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Global Optimization 
by Suppression of 
Partial Redundancies 
E. M o r e l  a n d  C. R e n v o i s e  
CI I  H o n e y w e l l  Bull  

The elimination of redundant computations and the 
moving of invariant computations out of loops are often 
done separately, with invariants moved outward loop by 
loop. We propose to do both at once and to move each 
expression directly to the entrance of the outermost 
loop in which it is invariant. This is done by solving a 
more general problem, i.e. the elimination of 
computations performed twice on a given execution 
path. Such computations are termed partially 
redundant. Moreover, the algorithm does not require 
any graphical information or restrictions on the shape 
of the program graph. Testing this algorithm has shown 
that its execution cost is nearly linear with the size of 
the program, and that it leads to a smaller optimizer 
that requires less execution time. 

Key Words and Phrases: optimizer, optimization, 
compiler, compilation, redundancy elimination, invariant 
computation elimination, partial redundancy, data flow 
analysis, Boolean systems 

CR Categories: 4.12, 5.21, 5.24 

Introduction 

The evolution towards high-level programming lan- 
guages, together with the growing emphasis on reliability 
and readability, has caused an increase in the distance 
between the source text and the object code of programs. 
Since efficiency remains an important goal, it becomes 
desirable to increase the power of the transformations 
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performed by compilers, and in particular, to apply 
global optimization techniques. 

This paper concentrates on the techniques for redun- 
dancy elimination and the removal of loop invariants. 
These transformations decrease the number of  run-time 
computations performed by programs. They have been 
introduced by Allen and Cocke [2, 4] who gave a for- 
mulation based on the notion of intervals. A simpler 
formulation of these problems, based on the direct res- 
olution of Boolean equations, has been developed by 
several authors [6, 9, 12]. 

In the first part of this paper, we present the Boolean 
approach to global optimization. In the second part, we 
show that redundancy elimination and loop-invariants 
removal are aspects of a larger problem, i.e. that of the 
suppression of partial redundancy. We present an algo- 
rithm for their global suppression. This algorithm can be 
applied to the whole program without any restrictions 
on the shape of its flowgraph. 

2. Elimination of Redundancies and Removal of 
lnvariants 

The optimizations described in this paper are applied 
to a program representation obtained by decomposition 
of the source text into elementary commands associated 
with a directed graph. All assignment statements of the 
source text are split into evaluation of the right-hand 
side, followed by assignment of  the result to the left- 
hand side. Moreover, if  necessary, expressions are split 
into binary operations. 

For instance, the source text instruction: 

"A . - - -A+B+C; ' "  

results in two expression computations: 

eI~- - -A+B 
e2 ~--- el + C  

and one assignment: 

A .---e2. 

The nodes of  the graph represent the basic blocks. A 
basic block is a maximal sequence of elementary com- 
mands with a single entry point and a single exit point. 
There is an arc in the graph from the exit point of i to 
the entry point of  j if the block j can be executed 
immediately after the block i. The set of  predecessors 
and successors of block i are denoted Pred(i) and Succ(i), 
respectively. The set of all the blocks of the program is 
denoted B. Paths are taken to be sequences of arcs. 

There is a designated entry block and all blocks can 
be reached from this block. The nodes for which Succ(i) 
is an empty set are the exit blocks of the program. 

Although the notion of loop is not important for our 
algorithm, we introduce some definitions derived from 
[11] and [1] in order to simplify certain points of  the 
explanation. 
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Definition 1. A loop L is a strongly connected set of 
blocks, i.e.: Vi, j ~ L, there is a path in L from i toj .  

Definition 2. A block i E L is an entry block of L if: 
3j  E Pred(i) ~ EL. 

Definition 3. A block i E L is a repeat block of L if: 
3j  E Succ(i)IJ is an entry block of L. 

Definition 4. A backwards edge is an edge (i, j )  such 
that i is a repeat block of L and j is an entry block of L. 

Definition 5. A block i is an initialization block of L 
if: i¢E L, and 3j E Succ(i) I/is an entry block of L. If the 
block i has just one successor, then it is a satisfactory 
initialization block. Otherwise, a new empty block k is 
inserted on the edge (i,j) and k becomes the initialization 
block. In a goto-free language, there is a unique initiali- 
zation block for every loop. 

The optimizations considered involve suppressing or 
moving some expression computations. In order to de- 
termine the feasibility of these transformations, one must 
identify the mutual interactions of commands located in 
different blocks. The effect of these interactions can be 
represented by Boolean properties characterizing each 
expression with respect to each block. 

