
13. Gull, W.E., and Jenkins, M.A. Recursive data structures and
related control mechanisms in APL. Proc. APL76, Ottawa, Canada,
1976, pp. 201-210.
14. Haegi, H.R. Some questions and thoughts concerning arrays of
arrays. Proc. SEAS-APL Working Committee, Jan. 1974.
15. Haegi, H.R. The extension of APL to treelike data structures. APL
Quote Quad (ACM) 7, 2 (1976), 8-18.
16. Hoare, C.A.R. Recursive data structures. Int. J. Comptrs. Syst.
Sci. 4, 2 (1975), 105-132.
17. Iverson, K.E. A Programming Language. Wiley, New York, 1962.
18. Landin, P.J. The next 700 programming languages. Comm. ACM
9, 3 (March 1966), 157-164.
19. McCarthy, J. LISP 1.5 Programmer's Manual. M.I.T.,
Cambridge, Mass., 1962.
20. Mercer, R. Extensions of APL to include arrays of arrays: A
comparison of three systems. Tech. Rep. Comptng. Ctr., U. of Mass.,
Amherst, Mass., 1976.
21. More, T. An extension of APL tO a theory of arrays. Abstract,
1968. Reprinted in Tech. Rep. 320-3016, IBM Scientific Ctr.,
Philadelphia, Pa., 1973.
22. More, T. An extension of APL to a theory of arrays. Class notes,
Yale U., New Haven, Conn., 1970.
23. More, T. Axioms and theorems for a theory of arrays. IBM J.
Res. Develop. 17, 3 (1973), 135-175.
24. More, T. Notes on the development of a theory of arrays. Tech.
Rep. 320-3016, IBM Scientific Ctr., Philadelphia, Pa., 1973.
25. More, T. Notes on the axioms for a theory of arrays. Tech. Rep.
320-3017, IBM Scientific Ctr., Philadelphia, Pa., 1973.
26. More, T. A theory of arrays with applications to databases. Rep.
G320-2106, IBM Scientific Ctr., Cambridge, Mass., 1975.
27. More, T. Types and prototypes in a theory of arrays. Rep.
320-2112, IBM Scientific Ctr., Cambridge, Mass., 1976.
28. More, T. On the composition of array-theoretic operations. Rep.
320-2113, IBM Scientific Ctr., Cambridge, Mass., 1976.
29. Murray, R.C. On tree structured extensions to the APL language.
Proc. APL Congress 73, Copenhagen, Denmark, 1973, pp. 333-338.
30. Perlis, A.J. Steps towards an APL compiler--updated. Res. Rep.
24, Comptr. Sci. Dept. Yale U., New Haven, Conn., 1975.
31. Quine, W.V. Unification of universes in set theory. J. Symbolic
Logic 21 (1956), 267-279.
32. Robichaud, L. Trees in APL. Presentation at Queen's APL
Workshop, Queen's U., Kingston, Ontario, 1976.
33. Seeds, G. Private communication, 1976.
34. Smith, R.A. The semantics of split were suggested by Bob Smith
at the Queen's APL Workshop, Queen's University, Kingston,
Ontario, May 1976. One of the referees of the first draft made a
similar suggestion.
35. Tennent, R.D. Language design methodologies based on
semantic principles. Acta Informatica 8, (1977), 97-112.
36. Vasseur, J.P. Extensions of APL operators to tree-like data
structures. Proc. APL Congress 73, Copenhagen, Denmark, 1973, pp.
457~t64.
37. Wirth, N. On the design of programming languages. Inform.
Processing 74, J.L. Rosenfeld, Ed., North-Holland Pub. Co.,
Amsterdam, 1974, pp. 386-393.

Programming J.J. Homing
Languages Editor

Global Optimization
by Suppression of
Partial Redundancies
E. M o r e l a n d C. R e n v o i s e
CI I H o n e y w e l l Bull

The elimination of redundant computations and the
moving of invariant computations out of loops are often
done separately, with invariants moved outward loop by
loop. We propose to do both at once and to move each
expression directly to the entrance of the outermost
loop in which it is invariant. This is done by solving a
more general problem, i.e. the elimination of
computations performed twice on a given execution
path. Such computations are termed partially
redundant. Moreover, the algorithm does not require
any graphical information or restrictions on the shape
of the program graph. Testing this algorithm has shown
that its execution cost is nearly linear with the size of
the program, and that it leads to a smaller optimizer
that requires less execution time.

