
Optimal Code Generation for Expression Trees:

An Application of BURS Theory.1

Eduardo Pelegri-Llopart

Susan L. Graham

Computer Science Division

EECS Department

University of California, 13erkeley

Summary

A Rewrite System is a collection of rewrite rules of

the form a-p where a and 0 are tree patterns. A rewrite
system can be extended by associating a cost with each

rewrite rule, and by defining the cost of a rewrite sequence
as the sum of the costs of all the rewrite rules in the
sequence. The REACHAEHHTY problem for a rewrite sys-
tem R is, given an input tree T and a fixed goal tree G , to

determine if there exists a rewrite sequence in R, rewriting
T into G and, if so, to obtain one such sequence. The C-

REACHABILITY problem is similar except that the obtained

sequence must have minimal cost among all those

sequences rewriting T into G .

This paper introduces a class of rewrite systems

called Bottom-Up Rewrite Systems (BURS), and a table-

driven algorithm to solve REACHABILITY for members of
the class. This algorithm is then modified to solve C-
REACHABILITY and specialized for a subclass of BURS so

that all cost manipulation is encoded into the tables and is
not performed explicitly at solving time. The subclass
extends the simple machine grammars [AGH84], rewrite
systems used to describe t&get machine architectures for
code generation, by allowing additional types of rewrite
rules such as commutativity transformations.

A table-driven code generator based on solving C-

REACI-IABUTY has been implemented and tested with

several machine descriptions. The code generator solves
C-REACHABILITY faster than a comparable solver based on
Graham-Glanville techniques [AGH84] (a non-optimal
technique), yet requires only slightly larger tables. The

t This research was partially sponsored by Defense Advance
Research Projects Agency (DOD) Arpa Order No. 4871, monitored by Na-
val Electronic Systems Command under Contract No. NOC039-84-C
0089.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

code generator runs much faster than rec:ent proposals to
solve C-REACHABILITY that use pattern matching and deal
with costs explicitly at solving time
[AGT86, HeD87, WeW861. The BURS theory generalizes
and unifies the bottom-up approaches of Henry/Damron
[HeD87] and Weisgerber/Wilhelm [WeWSS].

1. Introduction

Trees are convenient representations for many appli-

cations because of their hierarchical structure and the ease
with which they can be manipulated. Frequently this
manipulation corresponds to transformations between dif-

ferent tree representations. In this paper we study a

mechanism to describe tree transformations and rewrite

systems, together with a specific tree transformation prob-
lem, REACHABILITY, and its application to the generation of
optimal code for expression trees.

In this paper, trees are denoted either either by
graphs (as in Figure 1.1) or by a prefix linearization. For

example, op (T1,T2) denotes the tree with root op and sub-
trees T1 and T2. The node labels are taken from an alpha-
bet Op of operators and all operators are assumed to have
fixed arity. Patterns are trees over an alphabet that has
been extended with new symbols with arity 0 called vari-
ables. In the examples, variables are represented by X , Y,

or Xi (i 20), and all other symbols stand for operators. If
G is a value assignment for variables present in a pattern p,

o(p) denotes the replacement of the varia’bles by the values
associated by 6. p matches at a tree T if there is an
assignment of values to the variables in the pattern, Q, such
that o(p) is T. Thus, the pattern +(X,Y) matches at any
tree rooted with + and having two subtrees, corresponding
to X and Y respectively. Two patterns pI and pz are said

to be equivalent if they are identical up to a systematic

Proceedings of the Fifteenth Annual ACM
SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Langua.ges, San Diego,
California (January 1988)

0 1988 ACM-O-89791-252-7/88/0001/0294 $1.50 294

renaming of the variables. All patterns in this paper are
linear, i.e., every variable appears at most once. A rewrite
rule is of the form a + p, where o! and p are patterns; a is
called the input pattern and j3 the output pattern, and all
the variables in /3 must appear in a. A rewrite system is
just a collection of rewrite rules. Figure 1.1 shows a
rewrite system that we will use in our examples.

A position in a tree is a sequence of integers
(separated by l for readability) representing a “path”
from the root of the tree to a node in the tree. If p is a
position in T, the subtree of T rooted at p is denoted by
TGP. The root position in a tree is designated by the empty
sequence E; each integer corresponds to an index from left
to right commencing with 1. lf k 0s is a sequence with
head an integer k and tail a sequence s, and 6 is read as
“is defined as”, positions and subtrees are related as fol-
lows:

A rewrite rule r : a + p is applicable to a tree T at a
position p if a matches at TeP. If r is applicable to T at p

with variable assignment CJ, the application of r to T at p
is a new tree, identical to T except that the subtree TeP is
replaced by o(p). A rewrite sequence is just a sequence of
applications of rewrite rules:

Definition 1.1 A rewrite application for a rewrite system
R is a pair <r ,p > where r is a rule in R and p is a posi-

tion. A rewrite sequence for R is a sequence 7 of rewrife
applications. If z=<ro,p+ . . . <r,,p,> is a rewrite
sequence, then 2 is applicable ta a tree T if r-0 is applica-

ble to TQPO ana’ its application yiela5 T1, andfor IS <It, ri

is applicable to (Ti)@pi and its application is Ti+l. The

application of z to T is denoted z(T) and is T,,,,. We say
that a rewrite sequence is valid if there is some tree to

Rewrite Rules

m 4 reg
amode amode

Reg + reg amode + reg

rl

reg + amode

r4

0 + Const

r7

A + bRp
XY XY

r,o

i-2 r3

Const + amode + amode
Const reg

r5 r6

A +X A-‘A
x0 XY YX

r8 rg

- + bRp
A XY

rl,

Example of a Rewrite System

Figure 1.1

295

0 amode Const amode amode amode

A Rewrite Sequence

Figure 1.2

which it is applicable. The length of a rewrite sequence is

the number of rewrite applications in it. The composition
of a rewrite sequence is a rewrite rule (possibly not in R)

that is applicable whenever the rewrite sequence is appli-
cable and always yields the same result as the sequence.

If z is a rewrite sequence for T such that all the

applications in T have positions below p (that is, position
p is an initial sequence of all the application positions),
the restriction of 2 to p , T@~, is the sequence of applica-
tions identical to ‘C except that every position is stripped of
the initial sequence corresponding to p .

