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Summary 

A Rewrite System is a collection of rewrite rules of 

the form a-p where a and 0 are tree patterns. A rewrite 
system can be extended by associating a cost with each 

rewrite rule, and by defining the cost of a rewrite sequence 
as the sum of the costs of all the rewrite rules in the 
sequence. The REACHAEHHTY problem for a rewrite sys- 
tem R is, given an input tree T and a fixed goal tree G , to 

determine if there exists a rewrite sequence in R, rewriting 
T into G and, if so, to obtain one such sequence. The C- 

REACHABILITY problem is similar except that the obtained 

sequence must have minimal cost among all those 

sequences rewriting T into G . 

This paper introduces a class of rewrite systems 

called Bottom-Up Rewrite Systems (BURS), and a table- 

driven algorithm to solve REACHABILITY for members of 
the class. This algorithm is then modified to solve C- 
REACHABILITY and specialized for a subclass of BURS so 

that all cost manipulation is encoded into the tables and is 
not performed explicitly at solving time. The subclass 
extends the simple machine grammars [AGH84], rewrite 
systems used to describe t&get machine architectures for 
code generation, by allowing additional types of rewrite 
rules such as commutativity transformations. 

A table-driven code generator based on solving C- 

REACI-IABUTY has been implemented and tested with 

several machine descriptions. The code generator solves 
C-REACHABILITY faster than a comparable solver based on 
Graham-Glanville techniques [AGH84] (a non-optimal 
technique), yet requires only slightly larger tables. The 
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code generator runs much faster than rec:ent proposals to 
solve C-REACHABILITY that use pattern matching and deal 
with costs explicitly at solving time 
[AGT86, HeD87, WeW861. The BURS theory generalizes 
and unifies the bottom-up approaches of Henry/Damron 
[HeD87] and Weisgerber/Wilhelm [WeWSS]. 

1. Introduction 

Trees are convenient representations for many appli- 

cations because of their hierarchical structure and the ease 
with which they can be manipulated. Frequently this 
manipulation corresponds to transformations between dif- 

ferent tree representations. In this paper we study a 

mechanism to describe tree transformations and rewrite 

systems, together with a specific tree transformation prob- 
lem, REACHABILITY, and its application to the generation of 
optimal code for expression trees. 

In this paper, trees are denoted either either by 
graphs (as in Figure 1.1) or by a prefix linearization. For 

example, op (T1,T2) denotes the tree with root op and sub- 
trees T1 and T2. The node labels are taken from an alpha- 
bet Op of operators and all operators are assumed to have 
fixed arity. Patterns are trees over an alphabet that has 
been extended with new symbols with arity 0 called vari- 
ables. In the examples, variables are represented by X , Y, 

or Xi (i 20), and all other symbols stand for operators. If 
G is a value assignment for variables present in a pattern p, 

o(p) denotes the replacement of the varia’bles by the values 
associated by 6. p matches at a tree T if there is an 
assignment of values to the variables in the pattern, Q, such 
that o(p) is T. Thus, the pattern +(X,Y) matches at any 
tree rooted with + and having two subtrees, corresponding 
to X and Y respectively. Two patterns pI and pz are said 

to be equivalent if they are identical up to a systematic 
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renaming of the variables. All patterns in this paper are 
linear, i.e., every variable appears at most once. A rewrite 
rule is of the form a + p, where o! and p are patterns; a is 
called the input pattern and j3 the output pattern, and all 
the variables in /3 must appear in a. A rewrite system is 
just a collection of rewrite rules. Figure 1.1 shows a 
rewrite system that we will use in our examples. 

A position in a tree is a sequence of integers 
(separated by l for readability) representing a “path” 
from the root of the tree to a node in the tree. If p is a 
position in T, the subtree of T rooted at p is denoted by 
TGP. The root position in a tree is designated by the empty 
sequence E; each integer corresponds to an index from left 
to right commencing with 1. lf k 0s is a sequence with 
head an integer k and tail a sequence s, and 6 is read as 
“is defined as”, positions and subtrees are related as fol- 
lows: 

A rewrite rule r : a + p is applicable to a tree T at a 
position p if a matches at TeP. If r is applicable to T at p 

with variable assignment CJ, the application of r to T at p 
is a new tree, identical to T except that the subtree TeP is 
replaced by o(p). A rewrite sequence is just a sequence of 
applications of rewrite rules: 

Definition 1.1 A rewrite application for a rewrite system 
R is a pair <r ,p > where r is a rule in R and p is a posi- 

tion. A rewrite sequence for R is a sequence 7 of rewrife 
applications. If z=<ro,p+ . . . <r,,p,> is a rewrite 
sequence, then 2 is applicable ta a tree T if r-0 is applica- 

ble to TQPO ana’ its application yiela5 T1, andfor IS <It, ri 

is applicable to (Ti)@pi and its application is Ti+l. The 

application of z to T is denoted z(T) and is T,,,,. We say 
that a rewrite sequence is valid if there is some tree to 
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A Rewrite Sequence 

Figure 1.2 

which it is applicable. The length of a rewrite sequence is 

the number of rewrite applications in it. The composition 
of a rewrite sequence is a rewrite rule (possibly not in R) 

that is applicable whenever the rewrite sequence is appli- 
cable and always yields the same result as the sequence. 

If z is a rewrite sequence for T such that all the 

applications in T have positions below p (that is, position 
p is an initial sequence of all the application positions), 
the restriction of 2 to p , T@~, is the sequence of applica- 
tions identical to ‘C except that every position is stripped of 
the initial sequence corresponding to p . 

Not every rewrite sequence has a composition. A 

rewrite system R defines transformations between sets of 
trees through its rewrite sequences: a tree T can be 
mapped into a tree T if there exists a rewrite sequence in 
R taking T into T’, The transformation is, in general, 

many-to-many. 

