
Integral C - A Practical Environment for C Programming 

Graham Ross 

CASE Division 
Tektronix, Inc. 

ABSTRACT 

Integral C’ is an industrial grade integrated programming environment for C pro- 
gramming cm an engineering workstation. A single interactive tool replaces a syntax 
checking editor, a compiler, and a source-level debugger. Its multi-window user inter- 
face allows program editing and animated source level debugging, tailored to the needs 
of a C programmff. The compiler accepts standard C code and reacts to editing changes 
with function-level incremental compilation. Compilation is done without prompting to 
maintain the client program in a ready-to-run state. Emitted code is instrumented to 
catch run-time errors and to permit fine grained &bugging. Debugging support code is 
written in C in a ‘workspace’, which grants it direct access to a local scope while keeping 
it separate from the client program. - 

Introduction 
Wridng in C is hazardous duty. The 

language is lexically terse, syntactically sparse, 
and semantically loose. Each of these charac- 
teristics makes programming in C more of a pux- 
zle. Traditional C tools carry this sense of simpli- 
city as far as they reasonably can, which gives the 
language a reputation as a ‘high-level assembly 
language’. Some of this reputation is well- 
deserved; it is easy to write confusing and 
unmaintainable C programs. Likewise, it is easy 
for an experienced C programmer to see clearly 
‘through the compiler’ anticipating the machine 
code his program will become. This feature of 
the language often yields better code. Obviously 
it can be exploited to an unhealthy extreme. 

To preserve C’s transparency and frugality, 
the rules say that a compiler and run-time 
enviromnent can leave many programming errors 
un&tected. In the draft proposed ANSI 
standard’s parlance, “the behavior is undefined.” 
A seqarate program, linr, is used in many C sys- 
tems to diagnose the error5 the compiler didn’t 
bother to look at. Some programmers use lint as 
a weekly chore, others as a last resort, with the 

1. Intc@ C and k arc tradennrh of Tektmnix, Inc. 

Permission to copy without fee oil or pan ol this material is gnnled providrul 

Ihol the copies are nol nude or diswibuled for dirccl commercial advantage. 
the ACM copyright notice and lhe title of the publicakm and its dale appcsr. 
and notice is given that copying is by permission of the Association for 

Computing Machinery. To copy othcnviu. or to republish. requires ;I kc and/ 
or specific permiuion. 

01986 ACM O-89791-212-8/86/0012/042 7% 

hope that their bugs will turn out to have been 
detectable at compile time. 

The trend in Unix-based* C tools has been 
toward improved interaction models for source- 
level debugging [Ada86], but without significant 
&bugging support from compilers (thus preserv- 
ing the high-level assembler) and without the 
direct aid of integrating the compiler with the 
&bugger. Run-time automated aids to debugging 
have been implemented with preprocessors that 
transform a program in various ways to provide 
animation or run-time checks, such as in Safe ?. 
Version control [Tic851 and dependency tracking 
Fe1791 are the province of still other tools. 

Integral C diverges ab~ptly from this 
trend. It provides a single tool integrating the 
typical functions of an editor, compiler, and 
debugger. Dependency tracking is handled impli- 
citly by Integral C. Integrating the compiling and 
&bugging functions into one tool reduces UO 
overhead, allows the debugger to make use of the 
compiler’s structures, and ensures a uniform user 

2. Unix ir a trademark of AT&T Bell L&OIWOI%S. 

3. Safe C ir 8 trademrlc of ClUlyIix Corp. 

42 



interface. 

Integral C places the greatest emphasis on 
detection and correction of programming errors. 
Whenever practical, Integral C diagnoses 
undefined C language constructs as errors, Most 
checks done by lint are applied continuously 
under Integral C. In addition, a large number of 
run-time errors are identi.fIed and diagnosed. 

Integral C was inspired by Magpie 
@3eL84], a prototype Pascal environment 
developed by Tektronix’s Computer Research 
Labs. The bulk of Magpie’s user interface ideas 
have been brought to Integral C with only minor 
changes. Where Integral C deviates most 
significantly is in applying these mechanisms to 
the C language. 

