graph is reduced into an
interconnection of members of R.

3. Each r 2 R is assigned a trans-
fer function, typically computed by
composition and meet within r [64].

4. Steps 1– 3 are repeated on the re-
duced flow graph, until no further
reduction can occur.

5. Solutions are computed in the outer-
most region, using the summarizing
transfer functions of any imbedded
regions. Inner regions are then re-
cursively solved.
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Evaluation of a data flow framework (cont’d)
� Iteration essentially utilizes single-node regions, and elimination may require

multiple evaluations of a region to achieve fixed point. Thus, the two methods
have much in common.

� It’s possible to combine aspects from both methods to achieve a hybrid evalua-
tion method [48].

� Although each method can be incrementalized, there are difficulties and trade-
offs to be considered [23, 60, 59, 12].
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Evaluation by elimination

Start

Stop

A

B

C D

E F

G

H

J

K

L

M

Start

Stop

A

B

C D

E F

G

H

J

K

L

M

Suppose regions are discovered as shown above, with the two “dotted” regions
nested inside the “dashed” region.
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Evaluation by elimination (cont’d)

Start

Stop

A

B

D

H

M

f1(IN)

f2(IN)

Start

Stop

A

f3(IN)

Each region is replaced by a suitable transfer function. The solution into and across
the outermost region is computed first. That solution is pushed into the inner regions,
so that they can be computed.
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Iterative evaluation

Consider the following flow graph, annotated with a depth-first numbering of the
nodes:

Start StopA B C D
1 2 3 46 5

The transfer function at each node Y is

fY (IN ) = fY g [ IN

Meet is set intersection and > is fStart; A;B;C;D; Stop g.

The following table illustrates evaluation using a poor node ordering:

Round Stop D C B A Start

1 > > > > > fStart g

2 > > > > fStart; A g fStart g

3 > > > fStart; A;B g fStart; A g fStart g

4 > fStart; A;B;D g fStart; A;C g fStart; A;B g fStart; A g fStart g

5 fStart; A; Stop g fStart; A;D g fStart; A;C g fStart; A;B g fStart; A g fStart g

6 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : No change : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
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Iteration (cont’d)

Start StopA B C D
1 2 3 46 5

Now let’s try ordering the nodes by their depth-first numbering:

Round Start A B D Stop C

1 fStart g fStart; A g fStart; A;B g fStart; A;B;D g fStart; A;B;D;Stop g fStart; A;C g

2 fStart g fStart; A g fStart; A;B g fStart; A;Dg fStart; A; Stop g fStart; A;C g

3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : No change : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Convergence is achieved in fewer iterations because information is is propagated
in the direction of the data flow problem. Can we do better?

Recall edge classification with respect
to a DFST:

tree and chord: these are satisfied by
preorder depth-first ordering;

cross: these require visiting children
right-to-left, in reverse of the order
in which they were visited during
depth-first numbering;

back: Well, you can’t win them all.

Start
1

A
2

B
3

D
4

Stop
5

C
6
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Iteration (cont’d)

Start StopA B C D
1 2 3 46 5

Right-to-left preorder can evaluate a DAG (directed acyclic graph) in a single pass.
Now let’s try this DAG-optimal node ordering:

Round Start A B C D Stop

1 fStart g fStart; A g fStart; A;B g fStart; A;C g fStart; A;D g fStart; A; Stop g

2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :No change : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Convergence is achieved in a single iteration, because nodes are visited topologi-
cally.

Note that right-to-left preorder is equiv-
alent to reverse postorder (try a struc-
turally inductive proof).

Start
1

A
2

B
3

D
4

Stop
5

C
6

Thus, a DAG can be evaluated in a single pass. What about back edges?
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Termination of iterative evaluation

f(a ^ b)

ba

Y

� If we require transfer functions to be
monotonic, then

c2 � c1 () fY (c2) � fY (c1)

� When meets are taken, we obtain

a ^ b � a

a ^ b � b

We can then expect that if we monitor
the solution at any given flow graph
edge, we will see a nonincreasing se-
quence: the solution never gets “better”
as iteration proceeds.