The problems studied in this paper are the following: 

Problem REACHABILITY Let R be a rewrite system over 

an alphabet Op, and let Li ana’ L, be two sets of trees over 
Op. The REACHABILITY problem for R, Li I and L, is, given 
any T E Lt and any T E L,, determine if there is a 
rewrite sequence z for R applicable to T such that 

7(T) s T , and, if so, to produce one such sequence. 

If L, is a singleton {G}, then the REACHAEULITY 

problem is called the fixed goal REACHABILITY problem, 
and G is called the goal. The BLOCKING problem for R, 
Li , and goal G is to determine if there exists a tree T E Li 
that cannot be rewritten into G by R. 

This paper is only concerned with the fixed-goal 
version of REACHABILITY, and with BLOCKLNG; see [Pe187] 
for some considerations on general REACHABILITY. In our 

example, given the input tree +(O,+(Consr,Const)), one 
solution to REACHABILITY for gOal reg iS the sequence Of 
Figure 1.2. If Lt consists only of trees wi.th labels Reg , 
Const , 0, +, and -, the rewrite system of Figure 1.1, never 

blocks. 

A rewrite system can be extended Iby assigning a 

cost to each rewrite rule. The cost of a rewrite sequence 
for an extended rewrite system can then be defined as the 
sum of the costs of all the rewrite rules in the sequence. 
This leads to a variation of the REACHABILITY problem, 
called C-REACHABILITY, where the objective is not only to 
provide a rewrite sequence but to provide one with 
minimum cost. 

Returning to our example, if the cost of each of the 
rewrite rules of Figure 1.1 were defined to be I, then the 
cost of the sequence of Figure 1.2 would be 7. That 
rewrite sequence is not a solution to C-REACHABILITY; the 

smallest possible cost is 6, and may be obtained by the 
sequence of Figure 1.3. 

The rewrite system of Figure 1.1 is chosen so that 
applicable rewrite sequences correspond to instructions for 

some (hypothetical) target machine’. Hence, the rewrite 
sequences in Figure 1.2 and Figure 1.3 correspond to 

instruction sequences for the given input lxee and for the 
target machine. If the rewrite system accurately describes 
the target machine, a solution to REACHABILPY provides a 

’ r2 might be used to generate a register-to-register move if the III- 
put register could not be modified. 
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correct sequence of instructions for the input tree. If, in 
addition, the costs of the rewrite rules correctly represent 

the desired properties of the target machine, a solution to 
C-REACHABILITY provides a locally optimal instruction 

sequence. BLOCKING corresponds to detecting the 
existence of an input tree for which code cannot be gen- 

erated. Examples of typical cost met&s are the number of 
cycles, and the number of bytes referenced. In the pres- 
ence of features like pipelines and caches, the number of 
cycles will be only a static approximation of the execution 
costs. Previous research (notably [GrH84, Hen84]) has 
shown how to write target machine descriptions using a 

variety of techniques, and allows us to conclude that 
although some features, like constraints on the number of 
registers, must be handled outside the framework of C- 

REACHABILITY, an efficient algorithm to solve C- 

REACHABILITY can be used to provide an efficient algo- 

rithm for locally optimal code generation. 

The rest of this paper is organized as follows. Sec- 
tion 2 shows how to solve REACHABILITY for a special 
class of rewrite systems, then Section 3 modifies the tech- 
niques and applies them to solving C-REACHABILITY. 

Finally, Section 4 discusses a code generator generator 
implemented following the theory of the previous sections. 
The paper concludes with a discussion of related work. 

2. Solving REACHABILITY 

REACHABILITY is solved by characterizing all the 
possible rewrite sequences with a bottom-up tree automa- 
ton [Tha73]. We use two notions of state: local rewrite 
graphs (LR graphs) and uniquely invertible local rewrite 

graphs (UI LR graphs). Without loss of generality, we 
assume that the goal tree for fixed-goal REACHABILITY is a 

leaf labeled with a distinguished nullary operator which 
appears only as an output pattern in a rewrite ruIe. 

The first step in defining LR graphs is to restrict 
attention to rewrite sequences in a normal form that 

rewrites the input tree bottom-up. A rewrite sequence can 
be put in normal form by “reordering” the rewrite appli- 

cations. 

Definition 2.1 Let r. and rl be tvvo rewrite rules in R, 
and let z=<ro,p,+rl,p 1> be a valid rewrite sequence. An 
exchange of the two applications is a new rewrite 

sequence d of the form <rl,p2><ro,p3> such that for all 
T, 7 is applicable to T if and only if? is applicable to T, 

and when so, z(T)&(T). 

If z1 and 72 are two rewrite sequences in R, 71 is a 
permutation of 2, if z, can be obtained from 72 through a 

sequence of exchanges. 

A rewrite sequence 2, is said to “loop” if it contains 

a proper prefix subsequence r2 such that, for some tree T, 
Taco. All non-looping rewrite sequences can be 
reordered so that they proceed in a “bottom-up fashion”, 
namely, so that any rewrite application at a position p is 
preceded by all rewrite applications having positions 
below p which can be reordered in that way. For example, 

the sequence of Figure 1.2 can be placed into bottom-up 
form by reordering the subsequence <rlo,E><r7,1><r5,1> 

as cr~,l~rg,l><rIo,e>. The rewrite sequence of Figure 
1.3 is already in bottom-up form. The notion is formalized 
as follows: 
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Definition 2.2 Let Tap (T,, . . , T,) be a tree in some 

input set L, let 7 be a rewrite sequence without loops 
transforming T into a tree T’. T is in normal form at T, [f 
it is of the form 21 . . z,,z~, and, (1) for l<iln , Zt only 
contains applications in positions in the subtree Ti, and 

the restriction Of Ti to the position i , (Tt)@i (Ti ), is T’i ; (2) 
z. applied to op (T 1, . . . ,T,) yields the output tree T; 
and (3) there is no permutation of z satisfying (I) and (2) 
ana’ in which some rewrites from ~~ have been moved into 
Zi for lli <n _ z is in normal form (everywhere) if it is in 

normal form at T, and, (4) for M<n , (Z; )@i is in normal 

form. 