2.1 Boolean Properties Associated with the Expressions 
For each expression and each block, Boolean prop- 

erties are defined. Some of these properties depend only 
on the commands of a given block and are termed local. 
Other properties depend on interactions of different 
blocks and are termed global. 

2.1.1 Local Properties. The local properties are 
transparency, availability, and anticipability. 

Transparency: TRANSP. An expression is said to be 
"transparent" in a block i if its operands are not modified 
by the execution of the commands of the block i. 

Local Availability: COMP. An expression is said to 
be "locally available" in a block i if there is at least one 
computation of the expression in the block i, and if the 
commands appearing in the block after the last compu- 
tation of the expression do not modify its operands. 

Local Anticipability: ANTLOC. An expression may 
be locally anticipated in a block i if there is at least one 
computation of the expression in the block i, and if the 
commands appearing in the block before the first com- 
putation of the expression do not modify its operands. 

Local availability of an expression grants that the last 
computation of this expression in the block will deliver 
the same result as would a computation of this expression 
placed at the end of the block. Similarly, local anticipa- 
bility of  an expression grants that the first computation 
of  this expression in the block will deliver the same result 
as would a computation of this expression placed at the 
beginning of the block. 

2.1.2 Global Properties. The meaning of the previous 
properties can be extended to a complete program. The 
availability of an expression at a given point implies that 
a computation of this expression placed at this point 
would deliver the same result as the last computation of 
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this expression made before this point. Similarly, the 
anticipability of an expression at a given point implies 
that a computation of this expression placed at this point 
would deliver the same result as the first computation of 
this expression made after this point. 

The partial availability of an expression at a given 
point is a weaker property. It means that there is at least 
one path P leading from the entry point of the program 
to the point considered, and that computation of the 
expression inserted at this point would give the same 
result as the last computation of the expression made on 
the path P. 

These properties qualify program points and are 
defined whether the expression occurs on the point or 
not. In practice, we will concentrate on points which are 
block entries or exits. 

For the sake of clarity, only one expression will be 
considered and subscripts will be used to index the set B. 
We will use AVINi, ANTINi, PAVINi to denote, respec- 
tively, the global availability, anticipability, and partial 
availability of  the expression on entry of  the block i; 
similarly, AVOUTi, ANTOUTi, PAVOUTi will be used 
to denote the same properties on exit of the block i. The 
relations between global and local properties for all 
blocks of  the graph are expressed in the form of systems 
of Boolean equations. Boolean conjunctions are denoted 
• and l-I; similarly, + and ~ are used for boolean dis- 
junctions. The operator for Boolean negation is denoted 
9. In a Boolean expression, " + "  has a weaker precedence 
than ".". 

Availability System. An expression is available on 
entry to a block if it is available on exit from each 
predecessor of the block. An expression is available on 
exit from a block if it is locally available or if it is 
available on entry of the block and transparent in this 
block: 

dundancy elimination which is based on a partitioning 
of the program graph into subgraphs called intervals [2, 
4, 5, 14]. 

An iterative approach to global-flow analysis which 
is easier to implement has also been developed by several 
authors [6, 9, 12]. Careful comparisons of the iterative 
approach with interval analysis appear both in [6] and 
[8]. Although there exist simple graph families such that 
the number of bit-vector operations is greater for the 
iterative approach than for the interval analysis [8], 
strong arguments in favor of iteration emerge from these 
comparisons• 

An evaluation of the iterative approach applied to a 
study of 50 Fortran programs [10] has shown that the 
average upper bound of the number of iterations for 
solving the Boolean systems is 4.75 [6]. Our practical 
experience is that for well-structured programs written 
in the language LIS [7], numbering the nodes as they are 
created during the compilation process causes the num- 
ber of iterations to be small (three in most cases). 

The iterative process can give several solutions, de- 
pending on the initialization of the unknowns. For the 
Boolean systems presented earlier, the wanted solution 
is the largest solution for the systems involving the 
conjunction operator 1-[ (availability and anticipability). 
The initialization value is then TRUE for all the un- 
knowns. For the system of partial availability involving 
the disjunction operator ~, the wanted solution is the 
smallest solution and the initialization value is FALSE 
for all the unknowns [6, 12]. 