If the lattice has finite descending-chains, then iteration must eventually converge,
and so the iterative algorithm terminates.
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Rate of convergence

1

2 3

4

5 6

8

7

Reverse postorder for this flow graph is

[ 1; 3; 4; 6; 7; 8; 5; 2 ]

We’ll now look at evaluating two frameworks on this graph.
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Convergence for reaching definitions

Consider the framework of reaching definitions, applied to the flow graph shown on
the left, where each definition of x is preserving.

1

2

4

5

8

x2 =
6

x3 =
7

3
x1 =

1

2

4

5

8

x2 =
6

x3 =
7

3
x1 =

{ } { }

{x1} {x1}

{x1,x2}

{x1}

{x1,x2,x3}

The solution stabilizes in a single pass to the solution shown on the right.
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Convergence for reaching definitions (cont’d)

First pass

1

2

4

5

8

x2 =
6

x3 =
7

3
x1 =

{ } { }

{x1} {x1}

{x1,x2}

{x1}

{x1,x2,x3}

{x1}

Second pass

1

2

4

5

8

x2 =
6

x3 =
7

3
x1 =

{x1} {x1}

{x1,x2}

{x1}

{x1,x2,x3}

{x1} {x1}

{x1}

With the back edge added, two passes are required to reach convergence as
shown above.
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Convergence for reaching definitions (cont’d)

First pass

1

2

4

5

8

x2 =
6

x3 =
7

3
x1 =

{ } { }

{x1} {x1}

{x1,x2}

{x1}

{x1,x2,x3}

{x1}

{x1,x2,x3}

Second pass

1

2

4

5

8

x2 =
6

x3 =
7

3
x1 =

{x1,x2,x3}

{x1,x2,x3}

{x1,x2,x3}{x1,x2,x3}

{x1,x2,x3}

{x1,x2,x3}

{x1,x2,x3}

With two nested back edges, two passes still suffice for convergence.
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Convergence for reaching definitions (cont’d)

First pass

1

2

4

5

8

x2 =
6

x3 =
7

3
x1 =

{ } { }

{x1} {x1}

{x1,x2}

{x1}

{x1,x2,x3}

{x1}

{x1,x2,x3}

Second pass

1

2

4

5

8

x2 =
6

x3 =
7

3
x1 =

{x1}

{x1,x2,x3}

{x1,x2,x3}

{x1} {x1}

{x1,x2,x3} {x1,x2,x3}

{x1,x2,x3}

{x1,x2,x3}

Convergence isn’t reached in the second pass, because node 4 does not have its
final solution when node 1 is evaluated.
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Convergence for reaching definitions (cont’d)

Third pass

1

2

4

5

8

x2 =
6

x3 =
7

3
x1 =

{x1,x2,x3}

{x1,x2,x3} {x1,x2,x3}

{x1,x2,x3}

{x1,x2,x3}
{x1,x2,x3} {x1,x2,x3}

{x1,x2,x3}

{x1,x2,x3}

Suppose information from node 6 must
reach node 2. The information must first
use the back edge 8 ! 4 (after the first
pass), and then use the back edge 4!

1 (after the second pass). In the third
pass, information from node 1 can flow
to node 2.

Let w be the maximum number of con-
secutive back edges through which in-
formation must flow to “communicate”
a solution from nodes X to Y . Then at
least w + 1 passes are required to reach
convergence, and w is called the width
of the flow graph [33].

We’ll now examine the conditions under
which w+ 1 iterations suffice for conver-
gence.

In the third pass, node 4 has stabilized, and so all nodes receive their final solution.
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Rapid data flow frameworks

A data flow framework is rapid if

(8 a 2 A)(8 f 2 F) a ^ f (>) � f (a)

When presented with some real input a, a ^ f (>) takes us just as far toward
convergence (down the lattice) as would application of f on the real input a. More
formally, for monotone f

a ^ f (>) � f (a)

f (a ^ f (>)) � f (f (a))

and f (f (a)) represents the solution after two iterations.

a f(T)

f(a^f(T))

a

f(a) f(f(a)) f(f(f(a))) etc.

With a rapid framework, one iteration gathers all the information necessary to reach
convergence; the solution is not affected by subsequent iteration.
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Reaching definitions is rapid

Recall the framework of reaching defi-
nitions:

> = ;

^ = set union

a � b () a � b

Any transfer function in this framework
can be characterized by

fp(IN ) =

(IN �KILLp) [GENp

where KILLp and GENp are constants
for path p.