Not every rewrite sequence has a composition. A

rewrite system R defines transformations between sets of
trees through its rewrite sequences: a tree T can be
mapped into a tree T if there exists a rewrite sequence in
R taking T into T’, The transformation is, in general,

many-to-many.

The problems studied in this paper are the following:

Problem REACHABILITY Let R be a rewrite system over

an alphabet Op, and let Li ana’ L, be two sets of trees over
Op. The REACHABILITY problem for R, Li I and L, is, given
any T E Lt and any T E L,, determine if there is a
rewrite sequence z for R applicable to T such that

7(T) s T , and, if so, to produce one such sequence.

If L, is a singleton {G}, then the REACHAEULITY

problem is called the fixed goal REACHABILITY problem,
and G is called the goal. The BLOCKING problem for R,
Li , and goal G is to determine if there exists a tree T E Li
that cannot be rewritten into G by R.

This paper is only concerned with the fixed-goal
version of REACHABILITY, and with BLOCKLNG; see [Pe187]
for some considerations on general REACHABILITY. In our

example, given the input tree +(O,+(Consr,Const)), one
solution to REACHABILITY for gOal reg iS the sequence Of
Figure 1.2. If Lt consists only of trees wi.th labels Reg ,
Const , 0, +, and -, the rewrite system of Figure 1.1, never

blocks.

A rewrite system can be extended Iby assigning a

cost to each rewrite rule. The cost of a rewrite sequence
for an extended rewrite system can then be defined as the
sum of the costs of all the rewrite rules in the sequence.
This leads to a variation of the REACHABILITY problem,
called C-REACHABILITY, where the objective is not only to
provide a rewrite sequence but to provide one with
minimum cost.

Returning to our example, if the cost of each of the
rewrite rules of Figure 1.1 were defined to be I, then the
cost of the sequence of Figure 1.2 would be 7. That
rewrite sequence is not a solution to C-REACHABILITY; the

smallest possible cost is 6, and may be obtained by the
sequence of Figure 1.3.

The rewrite system of Figure 1.1 is chosen so that
applicable rewrite sequences correspond to instructions for

some (hypothetical) target machine’. Hence, the rewrite
sequences in Figure 1.2 and Figure 1.3 correspond to

instruction sequences for the given input lxee and for the
target machine. If the rewrite system accurately describes
the target machine, a solution to REACHABILPY provides a

’ r2 might be used to generate a register-to-register move if the III-
put register could not be modified.

296

amode amode

<r8,&> , yf, <r ,,E>
- reg

amode amode

A Better Rewrite Sequence

Figure 1.3

correct sequence of instructions for the input tree. If, in
addition, the costs of the rewrite rules correctly represent

the desired properties of the target machine, a solution to
C-REACHABILITY provides a locally optimal instruction

sequence. BLOCKING corresponds to detecting the
existence of an input tree for which code cannot be gen-

erated. Examples of typical cost met&s are the number of
cycles, and the number of bytes referenced. In the pres-
ence of features like pipelines and caches, the number of
cycles will be only a static approximation of the execution
costs. Previous research (notably [GrH84, Hen84]) has
shown how to write target machine descriptions using a

variety of techniques, and allows us to conclude that
although some features, like constraints on the number of
registers, must be handled outside the framework of C-

REACHABILITY, an efficient algorithm to solve C-

REACHABILITY can be used to provide an efficient algo-

rithm for locally optimal code generation.

The rest of this paper is organized as follows. Sec-
tion 2 shows how to solve REACHABILITY for a special
class of rewrite systems, then Section 3 modifies the tech-
niques and applies them to solving C-REACHABILITY.

Finally, Section 4 discusses a code generator generator
implemented following the theory of the previous sections.
The paper concludes with a discussion of related work.

2. Solving REACHABILITY

REACHABILITY is solved by characterizing all the
possible rewrite sequences with a bottom-up tree automa-
ton [Tha73]. We use two notions of state: local rewrite
graphs (LR graphs) and uniquely invertible local rewrite

graphs (UI LR graphs). Without loss of generality, we
assume that the goal tree for fixed-goal REACHABILITY is a

leaf labeled with a distinguished nullary operator which
appears only as an output pattern in a rewrite ruIe.

The first step in defining LR graphs is to restrict
attention to rewrite sequences in a normal form that

rewrites the input tree bottom-up. A rewrite sequence can
be put in normal form by “reordering” the rewrite appli-

cations.

Definition 2.1 Let r. and rl be tvvo rewrite rules in R,
and let z=<ro,p,+rl,p 1> be a valid rewrite sequence. An
exchange of the two applications is a new rewrite

sequence d of the form <rl,p2><ro,p3> such that for all
T, 7 is applicable to T if and only if? is applicable to T,

and when so, z(T)&(T).

If z1 and 72 are two rewrite sequences in R, 71 is a
permutation of 2, if z, can be obtained from 72 through a

sequence of exchanges.

A rewrite sequence 2, is said to “loop” if it contains

a proper prefix subsequence r2 such that, for some tree T,
Taco. All non-looping rewrite sequences can be
reordered so that they proceed in a “bottom-up fashion”,
namely, so that any rewrite application at a position p is
preceded by all rewrite applications having positions
below p which can be reordered in that way. For example,

the sequence of Figure 1.2 can be placed into bottom-up
form by reordering the subsequence <rlo,E><r7,1><r5,1>

as cr~,l~rg,l><rIo,e>. The rewrite sequence of Figure
1.3 is already in bottom-up form. The notion is formalized
as follows:

297

Definition 2.2 Let Tap (T,, . . , T,) be a tree in some

input set L, let 7 be a rewrite sequence without loops
transforming T into a tree T’. T is in normal form at T, [f
it is of the form 21 . . z,,z~, and, (1) for l<iln , Zt only
contains applications in positions in the subtree Ti, and

the restriction Of Ti to the position i , (Tt)@i (Ti), is T’i ; (2)
z. applied to op (T 1, . . . ,T,) yields the output tree T;
and (3) there is no permutation of z satisfying (I) and (2)
ana’ in which some rewrites from ~~ have been moved into
Zi for lli <n _ z is in normal form (everywhere) if it is in

normal form at T, and, (4) for M<n , (Z;)@i is in normal

form.