In practice, it is possible to solve simultaneously the 
systems associated with 32 different expressions on a 
computer with words of 32 bits. Consequently, the time 
required to solve the Boolean systems is only a small 
fraction of the time required by the full optimization 
process. 

FALSE if i is the entry block ] 

AVINi = L ~ f l d .  AVOUT J otherwise ] 

AVOUTi =COMPi + TRANSPi. AVINI. 

Anticipability System. An expression may be antici- 
pated on exit of a block if it can be anticipated on entry 
of each successor of the block: 

False if i is an exit block -] 

ANTOUT, = I-I ANTINj otherwise J j~Succ(i) 

ANTINI = ANTLOCi + TRANSPi. ANTOUTi. 

Partial Availability System. An expression is partially 
available on entry of a block if it is partially available on 
exit of at least one predecessor of the block: 

[ F A L S E  if i is the entry block] 

PAVIN, = ~ PAVOUT i otherwise 
j~Pred(i) 

PAVOUT, = COMPi + TRANSPi. PAVINI. 

2.2 Resolution of Boolean Systems 
Allen and Cocke have introduced a method for re- 

2.3 Application to Redundant Expression Elimination 
The construction of the local properties is made by 

a simple scan of  every block. During this scan, the locally 
redundant computations are eliminated. It is possible to 
eliminate the first computation of an expression in a 
block i if it can be locally anticipated and is available on 
entry to the block i, i.e. if ANTLOCi .  AVINi = TRUE. 

2.4 Application to Code Motion 
Loop optimizations and suppression of certain partial 

redundancies involve moving computations from one 
point of the program to another. A computation of  an 
expression can only be placed at a point where it may be 
anticipated since both safety and efficiency do not permit 
the introduction of  a computation on a path where it was 
not present. A clear discussion of these safety and effi- 
ciency rules for code motion appears in [3, 14]. 

The removal of  an invariant expression from a loop 
is only possible if this expression may be anticipated at 
the entry point of the loop, and if it is transparent in all 
the blocks of  the loop. In classical techniques, removal 

98 Communications February 1979 
of Volume 22 
the ACM Number 2 



Fig. 1. 

A*la 

of loop invariants is performed loop by loop, from the 
innermost to the outermost. 

Another form of loop optimization by code motion 
appears in [3] and [141 as "motion of nonloop constants." 
The notion of  partial redundancy which embodies these 
cases has been presented in [12]. 

A computation of  an expression is partially redun- 
dant in a block i if it may be locally anticipated and is 
partially available on entry to the block i, i.e. if 
ANTLOC~. PAVINi = TRUE. An optimization can be 
performed by moving the computation into predecessor 
blocks of i where the expression can be anticipated. 

The computation of  A + B in node 3 of Figure 1 is 
partially redundant. This computation can be safely 
moved on exit of  node 1 since the expression A + B can 
be anticipated on exit of this node. Then, in Figure 2, 
the path (2, 3) contains one computation of A + B 
instead of  two as in Figure 1. The path (1, 3) always 
contains one computation. 

An algorithm that globally performed this optimiza- 
tion on a block by block and expression by expression 
basis was tested in an earlier version of the LIS optimizer 
[12]. This algorithm being too costly, a new nongraphical 
algorithm handhng all expressions at once was presented 
in [13]. The algorithm proposed in Section 3 of this paper 
is based on a generalization of the concept of partially 
redundant computation. 

3. Global Utilization of Partial Redundancy 
Elimination 

The redundant computations and the invariant com- 
putations of loops can be seen as particular cases of 
partially redundant computations. 

Clearly, a redundant computation is also a partially 
redundant computation. Similarly, it can be shown that 
a loop-invariant computation is also a partially redun- 
dant computation. 

Indeed, if a computation of an expression is invariant 
in a loop, this expression is transparent in all the blocks 
of  the loop. Let i be any block of the loop containing a 
computation of  the expression; since TRANSPi = 
TRUE, then ANTLOCi = COMP~ - TRUE, and then 
PAVOUT~ = TRUE. There exists a path P in the loop 
from i to i and all the blocks of  P are transparent for the 
expression. The partial availabihty on exit of i then 
creates through P a partial availability on entry of i, and 
thus ANTLOCi .  PAVIN~ = TRUE. 

An algorithm which suppresses the partial redundan- 
cies of  a program also eliminates the redundancies and 
the invariant computations of  loops. 
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Fig. 2. 