And so:

a ^ fp(>) = a [ (; �KILLp) [GENp

= a [GENp

� (a [GENp) � (KILLp � (a [GENp))

� (a �KILLp) [GENp

� f (a)

2
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A nonrapid problem

Consider the problem of determining
the number of bits that should be asso-
ciated with a variable. In the program
shown to the right, assume that node 1
forces the solution:

Variable # bits
x,y,q,w 4

d 7

Let NB(v) denote the number of
bits associated with v; let solu-
tion a be denoted as the 5-tuple

[NB(x); NB(y); NB(q); NB(w); NB(d) ];
let the value for x in solution a be de-
noted ax. For this framework

> = [ 0; 0; 0; 0; 0 ]

a ^ b = [max(ax; bx); : : : ;max(ad; bd) ]

a � b () (a ^ b = a) or (a ^ b = b)

1

2

4

5

8

6

7

3
q = w

x = y

w = x

y = x+d

For transfer functions, let the number of bits of an assigned variable be the maximum
number of bits associated with any variable used in the assignment.
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Convergence takes 5 passes

1

2

4

5

8

6

7

3
q = w

x = y

w = x

y = x+d

1     3     4     6     7     8     5     2     

1     3     4     6     7     8     5     2     

1     3     4     6     7     8     5     2     

1     3     4     6     7     8     5     2     

1     3     4     6     7     8     5     2     

x is 7 w is 7

q i s 7

y is 7

Consider a two-variable program that assigns y = d, so that

f (IN ) = [ INd; INd ]
Taking f as above and a = [ 2; 7 ], we obtain

a ^ f (>) = [ 2; 7 ] ^ [ 0; 0 ]

= [ 2; 7 ]

6� [ 7; 7 ]

6� f (a)
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Distributive frameworks

Monotonicity and finite lattice depth guarantee termination, but how
good is the answer obtained at convergence?

The meet properties give us

a ^ b � a

a ^ b � b

and monotonicity gives us

f(a ^ b) � f(a)

f(a ^ b) � f(b)

and so we obtain

f(a ^ b) ^ f(a ^ b) � f(a) ^ f(b)

f(a ^ b) � f(a) ^ f(b)

When

(8 a; b 2 A)(8 f 2 F) f (a ^ b) = f (a) ^ f (b)
then we call the data flow framework distributive. Evaluation of such a framework
produces the best possible (static) solution.
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Examples

Each of the bit-vectoring data flow frameworks is distributive, since

f (a ^ b) = ((a ^ b)�KILL) [GEN

= ((a �KILL) ^ (b�KILL)) [GEN

= ((a �KILL) [GEN ) ^ ((b�KILL) [GEN )

= f (a) ^ f (b)

However, constant propagation is not distributive:

Consider the solution for u after the high-
lighted node shown on the right. If the
nodes’ transfer function is applied sep-
arately to each in-edge, then we obtain

w+x = 8 on each path, and so the meet
determines that u = 8.

On the other hand, if we take the meet
of the solutions entering the node, we
find w = ? and x = ? so that u = w + x is
also ?.

w = 5

w = 1

u = w+x

x = 7

x = 3

Thus, our iterative technique does not compute the meet-over-all-paths (MOP )
solution. For a DAG, we could compute MOP in nondistributive frameworks, but
such computation could take exponential time in the size of the flow graph; for
cyclic graphs, such computation may not terminate.
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Data flow evaluation graphs–traditional

Consider the data flow problem of con-
stant propagation, applied to the flow
graph shown to the right.

As discussed previously, solutions are
traditionally propagated through the
flow graph:

� At nodes with multiple in-edges, a
meet is performed of the input solu-
tions;

� Transfer functions are evaluated
across nodes;

� The output solution is made avail-
able.

Solutions are iteratively computed until
convergence is achieved.

v = 5

M

v = 5

x = v y = v z = v

Notice how solutions for v are propagated through portions of the flow graph that
neither affect nor are concerned with solutions for v.
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Data flow evaluation graphs–direct connection

The dashed lines in the flow graph shown
to the right represent direct connections
between nodes of the flow graph.

� Data flow information is propagated
along the direct connections rather
than along flow graph edges;

� Meets occur where multiple direct
connections are incident on a node;

� Iteration occurs until convergence is
achieved.