A normal form rewrite sequence for an input tree
assigns to each position in the tree a “local” rewrite

sequence: those rewrites done at that position. Formally:

Definition 2.3 Let z be a normal form rewrite sequence

for T of the form TV . . . z,, TO. The local rewrite sequence
assigned by 2 to a position p in T is defined by F (TAP >.
where (I) F (T,z, &) is 20r and (2) if p is of the form i l q

and T is of the form op(T1, . . , T,,), then F (T,z,p) is
F (Ti,7i ,q). The local rewrite assignment of 2 and T is

the function assigning to each position in T its local
rewrite sequence.

For example, the local rewrite sequence assigned by
the rewrite sequence of Figure 1.3 at the root of the input
tree is <r9,Exrg,&xr I,E>.

We can now define the k-BURS and BURS proper-
ties.

Definition 2.4 Let k be a positive integer, and let z be a
rewrite sequence in normal form for some input tree T. 2

is in k-normal form if it is in normal form and each of the
local rewrite sequences assigned by 7 to the nodes of T is

of length at most k.

Let R be a rewrite system over Op, let Li and L, be

sets of trees over Op, and let k be a positive integer. The
triple <R&t &,> is said to have the k-BURS property if
for any two trees T E Li and T E L, and any sequence 7
in R, with 7(T)=T, there is a permutation of z which is in
k-normal form. The class BURS is composed of those tri-

ples <R&t ,L.,> satisfying the k -BURS property for some
positive integer k .

Since we are considering only fixed-goal problems
in this paper, L, is normally understood to be {goal). If

Li is not specified, it is understood to be the set of all trees

over the given set of symbols, Op, which we denote as

Lop.

There are rewrite systems and sets of trees not in

BURS. The rewrite system of Figure 2.1 with goal d is
one example: the local rewrite sequence of the (unique)

normal form rewrite sequence rewriting the input tree
a (b (b (. * b(c)))) into d has length dependent on the
height of the input tree. In contrast, the ex.ample of Figure
1.1 with goal reg satisfies the BURS property for k =3.

Testing membership in k-BURS is (easy when both

Li and L, are Lo,,.

Proposition 2.1 Let R be a rewrite system over a set of
operators Op, and let k be a positive integer. There is an
algorithm that will determine whether cR!,L.~,J~~ is in

k-B URS.
Proof
We can characterize the form of any local rewrite
sequence at some position p in a tree. The first observa-
tion is that it must start with a rewrite application at posi-

tion p because, otherwise, this first rewrite application
would be assigned to the local rewrite sequence of a posi-
tion below p. The second observation is similar but
requires an additional notion. If p is a pattern, let T(p)
denote the set of positions in p that do not correspond to a
variable; we call these the positions “touched” by the pat-

tern. If <r ,p > is a rewrite application and r is a++, we
define T(<r ,p >) to be the union of those positions of the

form p l 4 where 4 is in T(a)uT@). Finally, if z is a

Rewri : Rules =

bib + V’

P T
X x:

? + d

C

Example of a Rewrite System not in BURS

Figure 2.1

298

rewrite sequence, define T(z) as the union all the sets

T(<r ,p >) for rewrite applications <r,p > in 5. The
second observation now states that, if 2, is a local rewrite
sequence then, for any prefix of ~~ of the form z l <r ,p >,
the position p must be in T(T). As before, the reason is

that otherwise cr ,p > could be moved ahead and would
belong to the local rewrite sequence of a position below p .

From the characterization, it follows that there are a

finite number of local rewrite sequences of length no larger
than k, and they can be generated. Given a rewrite system

R, CR,&,&@ is in k-BURS if and only if there is not a
rewrite sequence of length k+l, which can be found by
generating and testing all the candidates. 0

It follows from the characterization used in the proof

that every local rewrite sequence has a composition (which
may not be in R).

The rewrite systems used to describe target
machines are BURS.

Definition 2.5 Let a -+ j3 be a rewrite rule. We say that
the rule is: an instruction fragment rule if a is a tree
without variables and p is a (0-ary) symbol; a generic

operator rule if a and p are op (X 1, . . . ,X,) and

op’(X,, . * . ,X,,), for some n -ary symbols op and op’ ; a
commutativity rule if a and p are op(X,, . . . ,X,) and
op(X,(,), . . ,X,,,,), for some n-ary operator op and
some permutation n; and an identity rule if a and p are

op (X 7) and X , for some tree T that has no variables.

A simple machine grammar is a rewrite system with

only instruction fragment and generic operator rewrite?.

In Figure 1.1 rules rl to r7 are instruction fragment

rules, and rules r 10 and r 11 are generic operator rules.
Rule r9 is a commutativity rule, while rule r8 is a identity
rule. The proof of Proposition 2.1 can be used to show:

Proposition 2.2 Simple machine grammars are in BURS.
Machine grammars extended with commutativity and iden-

tity rules are in BURS.

A local rewrite assignment provides a decomposi-
tion of the original rewrite sequence: the concatenation of
the local rewrite sequences of the input tree in post-order
traversal order yields a permutation of the original rewrite

’ For example those used by Henry in [Hen84]. Henry handles
commutativity explicitly by adding patterns. Identity rules are recognized
by a peephole optimizer or prior to instruction selection.

sequence. This decomposition can be used to define our

first notion of a state for solving REACHABILITY. The local
rewrite graph (LR graph) of a tree T represents the local
rewrite sequences of all normal form rewrite sequences
applicable to T. For a rewrite system R and a goal G , we
consider two sets of patterns: ZR,G are the patterns of
interest at the beginning of local rewrite sequences, and

O,,G are the patterns of interest at the end of the local
rewrite sequences and are used to construct members of Z

higher in the tree. EFR ,G is their union.

Definition 2.6 If R is a rewrite system, and G is thejixed

goal, the extended pattern set of R and G , EFR ,G, is the
union of the sets ZR,G (the inputs), and OR,0 {the outputs),

defined constructively below.