Overview of Integral C 
Integral C runs under Ultrix4 on a Vaxsta- 

tion4 equipped with a bitmapped display. It is 
invoked from the Unix shell. A project browser 
and an execution window appear when it is 
invoked. The execution window is a simple ter- 
minal emulator in which the client program does 
its input and output unless other arrangements are 
made. The project browser displays a tabular list 
of source code modules. Several other types of 
windows are created using commands available 
within the project browser. Each window pro- 
vides commands through a pop-up menu. The 
following sections describe the interactions that 
take place within each window. 

Code Browser 
Program text is entered in an unstructured 

fashion through the keyboard in a code browser. 
Integral C ‘figures it out’ We prefer free-form 
entry using a conventional visual editor instead of 
template editors or other structured mechanisms 
[Tei81]. Learning a new editor is never a pleas- 
ing prospect, and our editor recognizes a com- 
mand language similar to the standard Unix editor 
vi. (The editor’s internal design permits addi- 
tional command models to be added with little 
effort.) C’s macro processing features make a 
template-driven approach more of a nuisance than 
it might be with a lexically simpler language. 
Our approach allows our environment to handle 
any legitimate C code. 

4. U&ix and Vaxstation am trademarks of Digital Equip 
ment cap. 

Reports of syntax and static-semantic errors 
are available with a single mouse click, so the 
feedback on static errors’is quick. Magpie, which 
also permitted free-form input, diagnosed syntac- 
tic errors immediately by recasting the portion of 
the program fragment to the right of the error in 
another font. Semantic errors required a slight 
&lay, but they also were highlighted without a 
specific request from the user. This unsolicited 
feedback on errors was seen as ‘too busy’. 

The check command finds errors that 
belong to a particular module. The build com- 
mand does a more global job, finding errors in all 
modules. It also finds and diagnoses type 
conflicts between any two modules and between 
any one module and the standard library. Error 
messages appear next to the corresponding errors 
in the program text and commands are provided 
to help rummage through them. 

The code browser demonstrates the smooth 
integration of separate functions into a single tool; 
Besides its function as a program editor, it is a 
primary instrument for static and dynamic debug; 
ging. Commands in the code browser can: report 
syntax errors: look up the definition of an 
identifier; start, abort, and single-step execution; 
and set breakpoints and workspace traps (v.i.)i 
The statement-trace option animates execution by 
highlighting statements in the source code. 1 

Header File Browser 
Header files (objects for inclusion using C’s 

#include directive) are edited in a distinct 
header fiie browser because of the ambiguous 
nature of header files that are included more than 
once. If the header file has been imported from 
standard system directory, the browser provides 
read-only editor. 

Data Browser 
One entry in the project browser is named 

‘Data’. Creating a window for it yields a dura 
browser, which gives a hierarchical view of the 
data being manipulated by the program. Its three 
columns contain respectively the name, the type, 
and the value of a data object, each depicted in 
high-level notation, as they would appear in C 
source. The hierarchy is broken at its root into 
two halves. The ‘modules’ domain shows a sym- 
bol hierarchy that parallels the symbol table. 
Statically allocated data objects appear here. The 
‘stack’ domain shows a list of activation records 
on the stack. It displays values for automatically 

43 



allocated data objects, which may appear recur- 
sively. 

Generic ‘zoo&in’ and ‘zoom-out’ com- 
man& probe deeper into nested scopes in the 
symbol table and also, by expanding arrays and 
stmctures and by dereferencing pointers, probe 
deeper into structured data objects. The zoom 
commands work recursively (to explore linked 
structurei) and provide a simple but effective eli- 
sion mechanism. The ability to use the zoom-in 
command to dereference pointers makes objects 
obtained from ma 1 lot accessible. 

Figure 1 shows the effect of several zoom- 
in commands. The stack displays the names of 
active functions. Automatic variables belonging 
to the function paintpicture are visible. 
One of them, displaylist, has been derefer- 
enced and expanded to show still finer detail. 

lnt (Lnt.chbr*+) 

int 123 

btruct disp * NULL 
21.31.4,-6.2 
0.05432190 

.nagnlficstfon double 12.34567 

Fig. 1: Using the zoom-in command 

With the stack zoomed in, calls and returns 
in the client program have the effect of adding 
and deleting activation records from the list 
displayed in the window. 