Key Words and Phrases: optimizer, optimization,
compiler, compilation, redundancy elimination, invariant
computation elimination, partial redundancy, data flow
analysis, Boolean systems

CR Categories: 4.12, 5.21, 5.24

Introduction

The evolution towards high-level programming lan-
guages, together with the growing emphasis on reliability
and readability, has caused an increase in the distance
between the source text and the object code of programs.
Since efficiency remains an important goal, it becomes
desirable to increase the power of the transformations

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish,-requires a fee and/or specific permission.

This work was supported by the Direction des Recherches et
Moyens d'Essais of France.

Authors' address: Compagnie Internationale pour L'informatique
Honeywell Bull, Louveciennes 78430, France.
© 1979 ACM 0001-0782/79/0200-0096 $00.75.

96 Communications February 1979
of Volume 22
the ACM Number 2

performed by compilers, and in particular, to apply
global optimization techniques.

This paper concentrates on the techniques for redun-
dancy elimination and the removal of loop invariants.
These transformations decrease the number of run-time
computations performed by programs. They have been
introduced by Allen and Cocke [2, 4] who gave a for-
mulation based on the notion of intervals. A simpler
formulation of these problems, based on the direct res-
olution of Boolean equations, has been developed by
several authors [6, 9, 12].

In the first part of this paper, we present the Boolean
approach to global optimization. In the second part, we
show that redundancy elimination and loop-invariants
removal are aspects of a larger problem, i.e. that of the
suppression of partial redundancy. We present an algo-
rithm for their global suppression. This algorithm can be
applied to the whole program without any restrictions
on the shape of its flowgraph.

2. Elimination of Redundancies and Removal of
lnvariants

The optimizations described in this paper are applied
to a program representation obtained by decomposition
of the source text into elementary commands associated
with a directed graph. All assignment statements of the
source text are split into evaluation of the right-hand
side, followed by assignment of the result to the left-
hand side. Moreover, if necessary, expressions are split
into binary operations.

For instance, the source text instruction:

"A . - - -A+B+C; ' "

results in two expression computations:

eI~- - -A+B
e2 ~--- el + C

and one assignment:

A .---e2.

The nodes of the graph represent the basic blocks. A
basic block is a maximal sequence of elementary com-
mands with a single entry point and a single exit point.
There is an arc in the graph from the exit point of i to
the entry point of j if the block j can be executed
immediately after the block i. The set of predecessors
and successors of block i are denoted Pred(i) and Succ(i),
respectively. The set of all the blocks of the program is
denoted B. Paths are taken to be sequences of arcs.

There is a designated entry block and all blocks can
be reached from this block. The nodes for which Succ(i)
is an empty set are the exit blocks of the program.

Although the notion of loop is not important for our
algorithm, we introduce some definitions derived from
[11] and [1] in order to simplify certain points of the
explanation.

97

Definition 1. A loop L is a strongly connected set of
blocks, i.e.: Vi, j ~ L, there is a path in L from i toj .

Definition 2. A block i E L is an entry block of L if:
3j E Pred(i) ~ EL.

Definition 3. A block i E L is a repeat block of L if:
3j E Succ(i)IJ is an entry block of L.

Definition 4. A backwards edge is an edge (i, j) such
that i is a repeat block of L and j is an entry block of L.

Definition 5. A block i is an initialization block of L
if: i¢E L, and 3j E Succ(i) I/is an entry block of L. If the
block i has just one successor, then it is a satisfactory
initialization block. Otherwise, a new empty block k is
inserted on the edge (i,j) and k becomes the initialization
block. In a goto-free language, there is a unique initiali-
zation block for every loop.

The optimizations considered involve suppressing or
moving some expression computations. In order to de-
termine the feasibility of these transformations, one must
identify the mutual interactions of commands located in
different blocks. The effect of these interactions can be
represented by Boolean properties characterizing each
expression with respect to each block.

2.1 Boolean Properties Associated with the Expressions
For each expression and each block, Boolean prop-

erties are defined. Some of these properties depend only
on the commands of a given block and are termed local.
Other properties depend on interactions of different
blocks and are termed global.

2.1.1 Local Properties. The local properties are
transparency, availability, and anticipability.

Transparency: TRANSP. An expression is said to be
"transparent" in a block i if its operands are not modified
by the execution of the commands of the block i.

Local Availability: COMP. An expression is said to
be "locally available" in a block i if there is at least one
computation of the expression in the block i, and if the
commands appearing in the block after the last compu-
tation of the expression do not modify its operands.