These types of connections are often
called def-use chains. Some data flow
problems (e.g., constant propagation)
are often specified using def-use chains,
which assumes that reaching definitions
has already been solved.

v = 5

M

v = 5

x = v y = v z = v

Although uninteresting portions of the graph are avoided during evaluation, notice
how the meet of the same information is computed three times. The traditional
approach computed that meet only once.
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Sparse data flow evaluation graphs

Here we see the best of both worlds:
� Information does not propagate

through uninteresting regions of the
flow graph;

� Only one meet operation is per-
formed;

� Information flows directly to meet
and useful sites.

v = 5

M

v = 5

x = v y = v z = v

We’ll now study an algorithm for constructing sparse evaluation graphs [21]. That
algorithm, applied to a special framework, will construct Static Single Assignment
(SSA) form [28].
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Sparse evaluation graphs (cont’d)

Let’s define two special kinds of transfer
functions:

identity: A node Y has identity transfer-
ence, denoted

fY = �

if 8 a 2 A; fY (a) = a. Generally, such
nodes will not be useful in evaluating
a data flow framework unless infor-
mation is gainfully combined there.

constant: A node Y has constant trans-
ference, denoted

f (IN ) = KY

if 8 a 2 A; fY (a) = KY . Because these
nodes produce the same solution for
any input, we can improve on the ef-
ficiency of propagating information
through such nodes.

Steps for constructing a sparse evalua-
tion graph Gsg [21]:

1. Let Nsg be the set of nodes with
nonidentity transference. The node

Start is always included in this set.
2. Add toNsg those nodes where meets

occur. These so-called �-nodes
are found by iterative closure using
dominance frontiers.

3. Construct Esg while traversing the
original flow graph’s dominator tree.

Although an almost-linear algorithm has
been recently developed for placing �-
nodes [27], we’ll examine the method
more commonly in use [28].

The resulting sparse graph is ready for evaluation using any method (e.g., iteration).
Also produced is a function that maps edges in the original flow graph to nodes in
the sparse graph, so that a solution is available for every original flow graph edge
after the sparse graph has been evaluated.
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Sparse evaluation graph construction

( 1Nsg  f start g [ fY j fY 6= � g

( 2MeetNodes 

S
X2Nsg
DF+(X)

( 3Nsg  Nsg [MeetNodes

( 48Y 2 Nsg; INY  >

( 5Stack  Empty

call Search(start)

Procedure Link(Z)

( 6if

�
Z 2 Nsg � f start g
�

then

( 7if (fZ 6= KZ) then
( 8if (fTOS = KTOS) then

INZ  INZ ^KTOS

else

( 9Esg  Esg [ (TOS;Z)

fi
fi

fi

end

� Step 1 initializes Nsg as described
previously.

� Step 2 actually represents the iter-
ative dominance frontier closure of
nodes in Nsg.

� The set MeetNodes can be main-
tained as an attribute of elements in

Nsg, but for clarity the set is shown
explicitly.

� The sparse nodes are complete at
step 3 .

� Step 5 initializes the auxiliary stack,
onto which Start will be pushed in
the first call to Search.

� For now, ignore step 4 and pretend
that Link(Z) is just steps 6 and 9 .
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Sparse evaluation graph construction (cont’d)
� If Y is not a meet node, then its input

arrives from whatever is currently on
top of stack. Step 10 attempts to
install the appropriate edge.

� Meet nodes receive their inputs as
directed by step 13 .

� If Y is a sparse graph node, then it
becomes the relevant solution node
at step 11 .

� Edges are mapped by step 12 .

� The construction proceeds recur-
sively down the dominator tree.
Upon leaving node Y , Search() pops

Y if it had been pushed earlier, ex-
posing the node stacked below Y as
the relevant sparse graph node.