With an activation record in the stack 
display selected, the step-here command executes 
the client program until a statement boundary is 
crossed in the selected activation. The browse 
command opens a code browser on the selected 
function. The where-am-I command locates the 
statement at which execution has been suspended 
in the selected frame. 

A variable-trace option causes the 
displayed values of variables to be updated 
dynamically as they change during program exe- 
cution. 

The data browser provides a complete but 
simplistic method for viewing data objects. For 
more complex jobs, a special purpose workspace 
can be built. 

Other Windows 
The workspace browser is an editor for 

code that supports debugging. It is fully 
described in a later section. 

Thk command window provides a scrolling 
termif& emulator for commands that don’t fit the 
static formula of the browsers. These commands 
include certain mode-switching commands (like 
‘workspace off, which disables all workspace- 
event connections without forgetting them) and 
certain commands that display tabular data (like 
‘show errors’). It is intended also to serve as a 
field service tool, allowing a remote technician to 
inspect internal shuctutes and provide detailed 
information on failures to maintenance engineers. 

Urgent error messages, and ones that fit 
nowhere else, appear in notify windows. Notify 
windows can be moved, resized, and deleted. 

Building a Program 
Integral C keeps track of all dependency 

information. Relationships are maintained 
between each source file and the header files it 
includes, and between each module or workspace 
and the workspaces that are tied to its events. 

Three general mechanisms are used to 
achieve quick turnaround abler a program change: 
incremental program construction, lazy transla- 
tion, and throw-away code generation. They are 
dealt with in order. Magpie was the inspiration 
for lazy translation and throw-away code genera- 
tion. Integral C’s incremental parsing scheme 
appears to be new. 

Incremental CompPation 

When a change is made to program source, 
a module known as the builder is notified of the 
change and asked to rebuild the client program. 
The affected source code is Srst reprep~~-~essed. 
The preprocessor results are compared with the 
previous ones for differences. The preprocessing 
increment is typically a small number of lines- 
on the order of ten to a hundred. Only the incre- 
ment containing the change need be reprepro- 
cessed. For a change to a header file this is done 
once for each inclusion. 

In many cases, such as a change to a com- 
ment, there axe no differences after preprocessing 
and the builder completes without doing any 
more work. However, if the change affected the 
prepn~essor’s symbol table, for instance by 
adding a definition for a new macro, preprocess- 

44 



ing continues through the rest of the file (or files, 
for a change in a multiply-included header file). 
Still, in some images the change might have no 
effect, for instance if a particular file doesn’t use 
the newly defined macro. 

For files in which a change in preprocessed 
results was seen, the ‘virtual parser’ is invoked to 
make up-to-date any program fragments that 
might have been invalidated by the change. The 
virtual parser is ‘virtual’ in the sense that it might 
not need to do any wok it simply ensures that 
the requested syntactic and semantic analysis has 
been done or that an error precluding the analysis 
has been found and diagnosed. The virtual 
parser’s unit of incrementality-a frugmenr-is 
one ‘external definition’ (a syntactic entity in C), 
except that because of the vagaries of the prepro- 
cessor, a fragment is constrained to contain only 
whole lines. A freak program, in which every 
newline lies within an external definition, con- 
tains only one fragment. (In real life, it tums out 
that a fragment is approximately one function.) 

The virtual parser maintains import-export 
relationships among fragments. The rules that 
determine whether recompilation is necessary am 
comparable to those given by Tichy in fTicg6), 
but applied with finer granularity and clouded by 
two features of the C language that make its 
import/export characteristics unusually compli- 
cated. First, each of several declarations of the 
same variable can lay claim to both importing and 
exporting ir 

extern int array[]; 
extern int array[lO]; 
int array[lO]; 
int array[lOl - t 1 1; 

The first declaration gives array a type. The 
second gives it a size. The third appears to be a 
‘defining declaration’, actually setting aside space 
for array. However, when we see the fourth 
declaration, we reinterpret the third as being 
synonymous with the second. The fourth declara- 
tion finally defines the atray and initializes its 
zeroth element to 1. 