Local Anticipability: ANTLOC. An expression may
be locally anticipated in a block i if there is at least one
computation of the expression in the block i, and if the
commands appearing in the block before the first com-
putation of the expression do not modify its operands.

Local availability of an expression grants that the last
computation of this expression in the block will deliver
the same result as would a computation of this expression
placed at the end of the block. Similarly, local anticipa-
bility of an expression grants that the first computation
of this expression in the block will deliver the same result
as would a computation of this expression placed at the
beginning of the block.

2.1.2 Global Properties. The meaning of the previous
properties can be extended to a complete program. The
availability of an expression at a given point implies that
a computation of this expression placed at this point
would deliver the same result as the last computation of

Communications February 1979
of Volume 22
the ACM Number 2

this expression made before this point. Similarly, the
anticipability of an expression at a given point implies
that a computation of this expression placed at this point
would deliver the same result as the first computation of
this expression made after this point.

The partial availability of an expression at a given
point is a weaker property. It means that there is at least
one path P leading from the entry point of the program
to the point considered, and that computation of the
expression inserted at this point would give the same
result as the last computation of the expression made on
the path P.

These properties qualify program points and are
defined whether the expression occurs on the point or
not. In practice, we will concentrate on points which are
block entries or exits.

For the sake of clarity, only one expression will be
considered and subscripts will be used to index the set B.
We will use AVINi, ANTINi, PAVINi to denote, respec-
tively, the global availability, anticipability, and partial
availability of the expression on entry of the block i;
similarly, AVOUTi, ANTOUTi, PAVOUTi will be used
to denote the same properties on exit of the block i. The
relations between global and local properties for all
blocks of the graph are expressed in the form of systems
of Boolean equations. Boolean conjunctions are denoted
• and l-I; similarly, + and ~ are used for boolean dis-
junctions. The operator for Boolean negation is denoted
9. In a Boolean expression, " + " has a weaker precedence
than ".".

Availability System. An expression is available on
entry to a block if it is available on exit from each
predecessor of the block. An expression is available on
exit from a block if it is locally available or if it is
available on entry of the block and transparent in this
block:

dundancy elimination which is based on a partitioning
of the program graph into subgraphs called intervals [2,
4, 5, 14].

An iterative approach to global-flow analysis which
is easier to implement has also been developed by several
authors [6, 9, 12]. Careful comparisons of the iterative
approach with interval analysis appear both in [6] and
[8]. Although there exist simple graph families such that
the number of bit-vector operations is greater for the
iterative approach than for the interval analysis [8],
strong arguments in favor of iteration emerge from these
comparisons•

An evaluation of the iterative approach applied to a
study of 50 Fortran programs [10] has shown that the
average upper bound of the number of iterations for
solving the Boolean systems is 4.75 [6]. Our practical
experience is that for well-structured programs written
in the language LIS [7], numbering the nodes as they are
created during the compilation process causes the num-
ber of iterations to be small (three in most cases).

The iterative process can give several solutions, de-
pending on the initialization of the unknowns. For the
Boolean systems presented earlier, the wanted solution
is the largest solution for the systems involving the
conjunction operator 1-[(availability and anticipability).
The initialization value is then TRUE for all the un-
knowns. For the system of partial availability involving
the disjunction operator ~, the wanted solution is the
smallest solution and the initialization value is FALSE
for all the unknowns [6, 12].

In practice, it is possible to solve simultaneously the
systems associated with 32 different expressions on a
computer with words of 32 bits. Consequently, the time
required to solve the Boolean systems is only a small
fraction of the time required by the full optimization
process.

FALSE if i is the entry block]

AVINi = L ~ f l d . AVOUT J otherwise]

AVOUTi =COMPi + TRANSPi. AVINI.

Anticipability System. An expression may be antici-
pated on exit of a block if it can be anticipated on entry
of each successor of the block:

False if i is an exit block -]

ANTOUT, = I-I ANTINj otherwise J j~Succ(i)

ANTINI = ANTLOCi + TRANSPi. ANTOUTi.

Partial Availability System. An expression is partially
available on entry of a block if it is partially available on
exit of at least one predecessor of the block:

[F A L S E if i is the entry block]

PAVIN, = ~ PAVOUT i otherwise
j~Pred(i)

PAVOUT, = COMPi + TRANSPi. PAVINI.