(I) G belongs to 0~ ,G

(2) For some input tree T, position p , and some normal

form rewrite sequence, let z be a local rewrite
sequence with composition a, + p7. Let p be a pat-
tern in 0, ,G with variables renamed, if necessary, to

be distinct from those in /3,. If there is a subslitution

(3 such that o(p,) =0(p), then o@,) is in OR,G, o(q)
is in ZR,G, and all the proper subtrees of 6(q)

belong to 0, ,G .

Now we can define LR-graphs.

Definition 2.7 Let R be a rewrite system in BURS. The
LR graph associated with a tree T is a graph G = (V ,E)

defined as follows.

Let A be the set of pairs <Tin ,zo> such that there is a
normal form rewrite sequence for T of the form

TlTZ * ’ . T~,ZO and T,,(. * * ~z(‘tl(T)) . . .) is T,, and Zo(Ti,)
is T,, . For every local rewrite sequence 2 such that there
is a <Tin ,T> E A , let & + /& be its composition. If z has n
rewrite applications. let pre (~,l),..., pre (7,n)zz be the

preJix subsequences of 2. Let B be the set of trees of the
form o(&) where, for some Ti, <T~,P is in A, O(S)
matches at Ti , and o&) = o(p) for some p in 0~. Finally,
define B’ as a set of representatives of B under the
equivalence relation between patterns.

For every pair <Tin ,TZ E A and every substitution (3

with ~CPd E B’, $%L N$,re(T,l)L..t 4J,re(T.n)) are nodes
in V and there is an edge in E between each successive
pair of them. There are no other nodes in V or edges in

299

E. 1

The nodes corresponding to c~(aJ are called the
input nodes, and those corresponding to c&) (those in 2
B’) are called the output nodes. The remaining nodes,

corresponding to 0(/3,,,~~j,) for lSj<n, are called the
intermediate nodes.

Note that the union of all the input nodes in all the
LR graphs gives IR,c, the union of all the output nodes
gives OR,o, and the union of the input and the output 3
nodes gives EFR .c . Figure 2.2 shows an input tree and its

associated LR graph for our rewrite system. The input
trees are shown inside broken circles, while the output

trees are in complete circles. The goal is reg.

4
The notion of an LR graph leads to the following

procedure for solving REACHABILITY for rewrite systems in

k-BURS : 5

Compute the LR graphs of all the subtrees of the
input tree T.

If the goal G does not appear in the LR graph of Z’,

then there is no rewrite sequence from T into G ;
i.e., T “blocks” [GlG78]. If G does appear, assign
to each position of T a local rewrite sequence by
applying steps 3 to 5 recursively starting with T,,
being T and TO, being G .

Select a local rewrite sequence for
Ti,,=op(T,, . . . , T,) by selecting any path in the LR
graph corresponding to a local rewrite sequence r.

from some input tree op (T 1, . . . , T,) into an output

tree p such that there is a substitution CT with

HP> = Wo,)-

Recursively apply (3) to input T1 and goal T1,...,
and to input T, and goal T, .

Combine all the local rewrites in post-order to yield

a normal-form rewrite sequence for Tk into TO,.

The procedure is non-deterministic since any path
can be chosen in Step 3. The first step in the procedure

OP-Q./TC-Q./TC
Const Const

Example of a BURS-state

Figure 2.2

300

and the test in the second step determine whether there is
an appropriate rewrite sequence. The remainder of the
procedure produces one such sequence.

The first step assumes that it is possible to compute
the LR graphs. An important special case when this is

possible is when the extended pattern set is finite. In this
case the collection of all the LR graphs that may be
assigned to any subtree of any input tree is finite. We call
this subclass of BURSfifinite BVRS.

A semi-decision procedure for membership in finite
R-BURS in the case that the input set Li is Lop first tests
k-BURS and generates all the local rewrite sequences,
using the characterization used in the proof of Proposition

2.1, and then tries to generate the extended pattern set, fol-
lowing Definition 2.6. If the procedure terminates, then
the extended pattern set can be used to obtain the collec-
tion of all the LR graphs.

It is not difficult to see that the extended pattern set
of machine grammars as defined in Definition 2.5 is finite.

Thus:

Proposition 2.3 Every simple machine grammar is finite
BURS. Machine grammars extended with commutativity
and identity rewrites are also finite BURS.

If the rewrite system is finite BURS, then each one
of the individual steps of the algorithm for solving fixed
REACHABILITY can be precomputed, stored into a table,
and repIaced, at REACHABILITY-SOlVing time, by a table
lookup. This leads to a typical “table-generator plus
solver’ ’ approach to REACHABILITY. The table generator
computes all the possible LR graphs, and stores their
interactions into tables. The solver then consults them. By

moving computation into the table generator, the solver
can proceed very rapidly.

If the rewrite system is finite BURS, it is also possi-
ble to solve BLOCKING efficiently. If the input set is Lop,
there will be a blocking tree if there is an LR graph that
does not contain the goal G as a node. If the rewrite sys-

tem has the property that <R,L+Lod is in finite BURS,
and S is a recognizable [Tha73] subset of Lop, we can find
the LR graphs that are useful for trees in S, and we can
find whether there is a tree in S for which R blocks. Both
problems are solved by constructing the bottom-up tree
automaton recognizing S and “running it against” the
automaton computing LR graphs; see [Pe187] for details.

In general, an LR graph contains more than one path

within the state which leads to an output tree. But it is
only necessary to keep one alternative for solving REACHA-

BILITY. Consequently, it is possible to use the same
REACHABILITY algorithm and to replace the LR graph by
any subgraph of it such that (i) it contains all the output
nodes, (ii) every node has at most one entering edge, and

(iii) for every output node there is at least one directed
path with all its nodes in the subgraph from an input node
to the output node. (Since all input nodes are reachable,
all but one of them can be omitted). Such a graph is called

a uniquely invertible localgraph (UI LR graph), and is the
second notion of state used to solve REACHABILITY.

Since the same UI LR graph may be a subgraph of

several different LR graphs, choosing the UI LR graphs
carefully may allow a reduction in the number of states
needed. For example, in Figure 2.2 there are many dif-

ferent ways of obtaining reg ; any one of them is good
enough. If the path starting from +(amode ,amode) is

selected, this state could also be used for many other trees
including, for example, +(OJ?eg) and +(Reg ,O). Unfor-
tunately, selecting the UI LR graphs so as to minimize the

total number required is a complex problem.