Procedure Search(Y )

( 10if (Y 62MeetNodes) then
call Link(Y )

fi

( 11if

�
Y 2 Nsg
�

then
call push(Y )

fi
foreach

�
Z 2 Succ(Y )
�

do

( 12M (Y; Z) TOS

( 13if (Z 2MeetNodes) then
call Link(Z)

fi
od
foreach

�

child C of Y in DT
�

do
call Search(C)

od
if

�
Y 2 Nsg
�

then
call pop(Y )

fi

end
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Sparse evaluation graph for live variables

Start

Stop

Not Live

Not Live

Not Live Not Live

Live
Live

Not Live

Live

Live

Live

LiveLive Live

Not Live Live

Live
Live

Live

Live

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M Start

v = 3
M

x = v
L

v = 2
F

v = 1
E

C

B

Stop

Even though the graph shown on the right is quite sparse, we’ll see how to eliminate
most of its edges, obtaining an acyclic evaluation graph.
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Nodes in the sparse graph

Start

Stop

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M Start

Stop

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M

Shaded nodes in the graph on the left are nonidentity transference nodes. High-
lighted nodes in the graph to the right are meet nodes: C 2 DF (E), B 2 DF (C),

M 2 DF (B), Stop 2 DF (B), L 2 DF (L).
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Edges in the sparse graph 1

Start

Stop

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M

Stop

B

C

v = 1
E

v = 2
F

x = v
L

v = 3
M

Start

In this example, the node currently on top of stack will be shaded; dashed edges
are mapped in the flow graph (left) or newly installed in the sparse graph (right).
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Edges in the sparse graph 2

Start

Stop

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M

Stop

B

C

v = 1
E

v = 2
F

x = v
L

v = 3
M

Start

Node L receives one of its meet edges from M .
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Edges in the sparse graph 3

Start

Stop

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M Start

Stop

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M

No edges are added to the sparse graph when nodes L andK are visited; however,
the edges are mapped to the relevant sparse graph node (shaded).
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Edges in the sparse graph 4

Start

Stop

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M

Stop

B

C

v = 1
E

v = 2
F

x = v
L

v = 3
M

Start

Edges are mapped, and the sparse edge to meet node L is installed.
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Edges in the sparse graph 5

Start

Stop

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M

Stop

B

C

v = 1
E

v = 2
F

x = v
L

v = 3
M

Start

Here are shown the results of visiting nodes J , H , G, and D. For D, the meet edge is
installed from L to B. Otherwise, only edge-mapping takes place.
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Edges in the sparse graph 6

Start

Stop

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M

Stop

B

C

v = 1
E

v = 2
F

x = v
L

v = 3
M

Start

Prior to making E the relevant node, a link edge is installed to E from the former
relevant node L. Edges are mapped and a meet edge is installed in the sparse
graph from E to C. Similar behavior occurs when visiting F (elided).
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Edges in the sparse graph 7

Start

Stop

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M

Stop

B

C

v = 1
E

v = 2
F

x = v
L

v = 3
M

Start

Here are shown the results of visiting node C.
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Edges in the sparse graph 8

Start

Stop

call f(v)

A

B

C D

v = 1 v = 2

x = v

v = 3

E F

G

H

J

K

L

M

Stop

B

C

v = 1
E

v = 2
F

x = v
L

v = 3
M

Start

Here are shown the results of visiting nodes B and A, and the process is complete.
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Edge optimization

If a node Y has constant transference (fY = KY ), then the following optimizations are
possible:

Y

Don’t   need   these

constant

If the transfer function of node Y does
not reference its input solution, then no
information need be transmitted into the
node at evaluation-time.

Y

Don’t    need    these

constant

If the output of node Y is always the
same, then node Y ’s solution can be
forwarded to successors of Y prior to
evaluation.

The left optimization is safe for any evaluation method; the right optimization is
appropriate only where path-specific information is not utilized. Since our iterative
evaluator performs meets prior to node evaluation, both optimizations are appropri-
ate for that method.
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Effects of optimization

Start

v = 3
M

x = v
L

v = 2
F

v = 1
E

C

B

Stop

Start

v = 3
M

x = v
L

v = 2
F

v = 1
E

C

B

Stop

The resulting graph is acyclic, so a single pass of the ordinary iterative evaluator
suffices for convergence.
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Big picture

SSA form De-SSA

Program Control Flow Analysis

Sparse Evaluation Graph Evaluation

Constant Propagation

Value Numbering

Code Motion

New Paper

LowerDF1 DF2 ...