A normal form rewrite sequence for an input tree 
assigns to each position in the tree a “local” rewrite 

sequence: those rewrites done at that position. Formally: 

Definition 2.3 Let z be a normal form rewrite sequence 

for T of the form TV . . . z,, TO. The local rewrite sequence 
assigned by 2 to a position p in T is defined by F (TAP >. 
where (I) F (T,z, &) is 20r and (2) if p is of the form i l q 

and T is of the form op(T1, . . , T,,), then F (T,z,p) is 
F (Ti,7i ,q). The local rewrite assignment of 2 and T is 

the function assigning to each position in T its local 
rewrite sequence. 

For example, the local rewrite sequence assigned by 
the rewrite sequence of Figure 1.3 at the root of the input 
tree is <r9,Exrg,&xr I,E>. 

We can now define the k-BURS and BURS proper- 
ties. 

Definition 2.4 Let k be a positive integer, and let z be a 
rewrite sequence in normal form for some input tree T. 2 

is in k-normal form if it is in normal form and each of the 
local rewrite sequences assigned by 7 to the nodes of T is 

of length at most k. 

Let R be a rewrite system over Op, let Li and L, be 

sets of trees over Op, and let k be a positive integer. The 
triple <R&t &,> is said to have the k-BURS property if 
for any two trees T E Li and T E L, and any sequence 7 
in R, with 7(T)=T, there is a permutation of z which is in 
k-normal form. The class BURS is composed of those tri- 

ples <R&t ,L.,> satisfying the k -BURS property for some 
positive integer k . 

Since we are considering only fixed-goal problems 
in this paper, L, is normally understood to be {goal ). If 

Li is not specified, it is understood to be the set of all trees 

over the given set of symbols, Op, which we denote as 

Lop. 

There are rewrite systems and sets of trees not in 

BURS. The rewrite system of Figure 2.1 with goal d is 
one example: the local rewrite sequence of the (unique) 

normal form rewrite sequence rewriting the input tree 
a (b (b ( . * b(c)))) into d has length dependent on the 
height of the input tree. In contrast, the ex.ample of Figure 
1.1 with goal reg satisfies the BURS property for k =3. 

Testing membership in k-BURS is (easy when both 

Li and L, are Lo,,. 

Proposition 2.1 Let R be a rewrite system over a set of 
operators Op, and let k be a positive integer. There is an 
algorithm that will determine whether cR!,L.~,J~~ is in 

k-B URS. 
Proof 
We can characterize the form of any local rewrite 
sequence at some position p in a tree. The first observa- 
tion is that it must start with a rewrite application at posi- 

tion p because, otherwise, this first rewrite application 
would be assigned to the local rewrite sequence of a posi- 
tion below p. The second observation is similar but 
requires an additional notion. If p is a pattern, let T(p) 
denote the set of positions in p that do not correspond to a 
variable; we call these the positions “touched” by the pat- 

tern. If <r ,p > is a rewrite application and r is a++, we 
define T(<r ,p >) to be the union of those positions of the 

form p l 4 where 4 is in T(a)uT@). Finally, if z is a 

Rewri : Rules = 

bib + V’ 

P T 
X x: 

? + d 

C 

Example of a Rewrite System not in BURS 

Figure 2.1 
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rewrite sequence, define T(z) as the union all the sets 

T(<r ,p >) for rewrite applications <r,p > in 5. The 
second observation now states that, if 2, is a local rewrite 
sequence then, for any prefix of ~~ of the form z l <r ,p >, 
the position p must be in T(T). As before, the reason is 

that otherwise cr ,p > could be moved ahead and would 
belong to the local rewrite sequence of a position below p . 

From the characterization, it follows that there are a 

finite number of local rewrite sequences of length no larger 
than k, and they can be generated. Given a rewrite system 

R, CR,&,&@ is in k-BURS if and only if there is not a 
rewrite sequence of length k+l, which can be found by 
generating and testing all the candidates. 0 

It follows from the characterization used in the proof 

that every local rewrite sequence has a composition (which 
may not be in R). 

The rewrite systems used to describe target 
machines are BURS. 

Definition 2.5 Let a -+ j3 be a rewrite rule. We say that 
the rule is: an instruction fragment rule if a is a tree 
without variables and p is a (0-ary) symbol; a generic 

operator rule if a and p are op (X 1, . . . ,X,) and 

op’(X,, . * . ,X,,), for some n -ary symbols op and op’ ; a 
commutativity rule if a and p are op(X,, . . . ,X,) and 
op(X,(,), . . ,X,,,,), for some n-ary operator op and 
some permutation n; and an identity rule if a and p are 

op (X 7) and X , for some tree T that has no variables. 

A simple machine grammar is a rewrite system with 

only instruction fragment and generic operator rewrite?. 

In Figure 1.1 rules rl to r7 are instruction fragment 

rules, and rules r 10 and r 11 are generic operator rules. 
Rule r9 is a commutativity rule, while rule r8 is a identity 
rule. The proof of Proposition 2.1 can be used to show: 

Proposition 2.2 Simple machine grammars are in BURS. 
Machine grammars extended with commutativity and iden- 

tity rules are in BURS. 