Proposition 2.4 Given a rewrite system R over Op, and a
set of trees L, over Op, with <R,Lot,,LL, > E finite BVRS,

the MINIMUM Ur LR GRAPH problem consists of assigning to

each LR graph a valid WI LR graph such that the number
of UI LR graphs used is minimum. MINIMUM VI LR GRAPH is
NP-complete.
Proof by reduction of MINIMUM COVER [GaJ80]; quite
straight-forward, see [Pe187]. 0

The selection process is further complicated because
selecting some paths in an LR graph may make some trees
in the graph “useless” for solving REACHABILITY, which
may open new opportunities for making graphs equivalent.
Section 4 below describes a heuristic used to select the UI
LR graphs, as well as the table representation used by the
solver. Detection of useless nodes in the graphs can be

done by a simple iteration process.

REACHABILITY problems can be used in several

applications, the rest of this paper shows how to modify
the algorithm to solve the C-REACHABILITY problem.

301

3. Solving C-REACHABLLITY

A first approach to solving C-REACHABILITY would

be to enrich the notion of an LR graph by using a graph
where the nodes are not patterns but pairs (p,cost) where

cost represents the minimum cost to reach pattern p, and
where the edges correspond to rewrite applications along
paths of minimal cost. Such an approach works correctly
but leads to an unbounded number of states and thus to

costly solver-time operations. A better solution is to store,
instead of the total cost needed to reach p, only the delta
cost. The delta cost is defined by substracting from the

cost associated with each pattern, the smallest cost associ-
ated with any pattern in the LR graph. Since the cost of a
sequence is the sum of the costs of all the rewrites in the

sequence, choosing a rewrite sequence based in the delta
cost yields the same solution as choosing one based on full
costs, yet the number of states will be smaller. The result-

ing notion is called a &LR graph.

The delta costs can be computed without first com-
puting the full minimal cost for each pattern. The delta

costs of all patterns in the graph can be computed from the
delta costs of the input nodes, which are determined by the

delta costs of the output nodes of other states.

There is no guarantee that a rewrite system that is in
finite-BURS will, when extended with costs, have a finite
number of 6-LR graphs. Consider, for example, the
rewrite system of Figure 3.1, where the cost of each rule is
shown below it.

This rewrite system contains two separate sets of
rewrite rules: those involving “imodes” and those involv-
ing “arnodes”. Now consider an input tree of the form:

/t
Const

/t
Const 0

0
l

Fetch
I

Fetch
I

Const

Whether “imode” rewrites or “amode” rewrites
are cheaper depends on the relationship between the

Rewrite R les

Fefch + amode
Const

2

Fefch + amode
amode

2

+ amode
Const amode

1

Const + imode

amode ib goal

0

Fetch + imode
imode

1 1

A + imode
Const imode

imode -> goal

2 (I

An Unbounded Number of 6-LR Graphs

Figure 3.1

number of “-I-” operators and the number of “Fetch”
operators in the tree. Recording this information requires
an unbounded number of states.

Fortunately, the above situation is uncharacteristic
of “real” machine descriptions. Real machine descrip-

tions have a symbol, which corresponds to the notion of a
“register”, that plays a central role: all trees (except
maybe a few) can be rewritten into “register” in a short
number of rewrites and “register” can rewritten into all

trees (except maybe a few) also in a short number of
rewrites. This provides a “triangular inequality” that

forces together the delta costs associated with the trees in
the LR graph and leads to a finite number of 6-LR graphs.
See [Pe187] for one possible formahzation of this argu-
ment.

Testing if there is a finite number of 6-LR graphs

can be done as part of the generation of the graphs. Con-

ceptually, the procedure can be understood as first generat-
ing the LR graphs and then annotating them with costs and

generating more 6-LR graphs until no new graph is found,
This procedure will terminate if there is a finite number of
6-LR graphs, but will fail to do so if there is an infinite

302

number of them.

If there is a finite number of states, then it is possible

to apply the same algorithm used for REACHABILITY to

solve C-REACHABILITY very efficiently. Unfortunately, a

single LR graph may be replaced by several 6-LR graphs,
which may lead to a substantially larger number of states.
The number of states needed can be reduced in a way
similar to that of the previous section by using 641 LR

graphs instead of 6-LR graphs. In addition, one can
observe that the costs associated with the 6-LR graphs
(and the S-U1 LR graphs) are not used in solving C-

REACHABILITY: they are used to compute the states but,

after that, only the graph structure is used, without the cost
information. Since two different &(UI) LR graphs may
have the same structure, it is possible that two different
states may be equivalent. The minimal number of states

needed can be computed by a variation of the standard
algorithm to minimize a bottom-up tree automaton which
is, in turn, a variation of the minimization of a finite-state

automaton.

4. A Code Generator Generator

We have implemented a code generator generator

that works by solving C-REACHABILITY using BURS
theory. The table generator implementation is stand-alone
and emphasizes generating small tables, with no great

effort spent in trying to generate them fast. It has been
running since late 1986. The implementation is based on
the theory presented in the previous two sections with

some modifications. The 6-LR graphs are first generated
using an extension of David Chase’s algorithm for
bottom-up pattern matchers [Cha87]; then useless informa-
tion is removed and 6-UI LR graphs are selected. Since
optimal selection of s-U1 LR graphs is difficult, the selec-
tion ‘is done by a process which starts from 6-LR graphs
and attempts to make graphs identical by removing some
alternatives, determining which nodes in the graphs are
useless, removing them, and repeating the process. In our
experiments, the number of states stabilizes in two or three
iterations.

The modified version of Chase’s algorithm generates

a representation of the bottom-up tree automaton comput-
ing the states (representing the S-U1 LR graphs) as a col-

lection of “folded” tables, one for each nary operator,
where identical n-I-hyperplanes have been found and

shared. Our implementation accepts only 0, 1, and 2-ary

operators. In the case of binary operators, the representa-
tion is a table where identical rows and columns have been
found; we call the l-dimensional arrays indicating identi-

cal rows and columns, restrictors. We bit-encode the res-
trictors and share them across different tables.