3.1 Algorithm for Suppression of Partial 
Redundancies 

As in [3], the principle of the algorithm is to introduce 
new computations of  the expression at points of the 
program chosen in such a way that the partially redun- 
dant computations become redundant and can hence be 
deleted. 

The steps of  the algorithm are as follows: 

(a) Resolution of the Boolean systems for availability, 
anticipability, and partial availability. 

(b) Determination of predecessors of  the blocks con- 
taining the partial redundancies and where a new 
computation may be introduced. This involves the 
computation of  the Boolean properties PPIN and 
PPOUT (Placement Possible on Entry and Place- 
ment Possible on Exit). 

(c) Determination of a subset of  these blocks on exit of 
which a computation must be inserted. These 
blocks satisfy the Boolean property INSERT. 

(d) Insertion of  new computations at the exit of the 
blocks satisfying INSERT = TRUE and suppres- 
sion of the partially redundant computations which 
are now redundant. 

3.1.1 Determination of PPIN and PPOUT. For the 
sake of clarity, an artificial constant term denoted 
CONST is introduced in the definition of PPIN . 
CONSTi is defined for every block i as 

ANTINi. [PAVINi + (~ANTLOCi). TRANSPI]. 

This constant term is TRUE for blocks containing a 
partial redundancy and for empty blocks where the 
expression can be anticipated. (A block is "empty" for 
an expression if it contains no computation nor modifi- 
cation of  the expression.) 

For every block i of the program, PPIN/and PPOUTi 
are then computed by: 

FALSE if i is the entry block, otherwise: q 
/ 

PPIN, = ]CONSTi. ]-I , (PPOUTj+ .AVOUTj). (ANTLOC, I 

L + TRAI('/SP~'.PPOUTi) J 
PPOUT~ = FALSE if i is an exit block, otherwise: II PPINk. 

kESuec(1) 

This is a system of Boolean equations involving the 
conjunction operator 1-[- The desired solution is the 
largest solution, and thus it is solved by the direct itera- 
tive method, starting with all TRUE's for the unknowns. 

3.1.2 Determination of INSERT. For each block i of 
the program, INSERTi is computed by: 

INSERT/= PPOUTi. -'aAVOUTi . ("nPPIN/+ ~TRANSP,). 
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3.1.3 Insertion and Suppression of Computations. At 
the end of  the algorithm, new computations are inserted 
on exit o f  the nodes satisfying I N S E R T  = TRUE.  Then 
the computations satisfying A N T L O C .  PPIN = T R U E  
are redundant  and may be deleted. 

3.2 Proof of the Effectiveness of the Algorithm 
The set of  the deleted computations (satisfying 

A N T L O C .  PPIN = TRUE)  is only a subset of  the set 
of  the partially redundant computations (satisfying 
A N T L O C .  PAVIN -- TRUE).  We must then prove that 
the transformation is nevertheless correct, and profitable. 
Theorem 1 proves that the deleted computations are 
redundant  after the insertion of  the new computations. 
In Theorem 2, we prove that none of  the paths of  the 
graph have been penalized. Conversely, all paths going 
through a node which contained a deleted computat ion 
have been optimized. 

LEMMA 1. After insertion of the new computations on 
exit of  the blocks satisfying I N S E R T  = TRUE, the new 
value of the availability on entry of any block for  which 
PPIN~ = TRUE will be AVIN' i  = TRUE. 

Preliminary Definition. A path going from the exit of  
a block i to the entry of  a block j (denoted ]i, jD is an 
"empty  path" for an expression if it does not contain any 
computat ion of  the expression nor modification of  its 
operands. The local Boolean properties for the blocks 
belonging to an empty path are TRANSP = T R U E  and 
COMP = A N T L O C  = FALSE. 

The blocks i and j do not belong to ]i, j[ .  The path 
]i,j[ is a single edge i f j  E Succ(i) and it then contains no 
blocks. 

PROOF (Lemma 1). Let i be a block satisfying PPINi 
= T R U E  and let us assume that AVIN~ = FALSE.. This 
can occur only if there exists: 

(1) a block k such that AVOUTk = INSERTk = 
TRANSPk = FALSE (or if  k is the entry block 
AVOUTk = INSERTk = FALSE); 

(2) an empty path ]k, i[ such that INSERTm = FALSE 
for any block m belonging to ]k, i[. 