We’ll now examine some special algorithms for optimization, based on a single
assignment representation.
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Static Single Assignment (SSA) form

Recall our reaching definitions example, shown on the left, and its solution, shown on
the right:

Start

Stop

2

1

3

call f(v )4

= v

= v

G

H

v  = 

v  = 

v  = 

4call f(v )

Start

Stop

1

2

{  }

{  }

{  }

{v1}

{v1}

{v1}

{v2}

{v1.v2}

{v3}

{v3}

{v3}

{v3, v4}
{v3, v4} {v3, v4}

{v3, v4}

{v3, v4} {v3, v4}

{v1. v2. v3. v4}

{v3. v4}

= v

= v

G

H

3

v  = 

v  = 

v  = 

Notice how the use of vat G is reached by two definitions, and the use at H is reached
by four definitions. If each use were reached by just a single definition, then a direct
connection graph would yield a sparse representation of def-use chains.
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SSA form (cont’d)

Here we see the SSA form of the pro-
gram.

� Each definition of v is with respect to
a distinct symbol: v1 is as different
from v2 as x would be from y.

� Where multiple definitions reach a
node, a �-function is inserted, with
arguments sufficient to receive a dif-
ferent “name” for v on each in-edge.

� Each use is appropriately renamed
to the distinct definition that reaches
it.

� Although �-functions could have
been placed at every node, the
program shown has exactly the
right number and placement of �-
functions to combine multiple defs
from the original program.

� Our example assumes that proce-
dure f does not modify v.

/v = O(v ,v )

/v = O(v ,v )
H

= v
5 4 6

5

/v = O(v ,v )

Start

Stop

2

1v = 1

3v = 3

call f(v )

G

4 1 2
= v4

6 0

3

3

v = 1
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SSA form (cont’d)

Each def is now regarded as a “killing” def, even those usually regarded as preserving
defs. For example, if v is potentially modified by the call site, then the old value for

v must be passed into the called procedure, so that its value can be assigned to the
name for v that always emerges from the procedure.

Procedure foo(v)

if (c) then

v  7
else

/? Do nothing ?/
fi

end

Procedure foo(vout; vin)

v0 vin

if (c) then

v1 7
else

/? Do nothing ?/
fi

v2 �(v0; v1)

vout v2

end

SSA form can be computed by a data flow framework, in which the transfer function
for a node with multiple reaching defs of v generates its own def of v. Uses are then
named by the solution in effect at the associated node.
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SSA form construction [28]

1. Turn every preserving def into a killing def, by copying potentially
unmodified values (at subscripted defs, call sites, aliased defs, etc.).

2. Consider each node that defines v as having nonidentity transfer-
ence.

3. �-functions then go at the meet nodes, as determined by the sparse
graph builder.

4. Uses are renamed using the solution propagated along the associ-
ated in-edge. For ordinary uses, nodes have only a single in-edge;
for �-uses, the use must be distinguished by in-edge;

Actually, the SSA work predates the sparse evaluation graph work, but it’s easier
to describe the SSA algorithm this way if one already understand sparse evaluation
graphs.
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Why is SSA good?

Data flow algorithms built on def-use chains gain asymptotic efficiency as shown
below:

v = v = v =

= v = v = v

Quadratic def-use chains

v = v = v =

= v = v = v

v = O(v,v,v)/

Linear def-use chains

With each use reached by a unique def, program transformations such as code
motion are simplified: motion of a use depends primarily on motion of its unique
reaching def. Intuitively, the program has been transformed to represent directly
the flow of values. We’ll now look at some optimizations that are simplified by SSA
form.
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SSA constant propagator [69]

Original Program
i 6

j  1

k  1
repeat

if

�
i = 6

�

then

k  0
else

i i+ 1
fi

i i + k

j  j + 1
until (i = j)

SSA form

i1 6

j1 1

k1  1
repeat

i2 �(i1; i5)

j2 �(j1; j3)

k2  �(k1; k4)

if

�
i2 = 6

�

then

k3 0
else

i3 i2 + 1
fi

i4 �(i2; i3)

k4  �(k3; k2)

i5 i4 + k4

j3 j2 + 1
until (i5 = j3)

Each name is initialized to the lattice value >. Propagation proceeds only along
edges marked executable. Such marking takes place when the associated condi-
tion reaches a non-> value. The value > propagates along unexecutable edges.
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SSA constant propagator (cont’d)

SSA Form

i1 6

j1 1

k1  1
repeat

i2 �(i1; i5)

j2 �(j1; j3)

k2  �(k1; k4)

if

�
i2 = 6

�

then

k3 0
else

i3 i2 + 1
fi

i4 �(i2; i3)

k4  �(k3; k2)

i5 i4 + k4

j3 j2 + 1
until (i5 = j3)