The code generator uses the automaton tables and
also a second set of tables that encodes each 8-UI LR

graph; the costs are not stored since they are unused. This
second set of tables is encoded using a technique similar to
that in YACC [Joh78], by overlaying rows of information.

The table generator uses a few simple heuristics to reduce
the table size of these tables, see [Pe187] for details.

A final modification from the theory of the previous
section is that the problem that the code generator really

wants solved is not C-REACHABILITY. Each rewrite rule of
the rewrite system given to the table generator has, in addi-
tion to a cost, a call to a semantic routine. What the code

generator uses is not a rewrite sequence of minimum cost,
but its associated sequence of semantic routine calls. We

call this problem UCODE. The minimum number of states
needed to solve UCODE can be found using a minimization
method like the one mentioned in the previous section.

The BURS code generator has been operative since
early 1987, integrated into UW-CODEGEN [HeD87], a

testbed for table-driven code generators developed by
Robert Henry at the University of Washington. UW-

CODEGEN does temporary and register management and
includes the following code generators:

GG A code generator based on Graham-Glanville tech-
nology [GlG78];

BU A locally optimal code generator based on bottom-
up pattern matching, manipulating states similar to
LR graphs but with costs represented explicitly and
computed with a dynamic programming algorithm;
and

TD A locally optimal code generator based on top-down
pattern matching technology and manipulating costs

explicitly with a dynamic programming algorithm.
The trees in a state are listed explicitly.

TD and BU were implemented by Damron and Henry,
respectively, and were developed independently of the
BURS-based code generator presented in this paper. The
theory behind TD is similar to that used in twin [AGT86]

303

and in the top-down algorithms of Weisgerber/Wilhelm

[WeW86]. The theory behind BU is related to BURS and to
the bottom-up algorithm described by

Weisgerber/Wilhelm [WeW86]. The big advantage of the
LJW-CODEGEN testbed is that it facilitates meaningful code

generator comparisons.

We have tested the table constructor with several
machine descriptions that were developed at UC Berkeley
as part of the CODEGEN effort [AGH84]. This paper only
reports on two machine descriptions that were made avail-
able by Robert Henry: a Vax-11 description and a
Motorola MC68000 description; for technical reasons,

they are the only ones that we can use to generate code
with UW-CODEGEN. The machine descriptions used are

machine grammars without generic operator rewrite rules.
The cost assigned to each rule is a 4-tuple indicating the
numbers of memory bytes referenced, instructions issued,

side effects issued, and operands in the instruction frag-
ment represented by the rule. The tuple leads to 6

“natural” costs: a constant cost, each of the 4 elements
considered separately, and a lexicographic ordering on the

full tuple. We will denote the 6 costs as K, M, I, S, 0, and
L, respectively. The GG implementation disregards the
cost information; the BU and TD implementations always
use full lexicographic cost. BURS currently can use any of
the 6 costs except L.

The two principal measures of interest are table size
and code generation speed, Table size is related to the

number of states needed to solve UCODE, which depends
on the cost function used and the method of state construc-
tion. Figure 4.1 shows, for the two machine descriptions
mentioned, the number of 6-LR graphs that are generated
initially and the final number of states needed. The table
shows the big variation in the number of states needed: the
constant cost function (K) requires few states while the

function that counts the memory references (M) requires
many. The lexicographic cost would produce a larger
number of states but, due to implementation restrictions in
our exploratory implementation of the table generator, the
tables cannot be generated. An approximation to the lexi-
cographic cost produces tables slightly larger than the larg-

est using a single component. The table also shows that in
this example our heuristic to reduce the number of states

obtains a significant reduction; we have obtained larger
reductions with other machine descriptions.

I I VW11 IMc-68000
costs ‘g. final orig final
Constant K ;2 95 190’167
Mem. Refs M 1733 652 1089 576
Instructions I 417 270 190 167

/ Operands 0 1 I82 95 1537 374
SideEffects S 417 268 213 194

Number of BURS States

Figure 4.1

Henry and Damron report in detail on the table sizes
for GG, BU, and TD [HeD87]. Figure 4.2 shows the table

size for BURS for the different cost metrics. For each
machine description and each cost function there are three

numbers, listed from the top: the space used to represent
the bottom-up tree automaton, the space used to represent
the states themselves, i.e. their internal nodes and edges,

and the total space. Note that the major variation is in the
size of the bottom-up tree automaton. The bottom of the
figure shows the influence of the representation of the res-
trictors on the table size. The three columns indicate the
restrictor size, the automaton size, and the total table size.

Sharing identical restrictors is a very simple optimization

and a big win; bit-encoding the restrictors dloes not seem to

significantly slow the UCODE solver.

Figure 4.3 compares the table sizes for several code
generators in UW-CODEGEN. The values for BU, TD, and GG

are taken from [HeD87]; the line labelled “states” is the

space for the patterns, replacements, costs, and actions; the
line labelled “fsa” corresponds to different notions of
automaton. The UW-CODEGEN values are estimated from

bar charts3. The values for BLJRS are for the M cost func-
tion, which is the one requiring the largest tables. BLRS-I

and BURS-f represent different versions of the table genera-
tor: BURS-I is an approximation to L, (note that M is the

first component), while BURLS-f uses M as cost function but
tries to generate the tables fast rather than spending too
much time generating small tables. Again there are three

numbers per combination of machine description and cost
function. They are the size of the automaton, the states,

304

Automaton, States, and Total Table Size
K M I S 0

Vax
B-fsa 1722 26388 5760 6390 1722
States 7698 15980 12320 12294 7682
Total 9420 42368 18080 18684 9404
Mot
B-fsa 3652 22500 3652 4542 10320
States 12588 20788 12588 13978 18692
Total 16240 43288 16240 18520 29012

Restrictor Encoding and Size
(Vax using M)

Mode Restrictor B-fsa Total
No Share 77604 94424 110404
Share 30888 47708 63688
No share/Bit 18564 34810 50790
Share/Bit 10142 26388 42368

Table Sizes (bytes)

Figure 4.2

and their sum. Chase’s technology would provide a sub-
stantially smaller B-fsa than the one used in BU. Accord-

ing to Chase [Cha87], a reasonable value is in the vicinity
of 23K; this would place the total table size very close to
GG and BUFLS.