Intuitively, no computat ion already exists or will be 
inserted on the path ]k, i[; then AVOUT~ = FALSE and 
this influence propagates through ]k, i[, causing 
A V O U T ~  = FALSE for every block m belonging to 
]k, z~ and then, AVIN~ = FALSE. AVOUTk = INSERTk 
= TRANSPk = FALSE implies PPOUTk = FALSE. ( I f  
k is the entry block, PPINk = FALSE by definition and 
then AVOUTk = INSERTk = PPINk = FALSE implies 
PPOUTk = FALSE.) 

Let j be the successor of  k in ]k, i[, PPOUTk = 
AVOUTk = FALSE implies P P I N / =  FALSE. I f j  = i, 
we are led to a contradiction on the value of PPINi else, 
PPINj  = AVOUT/  = INSERT/  = FALSE implies 
PPOUTj  = FALSE. The same reasoning could then be 
applied to the block j and, by following the path from k 
towards i, we conclude that PPOUT = A V O U T  = 

FALSE for the predecessor of  i in ]k, i[. Then PPINi -- 
FALSE, and we are led to a contradiction. 

THEOREM 1. After insertion of the'new computations at 
the exit of the blocks where I N S E R T  = TRUE, the first 
computation of the expression in any block i satisfying 
ANTLOCi .  PPINi becomes redundant. 

PROOF. These partially redundant computations ob- 
violasly satisfy PPINi = TRUE.  According to Lemma l, 
the new value of  the availability is AVIN~ = TRUE.  
Since the insertion of new computations cannot change 
the value of ANTLOCi,  we will have ANTLOCg.  AVIN~ 
= T R U E  and hence a redundancy. 

LEMMA 2. Let i be a block satisfying INSERTi  = 
TRUE. Every path starting from the exit of  i includes a 
computation which will be deleted. 

PROOF. INSERTg = T R U E  implies PPOUT~ = 
T R U E  and then, ANTINj  = T R U E  for every j E 
Succ(0. Hence there is a computat ion on every path 
starting from the exit of  i. It remains to be proved that 
these computat ions will be deleted. 

L e t j  be a block containing one of  these computations 
and let us assume that it will not be deleted. According 
to Theorem 1, this implies A N T L O C j .  PPINj = FALSE 
and since ANTLOCj  = TRUE,  PPINj = FALSE. Since 
the computat ion located i n j  has created the anticipability 
of  the expression on exit of  i, there exists an empty path 
]i,j[. 

PPINj -- FALSE implies P P O U T  = FALSE for every 
predecessor block o f j .  Let k be the predecessor o f j  in 
]i, j[ .  I f  k = i, we are led to a contradiction on the value 
of  PPOUTi,  else PPOUTk = FALSE, TRANSPh = 
TRUE,  and ANTLOCk = FALSE implies PPINk = 
FALSE. The same reasoning could then be applied to 
the block k and by following ]i, j [  in the reverse order, 
we conclude that PPIN = FALSE for the successor of  i 
in ]i, j[ .  Then PPOUTi  = FALSE, and we are led to a 
contradiction. 

LEMMA 3. Let i be a block satisfying INSERTi  = 
TRUE. The paths starting from the exit of i cannot 
encounter another block satisfying I N S E R T  = TRUE 
before encountering a block satisfying A N T L O C .  PPIN 
= TRUE. 

PROOF. According to Lemma 2, every path starting 
from the exit of  i encounters a block satisfying 
A N T L O C .  PPIN = T R U E  and this path is an empty 
path. Let j be one of  these blocks and ]i, j [  be the empty 
path. 

Let k be a block of  ]i, j [  such that INSERTk = 
TRUE.  Since INSERTh = PPOUTk . ~AVOUTk  . 
(--nPPINk + -nTRANSPk), INSERTk -- T R U E  and 
TRANSPk = T R U E  imply PPINk = FALSE. 

The proof  of  Lemma 2 shows that the value PPINj 
= FALSE of  a given b lock j  propagates upwards through 
an empty path ]i, j [  causing PPIN = FALSE for all the 
blocks of  this path and finally PPOUTg = FALSE. 

In the Lemma  3, PPINk = FALSE causes PPOUT~ 
= FALSE through ]i, k[. This implies INSERT~ = 
FALSE and we are led to a contradiction. 
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Fig. 3. Initial program. 

a 

THEOREM 2. At the end of the transformation, no path 
of the graph contains more computations of the expression 
than it contained before. 

PROOF. This is clear from Lemmas 2 and 3. 