Pass 1

i1 6

j1 1

k1  1
repeat

i2 �(i1; i5) = (6 ^>) = 6

j2 �(j1; j3) = (1 ^ >) = 1

k2  �(k1; k4) = (1 ^>) = 1
if

�
i2 = 6

�

then

k3 0
else

/? Not executed ?/
fi

i4 �(i2; i3)) (6 ^ >) = 6
k4  �(k3; k2)) (0 ^>) = 0

i5 i4 + k4) (6 + 0) = 6

j3 j2 + 1) (1 + 1) = 2
until

�
i5 = j3) (6 = 2) = false

�
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SSA constant propagator (cont’d)

Pass 1

i1 6

j1 1

k1  1
repeat

i2 �(i1; i5) = (6 ^>) = 6

j2 �(j1; j3) = (1 ^ >) = 1

k2  �(k1; k4) = (1 ^>) = 1
if

�
i2 = 6

�

then

k3 0
else

/? Not executed ?/
fi

i4 �(i2; i3)) (6 ^ >) = 6

k4  �(k3; k2)) (0 ^>) = 0

i5 i4 + k4) (6 + 0) = 6

j3 j2 + 1) (1 + 1) = 2
until

�
i5 = j3) (6 = 2) = false

�

Pass 2

i1 6

j1 1

k1  1
repeat

i2 �(i1; i5) = (6 ^ 6) = 6

j2 �(j1; j3) = (1 ^ 2) = ?

k2  �(k1; k4) = (1 ^>) = ?

if

�
i2 = 6

�

then

k3 0
else

/? Not executed ?/
fi

i4 �(i2; i3)) (6 ^ >) = 6
k4  �(k3; k2)) (0 ^>) = 0

i5 i4 + k4) (6 + 0) = 6

j3 j2 + 1) (? + 1) = ?

until

�
i5 = j3) (6 = ?) = ?
�

Our solution has stabilized. Even though k2 is ?, that value is never transmitted along
the unexecuted edge to the � for k4.
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SSA value numbering [5, 56]
a read()

v  a + 2

c a

w  c + 2

t a + 2

x t� 1

For the above program, constant prop-
agation will fail to determine a compile-
time value for v and w, because the
behavior of the read() function must be
captured as ? at compile-time.

Nonetheless, we can see that v and w
will hold the same value, even though
we cannot determine at compile-time
exactly what that value will be. Such
knowledge helps us replace the com-
putation of (c+2) by a simple copy from

v.

Value numbering attempts to label each
computation of the program with a num-
ber, such that identical computations
are identically labeled.

� Prior to SSA form, value numbering
algorithms were applied only within
basic blocks (i.e., no branching) [2].

� Early value numbering algorithms
relied on textual equivalence to de-
termine value equivalence. The
text of each expression (and per-
haps subexpression) was hashed to
a value number. Intervening defs
of variables contained in an expres-
sion would kill the expression. This
approach could not detect equiva-
lence of v and w in the example to
the left, since (a + 2) is not textually
equivalent to (c + 2).

It seems that x ought to have the same value as v and w, but our algorithm won’t
discover this, because the “function” that computes x (�n:n � 1) differs from the
“function” that computes v and w (�n:n+ 2).
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SSA value numbering (cont’d)
� We essentially seek a partition of

SSA names by value equivalence,
since value equivalence is reflexive,
symmetric, and transitive.

� We’ll initially assume that all SSA
names have the same value.

� When evidence surfaces that a
given block may contain disparate
values (names), we’ll talk about split-
ting the block. Generally, the algo-
rithm will only split a block in two.
However, the first split is more severe,
in that names are split by the func-
tional form of the expressions that
compute their value.

v

w x

a

c

t

w

a

t

v

x

c

Above are shown the initial and final partitions for the example on the previous page.
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SSA value numbering (cont’d)

After construction of SSA form, we split by the function name that computes values for
the assigned variables. We thus distinguish between binary addition, multiplication,
etc.

One further point is that �-functions at different nodes must also be distinguished,
even though their function form appears the same. This is necessary because a
branch taken into one �-function is not necessarily the same branch taken into
another, unless the two functions reside in the same node.