2.2 Resolution of Boolean Systems
Allen and Cocke have introduced a method for re-

2.3 Application to Redundant Expression Elimination
The construction of the local properties is made by

a simple scan of every block. During this scan, the locally
redundant computations are eliminated. It is possible to
eliminate the first computation of an expression in a
block i if it can be locally anticipated and is available on
entry to the block i, i.e. if ANTLOCi . AVINi = TRUE.

2.4 Application to Code Motion
Loop optimizations and suppression of certain partial

redundancies involve moving computations from one
point of the program to another. A computation of an
expression can only be placed at a point where it may be
anticipated since both safety and efficiency do not permit
the introduction of a computation on a path where it was
not present. A clear discussion of these safety and effi-
ciency rules for code motion appears in [3, 14].

The removal of an invariant expression from a loop
is only possible if this expression may be anticipated at
the entry point of the loop, and if it is transparent in all
the blocks of the loop. In classical techniques, removal

98 Communications February 1979
of Volume 22
the ACM Number 2

Fig. 1.

A*la

of loop invariants is performed loop by loop, from the
innermost to the outermost.

Another form of loop optimization by code motion
appears in [3] and [141 as "motion of nonloop constants."
The notion of partial redundancy which embodies these
cases has been presented in [12].

A computation of an expression is partially redun-
dant in a block i if it may be locally anticipated and is
partially available on entry to the block i, i.e. if
ANTLOC~. PAVINi = TRUE. An optimization can be
performed by moving the computation into predecessor
blocks of i where the expression can be anticipated.

The computation of A + B in node 3 of Figure 1 is
partially redundant. This computation can be safely
moved on exit of node 1 since the expression A + B can
be anticipated on exit of this node. Then, in Figure 2,
the path (2, 3) contains one computation of A + B
instead of two as in Figure 1. The path (1, 3) always
contains one computation.

An algorithm that globally performed this optimiza-
tion on a block by block and expression by expression
basis was tested in an earlier version of the LIS optimizer
[12]. This algorithm being too costly, a new nongraphical
algorithm handhng all expressions at once was presented
in [13]. The algorithm proposed in Section 3 of this paper
is based on a generalization of the concept of partially
redundant computation.

3. Global Utilization of Partial Redundancy
Elimination

The redundant computations and the invariant com-
putations of loops can be seen as particular cases of
partially redundant computations.

Clearly, a redundant computation is also a partially
redundant computation. Similarly, it can be shown that
a loop-invariant computation is also a partially redun-
dant computation.

Indeed, if a computation of an expression is invariant
in a loop, this expression is transparent in all the blocks
of the loop. Let i be any block of the loop containing a
computation of the expression; since TRANSPi =
TRUE, then ANTLOCi = COMP~ - TRUE, and then
PAVOUT~ = TRUE. There exists a path P in the loop
from i to i and all the blocks of P are transparent for the
expression. The partial availabihty on exit of i then
creates through P a partial availability on entry of i, and
thus ANTLOCi . PAVIN~ = TRUE.

An algorithm which suppresses the partial redundan-
cies of a program also eliminates the redundancies and
the invariant computations of loops.

99

Fig. 2.

3.1 Algorithm for Suppression of Partial
Redundancies

As in [3], the principle of the algorithm is to introduce
new computations of the expression at points of the
program chosen in such a way that the partially redun-
dant computations become redundant and can hence be
deleted.

The steps of the algorithm are as follows:

(a) Resolution of the Boolean systems for availability,
anticipability, and partial availability.

(b) Determination of predecessors of the blocks con-
taining the partial redundancies and where a new
computation may be introduced. This involves the
computation of the Boolean properties PPIN and
PPOUT (Placement Possible on Entry and Place-
ment Possible on Exit).

(c) Determination of a subset of these blocks on exit of
which a computation must be inserted. These
blocks satisfy the Boolean property INSERT.

(d) Insertion of new computations at the exit of the
blocks satisfying INSERT = TRUE and suppres-
sion of the partially redundant computations which
are now redundant.

3.1.1 Determination of PPIN and PPOUT. For the
sake of clarity, an artificial constant term denoted
CONST is introduced in the definition of PPIN .
CONSTi is defined for every block i as

ANTINi. [PAVINi + (~ANTLOCi). TRANSPI].

This constant term is TRUE for blocks containing a
partial redundancy and for empty blocks where the
expression can be anticipated. (A block is "empty" for
an expression if it contains no computation nor modifi-
cation of the expression.)