3.3 Application of the Algorithm to an Example 
In this example (see Figures 3 and 4), an expression 

a + b is computed in blocks 6, 7, 8, and 9. One of its 
operands is modified in block 4. The computation of the 
block 7 is invariant in the loop 5-7. The computation of 
the block 9 is redundant. The computations of the blocks 
6 and 8 are partially redundant. For the sake of clarity, 
the correct initialization blocks of the loops have not 
been introduced. 

Local Boolean Properties. 

ANTLOC is TRUE for nodes 6, 7, 8, 9; FALSE elsewhere. 
COMP is TRUE for nodes 6, 7, 8, 9; FALSE elsewhere. 
TRANSP is FALSE for node 4; TRUE elsewhere. 

Global Boolean Properties (obtained by resolution of 
Boolean systems). 

ANTIN is FALSE for nodes, 1, 2, 4; TRUE elsewhere. 
AVOUT is TRUE for nodes 6, 7, 8, 9; FALSE elsewhere. 
PAVIN is FALSE for node I; TRUE elsewhere. 

Value of PPIN and PPO UT (obtained by resolution 
of Boolean systems). 

PPIN is FALSE for nodes 1, 2, 3, 4; TRUE elsewhere. 
PPOUT is FALSE for nodes 1, 2, 8, 9; TRUE elsewhere. 

Computation of INSERT. 

INSERT is TRUE for nodes 3, 4; FALSE elsewhere. 

Insertion and Suppression of Computations. 

ANTLOC . PPIN is TRUE for nodes 6, 7, 8, 9; FALSE elsewhere. 
Computations located in the blocks 6, 7, 8, and 9 are deleted. New 
computations are inserted at the exit of  the blocks 3 and 4. 

3.4 Discussion of the Algorithm 
Having proved in Section 3.2 that the transformation 
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a 

a~b 

does no harm, we can informally prove that this algo- 
rithm results in a program at least as efficient as the one 
produced by the successive application of the three class- 
ical techniques it aims to replace. This involves showing 
that if an optimization is performed by one of the 
classical techniques, it is also performed by this new 
algorithm. 

(a) In the classical redundancy elimination, it is possi- 
ble to eliminate the first computation of an expres- 
sion in a block if A N T L O C .  AVIN = TRUE. In 
the new algorithm, these blocks always satisfy 
A N T L O C .  PPIN = TRUE, and the same compu- 
tations are deleted. 

(b) In the classical technique for invariants, a compu- 
tation is removed from nested loops while it is both 
invariant in a loop and can be anticipated on entry 
of this loop. Let i be the initialization block of the 
outermost loop where the computation is placed in 
the classical treatment. In the new algorithm, the 
block i always satisfies PPOUTi = TRUE. If  
INSERT/=  TRUE, a computation is introduced at 
the exit of the block i. But it may happen that the 
block i designated by the classical treatment is not 
the optimal point at which a new computation 
should be inserted since, for example, it may intro- 
duce a new partial redundancy which could be 
avoided. In this case, INSERTi is FALSE, and the 
computation is anticipated higher in the program. 
In any event, an invariant computation is removed 
by the new algorithm from at least as many loops 
as in the classical technique. Moreover, invariant 
computations can be removed in the same way 
from multientry loops although the classical tech- 
nique is often limited to single-entry loops. 

(c) The third classical technique which is subsumed by 
the new algorithm is the elimination of the partial 
redundancies which can still remain after having 
suppressed the redundancies and the invariant com- 
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Fig. 5. 

A / ~  A÷B 

Fig. 6. 

A ~  A,PB 

Fig. 7. 

A*B~ )A~ 

Fig. 8. 

putations of loops. Since the new algorithm is based 
on this concept, it obviously performs this optimi- 
zation. 

The new algorithm can then replace these classical 
techniques without any loss of effectiveness in the re- 
suiting program. Nevertheless, some partially redundant 
computations may sometimes not be deleted. This ap- 
pears in two cases: 

(1) The expression cannot be anticipated at the points 
where new computations must be inserted. Doing 
this transformation would break the safety rule 
which prohibits the insertion of a computation on 
a path where it was not present. It is then impossible 
to suppress this partial redundancy without modify- 
ing the graph structure. This aspect of the problem 
is not discussed here. 
The partial redundancy in node 4 of Figure 5 
cannot be suppressed since the expression A + B 
cannot be anticipated on exit of 1. It can only be 
suppressed by inserting a new node 5 on the edge 
(1, 4) with a computation ofA + B in it (see Figure 
6). 