Binary Plus

Unary Minus

x * y + z

cos(x)

PHI at node Y

PHI at node Z
foo(x,y)bar(x,y)

X =     (X,X)φ

X =    (X,X)φ
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SSA value numbering example

if (condA) then
a1 �

if (condB) then
b1 �

else

a2 �

b2 �

fi

a3 �(a1; a2)

b3 �(b1; b2)

c2 ? a3

d2  ? b3

else

b4 


fi

a5 �(a1; a0)

b5 �(b0; b4)

c3 ? a5

d3  ? b5

e3  ? a5

For brevity, symbols �, �, and 


represent syntactically distinct function
classes in the program shown to the left.

In the figures that follow, we’ll see that

c2 and d2 have the same value, while c3

and d3 do not. Thus, program optimiza-
tion will save a memory fetch by using
the value of c2 for d2.

Note that if b is declared volatile in
the language C, then this optimization
would be incorrect, because each ref-
erence to b should be realized. How
can one account for volatility in this
optimization? Perhaps by assuming that
volatile variables cannot have the same
value.

It would be difficult and expensive to
express all possible defs of a volatile
variable in SSA form.
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SSA value numbering example (cont’d)

Here we see the initial partition of SSA
names:

� The syntactic classes �, �, and 
 are
distinguished;

� �-functions at different nodes are
distinguished;

� The initial value of each variable v0

is considered identical;

� Within each syntactic class, values
are considered identical.

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=

a1=α
α

a2=

b2=

b4=

a3=    (a1,a2)

b3=    (b1,b2)

a5=    (a1,a0)

b5=    (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5

e3=*a5
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SSA value numbering example (cont’d)

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=

a1=α
α

a2=

b2=

b4=

a3=    (a1,a2)

b3=    (b1,b2)

a5=    (a1,a0)

b5=    (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5

e3=*a5

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=

a1=α
α

a2=

b2=

b4=

a3=    (a1,a2)

b3=    (b1,b2)

a5=    (a1,a0)

b5=    (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5

e3=*a5

On the left, the block with a5 splits the five names shown into two subblocks; on the
right, b4 splits a5 from b5.
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SSA value numbering example (cont’d)

a0=
b0=
c0=
d0=

d2=*b3

c2=*a3

γ

β

β

b1=

a1=α
α

a2=

b2=

b4=

a3=    (a1,a2)

b3=    (b1,b2)

a5=    (a1,a0)

b5=    (b0,b4)

φ

φ

φ

φ

d3=*b5

c3=*a5

e3=*a5

Finally, b5 splits c3 from d3. Here, note
that we could have used either a5 or b5

to do the job. Asymptotic efficiency is
gained by choosing b5, because there
are fewer uses of that name than of a5.

In summary, the algorithm is as follows:

1. Let W be a worklist of blocks to be
used for further splitting.

2. Pick and remove (arbitrary) blockD

from W .
3. For each blockC properly split byD,

(a) If C is on W , then remove C and
enqueue its splits by D;

(b) Otherwise, enqueue the split with
the fewest uses.

4. Loop to step 2 until W is empty.
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Conclusion

Program Control Flow Analysis Depth-First Structures

Semantics Dominators
Dominance Frontiers

Evaluation of Data Flow Problems

Sparse Evaluation GraphsSSA Form

Program Transformation

Intervals

Profiling

Pragmas

An important open problem is the efficient integration of program transformation
and program analysis.
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Conclusion (cont’d)

1. The cost of optimization should be proportional to the benefits attributable to
optimization.

(a) Construction of an intermediate form should not dominate optimization
time [29].

(b) Where little benefit is expected, expensive analysis should be computed on
demand rather than exhaustively [62, 22].

2. The expected asymptotic complexity of optimization applied throughout a
program must be linear or almost-linear.

(a) Expected and worst cases must be considered [27].
(b) Profiling and control flow analysis can determine needy portions of a large

program [61, 9].
(c) Small procedures must compile quickly, even under extensive optimization.

3. Extensions and revisions of older languages are often targeted for improved
program optimization [39, 38, 40].

4. New languages and language paradigms offer challenging optimization prob-
lems [19, 18].

5. New and useful program optimizations can be developed most effectively by
in-the-trench source and object code evaluation.
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