For every block i of the program, PPIN/and PPOUTi
are then computed by:

FALSE if i is the entry block, otherwise: q
/

PPIN, =]CONSTi.]-I , (PPOUTj+ .AVOUTj). (ANTLOC, I

L + TRAI('/SP~'.PPOUTi) J
PPOUT~ = FALSE if i is an exit block, otherwise: II PPINk.

kESuec(1)

This is a system of Boolean equations involving the
conjunction operator 1-[- The desired solution is the
largest solution, and thus it is solved by the direct itera-
tive method, starting with all TRUE's for the unknowns.

3.1.2 Determination of INSERT. For each block i of
the program, INSERTi is computed by:

INSERT/= PPOUTi. -'aAVOUTi . ("nPPIN/+ ~TRANSP,).

Communication February 1979
of Volume 22
the ACM Number 2

3.1.3 Insertion and Suppression of Computations. At
the end of the algorithm, new computations are inserted
on exit o f the nodes satisfying I N S E R T = TRUE. Then
the computations satisfying A N T L O C . PPIN = T R U E
are redundant and may be deleted.

3.2 Proof of the Effectiveness of the Algorithm
The set of the deleted computations (satisfying

A N T L O C . PPIN = TRUE) is only a subset of the set
of the partially redundant computations (satisfying
A N T L O C . PAVIN -- TRUE). We must then prove that
the transformation is nevertheless correct, and profitable.
Theorem 1 proves that the deleted computations are
redundant after the insertion of the new computations.
In Theorem 2, we prove that none of the paths of the
graph have been penalized. Conversely, all paths going
through a node which contained a deleted computat ion
have been optimized.

LEMMA 1. After insertion of the new computations on
exit of the blocks satisfying I N S E R T = TRUE, the new
value of the availability on entry of any block for which
PPIN~ = TRUE will be AVIN' i = TRUE.

Preliminary Definition. A path going from the exit of
a block i to the entry of a block j (denoted]i, jD is an
"empty path" for an expression if it does not contain any
computat ion of the expression nor modification of its
operands. The local Boolean properties for the blocks
belonging to an empty path are TRANSP = T R U E and
COMP = A N T L O C = FALSE.

The blocks i and j do not belong to]i, j[. The path
]i,j[is a single edge i f j E Succ(i) and it then contains no
blocks.

PROOF (Lemma 1). Let i be a block satisfying PPINi
= T R U E and let us assume that AVIN~ = FALSE.. This
can occur only if there exists:

(1) a block k such that AVOUTk = INSERTk =
TRANSPk = FALSE (or if k is the entry block
AVOUTk = INSERTk = FALSE);

(2) an empty path]k, i[such that INSERTm = FALSE
for any block m belonging to]k, i[.

Intuitively, no computat ion already exists or will be
inserted on the path]k, i[; then AVOUT~ = FALSE and
this influence propagates through]k, i[, causing
A V O U T ~ = FALSE for every block m belonging to
]k, z~ and then, AVIN~ = FALSE. AVOUTk = INSERTk
= TRANSPk = FALSE implies PPOUTk = FALSE. (I f
k is the entry block, PPINk = FALSE by definition and
then AVOUTk = INSERTk = PPINk = FALSE implies
PPOUTk = FALSE.)

Let j be the successor of k in]k, i[, PPOUTk =
AVOUTk = FALSE implies P P I N / = FALSE. I f j = i,
we are led to a contradiction on the value of PPINi else,
PPINj = AVOUT/ = INSERT/ = FALSE implies
PPOUTj = FALSE. The same reasoning could then be
applied to the block j and, by following the path from k
towards i, we conclude that PPOUT = A V O U T =

FALSE for the predecessor of i in]k, i[. Then PPINi --
FALSE, and we are led to a contradiction.

THEOREM 1. After insertion of the'new computations at
the exit of the blocks where I N S E R T = TRUE, the first
computation of the expression in any block i satisfying
ANTLOCi . PPINi becomes redundant.

PROOF. These partially redundant computations ob-
violasly satisfy PPINi = TRUE. According to Lemma l,
the new value of the availability is AVIN~ = TRUE.
Since the insertion of new computations cannot change
the value of ANTLOCi, we will have ANTLOCg. AVIN~
= T R U E and hence a redundancy.

LEMMA 2. Let i be a block satisfying INSERTi =
TRUE. Every path starting from the exit of i includes a
computation which will be deleted.

PROOF. INSERTg = T R U E implies PPOUT~ =
T R U E and then, ANTINj = T R U E for every j E
Succ(0. Hence there is a computat ion on every path
starting from the exit of i. It remains to be proved that
these computat ions will be deleted.