A local rewrite assignment provides a decomposi- 
tion of the original rewrite sequence: the concatenation of 
the local rewrite sequences of the input tree in post-order 
traversal order yields a permutation of the original rewrite 

’ For example those used by Henry in [Hen84]. Henry handles 
commutativity explicitly by adding patterns. Identity rules are recognized 
by a peephole optimizer or prior to instruction selection. 

sequence. This decomposition can be used to define our 

first notion of a state for solving REACHABILITY. The local 
rewrite graph (LR graph) of a tree T represents the local 
rewrite sequences of all normal form rewrite sequences 
applicable to T. For a rewrite system R and a goal G , we 
consider two sets of patterns: ZR,G are the patterns of 
interest at the beginning of local rewrite sequences, and 

O,,G are the patterns of interest at the end of the local 
rewrite sequences and are used to construct members of Z 

higher in the tree. EFR ,G is their union. 

Definition 2.6 If R is a rewrite system, and G is thejixed 

goal, the extended pattern set of R and G , EFR ,G, is the 
union of the sets ZR,G (the inputs), and OR,0 {the outputs), 

defined constructively below. 

(I) G belongs to 0~ ,G 

(2) For some input tree T, position p , and some normal 

form rewrite sequence, let z be a local rewrite 
sequence with composition a, + p7. Let p be a pat- 
tern in 0, ,G with variables renamed, if necessary, to 

be distinct from those in /3,. If there is a subslitution 

(3 such that o(p,) =0(p), then o@,) is in OR,G, o(q) 
is in ZR,G, and all the proper subtrees of 6(q) 

belong to 0, ,G . 

Now we can define LR-graphs. 

Definition 2.7 Let R be a rewrite system in BURS. The 
LR graph associated with a tree T is a graph G = (V ,E) 

defined as follows. 

Let A be the set of pairs <Tin ,zo> such that there is a 
normal form rewrite sequence for T of the form 

TlTZ * ’ . T~,ZO and T,,( . * * ~z(‘tl(T)) . . . ) is T,, and Zo(Ti,) 
is T,, . For every local rewrite sequence 2 such that there 
is a <Tin ,T> E A , let & + /& be its composition. If z has n 
rewrite applications. let pre (~,l),..., pre (7,n)zz be the 

preJix subsequences of 2. Let B be the set of trees of the 
form o(&) where, for some Ti, <T~,P is in A, O(S) 
matches at Ti , and o&) = o(p) for some p in 0~. Finally, 
define B’ as a set of representatives of B under the 
equivalence relation between patterns. 

For every pair <Tin ,TZ E A and every substitution (3 

with ~CPd E B’, $%L N$,re(T,l)L..t 4J,re(T.n)) are nodes 
in V and there is an edge in E between each successive 
pair of them. There are no other nodes in V or edges in 
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E. 1 

The nodes corresponding to c~(aJ are called the 
input nodes, and those corresponding to c&) (those in 2 
B’) are called the output nodes. The remaining nodes, 

corresponding to 0(/3,,,~~j,) for lSj<n, are called the 
intermediate nodes. 

Note that the union of all the input nodes in all the 
LR graphs gives IR,c, the union of all the output nodes 
gives OR,o, and the union of the input and the output 3 
nodes gives EFR .c . Figure 2.2 shows an input tree and its 

associated LR graph for our rewrite system. The input 
trees are shown inside broken circles, while the output 

trees are in complete circles. The goal is reg. 

4 
The notion of an LR graph leads to the following 

procedure for solving REACHABILITY for rewrite systems in 

k-BURS : 5 

Compute the LR graphs of all the subtrees of the 
input tree T. 

If the goal G does not appear in the LR graph of Z’, 

then there is no rewrite sequence from T into G ; 
i.e., T “blocks” [GlG78]. If G does appear, assign 
to each position of T a local rewrite sequence by 
applying steps 3 to 5 recursively starting with T,, 
being T and TO, being G . 

Select a local rewrite sequence for 
Ti,,=op(T,, . . . , T,) by selecting any path in the LR 
graph corresponding to a local rewrite sequence r. 

from some input tree op (T 1, . . . , T,) into an output 

tree p such that there is a substitution CT with 

HP> = Wo, )- 

Recursively apply (3) to input T1 and goal T1,..., 
and to input T, and goal T, . 

Combine all the local rewrites in post-order to yield 

a normal-form rewrite sequence for Tk into TO,. 

The procedure is non-deterministic since any path 
can be chosen in Step 3. The first step in the procedure 

OP-Q./TC-Q./TC 
Const Const 

Example of a BURS-state 

Figure 2.2 
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and the test in the second step determine whether there is 
an appropriate rewrite sequence. The remainder of the 
procedure produces one such sequence. 

The first step assumes that it is possible to compute 
the LR graphs. An important special case when this is 

possible is when the extended pattern set is finite. In this 
case the collection of all the LR graphs that may be 
assigned to any subtree of any input tree is finite. We call 
this subclass of BURSfifinite BVRS. 

A semi-decision procedure for membership in finite 
R-BURS in the case that the input set Li is Lop first tests 
k-BURS and generates all the local rewrite sequences, 
using the characterization used in the proof of Proposition 

2.1, and then tries to generate the extended pattern set, fol- 
lowing Definition 2.6. If the procedure terminates, then 
the extended pattern set can be used to obtain the collec- 
tion of all the LR graphs. 

It is not difficult to see that the extended pattern set 
of machine grammars as defined in Definition 2.5 is finite. 

Thus: 

Proposition 2.3 Every simple machine grammar is finite 
BURS. Machine grammars extended with commutativity 
and identity rewrites are also finite BURS. 

If the rewrite system is finite BURS, then each one 
of the individual steps of the algorithm for solving fixed 
REACHABILITY can be precomputed, stored into a table, 
and repIaced, at REACHABILITY-SOlVing time, by a table 
lookup. This leads to a typical “table-generator plus 
solver’ ’ approach to REACHABILITY. The table generator 
computes all the possible LR graphs, and stores their 
interactions into tables. The solver then consults them. By 

moving computation into the table generator, the solver 
can proceed very rapidly. 