GG TD BU IBURS BURS-1 BURS-1
Vax
Fsa 33.7 20.1 56.4 I 26.3 29.1 46.9
States 8.8 18.2 18.6 15.9 15.8 18.5
Total 142.5 38.3 75.01 42.3 44.9 65.5
Mot

33.0 18.6 50.2 I 22.5 26.9 35.3
8.7 18.2 18.2 20.7 22.3 23.5

Fsa
States
Total 141.7 36.8 68.41 43.3 49.3 58.8

l-

We use the same set of 6 programs used in [HeD87]
to measure the performance of the code generator. These

are C programs ranging in size from 100 to 1200 lines.
Figure 4.4 shows, for each target, three values averaged

over the 6 programs: the time spent solving UCODE normal-
ized to GG, the percentage of code generation time spent
solving UCODE, and the total code generation time normal-

ized to UCODE. (A11 measurements were made on a Vax
8600; only “user” time is considered).

BURS is substantially faster than TD and BU because

manipulating costs is expensive: they have to be com-
bined, computed, and compared. It is more surprising that

BURS is even faster than GG. A careful comparison of the
respective portions of code implementing UCODE showed

several causes for the difference in speeds. Probably the
biggest contribution lies in the representation of the auto-

maton: GG uses a tight encoding and a cache, which loses
in speed against the more efficient table folding. In addi-

tion, GG uses the normal technique (for parsing technol-
ogy) of default transitions, which is slower than a simple

lookup. Another contributor is that the relationship
between the parser used in GG and the traversal of the tree
providing the prefix traversal is not as simple as the tree
traversal used by BURS. Finally, GG stores states and other
information in a stack (the parse stack), while BURS uses
(pre-allocated) slots associated with the tree; the stack
requires extra checks for overtlow and the like. GG also
uses a few more indirect routine calls than BURS. Despite
the difficulty in comparing the methods in the presence of
these differences in implementation strategy, we think that

the evidence shows that BLJRS is, at least, comparable in
speed to GG. To reduce effects caused by compilation of
the algorithms, the values shown in Figure 4.4 correspond

to GG compiled using the peephole optimizer, and BLJRS

without it; the values are more favorable to BIJRS other-
wise.

Table Sizes (Kbytes)

Figure 4.3

3 We are uncertain of the accuracy of some of these numbers.

305

Vax GG TD BU BURS
UCODE(rel.) 1.00 3.60 3.10 0.63
% in UCODE 14.04 32.97 31.13 8.74
Total CG 1.00 1.34 1.27 0.93
Mot GG TD BU BURS
UCODE (rel.) 1.00 3.82 3.22 0.55
% in UCODE 16.61 40.77 37.29 8.81
Total CG 1.00 1.45 1.36 0.94

Code Generation Time

Figure 4.4

The quality of the generated code is measured stati-
cally using the same metric that we have discussed earlier:

the 4-tuple of values. Figure 4.5 shows the average cost,
normalized to 100 for BU and TD. BU and TD have a small

error that shows very infrequently and which causes some
normalized values to be under 100.00. The quality of the
code generated by BURS-1 is quite close to the lexico-

graphic optimum.

The time spent generating the BURS tables depends
on the cost function and on the effort spent trying to gen-
erate small tables. The top of Figure 4.6 shows times in
seconds on a Sun-3/75 with 12 MB of main memory and

no local disk. The bottom of the figure reproduces infor-

mation from [HeD87] comparing the performance of the
different table generators in IJW-CODEGEN; values are in

seconds on a DEC Microvax-II. There are two columns
for BU: the first column corresponds to the generation of
tables without any effort to use cost information at table-
generation time to reduce the number of alternatives to
consider at code generation time; the second column
corresponds to the tables used in OUT other comparisons, in

which some elimination of alternatives is done based on
costs. We want to emphasize that the current implementa-

tion of the table generator for BURS was written with no
special effort to generate tables fast.

5. Other Related Work and Conclusions

The idea behind the algorithm for RB4CHABILITY has

been around for a while; maybe the earliest references are
the dynamic programming algorithms of [AUJ77] and

[Rip77]. BURS theory differs from these early proposals
in that it is based on rewrite systems, it. can handle a larger
class of rewrite systems, and it emphasizes the computabil-

ity of the states by a bottom-up finite state automaton. Our
theory was developed independently of the work of

Mot IM I s 0
GG 1102.43 100.00 103.28 98.05

BURS 132.6 2361.3 398.8 368.4 148.1
BURS-f 94.1 921.3 2U7.7 196.5 111.7

Mot K M I S 0

BURS-f 172.4 1757.9 170.7 194.6 518.9

BURN 216.7 19984.3 217.6 236.4 1158.3

(100 is optimal)

Figure 4.5

306

Table Generation Times

Figure 4.6

Weisgerber/Wilhelm [WeW86], and Henry/Damron
[HeD87]; it differs from the work of those researchers in
its ability to encode cost information into the 6-BURS

states and in handling a larger class of rewrite systems.
Our work on optimal code generation yields results similar
to those claimed by Hatcher and Christopher [HaC]

[Hat851 but while the Hatcher/Christopher technique
requires modifying some parts of the machine description
to retain optimality, the approach described here will
always be optimal, provided that a finite number of states
exist. We suspect that the Hatcher/Christopher technique

can be explained as a simplification of BURS-theory.

Probably the best-known implementation for locally
optimal code generation is the one used for twig [AGT86].

The theory behind that implementation is quite similar to
the one used in TD with two differences. The first differ-
ence is that the implementation of twig reported in

[AGT86] does more computation at solving time than TD.