L e t j be a block containing one of these computations
and let us assume that it will not be deleted. According
to Theorem 1, this implies A N T L O C j . PPINj = FALSE
and since ANTLOCj = TRUE, PPINj = FALSE. Since
the computat ion located i n j has created the anticipability
of the expression on exit of i, there exists an empty path
]i,j[.

PPINj -- FALSE implies P P O U T = FALSE for every
predecessor block o f j . Let k be the predecessor o f j in
]i, j[. I f k = i, we are led to a contradiction on the value
of PPOUTi, else PPOUTk = FALSE, TRANSPh =
TRUE, and ANTLOCk = FALSE implies PPINk =
FALSE. The same reasoning could then be applied to
the block k and by following]i, j [in the reverse order,
we conclude that PPIN = FALSE for the successor of i
in]i, j[. Then PPOUTi = FALSE, and we are led to a
contradiction.

LEMMA 3. Let i be a block satisfying INSERTi =
TRUE. The paths starting from the exit of i cannot
encounter another block satisfying I N S E R T = TRUE
before encountering a block satisfying A N T L O C . PPIN
= TRUE.

PROOF. According to Lemma 2, every path starting
from the exit of i encounters a block satisfying
A N T L O C . PPIN = T R U E and this path is an empty
path. Let j be one of these blocks and]i, j [be the empty
path.

Let k be a block of]i, j [such that INSERTk =
TRUE. Since INSERTh = PPOUTk . ~AVOUTk .
(--nPPINk + -nTRANSPk), INSERTk -- T R U E and
TRANSPk = T R U E imply PPINk = FALSE.

The proof of Lemma 2 shows that the value PPINj
= FALSE of a given b lock j propagates upwards through
an empty path]i, j [causing PPIN = FALSE for all the
blocks of this path and finally PPOUTg = FALSE.

In the Lemma 3, PPINk = FALSE causes PPOUT~
= FALSE through]i, k[. This implies INSERT~ =
FALSE and we are led to a contradiction.

100 Communications February 1979
of Volume 22
the ACM Number 2

Fig. 3. Initial program.

a

THEOREM 2. At the end of the transformation, no path
of the graph contains more computations of the expression
than it contained before.

PROOF. This is clear from Lemmas 2 and 3.

3.3 Application of the Algorithm to an Example
In this example (see Figures 3 and 4), an expression

a + b is computed in blocks 6, 7, 8, and 9. One of its
operands is modified in block 4. The computation of the
block 7 is invariant in the loop 5-7. The computation of
the block 9 is redundant. The computations of the blocks
6 and 8 are partially redundant. For the sake of clarity,
the correct initialization blocks of the loops have not
been introduced.

Local Boolean Properties.

ANTLOC is TRUE for nodes 6, 7, 8, 9; FALSE elsewhere.
COMP is TRUE for nodes 6, 7, 8, 9; FALSE elsewhere.
TRANSP is FALSE for node 4; TRUE elsewhere.

Global Boolean Properties (obtained by resolution of
Boolean systems).

ANTIN is FALSE for nodes, 1, 2, 4; TRUE elsewhere.
AVOUT is TRUE for nodes 6, 7, 8, 9; FALSE elsewhere.
PAVIN is FALSE for node I; TRUE elsewhere.

Value of PPIN and PPO UT (obtained by resolution
of Boolean systems).

PPIN is FALSE for nodes 1, 2, 3, 4; TRUE elsewhere.
PPOUT is FALSE for nodes 1, 2, 8, 9; TRUE elsewhere.

Computation of INSERT.

INSERT is TRUE for nodes 3, 4; FALSE elsewhere.

Insertion and Suppression of Computations.

ANTLOC . PPIN is TRUE for nodes 6, 7, 8, 9; FALSE elsewhere.
Computations located in the blocks 6, 7, 8, and 9 are deleted. New
computations are inserted at the exit of the blocks 3 and 4.

3.4 Discussion of the Algorithm
Having proved in Section 3.2 that the transformation

101

Fig. 4. Optimized program.

a

a~b

does no harm, we can informally prove that this algo-
rithm results in a program at least as efficient as the one
produced by the successive application of the three class-
ical techniques it aims to replace. This involves showing
that if an optimization is performed by one of the
classical techniques, it is also performed by this new
algorithm.

(a) In the classical redundancy elimination, it is possi-
ble to eliminate the first computation of an expres-
sion in a block if A N T L O C . AVIN = TRUE. In
the new algorithm, these blocks always satisfy
A N T L O C . PPIN = TRUE, and the same compu-
tations are deleted.