If the rewrite system is finite BURS, it is also possi- 
ble to solve BLOCKING efficiently. If the input set is Lop, 
there will be a blocking tree if there is an LR graph that 
does not contain the goal G as a node. If the rewrite sys- 

tem has the property that <R,L+Lod is in finite BURS, 
and S is a recognizable [Tha73] subset of Lop, we can find 
the LR graphs that are useful for trees in S, and we can 
find whether there is a tree in S for which R blocks. Both 
problems are solved by constructing the bottom-up tree 
automaton recognizing S and “running it against” the 
automaton computing LR graphs; see [Pe187] for details. 

In general, an LR graph contains more than one path 

within the state which leads to an output tree. But it is 
only necessary to keep one alternative for solving REACHA- 

BILITY. Consequently, it is possible to use the same 
REACHABILITY algorithm and to replace the LR graph by 
any subgraph of it such that (i) it contains all the output 
nodes, (ii) every node has at most one entering edge, and 

(iii) for every output node there is at least one directed 
path with all its nodes in the subgraph from an input node 
to the output node. (Since all input nodes are reachable, 
all but one of them can be omitted). Such a graph is called 

a uniquely invertible localgraph (UI LR graph), and is the 
second notion of state used to solve REACHABILITY. 

Since the same UI LR graph may be a subgraph of 

several different LR graphs, choosing the UI LR graphs 
carefully may allow a reduction in the number of states 
needed. For example, in Figure 2.2 there are many dif- 

ferent ways of obtaining reg ; any one of them is good 
enough. If the path starting from +(amode ,amode) is 

selected, this state could also be used for many other trees 
including, for example, +(OJ?eg ) and +(Reg ,O). Unfor- 
tunately, selecting the UI LR graphs so as to minimize the 

total number required is a complex problem. 

Proposition 2.4 Given a rewrite system R over Op, and a 
set of trees L, over Op, with <R,Lot,,LL, > E finite BVRS, 

the MINIMUM Ur LR GRAPH problem consists of assigning to 

each LR graph a valid WI LR graph such that the number 
of UI LR graphs used is minimum. MINIMUM VI LR GRAPH is 
NP-complete. 
Proof by reduction of MINIMUM COVER [GaJ80]; quite 
straight-forward, see [Pe187]. 0 

The selection process is further complicated because 
selecting some paths in an LR graph may make some trees 
in the graph “useless” for solving REACHABILITY, which 
may open new opportunities for making graphs equivalent. 
Section 4 below describes a heuristic used to select the UI 
LR graphs, as well as the table representation used by the 
solver. Detection of useless nodes in the graphs can be 

done by a simple iteration process. 

REACHABILITY problems can be used in several 

applications, the rest of this paper shows how to modify 
the algorithm to solve the C-REACHABILITY problem. 
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3. Solving C-REACHABLLITY 

A first approach to solving C-REACHABILITY would 

be to enrich the notion of an LR graph by using a graph 
where the nodes are not patterns but pairs (p,cost) where 

cost represents the minimum cost to reach pattern p, and 
where the edges correspond to rewrite applications along 
paths of minimal cost. Such an approach works correctly 
but leads to an unbounded number of states and thus to 

costly solver-time operations. A better solution is to store, 
instead of the total cost needed to reach p, only the delta 
cost. The delta cost is defined by substracting from the 

cost associated with each pattern, the smallest cost associ- 
ated with any pattern in the LR graph. Since the cost of a 
sequence is the sum of the costs of all the rewrites in the 

sequence, choosing a rewrite sequence based in the delta 
cost yields the same solution as choosing one based on full 
costs, yet the number of states will be smaller. The result- 

ing notion is called a &LR graph. 

The delta costs can be computed without first com- 
puting the full minimal cost for each pattern. The delta 

costs of all patterns in the graph can be computed from the 
delta costs of the input nodes, which are determined by the 

delta costs of the output nodes of other states. 

There is no guarantee that a rewrite system that is in 
finite-BURS will, when extended with costs, have a finite 
number of 6-LR graphs. Consider, for example, the 
rewrite system of Figure 3.1, where the cost of each rule is 
shown below it. 

This rewrite system contains two separate sets of 
rewrite rules: those involving “imodes” and those involv- 
ing “arnodes”. Now consider an input tree of the form: 

/t 
Const 

/t 
Const 0 

0 
l 

Fetch 
I 

Fetch 
I 

Const 

Whether “imode” rewrites or “amode” rewrites 
are cheaper depends on the relationship between the 

Rewrite R les 

Fefch + amode 
Const 

2 

Fefch + amode 
amode 

2 

+ amode 
Const amode 

1 

Const + imode 

amode ib goal 

0 

Fetch + imode 
imode 

1 1 

A + imode 
Const imode 

imode -> goal 

2 (I 

An Unbounded Number of 6-LR Graphs 

Figure 3.1 

number of “-I-” operators and the number of “Fetch” 
operators in the tree. Recording this information requires 
an unbounded number of states. 

Fortunately, the above situation is uncharacteristic 
of “real” machine descriptions. Real machine descrip- 

tions have a symbol, which corresponds to the notion of a 
“register”, that plays a central role: all trees (except 
maybe a few) can be rewritten into “register” in a short 
number of rewrites and “register” can rewritten into all 

trees (except maybe a few) also in a short number of 
rewrites. This provides a “triangular inequality” that 

forces together the delta costs associated with the trees in 
the LR graph and leads to a finite number of 6-LR graphs. 
See [Pe187] for one possible formahzation of this argu- 
ment. 

Testing if there is a finite number of 6-LR graphs 

can be done as part of the generation of the graphs. Con- 

ceptually, the procedure can be understood as first generat- 
ing the LR graphs and then annotating them with costs and 

generating more 6-LR graphs until no new graph is found, 
This procedure will terminate if there is a finite number of 
6-LR graphs, but will fail to do so if there is an infinite 
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number of them. 