Second, tentative definitions (such as the 
third line in the example) complicate the effects 
of subsequent changes to the program. For 
instance, notice that even though the fourth 
declaration is the defining one, deleting the fourth 
de&ration in the example doesn’t leave array 
unde!ined! 

It is worth noting that while Tichy’s theory 
is largely applicable, his examples are not. The 
import/export notions here are those between 
fragments within a module, not between modules, 
so ordering is significant and generally limits the 
set of fragments a change can affect. Further- 
more, Integral C treats inclusions of header files 
textually, permitting, for example, a macro invo- 
cation whose meaning changes from one inclu- 
sion to another. 

An important criterion in the design of 
Integral C was to give free rein to programming 
styles that make use of C’s remarkable lexical 
freedom. One reason for this was that we wanted 
to be able to handle existing C code that had 
already taken advantage of that freedom. A 
second motivation was our belief that C program- 
mers appreciate and demand that freedom. 
Rather than prescribe fragment boundaries and 
require the user to edit within them (as was done 
for Pascal by Magpie) the virtual parser computes 
fragment boundaries as it compiles the code. 
Each module begins as one fragment and is subdi- 
vided when a natural boundary is identified. 

While analyzing a fragment, the parser gen- 
erates code in an intermediate form. The inter- 
mediate code is subsequently compiled into 
assembly code, assembled, and linked. Each of 
these ‘downstream’ compiler phases processes 
one fragment at a time. 

Incremental linking minimizes the effect of 
program changes on an executing image. When a 
change is made in code that is not active, execu- 
tion can proceed from where it left off after the 
change is made. If the code was active, affected 
frames are removed from the stack and execution 
continues by redoing the first call to a function 
that was replaced. 

The ability to continue execution after a 
change is particularly useful in the case of an 
undefined function. The function can simply be 
defined, perhaps as a stub, and execution 
resumed. 

Lazy Translation 
Lazy translation permits the program to 

begin execution before it is completely built. A 
‘load-me stub’ is created by the run-time monitor 
for each exported entry point and linked into the 
program as though it were the real fragment. 
When invoked, a load-me stub sends a message to 
the builder, which responds by completing the 
downstream compilation phases for the fragment. 

45 



Then the load-me stub jumps to the new code and 
execution resumes. 

Fragments exporting names of statically 
allocated variables cannot be stubbed in this 
fashion. 

Thrown-Away Code Generation 

When the user is idle for a few seconds, the 
builder begins to do throw-away code generation. 
Modules are selected in least recently changed 
order in an attempt to reduce wasted compila- 
tions. The expectation is that though the code 
might be thrown away, any work that might make 
execution happen sooner is welcome on an idle 
workstation. For workstations that are being used 
by more than one programmer, throw-away code 
generation can be disabled via the command win- 
dOW. 

Smart Pointers 
When a C program computes a pointer 

value, the computation invariably hints at the 
boundaries of the region in which the pointer is 
valid Integral C takes the hint and prevents 
accesses outside the implied region. This is done 
by recording three addresses in every pointer. 
‘Current’ is the actual pointer value and is 
modified in the usual ways by pointer arithmetic. 
‘Base’ is the lowest, valid address for the pointer. 
‘Bound’ is the lowest invalid address above the 
valid region. Base and bound are initially set by 
the & operator and affected only by certain so- 
called primary operators, such as selecting a 
member of a structure. Before a pointer is used in 
making a memory-reference, the values of these 
three fields are measured against each other and 
against the size of the referent. If the region men- 
tioned in the reference is not wholly within the 
pointer’s Ilegion of capabitity, a run-time error is 
diagnosed. A similar mechanism prevents invalid 
array indexing. The pointer. is actually a five- 
word quantity and contains two more fields 
defining the referent’s static and dynamic identi- 
ties. These will be discussed along with 
workspaces. 

What’s valid and what’s not in pointer 
operations is a matter for debate. We made some 
choices that a few programmers might take issue 
with. When an operator computes the effective 
address of a member of a structure, Integral C’s 
compiler reduces the capability of the resulting 
pointer value so it has access only to that 
member. Some programs make assumptions 

about the packing of adjacent struct members; we 
decided those assumptions are non-portable. 
Maybe we were too strict. When an integer is 
cast to a pointer, we permit the pointer to access 
one object of its referent-type at the specified 
address. Perhaps this is a little too lenient. 