(b) In the classical technique for invariants, a compu-
tation is removed from nested loops while it is both
invariant in a loop and can be anticipated on entry
of this loop. Let i be the initialization block of the
outermost loop where the computation is placed in
the classical treatment. In the new algorithm, the
block i always satisfies PPOUTi = TRUE. If
INSERT/= TRUE, a computation is introduced at
the exit of the block i. But it may happen that the
block i designated by the classical treatment is not
the optimal point at which a new computation
should be inserted since, for example, it may intro-
duce a new partial redundancy which could be
avoided. In this case, INSERTi is FALSE, and the
computation is anticipated higher in the program.
In any event, an invariant computation is removed
by the new algorithm from at least as many loops
as in the classical technique. Moreover, invariant
computations can be removed in the same way
from multientry loops although the classical tech-
nique is often limited to single-entry loops.

(c) The third classical technique which is subsumed by
the new algorithm is the elimination of the partial
redundancies which can still remain after having
suppressed the redundancies and the invariant com-

Communication February 1979
of Volume 22
the ACM Number 2

Fig. 5.

A / ~ A÷B

Fig. 6.

A ~ A,PB

Fig. 7.

A*B~)A~

Fig. 8.

putations of loops. Since the new algorithm is based
on this concept, it obviously performs this optimi-
zation.

The new algorithm can then replace these classical
techniques without any loss of effectiveness in the re-
suiting program. Nevertheless, some partially redundant
computations may sometimes not be deleted. This ap-
pears in two cases:

(1) The expression cannot be anticipated at the points
where new computations must be inserted. Doing
this transformation would break the safety rule
which prohibits the insertion of a computation on
a path where it was not present. It is then impossible
to suppress this partial redundancy without modify-
ing the graph structure. This aspect of the problem
is not discussed here.
The partial redundancy in node 4 of Figure 5
cannot be suppressed since the expression A + B
cannot be anticipated on exit of 1. It can only be
suppressed by inserting a new node 5 on the edge
(1, 4) with a computation ofA + B in it (see Figure
6).

(2) The partial redundancy can only be suppressed by

Fig. 9.

• A~

Fig. 10.

A ~ A ~ ~ A+B ~A~B
A~B

Fig. 11.

A,8

introducing new partial redundancies. This can be
done only if this transformation produces a run-
time optimization by moving computations from a
frequently used path to a less frequently used path.
Execution frequency measurements are needed to
guarantee the effectiveness of the transformation.
The partial redundancy in node 4 of Figure 7 could
be suppressed by inserting a computation of A + B
on exit of node 3. This transformation introduces a
new partial redundancy in node 5 (see Figure 8).
Although this transformation is "safe" since A + B
can be anticipated on exit of the node 3, it is not
effective if the node 3 is more frequently executed
than the node 4.

Moreover, this algorithm does not always allow the
insertion of the minimal number of computations since
it is sometimes possible to insert a computation in a
common successor of the blocks designated by the algo-
rithm.

The partial redundancy in node 5 of Figure 9 is
eliminated by the insertion of two computations in nodes
1 and 2 (see Figure 10). A better solution, from a code
size point of view, is the insertion of a unique computa-
tion in node 3 (see Figure 11). This can be achieved
globally by applying, after the time-saving algorithm of
this paper, a space-saving algorithm as "temporization"
[12] which moves several computations in a common
SUC~SSOr.

Communicat ion February 1979
of Volume 22
the ACM Number 2

3.5 Experimental Results
Comparison has been made between two global op-

timizers developed for the language LIS [7]: the first one,
described in [12] is using classical and independent tech-
niques while the second one is based on the present
algorithm. In both, the optimization phase is an optional
and separate pass of the compiler.

In the first optimizer, the successive application of
the classical techniques with the invariant moved out-
ward loop by loop is a 7200 line program. This part of
the optimizer can be reduced to 2500 lines if the new
algorithm is used. In this case, given a description of the
graph, a description of the expressions which can be
optimized, and the value of the local Boolean properties
for these expressions, the program which computes all
the global Boolean systems, deletes, and inserts compu-
tations is a 800 line program. Our own experience is that
it is considerably easier to implement than the classical
methods since it completely eliminates the graphical
problems for implicit loops, multientry loops, exit of
nested loops, and avoids moving the same computation
several times.