If there is a finite number of states, then it is possible 

to apply the same algorithm used for REACHABILITY to 

solve C-REACHABILITY very efficiently. Unfortunately, a 

single LR graph may be replaced by several 6-LR graphs, 
which may lead to a substantially larger number of states. 
The number of states needed can be reduced in a way 
similar to that of the previous section by using 641 LR 

graphs instead of 6-LR graphs. In addition, one can 
observe that the costs associated with the 6-LR graphs 
(and the S-U1 LR graphs) are not used in solving C- 

REACHABILITY: they are used to compute the states but, 

after that, only the graph structure is used, without the cost 
information. Since two different &(UI) LR graphs may 
have the same structure, it is possible that two different 
states may be equivalent. The minimal number of states 

needed can be computed by a variation of the standard 
algorithm to minimize a bottom-up tree automaton which 
is, in turn, a variation of the minimization of a finite-state 

automaton. 

4. A Code Generator Generator 

We have implemented a code generator generator 

that works by solving C-REACHABILITY using BURS 
theory. The table generator implementation is stand-alone 
and emphasizes generating small tables, with no great 

effort spent in trying to generate them fast. It has been 
running since late 1986. The implementation is based on 
the theory presented in the previous two sections with 

some modifications. The 6-LR graphs are first generated 
using an extension of David Chase’s algorithm for 
bottom-up pattern matchers [Cha87]; then useless informa- 
tion is removed and 6-UI LR graphs are selected. Since 
optimal selection of s-U1 LR graphs is difficult, the selec- 
tion ‘is done by a process which starts from 6-LR graphs 
and attempts to make graphs identical by removing some 
alternatives, determining which nodes in the graphs are 
useless, removing them, and repeating the process. In our 
experiments, the number of states stabilizes in two or three 
iterations. 

The modified version of Chase’s algorithm generates 

a representation of the bottom-up tree automaton comput- 
ing the states (representing the S-U1 LR graphs) as a col- 

lection of “folded” tables, one for each nary operator, 
where identical n-I-hyperplanes have been found and 

shared. Our implementation accepts only 0, 1, and 2-ary 

operators. In the case of binary operators, the representa- 
tion is a table where identical rows and columns have been 
found; we call the l-dimensional arrays indicating identi- 

cal rows and columns, restrictors. We bit-encode the res- 
trictors and share them across different tables. 

The code generator uses the automaton tables and 
also a second set of tables that encodes each 8-UI LR 

graph; the costs are not stored since they are unused. This 
second set of tables is encoded using a technique similar to 
that in YACC [Joh78], by overlaying rows of information. 

The table generator uses a few simple heuristics to reduce 
the table size of these tables, see [Pe187] for details. 

A final modification from the theory of the previous 
section is that the problem that the code generator really 

wants solved is not C-REACHABILITY. Each rewrite rule of 
the rewrite system given to the table generator has, in addi- 
tion to a cost, a call to a semantic routine. What the code 

generator uses is not a rewrite sequence of minimum cost, 
but its associated sequence of semantic routine calls. We 

call this problem UCODE. The minimum number of states 
needed to solve UCODE can be found using a minimization 
method like the one mentioned in the previous section. 

The BURS code generator has been operative since 
early 1987, integrated into UW-CODEGEN [HeD87], a 

testbed for table-driven code generators developed by 
Robert Henry at the University of Washington. UW- 

CODEGEN does temporary and register management and 
includes the following code generators: 

GG A code generator based on Graham-Glanville tech- 
nology [GlG78]; 

BU A locally optimal code generator based on bottom- 
up pattern matching, manipulating states similar to 
LR graphs but with costs represented explicitly and 
computed with a dynamic programming algorithm; 
and 

TD A locally optimal code generator based on top-down 
pattern matching technology and manipulating costs 

explicitly with a dynamic programming algorithm. 
The trees in a state are listed explicitly. 

TD and BU were implemented by Damron and Henry, 
respectively, and were developed independently of the 
BURS-based code generator presented in this paper. The 
theory behind TD is similar to that used in twin [AGT86] 
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and in the top-down algorithms of Weisgerber/Wilhelm 

[WeW86]. The theory behind BU is related to BURS and to 
the bottom-up algorithm described by 

Weisgerber/Wilhelm [WeW86]. The big advantage of the 
LJW-CODEGEN testbed is that it facilitates meaningful code 

generator comparisons. 

We have tested the table constructor with several 
machine descriptions that were developed at UC Berkeley 
as part of the CODEGEN effort [AGH84]. This paper only 
reports on two machine descriptions that were made avail- 
able by Robert Henry: a Vax-11 description and a 
Motorola MC68000 description; for technical reasons, 

they are the only ones that we can use to generate code 
with UW-CODEGEN. The machine descriptions used are 

machine grammars without generic operator rewrite rules. 
The cost assigned to each rule is a 4-tuple indicating the 
numbers of memory bytes referenced, instructions issued, 

side effects issued, and operands in the instruction frag- 
ment represented by the rule. The tuple leads to 6 

“natural” costs: a constant cost, each of the 4 elements 
considered separately, and a lexicographic ordering on the 

full tuple. We will denote the 6 costs as K, M, I, S, 0, and 
L, respectively. The GG implementation disregards the 
cost information; the BU and TD implementations always 
use full lexicographic cost. BURS currently can use any of 
the 6 costs except L. 