The standard memory allocator generates 
smart pointers, protecting its otherwise vulnerable 
data structures. Similarly, the system call inter- 
face ensures that I/O operations and other ‘magi- 
cal’ memory accesses will not violate pointer 
bounds. Certain library routines, notably 
printf, have been enriched with special diag- 
nostics when pointers are violated in particular 
ways. 

It is important to note that only actual 
memory referencea are flagged. It is not illegal 
for a C program simply to compute an invalid 
pointer value. It is commonplace in such con- 
stnJctions as 

for (p = a; p < &a[Nl; p++) 
/*loop body*/; 

if (p == &a[N]) 
/*normal termination*/ 

where N is the de&red may dimension and 
&a [N] is not inside the bounds of a. If the loop 
terminates normally, p holds an address that is 
invalid and calculations, such as the equality test 
shown, can reasonably involve that address. 
Integral C doesn’t diagnose this code as errone- 
ous since no out-of-bounds memory reference 
was made. 

Workspaces 
A wor~~uce is a brace-enclosed block of C 

statements (syntactically a C compound state- 
ment), usually valid in one or more contexts 
within the main program. A workspace appears 
in a workspace browser, which isolates the text of 
a workspace in its own window. The window is 
split into two panes, side by side. The left pane 
looks like the left column of the data browser. It 
is used to select a compilation and execution con- 
text for a workspwe. Toward this end, it offers 
the data browser’s zoom commands. ‘Ihe right 
pane looks like a code browser and offers most of 
the code browser’s commands. 

To help debug workspaces, the right pane 
of the workspace provides a trap command (like 
the code browser) and a stepwise do-it command 

46 



Events 
Integral C identifies certain junctures dur- 

ing program execution as run-time events. Enter- 
ing a particular statement or modifying a particu- 
lar variable are typical events. A short sequence 
of instructions, known as an event hook, is emit- 
ted into the object code stream at the point 
corresponding to each event. The behavior of an 
event hook is modified by the &bugger to imple- 
ment a &bugging function requested by a 
browser (such as statement tracing) or by the user 
directly (such as a workspace trap). 

Events are selected in the code browser by 
pointing to the related location in the program 
text. A workspace can be attached to an event 
using the code browser’s trap command, so that 
whenever the event occurs during the execution 
of the client program the hook causes the 
workspae to execute. When the trap command 
is given, an icon appears in the program source 
text at the pointed-to place. The workspace is 
compiled in the context of the event and, when 
the event occurs, executed in that context as well. 

Because of smart pointers and event hooks, 
an assignment to an interesting variable is reliably 
noted even when it happens through a pointer. To 
accomplish this, the pointer remembers the iden- 
tity of the variable to which it points (something 
equivalent to a symbol table pointer) and also the 
dynamic context that defined the variable (its 
activation record’s address). The data browser 
uses these pieces of information to identify which 
displayed value was modified. If a workspace is 
invoked by the hook it gets the dynamic context 
as a static link and thus has complete access to the 
context of the modified variable. 

The invocation of the workspace when the 
event occurs is only slightly slower than a con- 
ventional function call, so workspaces can be put 
to work where one would normally use an asser- 
tion (typically a macro), a loop precondition or 
invariant (typically a passive comment or macro), 
or a data invariant (typically a forgotten comment 
and a fervent hope). 

More sophisticated schemes might use 
workspaces to do coverage testing or to identify 
‘hot spots’. 

Immediate Execution 
When execution is suspended at a break- 

point, a workspace can be executed with the do-it 
command in any context in which it is valid. The 
context is selected in the workspace’s left pane, 

as shown in figure 2. 

Fig. 2: Immediate execution of a workspace 

Selecting an activation record in the left 
pane of the workspace browser implicitly chooses 
the active statement in that suspended activation. 
It also chooses a dynamic context (equal to the 
address of the stack activation record). The state- 
ment determines specific contexts for both the 
preprocessor and the parser. The do-it command 
quickly preprocesses and compiles the workspace 
in the identified static contexts, and links it into 
the suspended image. The workspace is then 
immediately executed in the identified dynamic 
context. 