Thus, twig has smaller tables and smaller table generation

times, but larger code generation times. The second differ-
ence is in the phase organization. Both twig and uw-

CODEGEN perform two types of transformations: some
transformations are for normalization and simplification,
like the mapping of short-circuit booleans into compare

and jumps, the others are the ones discussed in this paper
and correspond to the machine instructions. Twig deals
with both types of transformations together in a single

mechanism, but the interaction of the machine rewrite
applications with the simplification routines allows looping

and non-optimal transformations to occur. UW-CODEGEN

first performs the normalization and simplification and

then the machine rewrite applications, but allows the
simplification routines to query the machine description to

make decisions. The current implementation of the
simplification routines in UW-CODEGEN is pattern-driven

and a bit inefficient. A new version recently written by
Henry [Hen871 is faster and seems easier to program.
Although we don’t have specific measures comparing our
approach and fwig, it is safe to say that BURS-based code
generation is substantially faster than one based on twig.
The results of Henry/Damron [HeD87] also suggest that, if
one were to model the code generation in a way similar to

the one used in twig, a bottom-up pattern matcher could be
faster than the currently used top-down pattern matcher;

the work of Chase [Cha87] and our own shows that the
space penalty is manageable.

We have shown the potential for BURS-based fast
optimal code generation for expression trees. The main
advantage of optimality is that as long as the machine
description is accurate, there is no need for the machine

description writer to understand the theory used to gen-
erate the code generator. A non-optimal technique like
GG generates optimal code for a uniform instruction set
such as those found on RISC machines [Pat85]. It can

generate quite good code otherwise (see Figure 4.5) if the
machine description is carefully written [Hen84].

REACHABILITY problems can be used in several other
applications. Projection Systems [Pe187] are a descriptive

mechanism for tree transformation that is similar to tree-
to-tree grammars [KMP84], and can be used, for instance,

to describe the mapping between parse trees and abstract
syntax trees. Forward and backward applications of pro-
jection systems can be reduced to REACHABILITY prob-

lems. X-patterns [Pel87] are an extension of traditional
patterns to describe non-local conditions. Pattern match-

ing of X-patterns can be reduced to a REACHABILITY prob-

lem.

Our current research in the area includes exploring

faster algorithms for the table generation, and testing of
k-BURS for any recognizable input set. We are also

working in other applications of REACHABILITY.

Acknowledgements

We thank Robert Henry for his development of UW-
CODEGEN, for several of the machine descriptions used in

the experiment, and for many fruitful discussions. David
Chase helped us by providing his bottom-up pattern
matcher. We gratefully acknowledge the members of our

research group for useful conversations and constructive
feedback.

6. Bibliography

[AUJ77] A. V. Aho, J. D. Ullman and S. C. Johnson,

“Code Generation for Expressions with Common

Subexpressions”, Journal of the ACM 24, 1 (Jan 1977),

146-160.

307

EAGT861 A. V. Aho, M. Ganapathi and S. W. K. Tjiang,
“Code Generation Using Tree Matching and Dynamic
Programming”, Submitted to ACM Transactions on
Programming Languages and Systems., January 1986.

[AGH84] P. Aigrain, S. L. Graham, R. R. Henry, M. K.

McKusick and E. Pelegri-Llopart, “Experience with a
Graham-Glanville Style Code Generator”, Proceedings of

the ACM SIGPLAN 1984 Symposium on Compiler

Construction, SIGPLAN Notices 19 ,6 (June 1984).

[Cha87] D. R. Chase, “An Improvement to Bottom-up

Tree Pattern Matching”, in POPL87, Munich, Germany,

January 1987.

[GaJ80] M. R. Garey and D. S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-Completeness,

W. H. Freeman and Co., 1980.

[GlG78] R. S. Glanville and S. L. Graham, “A New
Method for Compiler Code Generation (Extended
Abstract)“, Conference Record of the Fifth ACM

Symposium on Principles of Programming Languages,

Tucson, AZ, January 1978,231-240.

[GrH84] S. L. Graham and R. R. Henry, “Machine

Descriptions for Compiler Code Generation: Experience

Since JCIT-3”, IEEE 1984 Proceedings of the 4th

Jerusalem Conference on Information Technology (JUT},

Jerusalem, Israel, 1984.

[Hat851 P. J. Hatcher, A Tool for High-Quality Code

Generation, PhD Dissertation, Illinois Institute of
Technology, Chicago, Illinois, December 1985.

[HaC] P. J. Hatcher and T. W. Christopher, “High-Quality

Code Generation Via Bottom-Up Tree Pattern Matching”,

POPLa6, .

[Hen841 R. R. Henry, Graham-Glunville Code Generators,

PhD Dissertation Computer Science Division, EECS,

University of California, Berkeley, CA, May 1984.

[Hen871 R. R. Henry, Personal Communication, August

1987.

[HeD87] R. R. Henry and :P. C. Damron, “Code

Generation Using Tree Pattern Matchers”, Technical
Report 87-02-04, University of Washington, February 10,
1987.

[Joh78] S. C. Johnson, YACC: Yet Another Compiler-

Compiler, Bell Laboratories, Murray Hill, NJ, July 1978.

[KMP84] S. E. Keller, S. P. Mardinly, T. F. Payton and I.
A. Perkins, “Tree Transformation Techniques and
Experiences”, Proceedings of the ACM SIGPL.AIV 1984

Symposium on Compiler Construction, SIGPLAN Notices

19 ,6 (June 1984).

[Pat851 D. A. Patterson, ‘ ‘Reduced Instruction Set

Computers”, Communications of the ACM 28, 1 (January

1985), 8-21.

[Pe1871 E. Pelegri-Llopart, Tree Transformcztion Systems in

Compiler Systems (tentative title), PhD Dissertation,
EECS-University of California, Berkeley, December 1987.

[Rip771 K. Ripken, “Formale Beschreibung von

Maschinen, Implementieurungen und optimierender

Maschinencodeerzeugung aus attributierten

Programmgraphen”, PhD Dissertation, Technische

Universitat Munchen, Munich, West Germany, July 1977.

[Tha73] J. W. Thatcher, “Tree Automata: An Informal

Survey”, in Currents in the Theory of Computing, A. V.

Aho (editor), Prentice Hall, Englewood Cliffs, NJ, 1973,

143-172.

[WeW86] B. Weisgerber and R. Wilh’elm, Two Tree

Pattern Matcher for Code Selection (Inclu2ding Targeting),

Technical Report, Universitat des Saarlandes,

Saarbrucken, W. Germany, February 1986.

308