The two principal measures of interest are table size 
and code generation speed, Table size is related to the 

number of states needed to solve UCODE, which depends 
on the cost function used and the method of state construc- 
tion. Figure 4.1 shows, for the two machine descriptions 
mentioned, the number of 6-LR graphs that are generated 
initially and the final number of states needed. The table 
shows the big variation in the number of states needed: the 
constant cost function (K) requires few states while the 

function that counts the memory references (M) requires 
many. The lexicographic cost would produce a larger 
number of states but, due to implementation restrictions in 
our exploratory implementation of the table generator, the 
tables cannot be generated. An approximation to the lexi- 
cographic cost produces tables slightly larger than the larg- 

est using a single component. The table also shows that in 
this example our heuristic to reduce the number of states 

obtains a significant reduction; we have obtained larger 
reductions with other machine descriptions. 

I I VW11 IMc-68000 
costs ‘g. final orig final 
Constant K ;2 95 190’167 
Mem. Refs M 1733 652 1089 576 
Instructions I 417 270 190 167 

/ Operands 0 1 I82 95 1537 374 
SideEffects S 417 268 213 194 

Number of BURS States 

Figure 4.1 

Henry and Damron report in detail on the table sizes 
for GG, BU, and TD [HeD87]. Figure 4.2 shows the table 

size for BURS for the different cost metrics. For each 
machine description and each cost function there are three 

numbers, listed from the top: the space used to represent 
the bottom-up tree automaton, the space used to represent 
the states themselves, i.e. their internal nodes and edges, 

and the total space. Note that the major variation is in the 
size of the bottom-up tree automaton. The bottom of the 
figure shows the influence of the representation of the res- 
trictors on the table size. The three columns indicate the 
restrictor size, the automaton size, and the total table size. 

Sharing identical restrictors is a very simple optimization 

and a big win; bit-encoding the restrictors dloes not seem to 

significantly slow the UCODE solver. 

Figure 4.3 compares the table sizes for several code 
generators in UW-CODEGEN. The values for BU, TD, and GG 

are taken from [HeD87]; the line labelled “states” is the 

space for the patterns, replacements, costs, and actions; the 
line labelled “fsa” corresponds to different notions of 
automaton. The UW-CODEGEN values are estimated from 

bar charts3. The values for BLJRS are for the M cost func- 
tion, which is the one requiring the largest tables. BLRS-I 

and BURS-f represent different versions of the table genera- 
tor: BURS-I is an approximation to L, (note that M is the 

first component), while BURLS-f uses M as cost function but 
tries to generate the tables fast rather than spending too 
much time generating small tables. Again there are three 

numbers per combination of machine description and cost 
function. They are the size of the automaton, the states, 

304 



Automaton, States, and Total Table Size 
K M I S 0 

Vax 
B-fsa 1722 26388 5760 6390 1722 
States 7698 15980 12320 12294 7682 
Total 9420 42368 18080 18684 9404 
Mot 
B-fsa 3652 22500 3652 4542 10320 
States 12588 20788 12588 13978 18692 
Total 16240 43288 16240 18520 29012 

Restrictor Encoding and Size 
(Vax using M) 

Mode Restrictor B-fsa Total 
No Share 77604 94424 110404 
Share 30888 47708 63688 
No share/Bit 18564 34810 50790 
Share/Bit 10142 26388 42368 

Table Sizes (bytes) 

Figure 4.2 

and their sum. Chase’s technology would provide a sub- 
stantially smaller B-fsa than the one used in BU. Accord- 

ing to Chase [Cha87], a reasonable value is in the vicinity 
of 23K; this would place the total table size very close to 
GG and BUFLS. 

GG TD BU IBURS BURS-1 BURS-1 
Vax 
Fsa 33.7 20.1 56.4 I 26.3 29.1 46.9 
States 8.8 18.2 18.6 15.9 15.8 18.5 
Total 142.5 38.3 75.01 42.3 44.9 65.5 
Mot 

33.0 18.6 50.2 I 22.5 26.9 35.3 
8.7 18.2 18.2 20.7 22.3 23.5 

Fsa 
States 
Total 141.7 36.8 68.41 43.3 49.3 58.8 

l- 

We use the same set of 6 programs used in [HeD87] 
to measure the performance of the code generator. These 

are C programs ranging in size from 100 to 1200 lines. 
Figure 4.4 shows, for each target, three values averaged 

over the 6 programs: the time spent solving UCODE normal- 
ized to GG, the percentage of code generation time spent 
solving UCODE, and the total code generation time normal- 

ized to UCODE. (A11 measurements were made on a Vax 
8600; only “user” time is considered). 

BURS is substantially faster than TD and BU because 

manipulating costs is expensive: they have to be com- 
bined, computed, and compared. It is more surprising that 

BURS is even faster than GG. A careful comparison of the 
respective portions of code implementing UCODE showed 

several causes for the difference in speeds. Probably the 
biggest contribution lies in the representation of the auto- 

maton: GG uses a tight encoding and a cache, which loses 
in speed against the more efficient table folding. In addi- 

tion, GG uses the normal technique (for parsing technol- 
ogy) of default transitions, which is slower than a simple 

lookup. Another contributor is that the relationship 
between the parser used in GG and the traversal of the tree 
providing the prefix traversal is not as simple as the tree 
traversal used by BURS. Finally, GG stores states and other 
information in a stack (the parse stack), while BURS uses 
(pre-allocated) slots associated with the tree; the stack 
requires extra checks for overtlow and the like. GG also 
uses a few more indirect routine calls than BURS. Despite 
the difficulty in comparing the methods in the presence of 
these differences in implementation strategy, we think that 

the evidence shows that BLJRS is, at least, comparable in 
speed to GG. To reduce effects caused by compilation of 
the algorithms, the values shown in Figure 4.4 correspond 

to GG compiled using the peephole optimizer, and BLJRS 

without it; the values are more favorable to BIJRS other- 
wise. 