Although this technique does not have the control
flow analysis costs of the usual methods, it must solve
the additional data flow equations for PPIN and
PPOUT. A meaningful theoretical evaluation seems to
be very difficult and we have only experimentally mea-
sured the number of iterations for solving this system.
This experiment has been made on a compilation of
more than 50,000 fines of LIS programs with subroutines
of up to 420 blocks. PPIN being initialized for each block
with CONST (see Section 3.1.1) which is an upper value
of the solution, the observed number of iterations has
never exceeded three. Although it could be possible to
have a slightly greater value with other tests, it appears
that the maximum number of iterations is very small
when optimizing actual programs as opposed to theoret-
ical examples.

Experiments have shown that the time spent for
global optimization is reduced by 30 to 60 percent when
using the second optimizer. Moreover, the size of the
global optimizer has been reduced by 35 percent and the
optimizer can now run in the same space as the normal
compilation process.

4. Conclusion

The redundant computations and the invariant com-
putations of loops are particular aspects of partially
redundant computations. In this paper, we have pre-
sented a new technique which allows a global elimination
of partial redundancies, performing in a single algorithm
what was done before by the successive application of
several algorithms. This technique is based on a purely
Boolean approach and hence permits a simultaneous
treatment of all the expressions of a program.

103

The systems of Boolean equations are solved by a
direct iterative method which is cheap and easy to im-
plement. Experiments have shown that the cost of the
algorithm is very nearly linear for well-structured pro-
grams; it depends mainly on the size of the program to
be optimized and very slightly on its graphical structure.

This technique allows a simultaneous treatment of all
the implicit and explicit loops of the program without
any prior graphic identification, since it does not take
into account the shape of the graph on which it is
applied.

Our own experience is that it leads to a shorter opti-
mizer which is easier to implement and runs faster. This
technique is machine and language independent and can
be applied to a wide class of optimizing compilers.

Acknowledgments. The authors benefited from dis-
cussions with J. D. Ichbiah. They would like to thank
the referees for their careful reading of the manuscript
and for a number of suggested improvements.

Received November 1976; revised September 1978

References
I. Aho, A. V., and Ullman, J. D. The Theory of Parsing, Translation
and Compiling, Vol. 2. Prentice-Hall, Englewood Cliffs, N.J., 1973.
2. Allen, F. E. Control flow analysis. SIGPLAN Notices (ACM) 5,
7 (1970), 1-19.
3. Allen, F. E. and Cocke, J. A catalogue of optimizing techniques.
In Design and Optimization of Compilers, R. Rustin, Ed., Prentice-
Hall, Englewood Cliffs, N.J., 1971, pp. 1-30.
4. Cocke, J. Global common subexpression elimination. SIGPLAN
Notices (ACM) 5, 7 (1970), 20-24.
5. Goldtmrg, P. A comparison of certain optimization techniques. In
Design and Optimization of Compilers, R. Rustin, Ed., Prentice-HaU,
Englewood Cliffs, N.J., 1971, pp. 31-50.
6. Hecht, M. S., and UUman, J. D. A simple algorithm for global
data flow analysis problems. SIAM J. Comptng. 4 (1975), 519-532.
7. Ichbiah, J. D., Rissen, J. P., Heliard, J. C., and Cousot, P. The
system implementation language LIS. Ref. Manual 4549 E/EN,
CII-HB, Louveciennes, France, Dec. 1974.
8. Kennedy, K. A comparison of two algorithms for global data
flow analysis. SIAM J. Comptng. 5 (1976), 158-180.
9. KildaU, G. A. A unified approach to global program
optimization. Conf. Rec. of ACM Symp. on Principles of
Programming Languages, Boston, Oct. 1973, pp. 194-206.
10. Knuth, D. E. An empirical study of FORTRAN programs.
Software-Practice and Experience (April 1971), pp. 105-134.
II. Lowry, E. S., and Medlock, C. W. Object code optimization.
Comm. ACM 12, 1 (Jan. 1969), 13-22.
12. Morel, E., and Renvoise, C. Etude et r6alisation d'un optimiseur
global. Ph.D. Th., Universit6 de Paris VI, Juin 1974 (English version
available).
13. Morel, E., and Renvoise, C. A global algorithm for the
elimination of partial redundancies. 2nd Int. Symp. on Programming,
Paris, April 13-15, 1976, pp. 147-159 (edited by Dunod, Paris).
14. Schaefer, M. A Mathematical Theory of Global Program
Optimization. Prentice-Hall, Englewood Cliffs, N.J., 1973.

Communication February 1979
of Volume 22
the ACM Number 2