Workspaces are implemented as functions 
with inaccessible names. They make reference to 
variables in ‘enclosing’ scopes through a static 
link list which is passed as the first parameter to a 
workspace. For example, insertNode in 
figure 2 is called recursively to insert a node in a 
binary tree, The pointer p is an automatic vari- 
able defined in insertNode. It points to the 
root of the subtree visible in an activation of 
insertNode. When a particular activation 
record has been selected (as shown), the do-it 
command calls printTree tD display that 
activation’s subtree. 

A do-it workspace can execute a return 
statement, which has the effect of forcing a return 
from the function in whose context it is running. 

A do-it in a static context (selected from the 
‘modules’ domain in the left pane) can be done 
even when the scope selected is not active on the 
stack In this case, explicit return and goto 
statements and references to automatic variables 
are diagnosed by the compiler as static-semantic 
errors. 

47 



Workspaces in Multiple Contexts 

Like a header file, a workspace can be used 
in any number of contexts; it is preprocessed and 
compiled independently in each one. ‘Ibis is a 
departure from Magpie’s demons, which were 
usable only in one context at a time. It is a con- 
venience: the same workspace might be useful at 
several points in the client program Curiously, 
the meaning of one use can be different from that 
of the others. For instance, a workspace contain- 
ing 

i 
x = 0; 

1 

can be used in one context where x is an int 
anclin anotherwhere x isa double. Thisis a 
necessary result, but not typically a useful one. 

Summary 
Integrated environments for procedural 

languages have been in existence for several 
years. Cedar [Swi85] and the Cornell Program 
Synthesizer lTeiSl] are good examples. They 
defined their own programming languages. 
Environments for existing, popular languages, 
implemented in a manner faithful to the definition 
of the language, are rare but not unknown, Mag- 
pie is a good example. Integral C is the first 
environment we have seen that is faithful to the C 
language. Details of the language dominated its 
design. 

Integral C’s approach to incremental com- 
pilation is novel. The scheme works well for a 
highly sheam-oriented language like C. 

Smart pointers am effective in detecting the 
most frequent C run-time errors. They also pro 
vi& a convenient mechanism for implementing 
some of the other &bugging functions of the 
environment 

Workspaces integrate smoothly into both 
the environment and the C language. They pro- 
vi& direct access to hidden data without affecting 
the client program. The multiple-context capabil- 
ity of workspaces makes them substantially easier 
to use. Instrumenting the code aRows a break- 
point to be placed reliably on the modification of 
a particular variable. Unlike the ‘action on break- 
point’ of typical source level debuggers, the use 
of workspaces causes no substantial loss in speed. 

Acknowledgements 
To Mayer Schwartz and Norm D&isle for 

cheerful reviews of a grim rough draft and to the 
Integral C &sign team for giving me something 
to write about. 

References 
[A&86] 

Adams, E. and Muchnick, S. S. Dbxtook A 
window-based symbolic debugger for Sun 
workstations. Sofiw. Pratt. Exper. 16, 7 
(July 1986), 653-669. 

lm.841 
DeLisle, N. M. et al. Viewing a program- 
ming environment as a single tool. ACM 
SIGPLANNot. 19, 5 (April 1984), 49-56. 

[Fe1791 
Feldman, S. I. Make-a program for main- 
taining computer programs. Softw. Pmt. 
Exper. 9, 3 (March i979), 255-265. 

[Swi85] 
Swinehart, D. et al. The structure of Cedar. 
ACM SIGPLAN Not. 20, 7 (July 1985), 
230-244. 

[Tei811 
Teitelbaum, T. and Reps, T. The Cornell 
Program Synthesizer a syntax-directed 
programming environment. CACM 24, 9 
(September 1981), 563-573. 

iTic 
Tichy, W. F. Smart recompilation. ACM 
TOPLAS 8, 3 (July 1986), 273-291. 

[Tic851 
Tichy, W. F. RCS-a system for version 
control. Softw. Pruct. Expcr. IS. 7 (July 
1985), 637-654. 

48 