Table Sizes (Kbytes) 

Figure 4.3 

3 We are uncertain of the accuracy of some of these numbers. 
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Vax GG TD BU BURS 
UCODE(rel.) 1.00 3.60 3.10 0.63 
% in UCODE 14.04 32.97 31.13 8.74 
Total CG 1.00 1.34 1.27 0.93 
Mot GG TD BU BURS 
UCODE (rel.) 1.00 3.82 3.22 0.55 
% in UCODE 16.61 40.77 37.29 8.81 
Total CG 1.00 1.45 1.36 0.94 

Code Generation Time 

Figure 4.4 

The quality of the generated code is measured stati- 
cally using the same metric that we have discussed earlier: 

the 4-tuple of values. Figure 4.5 shows the average cost, 
normalized to 100 for BU and TD. BU and TD have a small 

error that shows very infrequently and which causes some 
normalized values to be under 100.00. The quality of the 
code generated by BURS-1 is quite close to the lexico- 

graphic optimum. 

The time spent generating the BURS tables depends 
on the cost function and on the effort spent trying to gen- 
erate small tables. The top of Figure 4.6 shows times in 
seconds on a Sun-3/75 with 12 MB of main memory and 

no local disk. The bottom of the figure reproduces infor- 

mation from [HeD87] comparing the performance of the 
different table generators in IJW-CODEGEN; values are in 

seconds on a DEC Microvax-II. There are two columns 
for BU: the first column corresponds to the generation of 
tables without any effort to use cost information at table- 
generation time to reduce the number of alternatives to 
consider at code generation time; the second column 
corresponds to the tables used in OUT other comparisons, in 

which some elimination of alternatives is done based on 
costs. We want to emphasize that the current implementa- 

tion of the table generator for BURS was written with no 
special effort to generate tables fast. 

5. Other Related Work and Conclusions 

The idea behind the algorithm for RB4CHABILITY has 

been around for a while; maybe the earliest references are 
the dynamic programming algorithms of [AUJ77] and 

[Rip77]. BURS theory differs from these early proposals 
in that it is based on rewrite systems, it. can handle a larger 
class of rewrite systems, and it emphasizes the computabil- 

ity of the states by a bottom-up finite state automaton. Our 
theory was developed independently of the work of 

Mot IM I s 0 
GG 1102.43 100.00 103.28 98.05 

BURS 132.6 2361.3 398.8 368.4 148.1 
BURS-f 94.1 921.3 2U7.7 196.5 111.7 

Mot K M I S 0 

BURS-f 172.4 1757.9 170.7 194.6 518.9 

BURN 216.7 19984.3 217.6 236.4 1158.3 

(100 is optimal) 

Figure 4.5 
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Weisgerber/Wilhelm [WeW86], and Henry/Damron 
[HeD87]; it differs from the work of those researchers in 
its ability to encode cost information into the 6-BURS 

states and in handling a larger class of rewrite systems. 
Our work on optimal code generation yields results similar 
to those claimed by Hatcher and Christopher [HaC] 

[Hat851 but while the Hatcher/Christopher technique 
requires modifying some parts of the machine description 
to retain optimality, the approach described here will 
always be optimal, provided that a finite number of states 
exist. We suspect that the Hatcher/Christopher technique 

can be explained as a simplification of BURS-theory. 

Probably the best-known implementation for locally 
optimal code generation is the one used for twig [AGT86]. 

The theory behind that implementation is quite similar to 
the one used in TD with two differences. The first differ- 
ence is that the implementation of twig reported in 

[AGT86] does more computation at solving time than TD. 

Thus, twig has smaller tables and smaller table generation 

times, but larger code generation times. The second differ- 
ence is in the phase organization. Both twig and uw- 

CODEGEN perform two types of transformations: some 
transformations are for normalization and simplification, 
like the mapping of short-circuit booleans into compare 

and jumps, the others are the ones discussed in this paper 
and correspond to the machine instructions. Twig deals 
with both types of transformations together in a single 

mechanism, but the interaction of the machine rewrite 
applications with the simplification routines allows looping 

and non-optimal transformations to occur. UW-CODEGEN 

first performs the normalization and simplification and 

then the machine rewrite applications, but allows the 
simplification routines to query the machine description to 

make decisions. The current implementation of the 
simplification routines in UW-CODEGEN is pattern-driven 

and a bit inefficient. A new version recently written by 
Henry [Hen871 is faster and seems easier to program. 
Although we don’t have specific measures comparing our 
approach and fwig, it is safe to say that BURS-based code 
generation is substantially faster than one based on twig. 
The results of Henry/Damron [HeD87] also suggest that, if 
one were to model the code generation in a way similar to 

the one used in twig, a bottom-up pattern matcher could be 
faster than the currently used top-down pattern matcher; 

the work of Chase [Cha87] and our own shows that the 
space penalty is manageable. 

We have shown the potential for BURS-based fast 
optimal code generation for expression trees. The main 
advantage of optimality is that as long as the machine 
description is accurate, there is no need for the machine 

description writer to understand the theory used to gen- 
erate the code generator. A non-optimal technique like 
GG generates optimal code for a uniform instruction set 
such as those found on RISC machines [Pat85]. It can 

generate quite good code otherwise (see Figure 4.5) if the 
machine description is carefully written [Hen84]. 

REACHABILITY problems can be used in several other 
applications. Projection Systems [Pe187] are a descriptive 

mechanism for tree transformation that is similar to tree- 
to-tree grammars [KMP84], and can be used, for instance, 

to describe the mapping between parse trees and abstract 
syntax trees. Forward and backward applications of pro- 
jection systems can be reduced to REACHABILITY prob- 

lems. X-patterns [Pel87] are an extension of traditional 
patterns to describe non-local conditions. Pattern match- 

ing of X-patterns can be reduced to a REACHABILITY prob- 

lem. 

Our current research in the area includes exploring 

faster algorithms for the table generation, and testing of 
k-BURS for any recognizable input set. We are also 

working in other applications of REACHABILITY. 
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