(2) The partial redundancy can only be suppressed by 

Fig. 9. 

• A~ 

Fig. 10. 

A ~ A ~ ~  A+B ~A~B 
A~B 

Fig. 11. 

A,8 

introducing new partial redundancies. This can be 
done only if this transformation produces a run- 
time optimization by moving computations from a 
frequently used path to a less frequently used path. 
Execution frequency measurements are needed to 
guarantee the effectiveness of the transformation. 
The partial redundancy in node 4 of Figure 7 could 
be suppressed by inserting a computation of A + B 
on exit of node 3. This transformation introduces a 
new partial redundancy in node 5 (see Figure 8). 
Although this transformation is "safe" since A + B 
can be anticipated on exit of the node 3, it is not 
effective if the node 3 is more frequently executed 
than the node 4. 

Moreover, this algorithm does not always allow the 
insertion of the minimal number of computations since 
it is sometimes possible to insert a computation in a 
common successor of the blocks designated by the algo- 
rithm. 

The partial redundancy in node 5 of Figure 9 is 
eliminated by the insertion of two computations in nodes 
1 and 2 (see Figure 10). A better solution, from a code 
size point of view, is the insertion of a unique computa- 
tion in node 3 (see Figure 11). This can be achieved 
globally by applying, after the time-saving algorithm of 
this paper, a space-saving algorithm as "temporization" 
[12] which moves several computations in a common 
SUC~SSOr. 
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3.5 Experimental Results 
Comparison has been made between two global op- 

timizers developed for the language LIS [7]: the first one, 
described in [12] is using classical and independent tech- 
niques while the second one is based on the present 
algorithm. In both, the optimization phase is an optional 
and separate pass of the compiler. 

In the first optimizer, the successive application of 
the classical techniques with the invariant moved out- 
ward loop by loop is a 7200 line program. This part of 
the optimizer can be reduced to 2500 lines if the new 
algorithm is used. In this case, given a description of the 
graph, a description of the expressions which can be 
optimized, and the value of the local Boolean properties 
for these expressions, the program which computes all 
the global Boolean systems, deletes, and inserts compu- 
tations is a 800 line program. Our own experience is that 
it is considerably easier to implement than the classical 
methods since it completely eliminates the graphical 
problems for implicit loops, multientry loops, exit of 
nested loops, and avoids moving the same computation 
several times. 

Although this technique does not have the control 
flow analysis costs of the usual methods, it must solve 
the additional data flow equations for PPIN and 
PPOUT. A meaningful theoretical evaluation seems to 
be very difficult and we have only experimentally mea- 
sured the number of iterations for solving this system. 
This experiment has been made on a compilation of 
more than 50,000 fines of LIS programs with subroutines 
of up to 420 blocks. PPIN being initialized for each block 
with CONST (see Section 3.1.1) which is an upper value 
of the solution, the observed number of iterations has 
never exceeded three. Although it could be possible to 
have a slightly greater value with other tests, it appears 
that the maximum number of iterations is very small 
when optimizing actual programs as opposed to theoret- 
ical examples. 

Experiments have shown that the time spent for 
global optimization is reduced by 30 to 60 percent when 
using the second optimizer. Moreover, the size of the 
global optimizer has been reduced by 35 percent and the 
optimizer can now run in the same space as the normal 
compilation process. 

4. Conclusion 

The redundant computations and the invariant com- 
putations of loops are particular aspects of partially 
redundant computations. In this paper, we have pre- 
sented a new technique which allows a global elimination 
of partial redundancies, performing in a single algorithm 
what was done before by the successive application of 
several algorithms. This technique is based on a purely 
Boolean approach and hence permits a simultaneous 
treatment of all the expressions of a program. 
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The systems of Boolean equations are solved by a 
direct iterative method which is cheap and easy to im- 
plement. Experiments have shown that the cost of the 
algorithm is very nearly linear for well-structured pro- 
grams; it depends mainly on the size of the program to 
be optimized and very slightly on its graphical structure. 

This technique allows a simultaneous treatment of all 
the implicit and explicit loops of the program without 
any prior graphic identification, since it does not take 
into account the shape of the graph on which it is 
applied. 

Our own experience is that it leads to a shorter opti- 
mizer which is easier to implement and runs faster. This 
technique is machine and language independent and can 
be applied to a wide class of optimizing compilers. 
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